1
|
Hu J, Jiang Y. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Crit Rev Biochem Mol Biol 2024; 59:245-266. [PMID: 39431645 DOI: 10.1080/10409238.2024.2405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent d-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.
Collapse
Affiliation(s)
- Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Narayan S, Dalal R, Rizvi ZA, Awasthi A. Zinc dampens antitumor immunity by promoting Foxp3 + regulatory T cells. Front Immunol 2024; 15:1389387. [PMID: 39247196 PMCID: PMC11377231 DOI: 10.3389/fimmu.2024.1389387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction The role of zinc (Zn) in tumor development and immune modulation has always been paradoxical. This study redefines our understanding of the impact of Zn on cancer progression and therapeutic strategies. Methods We investigated the effects of dietary Zn levels on tumor progression and immune responses. This included examining the impact of both high and deficient dietary Zn, as well as Zn chelation, on tumor growth and immune cell populations. Specifically, we analyzed the frequency of Foxp3+ regulatory T-cells (Tregs) and identified the role of FOXO1 in Zn-mediated effects on Tregs. Additionally, we explored the therapeutic potential of clioquinol (CQ) in enhancing α-PD-1 immunotherapy responses, particularly in melanoma. Results Our findings show that high dietary Zn promotes tumor progression by fostering a protumorigenic environment mediated by T cells. Increased Zn intake was found to facilitate tumor progression by increasing Foxp3+ Treg frequency. In contrast, deficiency in dietary Zn and chelation of tissue Zn emerged as potent drivers of antitumor immunity. We pinpointed FOXO1 as the master regulator governing the influence of Zn on Tregs. Discussion These results reveal a novel mechanistic insight into how Zn influences tumor progression and immune regulation. The identification of FOXO1 as a key regulator opens new avenues for understanding the role of Zn in cancer biology. Furthermore, we introduce a promising therapeutic approach by showing that administering clioquinol (CQ) significantly enhances α-PD-1 immunotherapy response, particularly in melanoma. These revelations transform our comprehension of the multifaceted role of Zn in tumorigenesis and immune regulation, highlighting innovative possibilities for cancer therapy.
Collapse
Affiliation(s)
- Sugandha Narayan
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Bendellaa M, Lelièvre P, Coll JL, Sancey L, Deniaud A, Busser B. Roles of zinc in cancers: From altered metabolism to therapeutic applications. Int J Cancer 2024; 154:7-20. [PMID: 37610131 DOI: 10.1002/ijc.34679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Zinc (Zn) is a crucial trace element involved in various cellular processes, including oxidative stress, apoptosis and immune response, contributing to cellular homeostasis. Dysregulation of Zn homeostasis occurs in certain cancers. This review discusses the role of Zn in cancer and its associated components, such as Zn-related proteins, their potential as biomarkers and the use of Zn-based strategies for tumor treatment. ZIP and ZnT proteins regulate Zn metabolism under normal conditions, but their expression is aberrant in cancer. These Zn proteins can serve as prognostic or diagnostic biomarkers, aiding in early cancer detection and disease monitoring. Moreover, targeting Zn and its pathways offers potential therapeutic approaches for cancer treatment. Modulating Zn biodistribution within cells using metal-binding agents allows for the control of downstream signaling pathways. Direct utilization of zinc as a therapeutic agent, including Zn supplementation or Zn oxide nanoparticle administration, holds promise for improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Lelièvre
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jean-Luc Coll
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Lucie Sancey
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Aurélien Deniaud
- Grenoble Alpes University, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Benoit Busser
- Grenoble Alpes University, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble, France
- Department of Laboratory Medicine, Grenoble Alpes University Hospital, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Saravanan R, Balasubramanian V, Swaroop Balamurugan SS, Ezhil I, Afnaan Z, John J, Sundaram S, Gouthaman S, Pakala SB, Rayala SK, Venkatraman G. Zinc transporter LIV1: A promising cell surface target for triple negative breast cancer. J Cell Physiol 2022; 237:4132-4156. [PMID: 36181695 DOI: 10.1002/jcp.30880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Breast cancer is one of the leading causes contributing to the global cancer burden. The triple negative breast cancer (TNBC) molecular subtype accounts for the most aggressive type. Despite progression in therapeutic options and prognosis in breast cancer treatment options, there remains a high rate of distant relapse. With advancements in understanding the role of zinc and zinc carriers in the prognosis and treatment of the disease, the scope of precision treatment/targeted therapy has been expanded. Zinc levels and zinc transporters play a vital role in maintaining cellular homeostasis, tumor surveillance, apoptosis, and immune function. This review focuses on the zinc