1
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Feng W, Wang Q, Tan Y, Qiao J, Liu Q, Yang B, Yang S, Cui L. Early detection of anthracycline-induced cardiotoxicity. Clin Chim Acta 2024; 565:120000. [PMID: 39401650 DOI: 10.1016/j.cca.2024.120000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Although anthracyclines are important anticancer agents, their use is limited due to various adverse effects, particularly cardiac toxicity. Mechanisms underlying anthracycline-induced cardiotoxicity (AIC) are complex. Given the irreplaceable role of anthracyclines in treatment of malignancies and other serious diseases, early monitoring of AIC is paramount. In recent years, multiple studies have investigated various biomarkers for early detection of AIC. Currently, the two most common are cardiac troponin and B-type natriuretic peptide. In addition, a range of other molecules, including RNAs, myeloperoxidase (MPO), C-reactive protein (CRP), various genes, and others, also play roles in AIC prediction. Unfortunately, current research indicates a need to validate their sensitivity and specificity of these biomarkers especially in large study populations. In this review, we summarize the mechanisms and potential biomarkers of AIC, although some remain preliminary.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, No. 49 Huayuan North Road, 100191, China; Institute of Medical Technology, Peking University Health Science Center, No. 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Repp ML, Edwards MD, Burch CS, Rao A, Chinyere IR. PCSK9 Inhibitors and Anthracyclines: The Future of Cardioprotection in Cardio-Oncology. HEARTS 2024; 5:375-388. [PMID: 39268545 PMCID: PMC11391951 DOI: 10.3390/hearts5030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
The field of cardio-oncology is an expanding frontier within cardiovascular medicine, and the need for evidence-based guidelines is apparent. One of the emerging focuses within cardio-oncology is the concomitant use of medications for cardioprotection in the setting of chemotherapy regimens that have known cardiovascular toxicity. While clinical trials focusing on cardioprotection during chemotherapy are sparse, an inaugural trial exploring the prophylactic potential of Sodium-Glucose Cotransporter-2 inhibitors (SGLT2is) for anthracycline (ANT)-induced cardiotoxicity has recently commenced. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, though less studied in this oncology demographic, have exhibited promise in preclinical studies for conferring cardiac protection during non-ischemic toxic insults. While primarily used to reduce low-density lipoprotein, PCSK9 inhibitors exhibit pleiotropic effects, including the attenuation of inflammation, reactive oxygen species, and endothelial dysfunction. In ANT-induced cardiotoxicity, these same processes are accelerated, resulting in premature termination of treatment, chronic cardiovascular sequelae, heart failure, and/or death. This review serves a dual purpose: firstly, to provide a concise overview of the mechanisms implicated in ANT-induced cardiotoxicity, and, finally, to summarize the existing preclinical data supporting the theoretical possibility of the cardioprotective effects of PCSK9 inhibition in ANT-induced cardiotoxicity.
Collapse
Affiliation(s)
- Matthew L Repp
- Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Mark D Edwards
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher S Burch
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amith Rao
- Department of Medicine, Banner University Medicine, Tucson, AZ 85724, USA
| | - Ikeotunye Royal Chinyere
- Department of Medicine, Banner University Medicine, Tucson, AZ 85724, USA
- Sarver Heart Center, University of Arizona, 1501 North Campbell Avenue, Room 6154, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Wu L, Wang LT, Du YX, Zhang YM, Ren J. Asiatic acid ameliorates doxorubicin-induced cardiotoxicity by promoting FPN-mediated iron export and inhibiting ferroptosis. Acta Pharmacol Sin 2024:10.1038/s41401-024-01367-9. [PMID: 39143234 DOI: 10.1038/s41401-024-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Doxorubicin (DOX), a common chemotherapeutic agent in cancer therapy, is accompanied by pronounced cardiotoxicity. Ferroptosis has been implicated in the pathogenesis and therapeutics of DOX-induced cardiotoxicity (DIC). Asiatic acid (AA), a pentacyclic triterpene from the Chinese medicinal herb Centella asiatica, displays antioxidant, anti-inflammatory, and antiapoptotic activities. In this study, we investigated the beneficial effects of AA against DOX-induced ferroptosis and cardiotoxicity and the underlying mechanisms. A chronic DIC model was established by challenging mice with DOX (5 mg/kg, i.p.) once per week for 4 weeks. Concurrent with DOX insult, the mice were administered AA (25 mg·kg-1·d-1, i.g.). Cardiac function and mechanical properties of isolated cardiomyocytes were evaluated at the end of treatment. We showed that AA administration preserved cardiac function, significantly reduced cardiac injury, and improved cardiomyocyte contractile function in DIC mice. The beneficial effects of AA were causally linked to the inhibition of DOX-induced ferroptosis both in vivo and in vitro. We revealed that AA attenuated DOX-induced iron accumulation in HL-1 cells by increasing FPN-mediated iron export, in a Nrf2-dependent manner. AA upregulated Nrf2 expression and promoted Nrf2 nuclear translocation in DOX-treated HL-1 cells. Moreover, AA-offered benefits against DOX-induced cardiac dysfunction and ferroptosis were abolished by Nrf2 inhibitor ML385 (30 mg·kg-1·d-1, i.p.) administrated 30 min before AA in DIC mice. Our data favor that AA promotes FPN-mediated iron export to inhibit iron overload and ferroptosis in DIC, suggesting its therapeutic potential in the treatment of DIC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Li-Tao Wang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yu-Xin Du
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ying-Mei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
5
|
Elzanaty KA, Omran GA, Elmahallawy EK, Albrakati A, Saleh AA, Dahran N, Alhegaili AS, Salahuddin A, Abd-El-Azim H, Noreldin A, Okda TM. Design and Optimization of Sesamol Nanosuspensions to Potentiate the Anti-Tumor Activity of Epirubicin against Ehrlich Solid Carcinoma-Bearing Mice. Pharmaceutics 2024; 16:937. [PMID: 39065634 PMCID: PMC11279961 DOI: 10.3390/pharmaceutics16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in discovering natural sources of anti-cancer drugs. Sesamol (SES) is a phenolic compound with antitumor effects. The present study aimed to investigate the anticancer properties of SES and its nano-suspensions (SES-NS) combined with Epirubicin (EPI) in breast cancer (BC) using mice bearing a solid Ehrlich tumor. The study involved 35 female albino mice and investigated the effects of SES and EPI on tumor growth, proliferation, apoptosis, autophagy, angiogenesis, and oxidative stress. Methods including ELISA, qRT-PCR, and immunohistochemistry were utilized. The findings revealed reductions in tumor growth and proliferation using SES either alone or combined and evidenced by decreased AKT (AKT Serine/Threonine kinase1) levels, angiogenesis indicated by lower levels of VEGFR (vascular endothelial growth factor), and apoptosis demonstrated by elevated caspase3 and BAX levels. Furthermore, autophagy increased and was indicated by increased levels of beclin1 and lc3, along with decreased oxidative stress as evidenced by elevated TAC (total antioxidant capacity) and reduced MDA (malondialdehyde) levels. Interestingly, SES-NS demonstrated more significant effects at lower doses. In summary, this study underscores the potential of SES as a promising agent for BC treatment. Moreover, SES-NS potentiated the beneficial effects of EPI while mitigating its adverse effects.
Collapse
Affiliation(s)
- Kholoud A. Elzanaty
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, 14071 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail 55428, Saudi Arabia;
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah 64001, Iraq
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| |
Collapse
|
6
|
Pang L, Cai C, Aggarwal P, Wang D, Vijay V, Bagam P, Blamer J, Matter A, Turner A, Ren L, Papineau K, Srinivasasainagendra V, Tiwari HK, Yang X, Schnackenberg L, Mattes W, Broeckel U. Predicting oncology drug-induced cardiotoxicity with donor-specific iPSC-CMs-a proof-of-concept study with doxorubicin. Toxicol Sci 2024; 200:79-94. [PMID: 38547396 PMCID: PMC11199917 DOI: 10.1093/toxsci/kfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Many oncology drugs have been found to induce cardiotoxicity in a subset of patients, which significantly limits their clinical use and impedes the benefit of lifesaving anticancer treatments. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) carry donor-specific genetic information and have been proposed for exploring the interindividual difference in oncology drug-induced cardiotoxicity. Herein, we evaluated the inter- and intraindividual variability of iPSC-CM-related assays and presented a proof of concept to prospectively predict doxorubicin (DOX)-induced cardiotoxicity (DIC) using donor-specific iPSC-CMs. Our findings demonstrated that donor-specific iPSC-CMs exhibited greater line-to-line variability than the intraindividual variability in impedance cytotoxicity and transcriptome assays. The variable and dose-dependent cytotoxic responses of iPSC-CMs resembled those observed in clinical practice and largely replicated the reported mechanisms. By categorizing iPSC-CMs into resistant and sensitive cell lines based on their time- and concentration-related phenotypic responses to DOX, we found that the sensitivity of donor-specific iPSC-CMs to DOX may predict in vivo DIC risk. Furthermore, we identified a differentially expressed gene, DND microRNA-mediated repression inhibitor 1 (DND1), between the DOX-resistant and DOX-sensitive iPSC-CMs. Our results support the utilization of donor-specific iPSC-CMs in assessing interindividual differences in DIC. Further studies will encompass a large panel of donor-specific iPSC-CMs to identify potential novel molecular and genetic biomarkers for predicting DOX and other oncology drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Li Pang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Chengzhong Cai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Dong Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Prathyusha Bagam
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Jacob Blamer
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Andrea Matter
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Amy Turner
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Katy Papineau
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Vinodh Srinivasasainagendra
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Xi Yang
- Division of Pharmacology & Toxicology, Office of Cardiology, Hematology, Endocrinology, & Nephrology, Office of New Drug, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, USA
| | - Laura Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - William Mattes
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
7
|
Mohsenizadeh SA, Rajaeinejad M, Khoshfetrat M, Arefizadeh R, Mousavi SH, Mosaed R, Kazemi-Galougahi MH, Jalaeikhoo H, Faridfar A, Nikandish M, Alavi-Moghadam S, Arjmand B. Anthracycline-Induced Cardiomyopathy in Cancer Survivors: Management and Long-Term Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38842787 DOI: 10.1007/5584_2024_804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent advancements in personalized treatments, such as anthracycline chemotherapy, coupled with timely diagnoses, have contributed to a decrease in cancer-specific mortality rates and an improvement in cancer prognosis. Anthracyclines, a potent class of antibiotics, are extensively used as anticancer medications to treat a broad spectrum of tumors. Despite these advancements, a considerable number of cancer survivors face increased risks of treatment complications, particularly the cardiotoxic effects of chemotherapeutic drugs like anthracyclines. These effects can range from subclinical manifestations to severe consequences such as irreversible heart failure and death, highlighting the need for effective management of chemotherapy side effects for improved cancer care outcomes. Given the lack of specific treatments, early detection of subclinical cardiac events post-anthracycline therapy and the implementation of preventive strategies are vital. An interdisciplinary approach involving cardiovascular teams is crucial for the prevention and efficient management of anthracycline-induced cardiotoxicity. Various factors, such as age, gender, duration of treatment, and comorbidities, should be considered significant risk factors for developing chemotherapy-related cardiotoxicity. Tools such as electrocardiography, echocardiography, nuclear imaging, magnetic resonance imaging, histopathologic evaluations, and serum biomarkers should be appropriately used for the early detection of anthracycline-related cardiotoxicity. Furthermore, understanding the underlying biological mechanisms is key to developing preventive measures and personalized treatment strategies to mitigate anthracycline-induced cardiotoxicity. Exploring specific cardiotoxic mechanisms and identifying genetic variations can offer fresh perspectives on innovative, personalized treatments. This chapter aims to discuss cardiomyopathy following anthracycline therapy, with a focus on molecular mechanisms, preventive strategies, and emerging treatments.
Collapse
Affiliation(s)
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Arefizadeh
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang B, Li Y, Liu N, Liu B. AP39, a novel mitochondria-targeted hydrogen sulfide donor ameliorates doxorubicin-induced cardiotoxicity by regulating the AMPK/UCP2 pathway. PLoS One 2024; 19:e0300261. [PMID: 38568919 PMCID: PMC10990198 DOI: 10.1371/journal.pone.0300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum, highly effective antitumor agent; however, its cardiotoxicity has greatly limited its use. Hydrogen sulfide (H2S) is an endogenous gaseous transmitter that exerts cardioprotective effects via the regulation of oxidative stress and apoptosis and maintenance of mitochondrial function, among other mechanisms. AP39 is a novel mitochondria-targeted H2S donor that, at appropriate concentrations, attenuates intracellular oxidative stress damage, maintains mitochondrial function, and ameliorates cardiomyocyte injury. In this study, DOX-induced cardiotoxicity models were established using H9c2 cells and Sprague-Dawley rats to evaluate the protective effect of AP39 and its mechanisms of action. Both in vivo and in vitro experiments showed that DOX induces oxidative stress injury, apoptosis, and mitochondrial damage in cardiomyocytes and decreases the expression of p-AMPK/AMPK and UCP2. All DOX-induced changes were attenuated by AP39 treatment. Furthermore, the protective effect of AP39 was significantly attenuated by the inhibition of AMPK and UCP2. The results suggest that AP39 ameliorates DOX-induced cardiotoxicity by regulating the expression of AMPK/UCP2.
Collapse
Affiliation(s)
- Bin Zhang
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Yangxue Li
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Ning Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Liu
- The Second Hospital of Jilin University, Nanguan District, Changchun City, Jilin Province, China
| |
Collapse
|
9
|
Fu Z, Wang L, Guo H, Lin S, Huang W, Pang Y. Bacterial Flagellum-Drug Nanoconjugates for Carrier-Free Immunochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306303. [PMID: 37919854 DOI: 10.1002/smll.202306303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 11/04/2023]
Abstract
The combination of immunotherapy and chemotherapy to ablate tumors has attracted substantial attention due to the ability to simultaneously elicit antitumor immune responses and trigger direct tumor cell death. However, conventional combinational strategies mainly focus on the employment of drug carriers to deliver immunomodulators, chemotherapeutics, or their combinations, always suffering from complicated preparation and carrier-relevant side effects. Here, the fabrication of bacterial flagellum-drug nanoconjugates (FDNCs) for carrier-free immunochemotherapy is described. FDNCs are simply prepared by attaching chemotherapeutics to amine residues of flagellin through an acid-sensitive and traceless cis-aconityl linker. By virtue of native nanofibrous structure and immunogenicity, bacterial flagella not only show long-term tumor retention and highly efficient cell internalization, but also provoke robust systemic antitumor immune responses. Meanwhile, conjugated chemotherapeutics exhibit an acid-mediated release profile and durable intratumoral exposure, which can induce potent tumor cell inhibition via direct killing. More importantly, this combination is able to augment immunoactivation effects associated with chemotherapy-enabled immunogenic tumor cell death to further enhance antitumor efficacy. By leveraging the innate response of the immune system to pathogens, the conjugation of therapeutic agents with self-adjuvant bacterial flagella provides an alternative approach to develop carrier-free nanotherapeutics for tumor immunochemotherapy.
Collapse
Affiliation(s)
- Zhenzhen Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
10
|
Iqbal MO, Gu Y, Khan IA, Wang R, Chen J. Evaluation of the in vitro antioxidant and antitumor activity of hydroalcoholic extract from Jatropha mollissima leaves in Wistar rats. Front Chem 2023; 11:1283618. [PMID: 38164252 PMCID: PMC10757942 DOI: 10.3389/fchem.2023.1283618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Despite modern sciences and advancements in new drugs or chemicals, the new era now rushes natural remedies for various illnesses and diseases that lead to end organ damage. In this study, we investigated Jatropha mollissima ethanolic extract's effect against doxorubicin-induced cardiotoxicity and renal toxicity. Methods: To determine phytochemicals, a phytochemical screening was conducted. Various assays were used to measure the antioxidant activity, including the DPPH (2,2-diphenylpicrylhydrazyl), SOD (superoxide dismutase), NO (nitric oxide), and others. The antiproliferative effect of Jm was assessed by MTT assay; morphological analysis was performed using an inverted and phase contrast microscope, ultra morphological analysis of apoptosis with acridine orange (AO)/propidium iodide (PI) staining. Results: It was seen that doxorubicin caused elevated serum markers and abnormal changes in histological patterns. The significant reduction in cardiac and renal marker levels seen in groups given either 400 or 600 mg/kg of crude extract demonstrates that Jm has a protective effect against doxorubicin-induced cardiotoxicity due to the presence of active phytoconstituents having antioxidant potential. There is a dose-dependent decrease in cell viability when using J. mollissima. Apoptosis was observed in the treated cells. Conclusion: In conclusion, our research lends credence to the idea that J. mollissima could be used for cancer management and have cardioprotective and nephroprotective effects.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
- Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan, Pakistan
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Imran Ahmad Khan
- Fatima Tu Zahara Department of Life Sciences, Muhammad Institute of Medical and Allied Sciences, Multan, Pakistan
- Department of Pharmacy, MNS University of Agriculture, Multan, Pakistan
| | - Ruihong Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Chen X, Lu N, Huang S, Zhang Y, Liu Z, Wang X. Assessment of doxorubicin toxicity using human cardiac organoids: A novel model for evaluating drug cardiotoxicity. Chem Biol Interact 2023; 386:110777. [PMID: 37879593 DOI: 10.1016/j.cbi.2023.110777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Cardiovascular diseases pose a huge threat to global human health and are also a major obstacle to drug development and disease treatment. Drug-induced cardiotoxicity remains an important clinical issue. Both traditional two-dimensional (2D) monolayer cell models and animal models have their own limitations and are not fully suitable for the study of human heart physiology or pathology. Cardiac organoids are three-dimensional (3D) and self-organized structures that accurately retain the biological characteristics and functions of heart tissue. In this study, we successfully established a human cardiac organoid model by inducing the directed differentiation of human embryonic stem cells, which recapitulates the patterns of early myocardial development. Moreover, this model accurately characterized the cardiotoxic damage caused by the anticancer drug doxorubicin, including clinical cardiac injury and cardiac function indicators, cell apoptosis, inflammation, fibrosis, as well as mitochondrial damage. In general, the cardiac organoid model can be used to evaluate the cardiotoxicity of drugs, opening new directions and ideas for drug screening and cardiotoxicity research.