transporter, LIV1, as an essential target for breast cancer prognosis and emerging treatment options. Previous studies give an insight into the role of LIV1 in fulfilling the most important hallmarks of cancer such as apoptosis, metastasis, invasion, and evading the immune system. Normal tissue expression of LIV1 is limited. Higher expression of LIV1 has been linked to Epithelial-Mesenchymal Transition, histological grade of cancer, and early node metastasis. LIV1 was found to be one of the attractive targets in the therapeutic hunt for TNBCs. TNBCs are an immunogenic breast cancer subtype. As zinc transporters are known to serve as the metabolic gatekeepers of immune cells, this review bridges tumor infiltrating lymphocytes, TNBC and LIV1. In addition, the suitability of LIV1 as an antibody-drug conjugate (Seattle genetics [SGN]-LIV1A) target in TNBC, represents a promising strategy for patients. Early clinical trial results reveal that this novel agent reduces tumor burden by inducing mitotic arrest, immunomodulation, and immunogenic cell death, warranting further investigation of SGN-LIV1A in combination with immuno-oncology agents. Priming the patient's immune response in combination with SGN-LIV1A could eventually change the landscape for the TNBC patient population.
Collapse
Affiliation(s)
- Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Srikanth Swamy Swaroop Balamurugan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| | - Zeba Afnaan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jisha John
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shanmugasundaram Gouthaman
- Department of Surgical Oncology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Barman SK, Zaman MS, Veljanoski F, Malladi CS, Mahns DA, Wu MJ. Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics 2022; 14:6601457. [PMID: 35657662 DOI: 10.1093/mtomcs/mfac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Zn2+ dyshomeostasis is an intriguing phenomenon in breast and prostate cancers, with breast cancer cells exhibiting higher intracellular Zn2+ level compared to their corresponding normal epithelial cells, in contrast to the low Zn2+ level in prostate cancer cells. In order to gain molecular insights into the zinc homeostasis of breast and prostate cancer cells, this study profiled the expression of 28 genes, including 14 zinc importer genes (SLC39A1-14) which encode ZIP1-14 to transport Zn2+ into the cytoplasm, 10 zinc exporter genes (SLC30A1-10) which encode ZnT1-10 to transport Zn2+ out of the cytoplasm and 4 metallothionein genes (MT1B, MT1F, MT1X, MT2A) in breast (MCF10A, MCF-7, MDA-MB-231) and prostate (RWPE-1, PC3, DU145) cell lines in response to extracellular zinc exposures at a mild cytotoxic dosage and a benign dosage. The RNA samples were prepared at 0 min (T0), 30 min (T30) and 120 min (T120) in a time course with or without zinc exposure, which were used for profiling the baseline and dynamic gene expression. The up-regulation of MT genes was observed across the breast and prostate cancer cell lines. The expression landscape of SLC39A and SLC30A was revealed by the qRT-PCR data of this study, which sheds light on the divergence of intracellular Zn2+ levels for breast and prostate cancer cells. Taken together, the findings are valuable in unravelling the molecular intricacy of zinc homeostasis in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Filip Veljanoski
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked
| | - David A Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| |
Collapse
|
6
|
Wan Z, Wang X. Role of SLC39A6 in the development and progression of liver cancer. Oncol Lett 2022; 23:77. [PMID: 35111246 PMCID: PMC8771636 DOI: 10.3892/ol.2022.13197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is one of the most common malignant solid tumor types worldwide. The solute carrier (SLC)39A family is a main member of the SLC group of membrane transport proteins, which transfer zinc to the cytoplasm when cells are depleted of zinc; thus, it may provide a novel therapeutic target for human cancer. However, the prognostic value of SLC39A genes in patients with liver cancer has remained elusive. Therefore, the present study aimed to explore whether SLC39A family genes are associated with the survival rate of patients with liver cancer and to investigate the role of key genes of the SLC39A family in liver cancer. The mRNA expression of the SLC39A family in liver cancer was obtained from the UALCAN database. Survival curve analysis was performed to investigate the prognostic value of SLC39A family genes in the overall survival of patients with liver cancer. In addition to the bioinformatics analysis, SLC39A6 was knocked down in HepG2 and Hep3B cells to examine the effect on the proliferation, migration and invasion of liver cancer cells. The results suggested that SLC39A6 was significantly upregulated in liver cancer tissues compared with normal liver tissues. High expression of SLC39A6 was significantly associated with poor overall survival of patients with liver cancer. Furthermore, knockdown of SLC39A6 inhibited the proliferation, migration and invasion of liver cancer cells in vitro and in vivo. Collectively, the results of the present study suggested that SLC39A6 may be a promising prognostic biomarker for liver cancer and is associated with the proliferation, migration and invasion of liver cancer.