Collapse
Affiliation(s)
- Xi Chen
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Na Lu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
12
|
Kizir D, Karaman M, Ceylan H. Tannic acid may ameliorate doxorubicin-induced changes in oxidative stress parameters in rat spleen. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3605-3613. [PMID: 37272930 DOI: 10.1007/s00210-023-02563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum drug widely used in the treatment of cancer. However, the toxicity and side effects of DOX on various organs limit its clinical use. Approaches using natural antioxidants with these drugs have the potential to alleviate negative side effects. The aim of this study was to investigate the potential protective effect of tannic acid, a polyphenolic compound found naturally in plants, against DOX-induced spleen toxicity. Expression levels of Alox5, Inos, IL-6, Tnf-α, Casp-3, Bax, SOD, GST, CAT and GPx genes were determined using cDNAs obtained from spleen tissues of rats treated with DOX, tannic acid and both. In addition, SOD, CAT, GPx and GST enzyme activities, and GSH and MDA levels were measured in tissues. In the spleen tissues, DOX caused a decrease in the level of GSH and an increase in the level of MDA. In addition, it was determined that DOX had a suppressive effect on CAT, GST, SOD and GPx mRNA levels and its enzyme activities, which are antioxidant system components. The mRNA expression levels of proinflammatory cytokine markers, apoptotic genes, and some factors involved in cell metabolism showed a change compared to the control after DOX application. However, as a result of tannic acid treatment with DOX, these changes approached the values of the control group. The findings showed that tannic acid had a protective effect on the changes in the oxidative stress and inflammation system in the rat spleen as a result of the application of tannic acid together with DOX.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
13
|
Skaggs C, Nick S, Patricelli C, Bond L, Woods K, Woodbury L, Oxford JT, Pu X. Effects of Doxorubicin on Extracellular Matrix Regulation in Primary Cardiac Fibroblasts from Mice. BMC Res Notes 2023; 16:340. [PMID: 37974221 PMCID: PMC10655342 DOI: 10.1186/s13104-023-06621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFβ. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Collapse
Affiliation(s)
- Cameron Skaggs
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Steve Nick
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Conner Patricelli
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Laura Bond
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Kali Woods
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
| | - Luke Woodbury
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
| | - Julia Thom Oxford
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID, 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
14
|
Miller CE, Jordan JH, Thomas A, Friday SR, Meléndez GC, Weis JA. Myocardial Elasticity Imaging Correlates with Histopathology in a Model of Anthracycline-Induced Cardiotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561881. [PMID: 37904976 PMCID: PMC10614736 DOI: 10.1101/2023.10.11.561881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background There is considerable focus on developing strategies for identifying subclinical cardiac decline prior to cardiac failure. Myocardial tissue elasticity changes may precede irreversible cardiac damage, providing promise for an early biomarker for cardiac decline. Biomarker strategies are of particular interest in cardio-oncology due to cardiotoxic effects of anti-neoplastic therapies, particularly anthracycline-based chemotherapeutics. Current clinical methods for diagnosing cardiotoxicity are too coarse to identify cardiac decline early enough for meaningful therapeutic intervention, or too cumbersome for clinical implementation. Methods Utilizing changes in myocardial elasticity as a biomarker for subclinical cardiac decline, we developed a biomechanical model-based elasticity imaging methodology (BEIM) to estimate spatial maps of left ventricle (LV) myocardial elasticity. In this study, we employ this methodology to assess changes in LV elasticity in a non-human primate model of doxorubicin-induced cardiotoxicity. Cardiac magnetic resonance imaging of five African Green monkeys was acquired at baseline prior to doxorubicin administration, 6-weeks, and 15-weeks after final doxorubicin dose and histopathological samples of the LV were taken at 15-weeks after final doxorubicin dose. Spatial elasticity maps of the mid-short axis plane of the LV were estimated at each image acquisition. Global and regional LV elasticity were calculated and changes between imaging time points was assessed. LV elasticity at baseline and final time point were compared to cardiomyocyte size and collagen volume fraction measurements calculated from histopathological staining of archived tissue bank samples and study endpoint tissue samples utilizing Pearson's correlation coefficients. Results We identify significant changes in LV elasticity between each imaging time point both globally and regionally. We also demonstrate strong correlation between LV elasticity and cardiomyocyte size and collagen volume fraction measurements. Results indicate that LV elasticity estimates calculated using BEIM correlate with histopathological changes that occur due to doxorubicin administration, validating LV elasticity solutions and providing significant promise for use of BEIM to non-invasively elucidate cardiac injury. Conclusions This methodology can show progressive changes in LV elasticity and has potential to be a more sensitive indicator of elasticity changes than current clinical measures of cardiotoxicity. LV elasticity may provide a valuable biomarker for cardiotoxic effects of anthracycline-based chemotherapeutics and cardiac disease detection.
Collapse
Affiliation(s)
- Caroline E. Miller
- Wake Forest School of Medicine, Biomedical Engineering
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences
| | - Jennifer H. Jordan
- Virginia Commonwealth University, Department of Biomedical Engineering
- Virginia Commonwealth University Health Sciences, Pauley Heart Center
| | - Alexandra Thomas
- Atrium Health Wake Forest Baptist, Internal Medicine-Hematology and Oncology
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center
| | | | - Giselle C. Meléndez
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center
- Atrium Health Wake Forest Baptist, Internal Medicine-Cardiovascular Medicine
- Atrium Health Wake Forest Baptist, Pathology-Comparative Medicine
| | - Jared A. Weis
- Wake Forest School of Medicine, Biomedical Engineering
- Virginia Tech – Wake Forest School of Biomedical Engineering and Sciences
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center
| |
Collapse
|
15
|
Sunoqrot S, Abusulieh S, Abusara OH. Identifying synergistic combinations of Doxorubicin-Loaded polyquercetin nanoparticles and natural Products: Implications for breast cancer therapy. Int J Pharm 2023; 645:123392. [PMID: 37683979 DOI: 10.1016/j.ijpharm.2023.123392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Combining chemotherapeutic agents with bioactive natural products is an attractive cancer treatment modality to reduce the dose and side effects of chemotherapy. Combination treatments with drugs having different mechanisms of action can also be beneficial in combatting the development of drug resistance by cancer cells. Nanoparticle (NP)-mediated drug delivery can further improve the therapeutic index of cytotoxic agents by enabling passive and/or active targeting to tumor tissues in vivo. Using doxorubicin (DOX) as a model chemotherapeutic agent, we developed three NP formulations based on polyquercetin (pQCT), an emerging nanocarrier platform. The NPs were co-assembled with DOX, pQCT, and either Pluronic P123, methoxy poly(ethylene glycol)-amine, or D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS). Physicochemical characterization of the NPs revealed them to have a spherical morphology with high monodispersity, excellent drug loading capacity, and sustained drug release. Then, the NPs were evaluated in vitro to determine their potential synergism when combined with the bioactive natural products curcumin (CUR), tannic acid (TA), and thymoquinone (TQ) against breast cancer cells (MCF-7 and MDA-MB-231). Surprisingly, most of the combinations were found to be antagonistic. However, combinations containing CUR exhibited greater pro-apoptotic effects compared to the single agents, with polymer-modified pQCT NPs presenting as a promising nanoplatform for enhancing DOX's ability to promote cancer cell apoptosis. Our findings provide insights into the potential application of pQCT in nanomedicine, as well as the use of bioactive natural products in combination with DOX as a free agent and as an NP formulation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
16
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
17
|
Boulanger M, Aqrouq M, Tempé D, Kifagi C, Ristic M, Akl D, Hallal R, Carusi A, Gabellier L, de Toledo M, Sigurdsson JO, Kaoma T, Andrieu-Soler C, Forné T, Soler E, Hicheri Y, Gueret E, Vallar L, Olsen JV, Cartron G, Piechaczyk M, Bossis G. DeSUMOylation of chromatin-bound proteins limits the rapid transcriptional reprogramming induced by daunorubicin in acute myeloid leukemias. Nucleic Acids Res 2023; 51:8413-8433. [PMID: 37462077 PMCID: PMC10484680 DOI: 10.1093/nar/gkad581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 09/09/2023] Open
Abstract
Genotoxicants have been used for decades as front-line therapies against cancer on the basis of their DNA-damaging actions. However, some of their non-DNA-damaging effects are also instrumental for killing dividing cells. We report here that the anthracycline Daunorubicin (DNR), one of the main drugs used to treat Acute Myeloid Leukemia (AML), induces rapid (3 h) and broad transcriptional changes in AML cells. The regulated genes are particularly enriched in genes controlling cell proliferation and death, as well as inflammation and immunity. These transcriptional changes are preceded by DNR-dependent deSUMOylation of chromatin proteins, in particular at active promoters and enhancers. Surprisingly, inhibition of SUMOylation with ML-792 (SUMO E1 inhibitor), dampens DNR-induced transcriptional reprogramming. Quantitative proteomics shows that the proteins deSUMOylated in response to DNR are mostly transcription factors, transcriptional co-regulators and chromatin organizers. Among them, the CCCTC-binding factor CTCF is highly enriched at SUMO-binding sites found in cis-regulatory regions. This is notably the case at the promoter of the DNR-induced NFKB2 gene. DNR leads to a reconfiguration of chromatin loops engaging CTCF- and SUMO-bound NFKB2 promoter with a distal cis-regulatory region and inhibition of SUMOylation with ML-792 prevents these changes.
Collapse
Affiliation(s)
| | - Mays Aqrouq
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Denis Tempé
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | | | - Marko Ristic
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Dana Akl
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Rawan Hallal
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Aude Carusi
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Ludovic Gabellier
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | | | - Jon-Otti Sigurdsson
- Proteomics Program, Novo Nordisk Foundation Center For Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tony Kaoma
- Genomics Research Unit, Luxembourg Institute of Health, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Charlotte Andrieu-Soler
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | | | - Eric Soler
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Université de Paris, Laboratory of Excellence GR-Ex, Paris, France
| | - Yosr Hicheri
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Elise Gueret
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Vallar
- Genomics Research Unit, Luxembourg Institute of Health, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center For Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Guillaume Cartron
- IGMM, Univ. Montpellier, CNRS, Montpellier, France
- Service d’Hématologie Clinique, CHU de Montpellier, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | | | | |
Collapse
|
18
|
Gómez-Vecino A, Corchado-Cobos R, Blanco-Gómez A, García-Sancha N, Castillo-Lluva S, Martín-García A, Mendiburu-Eliçabe M, Prieto C, Ruiz-Pinto S, Pita G, Velasco-Ruiz A, Patino-Alonso C, Galindo-Villardón P, Vera-Pedrosa ML, Jalife J, Mao JH, Macías de Plasencia G, Castellanos-Martín A, Sáez-Freire MDM, Fraile-Martín S, Rodrigues-Teixeira T, García-Macías C, Galvis-Jiménez JM, García-Sánchez A, Isidoro-García M, Fuentes M, García-Cenador MB, García-Criado FJ, García-Hernández JL, Hernández-García MÁ, Cruz-Hernández JJ, Rodríguez-Sánchez CA, García-Sancho AM, Pérez-López E, Pérez-Martínez A, Gutiérrez-Larraya F, Cartón AJ, García-Sáenz JÁ, Patiño-García A, Martín M, Alonso-Gordoa T, Vulsteke C, Croes L, Hatse S, Van Brussel T, Lambrechts D, Wildiers H, Chang H, Holgado-Madruga M, González-Neira A, Sánchez PL, Pérez Losada J. Intermediate Molecular Phenotypes to Identify Genetic Markers of Anthracycline-Induced Cardiotoxicity Risk. Cells 2023; 12:1956. [PMID: 37566035 PMCID: PMC10417374 DOI: 10.3390/cells12151956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex trait with a polygenic component that is mainly unidentified. We propose that levels of intermediate molecular phenotypes (IMPs) in the myocardium associated with histopathological damage could explain CDA susceptibility, so variants of genes encoding these IMPs could identify patients susceptible to this complication. Thus, a genetically heterogeneous cohort of mice (n = 165) generated by backcrossing were treated with doxorubicin and docetaxel. We quantified heart fibrosis using an Ariol slide scanner and intramyocardial levels of IMPs using multiplex bead arrays and QPCR. We identified quantitative trait loci linked to IMPs (ipQTLs) and cdaQTLs via linkage analysis. In three cancer patient cohorts, CDA was quantified using echocardiography or Cardiac Magnetic Resonance. CDA behaves as a complex trait in the mouse cohort. IMP levels in the myocardium were associated with CDA. ipQTLs integrated into genetic models with cdaQTLs account for more CDA phenotypic variation than that explained by cda-QTLs alone. Allelic forms of genes encoding IMPs associated with CDA in mice, including AKT1, MAPK14, MAPK8, STAT3, CAS3, and TP53, are genetic determinants of CDA in patients. Two genetic risk scores for pediatric patients (n = 71) and women with breast cancer (n = 420) were generated using machine-learning Least Absolute Shrinkage and Selection Operator (LASSO) regression. Thus, IMPs associated with heart damage identify genetic markers of CDA risk, thereby allowing more personalized patient management.
Collapse
Affiliation(s)
- Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 24040 Madrid, Spain
| | - Ana Martín-García
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca (CIBER.CV), 37007 Salamanca, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Carlos Prieto
- Servicio de Bioinformática, Nucleus, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Sara Ruiz-Pinto
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (S.R.-P.); (G.P.); (A.V.-R.)
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (S.R.-P.); (G.P.); (A.V.-R.)
| | - Alejandro Velasco-Ruiz
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (S.R.-P.); (G.P.); (A.V.-R.)
| | - Carmen Patino-Alonso
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Estadística, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Purificación Galindo-Villardón
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Estadística, Universidad de Salamanca, 37007 Salamanca, Spain
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Estudios e Investigaciones Estadísticas, Campus Gustavo Galindo, Km. 30.5 Via Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain; (M.L.V.-P.); (J.J.)
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 92720, USA
| | - Guillermo Macías de Plasencia
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca (CIBER.CV), 37007 Salamanca, Spain
| | - Andrés Castellanos-Martín
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - María del Mar Sáez-Freire
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | - Susana Fraile-Martín
- Servicio de Patología Molecular Comparada, Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca, 37007 Salamanca, Spain; (S.F.-M.); (T.R.-T.); (C.G.-M.)
| | - Telmo Rodrigues-Teixeira
- Servicio de Patología Molecular Comparada, Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca, 37007 Salamanca, Spain; (S.F.-M.); (T.R.-T.); (C.G.-M.)
| | - Carmen García-Macías
- Servicio de Patología Molecular Comparada, Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca, 37007 Salamanca, Spain; (S.F.-M.); (T.R.-T.); (C.G.-M.)
| | - Julie Milena Galvis-Jiménez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Instituto Nacional de Cancerología de Colombia, Bogotá 111511-110411001, Colombia
| | - Asunción García-Sánchez
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Bioquímica Clínica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Bioquímica Clínica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Unidad de Proteómica y Servicio General de Citometría de Flujo, Nucleus, Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Begoña García-Cenador
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Cirugía, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Francisco Javier García-Criado
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Cirugía, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Juan Luis García-Hernández
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| | | | - Juan Jesús Cruz-Hernández
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Servicio de Oncología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - César Augusto Rodríguez-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
- Servicio de Oncología, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Hematología, Hospital Universitario de Salamanca, CIBERONC, 37007 Salamanca, Spain;
| | - Estefanía Pérez-López
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Servicio de Hematología, Hospital Universitario de Salamanca, CIBERONC, 37007 Salamanca, Spain;
| | - Antonio Pérez-Martínez
- Department of Paediatric Hemato-Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Federico Gutiérrez-Larraya
- Department of Paediatric Cardiology, Hospital Universitario La Paz, 28046 Madrid, Spain; (F.G.-L.); (A.J.C.)
| | - Antonio J. Cartón
- Department of Paediatric Cardiology, Hospital Universitario La Paz, 28046 Madrid, Spain; (F.G.-L.); (A.J.C.)
| | - José Ángel García-Sáenz
- Medical Oncology Service, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | - Ana Patiño-García
- Department of Pediatrics, Solid Tumor Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, IdisNA, 31008 Pamplona, Spain;
| | - Miguel Martín
- Department of Medicine, Gregorio Marañón Health Research Institute (IISGM), Centro de Investigación Biomédica en Red Oncológica (CIBERONC), Universidad Complutense, 28007 Madrid, Spain;
| | - Teresa Alonso-Gordoa
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Christof Vulsteke
- Department of Molecular Imaging, Pathology, Radiotherapy and Oncology (MIPRO), Center for Oncological Research (CORE), Antwerp University, 2610 Antwerp, Belgium; (C.V.); (L.C.)
- Department of Oncology, Integrated Cancer Center in Ghent, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Lieselot Croes
- Department of Molecular Imaging, Pathology, Radiotherapy and Oncology (MIPRO), Center for Oncological Research (CORE), Antwerp University, 2610 Antwerp, Belgium; (C.V.); (L.C.)
- Department of Oncology, Integrated Cancer Center in Ghent, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium;
| | - Thomas Van Brussel
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; (T.V.B.); (D.L.)
- Laboratory of Translational Genetics, Department of Human Genetics, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; (T.V.B.); (D.L.)
- Laboratory of Translational Genetics, Department of Human Genetics, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Unit, Leuven Cancer Institute, and Laboratory of Experimental Oncology (LEO), Department of Oncology, Leuven Cancer Institute and University Hospital Leuven, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium;
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 92720, USA
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (S.R.-P.); (G.P.); (A.V.-R.)
| | - Pedro L. Sánchez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Servicio de Cardiología, Hospital Universitario de Salamanca, Universidad de Salamanca (CIBER.CV), 37007 Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jesús Pérez Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (A.G.-V.); (R.C.-C.); (A.B.-G.); (N.G.-S.); (M.M.-E.); (A.C.-M.); (M.d.M.S.-F.); (J.M.G.-J.); (M.F.); (J.L.G.-H.); (J.J.C.-H.); (C.A.R.-S.); (A.M.G.-S.); (E.P.-L.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain; (A.M.-G.); (C.P.-A.); (P.G.-V.); (G.M.d.P.); (A.G.-S.); (M.I.-G.); (M.B.G.-C.); (F.J.G.-C.)
| |
Collapse
|
19
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
20
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Zhang XJ, Li L, Wang AL, Guo HX, Zhao HP, Chi RF, Xu HY, Yang LG, Li B, Qin FZ, Wang JP. GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis in doxorubicin-induced heart failure through inhibition of NADPH oxidase-derived oxidative stress. Toxicol Appl Pharmacol 2023; 463:116412. [PMID: 36764612 DOI: 10.1016/j.taap.2023.116412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Lu Li
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Ai-Ling Wang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Hui-Yu Xu
- Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan 030001, Shanxi, PR China.
| | - Jia-Pu Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan 030024, Shanxi, PR China
| |
Collapse
|
22
|
Rudolf K, Rudolf E. Increased Intracellular Free Zinc Has Pleiotropic Effects on Doxorubicin-Induced Cytotoxicity in hiPCS-CMs Cells. Int J Mol Sci 2023; 24:ijms24054518. [PMID: 36901950 PMCID: PMC10003200 DOI: 10.3390/ijms24054518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
(1) the mechanisms and outcomes of doxorubicin (DOX)-dependent toxicity upon changed intracellular zinc (Zn) concentrations in the cardiomyocytes obtained from human-induced pluripotent stem cells (hiPCS-CMs) were investigated; (2) cells exposed to the DOX were pretreated or cotreated with zinc pyrythione (ZnPyr) and various cellular endpoints and mechanisms were analyzed via cytometric methods; (3) both DOX concentrations (0.3 and 1 µM) induced a concentration-dependent loss of viability, an activation of autophagy, cell death, and the appearance of senescence. These phenotypes were preceded by an oxidative burst, DNA damage, and a loss of mitochondrial and lysosomal integrity. Furthermore, in DOX-treated cells, proinflammatory and stress kinase signaling (in particular, JNK and ERK) were upregulated upon the loss of free intracellular Zn pools. Increased free Zn concentrations proved to have both inhibitory and stimulatory effects on the investigated DOX-related molecular mechanisms, as well as on signaling pathways on the resulting cell fates; and (4) free intracellular Zn pools, their status, and their elevation might have, in a specific context, a pleiotropic impact upon DOX-dependent cardiotoxicity.
Collapse
|
23
|
Kawano I, Adamcova M. MicroRNAs in doxorubicin-induced cardiotoxicity: The DNA damage response. Front Pharmacol 2022; 13:1055911. [PMID: 36479202 PMCID: PMC9720152 DOI: 10.3389/fphar.2022.1055911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 10/17/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug widely used for cancer treatment, but its use is limited by cardiotoxicity. Although free radicals from redox cycling and free cellular iron have been predominant as the suggested primary pathogenic mechanism, novel evidence has pointed to topoisomerase II inhibition and resultant genotoxic stress as the more fundamental mechanism. Recently, a growing list of microRNAs (miRNAs) has been implicated in DOX-induced cardiotoxicity (DIC). This review summarizes miRNAs reported in the recent literature in the context of DIC. A particular focus is given to miRNAs that regulate cellular responses downstream to DOX-induced DNA damage, especially p53 activation, pro-survival signaling pathway inhibition (e.g., AMPK, AKT, GATA-4, and sirtuin pathways), mitochondrial dysfunction, and ferroptosis. Since these pathways are potential targets for cardioprotection against DOX, an understanding of how miRNAs participate is necessary for developing future therapies.