Collapse
Affiliation(s)
- Zhen Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
8
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example.
Collapse
|
10
|
Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium. STRESSES 2021. [DOI: 10.3390/stresses1020007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) family and the Cation Diffusion Facilitators (CDF) or ZnT family. We quantified transcript levels of ZIP and ZnT zinc transporters expressed by non-tumorigenic UROtsa cells and compared with those expressed by UROtsa clones that were experimentally transformed to cancer cells by prolonged exposure to cadmium (Cd). Although expression of the ZIP8 gene in parent UROtsa cells was lower than ZIP14 (0.1 vs. 83 transcripts per 1000 β-actin transcripts), an increased expression of ZIP8 concurrent with a reduction in expression of one or two zinc influx transporters, namely ZIP1, ZIP2, and ZIP3, were seen in six out of seven transformed UROtsa clones. Aberrant expression of the Golgi zinc transporters ZIP7, ZnT5, ZnT6, and ZnT7 were also observed. One transformed clone showed distinctively increased expression of ZIP6, ZIP10, ZIP14, and ZnT1, with a diminished ZIP8 expression. These data suggest intracellular zinc dysregulation and aberrant zinc homeostasis both in the cytosol and in the Golgi in the transformed UROtsa clones. These results provide evidence for zinc dysregulation in transformed UROtsa cells that may contribute in part to their malignancy and/or muscle invasiveness.
Collapse
|
11
|
Liu X, Feng Q, Zhang Y, Zheng P, Cui N. Absence of EpCAM in cervical cancer cells is involved in sluginduced epithelial-mesenchymal transition. Cancer Cell Int 2021; 21:163. [PMID: 33691694 PMCID: PMC7944906 DOI: 10.1186/s12935-021-01858-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Slug (Snai2) is a pivotal player in initiating epithelial-mesenchymal transition (EMT) through its trans-suppression effect on E-cadherin in various normal and malignant cells. In this study, the positive effect of Slug on promoting cell motility and metastasis in cervical cancer was further confirmed in this study. Methods RNA-Seq was performed to explore the potential molecules that participate in Slug-mediated EMT in cervical cancer cells. The negative correlation between Slug and EpCAM expression in cervical cancer cells was detected in this study, and linked them with in vitro migration and invasion assay, in vivo metastasis experiments, luciferase reporter assay and Chromatin immunoprecipitation. Results Transcriptome sequencing analysis revealed that epithelial cell adhesion molecule (EpCAM) was significantly decreased in Slug-overexpressing SiHa cells. Simultaneously, an absence of EpCAM expression was observed in Slug-overexpressing cells. Further studies revealed the trans-suppression effect of Slug on EpCAM through its binding to the E-boxes in the proximal promoter region of EpCAM in cervical cancer cells. Restoring EpCAM in Slug-overexpressing cells by transiently transfecting an EpCAM recombinant plasmid attenuated cell motility and promoted cell growth. Moreover, the negative correlation between Slug and EpCAM expression in human squamous cervical carcinoma (SCC) samples was verified by using Pearson correlation analysis. Conclusions These results demonstrated that the absence of EpCAM under Slug expression in cervical cancer cells probably participated in Slug-regulated EMT and further promoted tumor metastasis. Additionally, this study supports a potential way for Slug to initiate EMT progression in cervical cancer cells in addition to inhibiting E-cadherin. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01858-3.
Collapse
Affiliation(s)
- Xian Liu
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, 76 West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, 76 West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Yanru Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, 76 West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - PengSheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, 76 West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Shaanxi, 710061, Xi'an, People's Republic of China.
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, 76 West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China.
| |
Collapse
|
12
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Althobiti M, El-sharawy KA, Joseph C, Aleskandarany M, Toss MS, Green AR, Rakha EA. Oestrogen-regulated protein SLC39A6: a biomarker of good prognosis in luminal breast cancer. Breast Cancer Res Treat 2021; 189:621-630. [PMID: 34453638 PMCID: PMC8505289 DOI: 10.1007/s10549-021-06336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/15/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE The outcome of the luminal oestrogen receptor-positive (ER +) subtype of breast cancer (BC) is highly variable and patient stratification needs to be refined. We assessed the prognostic significance of oestrogen-regulated solute carrier family 39 member 6 (SLC39A6) in BC, with emphasis on ER + tumours. MATERIALS AND METHODS SLC39A6 mRNA expression and copy number alterations were assessed using the METABRIC cohort (n = 1980). SLC39A6 protein expression was evaluated in a large (n = 670) and annotated series of early-stage (I-III) operable BC using tissue microarrays and immunohistochemistry. The associations between SLC39A6 expression and clinicopathological parameters, patient outcomes and other ER-related markers were evaluated using Chi-square tests and Kaplan-Meier curves. RESULTS High SLC39A6 mRNA and protein expression was associated with features characteristic of less aggressive tumours in the entire BC cohort and ER + subgroup. SLC39A6 protein expression was detected in the cytoplasm and nuclei of the tumour cells. High SLC39A6 nuclear expression and mRNA levels were positively associated with ER + tumours and expression of ER-related markers, including the progesterone receptor, forkhead box protein A1 and GATA binding protein 3. In the ER + luminal BC, high SLC39A6 expression was independently associated with longer BC-specific survival (BCSS) (P = 0.015, HR 0.678, 95% CI 0.472‒0.972) even in those who did not receive endocrine therapy (P = 0.001, HR 0.701, 95% CI 0.463‒1.062). CONCLUSION SLC39A6 may be prognostic for a better outcome in ER + luminal BC. Further functional studies to investigate the role of SLC39A6 in ER + luminal BC are warranted.
Collapse
Affiliation(s)
- Maryam Althobiti
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.449644.f0000 0004 0441 5692Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University 33, Shaqra, 11961 Saudi Arabia
| | - Khloud A. El-sharawy
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.462079.e0000 0004 4699 2981Faculty of Science, Damietta University, Damietta, Egypt
| | - Chitra Joseph
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Mohammed Aleskandarany
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Michael S. Toss
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England
| | - Andrew R. Green
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.4563.40000 0004 1936 8868Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, University Park, Nottingham, NG7 2RD England
| | - Emad A. Rakha
- grid.4563.40000 0004 1936 8868Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD England ,grid.4563.40000 0004 1936 8868Present Address: Department of Histopathology, School of Medicine, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
14
|
Cocco S, Piezzo M, Calabrese A, Cianniello D, Caputo R, Di Lauro V, Fusco G, di Gioia G, Licenziato M, de Laurentiis M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:E4579. [PMID: 32605126 PMCID: PMC7369987 DOI: 10.3390/ijms21134579] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by aggressive behavior, high risk of distant recurrence, and poor survival. Chemotherapy is still the main therapeutic approach for this subgroup of patients, therefore, progress in the treatment of TNBC remains an important challenge. Data derived from molecular technologies have identified TNBCs with different gene expression and mutation profiles that may help developing targeted therapies. So far, however, only a few of these have shown to improve the prognosis and outcomes of TNBC patients. Robust predictive biomarkers to accelerate clinical progress are needed. Herein, we review prognostic and predictive biomarkers in TNBC, discuss the current evidence supporting their use, and look at the future of this research field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michelino de Laurentiis
- Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, Via Mariano Semmola, 53, 80131 Napoli NA, Italy; (S.C.); (M.P.); (A.C.); (D.C.); (R.C.); (V.D.L.); (G.F.); (G.d.G.); (M.L.)