Collapse
Affiliation(s)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czechia
| |
Collapse
|
24
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
25
|
Kopeva KV, Grakova EV, Shilov SN, Berezikova EN, Popova AA, Neupokoeva MN, Ratushnyak ET, Teplyakov AT. Anthracycline-induced cardiotoxicity in women without cardiovascular diseases: molecular and genetic predictors. Acta Cardiol 2022; 77:805-814. [PMID: 34783301 DOI: 10.1080/00015385.2021.2003061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To evaluate role of molecular (endothelin-1, soluble Fas-L, NT-proBNP, TNF-α, interleukin-1β,) and genetic factors (NOS3 (rs1799983), EDNRA (C + 70G, rs5335), NADPH oxidase (C242T, rs4673), p53 protein (polymorphic marker-Arg72Pro exon 4, rs1042522), NOS3 (Glu298Asp, rs1799983), Caspase 8 (CASP8, rs3834129 and rs1045485), interleukin-1β gene (Il-1β, rs1143634), TNF-α gene (rs1800629), SOD2 (rs4880), GPX1 (rs1050450) in development of anthracycline-induced cardiotoxicity (AIC) in women without cardiovascular diseases. METHODS A total of 176 women with breast cancer and without cardiovascular diseases who received anthracyclines were enrolled in the study. After the 12 months of chemotherapy (CT), all patients were divided into two groups: group 1 (n = 52) comprised patients with AIC, group 2 (n = 124) comprised those without it. RESULTS Based on ROC-analysis, levels of endothelin-1 of ≥9.0 pg/mL (AUC of 0.699), sFas-L of ≥98.3 ng/mL (AUC of 0.990), and NT-proBNP of ≥71.5 pg/mL (AUC of 0.994;) were identified as a cut-off values predicting AIC during 12 months after CT. Whereas, NT-proBNP and sFas-L were more significant predictors than endothelin-1 (p < 0.001). The development of AIC was significantly related to Arg/Arg of p53 protein gene (OR = 2.972; p = 0.001), T/T of NOS3 gene (OR = 3.059, p = 0.018), T/T of NADPH oxidase gene (OR = 2.753, p = 0.008), and C/C of GPX1 (OR = 2.345; p = 0.007). CONCLUSION Evaluation of polymorphisms genes of p53 (rs1042522), NOS3 (rs1799983), GPX1 (rs1050450), and NADPH oxidase (rs4673) can be recommended before CT for the risk assessment of AIC development. The serum levels of NT-proBNP and soluble Fas-L after CT may be considered as non-invasive biomarkers for prediction of AIC development during the 12 months.
Collapse
Affiliation(s)
- Kristina V Kopeva
- Department of Myocardial Pathology (Tomsk, Russian Federation), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena V Grakova
- Department of Myocardial Pathology (Tomsk, Russian Federation), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey N Shilov
- Department of Pathological Physiology and Clinical Pathophysiology (Novosibirsk, Russian Federation), Novosibirsk State Medical University, Novosibirsk, Russia
| | - Ekaterina N Berezikova
- Department of Pathological Physiology and Clinical Pathophysiology (Novosibirsk, Russian Federation), Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anna A Popova
- Department of Pathological Physiology and Clinical Pathophysiology (Novosibirsk, Russian Federation), Novosibirsk State Medical University, Novosibirsk, Russia
| | - Maria N Neupokoeva
- Department of Pathological Physiology and Clinical Pathophysiology (Novosibirsk, Russian Federation), Novosibirsk State Medical University, Novosibirsk, Russia
| | - Elena T Ratushnyak
- Department of Pathological Physiology and Clinical Pathophysiology (Novosibirsk, Russian Federation), Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexander T Teplyakov
- Department of Myocardial Pathology (Tomsk, Russian Federation), Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
26
|
Zhu X, Wang X, Zhu B, Ding S, Shi H, Yang X. Disruption of histamine/H 1R-STAT3-SLC7A11 axis exacerbates doxorubicin-induced cardiac ferroptosis. Free Radic Biol Med 2022; 192:98-114. [PMID: 36165929 DOI: 10.1016/j.freeradbiomed.2022.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022]
Abstract
Doxorubicin (DOX) is widely used in the treatment of various cancers, increasing the great risk of adverse cardiovascular events, while the clinical intervention effect is not ideal. Histamine has been documented to participate in pathophysiological processes of cardiovascular diseases and inflammation-associated carcinogenesis. However, the potential roles of histamine in antitumor-related cardiotoxicity have not been fully elucidated. In this study, cardiomyocytes (hiPSC-CMs, HL-1 cells) and mice were treated with DOX to establish DOX-induced cardiotoxicity (DIC) models. Histidine decarboxylase knockout mice (HDC-/-) mice and histamine 1 receptor (H1R) antagonist were used to explore the effect of histamine/H1R signaling on DIC. Our results demonstrated that histamine deficiency or pharmaceutical inhibition of H1R accelerated myocardial ferroptosis, which is responsible for the aggravated DIC both in vivo and in vitro, while the supplementation of exogenous histamine reversed these changes. Our data revealed that the dysfunction of histamine/H1R signaling repressed the activation of transducer and activator of transcription 3 (STAT3), accompanying with decreased expression of solute carrier family7member11 (SLC7A11), a major modulator of ferroptosis. Conclusively, the disruption of histamine/H1R axis triggered ferroptosis and exacerbated DIC possibly by modulating STAT3-SLC7A11 pathway. Our findings point to a potential therapeutic target for DIC and provide more consideration on the usage of antihistamine drugs.
Collapse
Affiliation(s)
- Xiaowei Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiangfei Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongyu Shi
- Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 20094, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Cardiology, Wusong Hospital of Zhongshan Hospital, Fudan University, Shanghai, 20094, China; Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| |
Collapse
|
27
|
Alherz FA, El-Masry TA, Negm WA, El-Kadem AH. Potential cardioprotective effects of Amentoflavone in doxorubicin-induced cardiotoxicity in mice. Biomed Pharmacother 2022; 154:113643. [PMID: 36942597 DOI: 10.1016/j.biopha.2022.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DOX) is an available chemotherapeutic drug for treating various tumors. However, its effectiveness is limited by cardiotoxicity. Amentoflavone (AMF), a natural biflavonoid separated from Cycas thouarsii ethyl acetate fraction, displays promising anticancer, anti-inflammatory, and antioxidant effects. Thus, our research aims to explore whether AMF could boost cardioprotective effects against DOX cardiotoxicity and reveal the potential underlying mechanisms of cardioprotection. Mice were classified into four groups; Normal control, Untreated DOX group, and DOX groups treated with AMF (40 and 80 mg/kg, respectively) intraperitoneal injection daily for four days before doxorubicin administration and for additional three days following DOX administration to assess cardiotoxicity. Echocardiography showed that AMF 80 treated group was protected from DOX cardiotoxicity. Additionally, it alleviated histopathological structural alterations and effectively restored heart weight and body weight ratio. These effects were confirmed biochemically by a substantially reduced serum creatine kinase-MB (CK-MB) and aspartate aminotransferase (AST) levels. AMF effectively restored nuclear respiratory factor-1(NRF-1), mitochondrial transcription factor A (TFAM), and normalized heat shock protein - 27(HSP-27) expression levels compared to the DOX group. Moreover, AMF mitigated oxidative stress conditions and significantly suppressed NADPH oxidase (NOX) expression levels. It also showed significant anti-inflammatory effects via suppressing interleukin-6 (IL-6) expression and decreasing nuclear factor Kabba B (NF-κb) immune-staining. In addition, AMF markedly reduced FAS ligand (FASL) expression and p53 immune staining in cardiac tissue. This study is the first for the in vivo potential beneficial effects of AMF against acute DOX cardiotoxicity, possibly via exerting antioxidant, anti-inflammatory, and anti-apoptotic effects and restoring mitochondrial function.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya H El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
28
|
Terwoord JD, Beyer AM, Gutterman DD. Endothelial dysfunction as a complication of anti-cancer therapy. Pharmacol Ther 2022; 237:108116. [PMID: 35063569 PMCID: PMC9294076 DOI: 10.1016/j.pharmthera.2022.108116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Recent strides in anti-cancer therapeutics have improved longevity and led to a growing population of cancer survivors, who are increasingly likely to die of other causes. Treatment-induced cardiotoxicity is a complication of several therapeutic agents with acute and long-term consequences for cancer patients. Vascular endothelial dysfunction is a precursor and hallmark of ischemic coronary disease and may play a role in anti-cancer therapy-induced cardiotoxicity. This review summarizes clinical evidence for endothelial dysfunction following anti-cancer therapy and extends the discussion to include the impact of therapeutic agents on conduit arteries and the microcirculation. We highlight the role of innate immune system activation and cross-talk between inflammation and oxidative stress as pathogenic mechanisms underlying anti-cancer therapy-induced vascular toxicity. Understanding the impact of anti-cancer agents on the vascular endothelium will inform therapeutic approaches to prevent or reverse treatment-induced cardiotoxicity and may serve as an important tool to predict, monitor, and prevent adverse cardiovascular outcomes in patients undergoing treatment.
Collapse
Affiliation(s)
- Janée D Terwoord
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America.
| | - Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
29
|
Doxycycline Attenuates Doxorubicin-Induced Cardiotoxicity by Improving Myocardial Energy Metabolism in Rats. J Cardiovasc Dev Dis 2022; 9:jcdd9080254. [PMID: 36005418 PMCID: PMC9410319 DOI: 10.3390/jcdd9080254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/06/2022] Open
Abstract
Aim: Evaluate the influence of doxycycline, an anti-inflammatory and matrix metalloproteinase (MMP) inhibitor, on the attenuation of chronic doxorubicin-induced cardiotoxicity in rats. Methods: We allocated male Wistar rats into four groups: control (C), doxorubicin (D), doxycycline (inhibitor of MMP, IM), and Dox + doxycycline (DIM). Groups IM and DIM received doxycycline (5 mg/kg, IP) once a week for 4 weeks. In addition, 48 h after every doxycycline injection, groups D and DIM received Dox (5 mg/kg, IP). We performed echocardiogram and evaluated TIMP-4 and collagen I protein expression, MMP-2 activity, and oxidative stress and myocardial metabolism. Results: Doxorubicin promotes left atrium (LA) and left ventricle (LV) dilatation and decreases in LV fractional shortening, which was improved by doxycycline. Moreover, doxycycline attenuated the LV cardiomyocyte hypertrophy and collagen type I expression. Doxorubicin increased phosphofructokinase and decreased beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, and ATP synthase activity, which was partially attenuated by doxycycline. Lastly, doxycycline improved antioxidant enzyme activity in the DIM group. Conclusion: Doxorubicin increases oxidative stress and promotes changes in myocardial energy metabolism, accompanied by structural and functional changes. Doxycycline attenuated the doxorubicin-induced cardiotoxicity, at least in part, through changes in myocardial energy metabolism.