| |
Collapse
|
15
|
Gao J, Ren W, Xiao C, Wang L, Huang Q, Zhang Z, Dang Y, Weng P, Wang H, Fang X, Zhuang M, Lin L, Chen S. Involvement of SLC39A6 in gastric adenocarcinoma and correlation of the SLC39A6 polymorphism rs1050631 with clinical outcomes after resection. BMC Cancer 2019; 19:1069. [PMID: 31703635 PMCID: PMC6839152 DOI: 10.1186/s12885-019-6222-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The single-nucleotide polymorphism SLC39A6 rs1050631 is strongly implicated in esophageal squamous cell carcinoma, leading us to question whether it may also play a role in gastric adenocarcima (GA). METHODS We genotyped the SLC39A6 rs1050631 in 512 patients who underwent GA resection. All study subjects lived in an area of China with high GA incidence. Genotypes were examined for possible correlation with survival and recurrence. The potential involvement of SLC39A6 in gastric cancer was explored in clinical samples and cell culture studies. RESULTS Multivariable analysis showed that patients with the CT + TT genotype at SLC39A6 rs1050631 were at greater risk of recurrence (hazard ratio, HR 1.387, p = 0.004) and death (HR 1.429, p = 0.002) than patients with CC genotype. Median recurrence-free and overall survival were significantly shorter in patients with the CT + TT genotype (20, 27 months) than in patients with the CC genotype (36, 43 months, p = 0.001, p < 0.001). Patients with the CT + TT genotype who were male or ≥ 60 years, or who had a tumor ≥5 cm or a moderately differentiated tumor were at significantly higher risk of recurrence and death. SLC39A6 was overexpressed in tissues from GA patients and in GA cell lines, and SLC39A6 knockdown in GA cell lines inhibited their proliferation, migration and invasion. CONCLUSION SLC39A6 rs1050631 correlates with post-resection prognosis of GA patients and SLC39A6 may participate in GA onset or progression.
Collapse
Affiliation(s)
- Jian Gao
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Wenjun Ren
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Chunhong Xiao
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.,China Clinical Institute of Fuzhou General Hospital (900 Hospital of the Joint Logistics Team), Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Lie Wang
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.,China Clinical Institute of Fuzhou General Hospital (900 Hospital of the Joint Logistics Team), Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Qiaojia Huang
- Department of Experimental Medicine, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Zaizhong Zhang
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.,China Clinical Institute of Fuzhou General Hospital (900 Hospital of the Joint Logistics Team), Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China
| | - Yuan Dang
- Fujian Meiya Aijiankang Health Management Co, Ltd. 4602#, Building 1, Shimao International Center, 108 Guangda Road, Fuzhou, 350025, Fujian, China
| | - Pengcheng Weng
- Union Medical College, Fujian Medical University, 29 XinQuan Road, Fuzhou, 350025, Fujian, China
| | - Hui Wang
- Union Medical College, Fujian Medical University, 29 XinQuan Road, Fuzhou, 350025, Fujian, China
| | - Xuehong Fang
- Union Medical College, Fujian Medical University, 29 XinQuan Road, Fuzhou, 350025, Fujian, China
| | - Minxian Zhuang
- Union Medical College, Fujian Medical University, 29 XinQuan Road, Fuzhou, 350025, Fujian, China
| | - Liying Lin
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China. .,China Clinical Institute of Fuzhou General Hospital (900 Hospital of the Joint Logistics Team), Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.
| | - Shaoquan Chen
- Department of General Surgery, Dongfang Hospital (900 Hospital of the Joint Logistics Team), 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China. .,China Clinical Institute of Fuzhou General Hospital (900 Hospital of the Joint Logistics Team), Fujian Medical University, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.
| |
Collapse
|
16
|
Bagheri S, Hashemi M, Alirahimi E, Habibi-Anbouhi M, Kazemi-Lomedasht F, Behdani M. Recombinant Expression of Zinc Transporter SLC39A6 and Its Functional Antibody Production. Monoclon Antib Immunodiagn Immunother 2019; 38:70-74. [PMID: 31009334 DOI: 10.1089/mab.2018.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zinc transporter ZIP6 (SLC39A6) or LIV-1 is a protein that belongs to a subfamily of proteins group that displays structural specifications of zinc transporters in the cell membrane. Overexpression of this protein is observed in breast, prostate, and kidney tumor cells. Lately, LIV-1 is a dependable marker for detection of estrogen receptor positive breast cancer, which can be used to detect luminal breast cancer type A. In this study, the gene construct containing extracellular domain of human LIV-1 gene was subcloned into pET22b expression vector, expressed and confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. It was shown for the first time that the extracellular domain of LIV-1 could be expressed in bacterial systems and can be used for rabbit immunization. The reactivity of the resulted antibody was evaluated in flow cytometry and enzyme-linked immunosorbent assay. In conclusion, this protein can be used for animal immunization toward preparation of a new monoclonal antibody that can be introduced as a drug in the treatment of breast cancer.