Collapse
|
30
|
Yu Y, Guo D, Zhao L. MiR-199 Aggravates Doxorubicin-Induced Cardiotoxicity by Targeting TAF9b. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4364779. [PMID: 35873641 PMCID: PMC9307339 DOI: 10.1155/2022/4364779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
The clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. However, the pathogenic mechanism of DOX and the role of miRNA in DOX-induced cardiotoxicity remain to be further studied. This study aimed to investigate the role of miR-199 in DOX-mediated cardiotoxicity. A mouse model of myocardial cell injury induced by DOX was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression changes of miR-199 and TATA-binding protein associated factor 9B (TAF9b) in DOX-induced cardiac injury. Cell apoptosis was detected by TUNEL staining and flow cytometry. The expression levels of apoptosis-related proteins, namely, Bax and Bcl-2, were detected by qPCR. The expression of Beclin-1 and LC3b was detected by western blotting. The binding effect of miR-199 with TAF9b was verified by dual-luciferase reporter gene assay. In this study, overexpression of miR-199 could promote cardiotoxicity. Inhibition of miR-199 could alleviate DOX-mediated myocardial injury. Further studies showed that miR-199 targeted TAF9b. Moreover, miR-199 promoted apoptosis of myocardial cells and aggravated autophagy. Furthermore, we demonstrated that TAF9B knockdown reversed the myocardial protective effect of miR-199 inhibitors. Therefore, miR-199 promoted DOX-mediated cardiotoxicity by targeting TAF9b, thereby aggravating apoptosis and regulating autophagy.
Collapse
Affiliation(s)
- Yangsheng Yu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Degang Guo
- Emergency Department, Third People's Hospital of Liaocheng City, Liaocheng 252000, China
| | - Lin Zhao
- Department of Cardiology, Sunshine Union Hospital of Weifang, Weifang 261000, Shandong, China
| |
Collapse
|
31
|
El Amrousy D, El-Afify D, Khedr R, Ibrahim AM. Omega 3 fatty acids can reduce early doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2022; 69:e29496. [PMID: 34842343 DOI: 10.1002/pbc.29496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Omega 3 polyunsaturated fatty acids are dietary factors with several beneficial cardiovascular effects. This study aimed to assess the possible protective effect of omega 3 fatty acids on early doxorubicin-induced cardiac toxicity in children with acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS Sixty children of newly diagnosed ALL were randomized into two groups: group I (n = 30) who received omega 3 fatty acids 1000 mg/day for 6 months in addition to their usual protocol of chemotherapy including doxorubicin; and group II (n = 30) who received their usual doxorubicin protocol during the period from February 2020 till August 2021. Echocardiographic examinations were performed before and after the treatment. Glutathione, malondialdehyde (MDA), superoxide dismutase (SOD), troponin I, creatine kinase MB (CK-MB), and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured also before and after omega 3 treatment. RESULTS After 6 months of omega 3 administration, group I had a significantly lower MDA level and a significantly higher glutathione and SOD levels than group II. Similarly, the levels of troponin I, CK-MB, and NT-proBNP were significantly high in group II, whereas they were unchanged in group I after treatment. Similarly, systolic function (presented with peak mitral annular systolic velocity and two-dimensional global longitudinal strain) of the heart was preserved in omega 3-treated patients, unlike the control group that showed significant impairment of left ventricular function after 6 months. CONCLUSION Omega 3 fatty acids may decrease early cardiac injury and doxorubicin-induced cardiotoxicity in children with ALL.
Collapse
Affiliation(s)
- Doaa El Amrousy
- Pediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia El-Afify
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha Khedr
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
32
|
Dong Y, Wu Q, Hu C. Early Predictive Value of NT-proBNP Combined With Echocardiography in Anthracyclines Induced Cardiotoxicity. Front Surg 2022; 9:898172. [PMID: 35846969 PMCID: PMC9283786 DOI: 10.3389/fsurg.2022.898172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Determine the predictive value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) combined with echocardiography in the diagnosis of anthracyclines-induced chronic cardiotoxicity. Methods A total of 80 female breast cancer patients from January 2019 to October 2021 were included in our hospital. Twenty-six patients with cardiotoxicity were divided into the cardiac impairment group, and the 54 patients without cardiotoxicity were classified into the normal control group. NT-proBNP levels and cardiac echocardiography were measured before the start of the chemotherapy cycle, in cycle 3 of the chemotherapy, and after the chemotherapy cycle in all patients. Results After three cycles of chemotherapy and chemotherapy, the levels of NT-proBNP in patients of the two groups were significantly higher than those before chemotherapy (P < 0.05). The levels of NT-proBNP in the cardiac injury group after three cycles of chemotherapy and chemotherapy were higher than those in the normal control group at the same time point (P < 0.05). The LVEF of patients in the cardiac impairment group after chemotherapy was lower than that before chemotherapy, and the LVEF after chemotherapy was lower than that in the normal control group (P < 0.05). NT-proBNP had a negative correlation with LVEF (r = −0.549, P < 0.001). The AUC of NT-proBNP in combination with LVEF for predicting cardiotoxicity in our patient was 0.898(95%CI:0.829–0.966). Conclusion NT-proBNP combined with echocardiography has clinical significance in the detection of anthracyclines-induced cardiotoxicity, and it can detect early myocardial injury induced by anthracyclines, with early prediction value. It is important to protect heart function and judge prognosis.
Collapse
Affiliation(s)
- Yingjun Dong
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qiong Wu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Changqing Hu
- Department of Cardiology, Shanxi Provincial People’s Hospital, Taiyuan, China
- Correspondence: Changqing Hu
| |
Collapse
|
33
|
Schirone L, D’Ambrosio L, Forte M, Genovese R, Schiavon S, Spinosa G, Iacovone G, Valenti V, Frati G, Sciarretta S. Mitochondria and Doxorubicin-Induced Cardiomyopathy: A Complex Interplay. Cells 2022; 11:2000. [PMID: 35805084 PMCID: PMC9266202 DOI: 10.3390/cells11132000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiotoxicity has emerged as a major side effect of doxorubicin (DOX) treatment, affecting nearly 30% of patients within 5 years after chemotherapy. Heart failure is the first non-cancer cause of death in DOX-treated patients. Although many different molecular mechanisms explaining the cardiac derangements induced by DOX were identified in past decades, the translation to clinical practice has remained elusive to date. This review examines the current understanding of DOX-induced cardiomyopathy (DCM) with a focus on mitochondria, which were increasingly proven to be crucial determinants of DOX-induced cytotoxicity. We discuss DCM pathophysiology and epidemiology and DOX-induced detrimental effects on mitochondrial function, dynamics, biogenesis, and autophagy. Lastly, we review the current perspectives to contrast the development of DCM, which is still a relatively diffused, invalidating, and life-threatening condition for cancer survivors.
Collapse
Affiliation(s)
- Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
| | - Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Riccardo Genovese
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
| | - Giulia Spinosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
| | - Giuliano Iacovone
- Cardiology Division, Santa Maria Goretti Hospital, 04100 Latina, Italy; (G.I.); (V.V.)
| | - Valentina Valenti
- Cardiology Division, Santa Maria Goretti Hospital, 04100 Latina, Italy; (G.I.); (V.V.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
- Department of Angiocardioneurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (L.S.); (L.D.); (R.G.); (S.S.); (G.S.); (G.F.)
- Department of Angiocardioneurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| |
Collapse
|
34
|
Yang ZY, Jiang CW, Zhang WL, Sun G. Treatment with eFT-508 increases chemosensitivity in breast cancer cells by modulating the tumor microenvironment. J Transl Med 2022; 20:276. [PMID: 35717238 PMCID: PMC9206753 DOI: 10.1186/s12967-022-03474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Patients with triple-negative breast cancer (TNBC) are better responders to neoadjuvant chemotherapy; however, they are poor in the durability of response with decreased overall and progression-free survival. Methods Given that significant improvements have been reported with PD-L1-PD-1 blockade in different cancers, we evaluated the in vitro and in vivo effectiveness of Tomivosertib (eFT-508), an anthracycline, adriamycin, and MNK1/2 inhibitor, which has been previously shown to inhibit translation of PD-L1 in mice model of liver cancer, alone or in combination using BC cell lines and an orthotopic xenograft mice model using the TNBC cell line MDA-MB-231. Results Within the context of The Cancer Genome Atlas (TCGA) dataset, expression of CD274 mRNA, which encodes programmed death-ligand 1 (PD-L1), was found to be significantly overexpressed in TNBC patients compared to patients with HER2 + or luminal breast cancer (BC). Even within TNBC sub-types, CD274 expression was significantly higher in the immune modulatory subtype (TNBC-IM). BC cells exhibited high IC50 = 0.85 ± 0.07 nM with Adriamycin and significantly lower IC50 = 0.23 ± 0.04 nM with eFT-508 (P < 0.01). Combination treatment showed in vitro synergism on chemosensitivity. Combination therapy also exhibited a synergistic effect on inhibition of tumor growth and lung colonization in vivo. Mass cytometry-based evaluation of the tumor microenvironment revealed significant attenuation of both PD-L1 and PD-L2 following mono- or combination therapy with eFT-508. Conclusions Treatment with eFT-508 restored effector and cytotoxic function of tumor-infiltrating CD8 + T cells in mice. The remarkable efficacy observed both in vitro and in vivo, and clinical synergism with adriamycin, highlights the potential of eFT-508 as an alternative, yet more efficacious, therapeutic option for patients with TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03474-9.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
35
|
Oros-Pantoja R, Córdoba-Adaya JC, Torres-García E, Morales-Avila E, Aranda-Lara L, Santillán-Benítez JG, Sánchez-Holguín M, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Preclinical evaluation of early multi-organ toxicity induced by liposomal doxorubicin using 67Ga-citrate. Nanotoxicology 2022; 16:247-264. [DOI: 10.1080/17435390.2022.2071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | - Gloria Otero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
36
|
Li X, Wang X, Wang B, Chi W, Li Z, Zhang M, Shen Y, Liu X, Lu Y, Liu Y. Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of AMPK/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154027. [PMID: 35278898 DOI: 10.1016/j.phymed.2022.154027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective broad-spectrum antitumor agent, but its clinical administration is limited by self-induced cardiotoxicity. Dihydromyricetin (DHM) is a flavonoid compound extracted from the Japanese raisin tree. Evidence that DHM has neovascular protective properties makes it a candidate for studying cardiotoxicity prevention strategy. However, it remains unknown if DHM can protect against cardiotoxicity caused by DOX. PURPOSE The present study was performed to evaluate the protective effect of DHM on DOX-induced cardiotoxicity in vivo and in vitro. METHODS C57BL/6 mice were intraperitoneally injected with DOX to construct cardiac injury model in vivo, and AC16 cells were exposed to DOX to induce cell injury in vitro. Left ventricular function of mice were detected by echocardiography, the apoptosis of mice cardiac tissue and AC16 cells were detected by TUNEL and Hoechst33342/PI double staining. The expression of apoptosis and autophagy related proteins were detected by western blotting, immunohistochemical staining and immunofluorescence staining. RESULTS Echocardiographic results showed that DOX-induced cardiotoxicity were significantly alleviated by DHM pretreatment. DOX induced cardiotoxicity of mice by inhibiting AMPK activation, increasing apoptosis and decreasing autophagy. However, under the same conditions, the heart tissue of DHM-pretreated mice showed increased autophagy and decreased apoptosis via activation AMPK/mTOR pathway. The same results were observed in vitro, and it was also found that DHM can inhibit the production of intracellular ROS in vitro. CONCLUSION DHM protects against cardiotoxicity by inhibiting apoptosis and oxidative stress and it can allevate theautophagy inhibition caused by DOX through AMPK/mTOR pathway. DHM preconditioning may be a breakthrough in protecting DOX-induced cardiotoxicity in the future clinical applications.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binyu Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqun Chi
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| | - Min Zhang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifu Shen
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youmei Lu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Morelli MB, Bongiovanni C, Da Pra S, Miano C, Sacchi F, Lauriola M, D’Uva G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front Cardiovasc Med 2022; 9:847012. [PMID: 35497981 PMCID: PMC9051244 DOI: 10.3389/fcvm.2022.847012] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies.
Collapse
Affiliation(s)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Gabriele D’Uva,
| |
Collapse
|
38
|
Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharmacol 2022; 13:811406. [PMID: 35211017 PMCID: PMC8861498 DOI: 10.3389/fphar.2022.811406] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
Collapse
Affiliation(s)
- Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rundong Wu
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linyi Chen
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqiang Yang
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Daoguang Yan
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingchuan Li
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Berecz T, Yiu A, Vittay O, Orsolits B, Mioulane M, dos Remedios CG, Ketteler R, Merkely B, Apáti Á, Harding SE, Hellen N, Foldes G. Transcriptional co-activators YAP1-TAZ of Hippo signalling in doxorubicin-induced cardiomyopathy. ESC Heart Fail 2022; 9:224-235. [PMID: 34931757 PMCID: PMC8787991 DOI: 10.1002/ehf2.13756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022] Open
Abstract
AIMS Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known. In this study, we investigated the role of the transcriptional co-activators of Hippo signalling, YAP and TAZ, in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in response to cardiotoxic agents and investigated the effects of modulating the pathway on cardiomyocyte function and survival. METHODS AND RESULTS RNA-sequencing analysis of human heart samples with doxorubicin-induced end-stage heart failure and healthy controls showed that YAP and ERBB2 (HER2) as upstream regulators of differentially expressed genes correlated with doxorubicin treatment. Thus, we tested the effects of doxorubicin on hiPSC-CMs in vitro. Using an automated high-content screen of 96 clinically relevant antineoplastic and cardiotherapeutic drugs, we showed that doxorubicin induced the highest activation of YAP/TAZ nuclear translocation in both hiPSC-CMs and control MCF7 breast cancer cells. The overexpression of YAP rescued doxorubicin-induced cell loss in hiPSC-CMs by inhibiting apoptosis and inducing proliferation. In contrast, silencing of YAP and TAZ by siRNAs resulted in elevated mitochondrial membrane potential loss in response to doxorubicin. hiPSC-CM calcium transients did not change in response to YAP/TAZ silencing. CONCLUSIONS Our results suggest that Hippo signalling is involved in clinical anthracycline-induced cardiomyopathy. Modelling with hiPSC-CMs in vitro showed similar responses to doxorubicin as adult cardiomyocytes and revealed a potential cardioprotective effect of YAP in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Tünde Berecz
- Heart and Vascular CenterSemmelweis University68 Városmajor StreetBudapestH1122Hungary
- Institute of Enzymology, Research Centre for Natural SciencesEötvös Loránd Research NetworkBudapestHungary
| | - Angela Yiu
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Orsolya Vittay
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Barbara Orsolits
- Heart and Vascular CenterSemmelweis University68 Városmajor StreetBudapestH1122Hungary
| | - Maxime Mioulane
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Cristobal G. dos Remedios
- Victor Chang Cardiac Research InstituteDarlinghurstNSWAustralia
- Bosch InstituteThe University of SydneySydneyNSWAustralia
| | - Robin Ketteler
- Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Bela Merkely
- Heart and Vascular CenterSemmelweis University68 Városmajor StreetBudapestH1122Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural SciencesEötvös Loránd Research NetworkBudapestHungary
| | - Sian E. Harding
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicola Hellen
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Gabor Foldes
- Heart and Vascular CenterSemmelweis University68 Városmajor StreetBudapestH1122Hungary
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
40
|
Transcriptome analysis of long noncoding RNAs reveals their potential roles in anthracycline-induced cardiotoxicity. Noncoding RNA Res 2022; 7:106-113. [PMID: 35415316 PMCID: PMC8967700 DOI: 10.1016/j.ncrna.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aims Anthracyclines (ANTs) are essential chemotherapeutic agents; however, their adverse effects can lead to heart failure in cancer survivors. While long non-coding RNAs (lncRNAs) have become new players in cellular processes, there is limited knowledge on lncRNA expression related to anthracyclines-induced cardiotoxicity. This study investigates the lncRNA profiles in human cardiac microtissues exposed to 3 popular ANTs, namely doxorubicin, epirubicin, and idarubicin, as well as in heart biopsies from ANT-treated patients. Methods and results The in vitro microtissues were exposed to each ANT at 2 doses over 2 weeks; the transcriptome data was collected at 7 time points. The human biopsies were collected from heart failure patients who underwent ANT treatment and control subjects. Over 100 lncRNAs were differentially expressed in each in vitro ANT treatment condition compared to control samples; 16 of them were differentially expressed across all ANT-treated conditions. The lncRNA databases and literature revealed insight on how these lncRNAs relate to heart failure and cellular functions. For instance, H19 and RMRP are involved in heart failure progression, while BDNF-AS is a cardiomyocyte damage-associated gene; SNHG7 is a cardiac hypertrophy regulator. PCAT19 can promote the miR‐182/PDK4 axis and modulate p53 expression, whereas SNHG29 can regulate the Wnt/β-catenin signaling pathway via the miR-223–3p/CTNND1 axis. Other lncRNAs, which were only differentially expressed in particular ANT-treated conditions, are also involved in cardiomyocyte damage and heart failure disease. The alterations of these lncRNA expressions in the in vitro cardiac tissue were also affirmed by similar changes in the human biopsies. Conclusion This study revealed several lncRNAs that can be potential biomarkers or targets for further ANT-induced cardiotoxicity investigation, according to the transcriptome in both human cardiac microtissues expose to ANTs as well as in heart biopies form ANT-treated patients. Especially, H19 lncRNA showed its contribution to on-target toxicity, in which it is involved in both chemoresistance and cardiotoxic mechanism.
Collapse
|
41
|
Deng Y, Ngo DTM, Holien JK, Lees JG, Lim SY. Mitochondrial Dynamin-Related Protein Drp1: a New Player in Cardio-oncology. Curr Oncol Rep 2022; 24:1751-1763. [PMID: 36181612 PMCID: PMC9715477 DOI: 10.1007/s11912-022-01333-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment. RECENT FINDINGS Anthracyclines (e.g. doxorubicin) are one of the most common and effective chemotherapeutic agents to treat a variety of cancers. However, the clinical usage of doxorubicin has been hampered by its severe cardiotoxic side effects leading to heart failure. Mitochondrial dysfunction is one of the major aetiologies of doxorubicin-induced cardiotoxicity. The morphology of mitochondria is highly dynamic, governed by two opposing processes known as fusion and fission, collectively known as mitochondrial dynamics. An imbalance in mitochondrial dynamics is often reported in tumourigenesis which can lead to adaptive and acquired resistance to chemotherapy. Drp1 is a key mitochondrial fission regulator, and emerging evidence has demonstrated that Drp1-mediated mitochondrial fission is upregulated in both cancer cells to their survival advantage and injured heart tissue in the setting of doxorubicin-induced cardiotoxicity. Effective treatment to prevent and mitigate doxorubicin-induced cardiotoxicity is currently not available. Recent advances in cardio-oncology have highlighted that Drp1 inhibition holds great potential as a targeted mitochondrial therapy for doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yali Deng
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Doan T. M. Ngo
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute & University of Newcastle, New Lambton Heights, New South Wales Australia
| | - Jessica K. Holien
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,School of Science, STEM College, RMIT University, Melbourne, Victoria Australia
| | - Jarmon G. Lees
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia
| | - Shiang Y. Lim
- Department of Surgery and Medicine, University of Melbourne, Melbourne, Victoria Australia ,O’Brien Institute Department, St Vincent’s Institute of Medical Research, Fitzroy, Victoria Australia ,Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria Australia ,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| |
Collapse
|
42
|
Afrin H, Salazar CJ, Kazi M, Ahamad SR, Alharbi M, Nurunnabi M. Methods of screening, monitoring and management of cardiac toxicity induced by chemotherapeutics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Farid K, Elalfy H, El-Bendary M, Besheer T, El-Eraky A, Abdelbadie M, Elmokadem A, Moawad A, El-khair SA, Sakr S, El-Deek B, El-Morsy A, Elmorsy RA, Amer T, Abed S. Cardiopulmonary assessment of patients with unresectable hepatocellular carcinoma treated by transarterial chemoembolization. JOURNAL OF LIVER TRANSPLANTATION 2022. [DOI: 10.1016/j.liver.2021.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Primary prevention of chronic anthracycline cardiotoxicity with ACE inhibitor is temporarily effective in rabbits, but benefits wane in post-treatment follow-up. Clin Sci (Lond) 2021; 136:139-161. [PMID: 34878093 DOI: 10.1042/cs20210836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent anthracycline-induced cardiac damage and provide long-lasting cardioprotection. This study aimed to examine the cardioprotective effects of perindopril on chronic anthracycline cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane with focus on post-treatment follow-up (FU). Chronic cardiotoxicity was induced by daunorubicin (3 mg/kg/week for 10 weeks). Perindopril (0.05 mg/kg/day) was administered before and throughout chronic daunorubicin treatment. After the completion of treatment, significant benefits were observed in perindopril co-treated animals, particularly full prevention of daunorubicin-induced mortality and prevention or significant reductions in cardiac dysfunction, plasma cardiac troponin T levels, morphological damage, and most of the myocardial molecular alterations. However, these benefits significantly waned during 3 weeks of drug-free FU, which was not salvageable by administering a higher perindopril dose. In the longer (10-week) FU period, further worsening of left ventricular function and morphological damage occurred together with heart failure-related mortality. Continued perindopril treatment in the FU period did not reverse this trend but prevented heart failure-related mortality and reduced the severity of the progression of cardiac damage. These findings contrasted with the robust long-lasting protection observed previously for dexrazoxane in the same model. Hence, in this study, perindopril provided only temporary control of anthracycline cardiotoxicity development, which may be associated with the lack of effects on anthracycline-induced and topoisomerase II beta-dependent DNA damage responses in the heart.
Collapse
|
45
|
Umenwanne CL, Ogugofor MO, Njoku OU. Ethyl acetate fraction of Cola hispida leaf protects against doxorubicin-induced myocardial injury in male albino rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cardiovascular diseases have continued to be the leading cause of death globally. In addition, some of the drugs used in the treatment of the diseases present some adverse effects which limit the usefulness of such drugs. Thus, there is a need for novel drugs whose side effect is either minimal or non-existent. The presence of bioactive compounds in Cola hispida leaf is of great significance in the treatment and management of cardiovascular conditions. This study investigated the cardio-protective potential against doxorubicin (Dox)-induced cardiac infarction in rats.
Results
Dox induction resulted to muscle fiber degeneration in Dox-treated rats hence revealed significant (p < 0.05) elevation in the serum level of cardio biomarker enzymes and lipid peroxidation profile while significant (p < 0.05) fall in cardiac enzymatic antioxidant levels were observed relative to the normal control. Pre-treatment with ethyl acetate fraction of Cola hispida leaf expressed cardio-protective potentials against Dox-induced cardiotoxicity by significantly (p < 0.05) lowering the levels of cardiac biomarker enzymes towards normal, building up the activities of subdued antioxidant enzymes and depleting its malondialdehyde level. Histopathology photomicrograph of the heart tissues expressed myxomatous degeneration but was ameliorated through the administration of the fraction.
Conclusion
In accordance with the findings from this study, the administration of ethyl acetate fraction of Cola hispida leaf is effective against Dox-induced redox imbalance due to its enriched antioxidant phytoconstituents.
Collapse
|
46
|
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol 2021; 36:e22962. [PMID: 34766659 DOI: 10.1002/jbt.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in the treatment of various cancer types. DOX toxic side effects include neuronopathy and memory deficits. We investigated the effect of the antioxidant luteolin (LUT: 50 or 100 mg/kg; per os) on DOX (2 mg/kg; intraperitoneal)-induced oxidative stress (OS), inflammation, and apoptosis in the brain of Wistar rats for 14 days. We observed that LUT reduced DOX-mediated increase in OS biomarkers-catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase. LUT increased glutathione and total sulphydryl levels and alleviated DOX-induced increases in the levels of reactive oxygen and nitrogen species, lipid peroxidation, myeloperoxidase, nitric oxide, tumor necrosis factor-α, and interleukin-1β (IL-1β). Additionally, LUT suppressed caspase-3 activity, increased anti-inflammatory cytokine-IL-10 level, and reduced pathological lesions in the examined organs of rats cotreated with LUT and DOX. Collectively, cotreatment with LUT lessened DOX-induced neurotoxicity. Supplementation of LUT as a chemopreventive agent might be useful in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- CRMB Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
El-Far AH, Godugu K, Salaheldin TA, Darwish NHE, Saddiq AA, Mousa SA. Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer. Biomedicines 2021; 9:990. [PMID: 34440193 PMCID: PMC8391151 DOI: 10.3390/biomedicines9080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Costunolide (COS) is a sesquiterpene lactone with anticancer properties. The present study investigated the anticancer effects of COS against the human colon (HCT116) and breast (MDA-MB-231-Luc) cancer cell lines. Inhibition of cell lines viability and IC50 of COS were assessed via an MTT assay. Furthermore, the apoptotic rate was detected by assessment of Bcl2-associated X (Bax) and B-cell lymphoma 2 (Bcl2) protein levels by flow cytometry. Xenograft mice model of HCT116 and MDA-MB-231-Luc were carried out to determine the effect of COS and its nanoparticles (COS-NPs). The results demonstrated that COS inhibited the viability of HCT116 and MDA-MB-231-Luc cells, with a half maximal inhibitory concentration value (IC50) of 39.92 µM and 100.57 µM, respectively. COS significantly increased Bax and decreased Bcl2 levels in treated cells. COS and COS-NPs, in combination with doxorubicin (DOX), significantly decreased the tumor growth of HCT116 and MDA-MB-231-Luc implants in mice. Furthermore, oral administration of COS and COS-NPs significantly decreased the viable cells and increased necrotic/apoptotic cells of HCT116 and MDA-MB-231-Luc implants. Interestingly, both COS and COS-NPs protected the cardiac muscles against DOX's cardiotoxicity. The current results indicated the promising anticancer and cardiac muscles protection of COS and COS-NPs when administered with chemotherapy.
Collapse
Affiliation(s)
- Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Taher A. Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Noureldien H. E. Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| | - Amna A. Saddiq
- Department of Biology, College of Sciences, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA; (K.G.); (T.A.S.); (N.H.E.D.)
| |
Collapse
|
48
|
Yang Y, Wei S, Zhang B, Li W. Recent Progress in Environmental Toxins-Induced Cardiotoxicity and Protective Potential of Natural Products. Front Pharmacol 2021; 12:699193. [PMID: 34305607 PMCID: PMC8296636 DOI: 10.3389/fphar.2021.699193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Humans are unconsciously exposed to environmental toxins including heavy metals as well as various pesticides, which have deleterious effects on human health. Accumulating studies pointed out that exposure to environmental toxins was associated with various cardiopathologic effects. This review summarizes the main mechanisms of cardiotoxicity induced by environmental toxins (cadmium, arsenic and pesticides) and discusses the potential preventive effects of natural products. These findings will provide a theoretical basis and novel agents for the prevention and treatment of environmental toxins-induced cardiotoxicity. Furthermore, the limitations of current studies, future needs and priorities are discussed.
Collapse
Affiliation(s)
- Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
49
|
Córdoba-Adaya JC, Oros-Pantoja R, Torres-García E, Morales-Ávila E, Aranda-Lara L, Santillán-Benítez JG, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Evaluation of doxorubicin-induced early multi-organ toxicity in male CD1 mice by biodistribution of 18F-FDG and 67Ga-citrate. Pilot study. Toxicol Mech Methods 2021; 31:546-558. [PMID: 34057017 DOI: 10.1080/15376516.2021.1937420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The search for methods that identify early toxicity, induced by chemotherapy, is urgent. Changes in the biodistribution of radiopharmaceuticals could give information on early toxicity. Ten-week-old CD1 male mice were divided into four groups. Two groups were administered a weekly dose of 5 mg/kg of doxorubicin hydrochloride (DOX) for 5 weeks and the control groups were administered saline solution. One week after the end of treatment, the biodistribution of 18F-FDG and 67Ga-citrate were carried out, as was the quantification of plasma enzymes CK, CK-MB, LDH and AST. All enzymes were higher in the treated animals, but only significant (p < 0.05) in the case of CK-MB. 18F-FDG uptake increased in all organs of treated animals except retroperitoneal fat, being significant in spleen, brain, heart, liver, lung, kidney, and inguinal fat. 67Ga-citrate had a more complex pattern. The uptake in the DOX group was higher in spleen, lung, kidney, testes, and gonadal fat, it did not change in brain, heart, and liver, and it was lower in the rest of the organs. It only showed significant differences in lung and pancreas. A thorough discussion of the possible causes that produced the change in biodistributions of both radiopharmaceuticals is included. The pilot study showed that both radiopharmaceuticals could identify early multi-organ toxicity induced by DOX. Although 18F-FDG seems to be better, 67Ga-citrato should not be ruled out a priori. The detection of early toxicity would serve to adopt treatments that prevent its progression, thus improving patient's quality of life.
Collapse
Affiliation(s)
- Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Rigoberto Oros-Pantoja
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Ávila
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Farmacia y Toxicología, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Gloria Otero
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
50
|
Nguyen N, Souza T, Verheijen MCT, Gmuender H, Selevsek N, Schlapbach R, Kleinjans J, Jennen D. Translational Proteomics Analysis of Anthracycline-Induced Cardiotoxicity From Cardiac Microtissues to Human Heart Biopsies. Front Genet 2021; 12:695625. [PMID: 34211507 PMCID: PMC8239409 DOI: 10.3389/fgene.2021.695625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Anthracyclines, including doxorubicin, idarubicin, and epirubicin, are common antitumor drugs as well as well-known cardiotoxic agents. This study analyzed the proteomics alteration in cardiac tissues caused by these 3 anthracyclines analogs. The in vitro human cardiac microtissues were exposed to drugs in 2 weeks; the proteomic data were measured at 7 time points. The heart biopsy data were collected from heart failure patients, in which some patients underwent anthracycline treatment. The anthracyclines-affected proteins were separately identified in the in vitro and in vivo dataset using the WGCNA method. These proteins engage in different cellular pathways including translation, metabolism, mitochondrial function, muscle contraction, and signaling pathways. From proteins detected in 2 datasets, a protein-protein network was established with 4 hub proteins, and 7 weighted proteins from both cardiac microtissue and human biopsies data. These 11 proteins, which involve in mitochondrial functions and the NF-κB signaling pathway, could provide insights into the anthracycline toxic mechanism. Some of them, such as HSPA5, BAG3, and SH3BGRL, are cardiac therapy targets or cardiotoxicity biomarkers. Other proteins, such as ATP5F1B and EEF1D, showed similar responses in both the in vitro and in vivo data. This suggests that the in vitro outcomes could link to clinical phenomena in proteomic analysis.
Collapse
Affiliation(s)
- Nhan Nguyen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Marcha C T Verheijen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralph Schlapbach
- Functional Genomics Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jos Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|