Collapse
Affiliation(s)
- Sajedeh Bagheri
- 1 Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran.,2 Department of New Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- 2 Department of New Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Alirahimi
- 1 Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- 1 Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- 1 Biotechnology Research Center, Venom and Biotherapeutics Molecules Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Tray N, Adams S, Esteva FJ. Antibody-drug conjugates in triple negative breast cancer. Future Oncol 2018; 14:2651-2661. [PMID: 30175620 DOI: 10.2217/fon-2018-0131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease that comprises 15-20% of all breast cancers and is more frequently seen in younger women, African-Americans, and BRCA1 expression. Advanced TNBC carries aggressive features and is associated with overall poor outcomes. Unfortunately, there are no targeted therapies available for non-BRCA associated TNBC, which remains a high unmet therapeutic need. One emerging treatment modality includes antibody-drug conjugates which are highly selective monoclonal antibodies conjugated to cytotoxic agents, designed to deliver cytotoxic drugs to antigen-expressing tumor cells. This review will highlight three antibody-drug conjugates currently being evaluated in TNBC (CDX-011, SGN-LIV1a, IMMU-132), including one that has been given Breakthrough Therapy designation from the US FDA.
Collapse
Affiliation(s)
- Nancy Tray
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Sylvia Adams
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| | - Francisco J Esteva
- Perlmutter Cancer Center at New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
18
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
19
|
Zinc Transporter Proteins. Neurochem Res 2017; 43:517-530. [PMID: 29243032 DOI: 10.1007/s11064-017-2454-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/06/2023]
Abstract
Zinc, which is involved in the structure of all enzyme classes, is a micro nutrient element and necessary for growth and development. The ability of zinc to function without causing toxic effects is depends on the protection of its homeostasis. Zinc transporter proteins are responsible for keeping zinc at certain concentrations. Based on their predicted membrane topology, Zn transporters are divided into two major families, SLC39s/ZIPs and SLC30s/ZnTs, which transport Zn in opposite directions through cellular and intracellular membranes. ZIPs increases the zinc concentration in the cytosol. For this, the ZIPs carries the zinc from extracellular and intracellular compartments to the cytosol. ZnTs, reduces the concentration of zinc in the cytosol. For this, ZnTs carries the zinc from the cytosol to extracellular and intracellular compartments. After being transported to the cell, 50% of the zinc is found in the cytoplasm, 30-40% in the nucleus, and 10% in the plasma and organelle membranes. The expression of many zinc transporter proteins in the cell is depending on the concentration of zinc and the physiological problems. The aim of this study is to give information about association of zinc transporter proteins with physiological events and health problems.
Collapse
|
20
|
Li Q, Jin J, Liu J, Wang L, He Y. Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo. Oncol Res 2017; 24:205-14. [PMID: 27458102 PMCID: PMC7838672 DOI: 10.3727/096504016x14648701447896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in the relative expressions of cyclin D1, VEGF (vascular endothelial growth factor), MMP9 (matrix metalloprotein 9), and Bcl-2 (B-cell lymphoma/leukmia-2) mRNA or an alteration in the average level of zinc in the peripheral blood and xenografts in vivo. Collectively, these findings indicate that knocking down ZIP5 by small interfering RNA (siRNA) might be a novel treatment strategy for esophageal cancer with ZIP5 overexpression.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | |
Collapse
|
21
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
22
|
Ohashi W, Kimura S, Iwanaga T, Furusawa Y, Irié T, Izumi H, Watanabe T, Hijikata A, Hara T, Ohara O, Koseki H, Sato T, Robine S, Mori H, Hattori Y, Watarai H, Mishima K, Ohno H, Hase K, Fukada T. Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress. PLoS Genet 2016; 12:e1006349. [PMID: 27736879 PMCID: PMC5065117 DOI: 10.1371/journal.pgen.1006349] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. Intestinal epithelium undergoes continuous self-renewal to maintain intestinal homeostasis. Given that dysregulation of zinc flux causes intestinal disorders, appropriate spatiotemporal regulation of zinc in the intracellular compartments should be a prerequisite for the intestinal epithelial self-renewal process. Zinc transporters such as Zrt-Irt-like proteins (ZIPs) are essential to fine-tune intracellular zinc flux. However, the link between specific zinc transporter(s) and intestinal epithelial self-renewal remains to be elucidated. Here, we found that ZIP7 is highly expressed in the intestinal crypts. The finding motivated us to further analyze the role of ZIP7 in intestinal homeostasis. ZIP7 deficiency greatly enhanced ER stress response in proliferative progenitor cells, which induced apoptotic cell death. This abnormality disrupted epithelial proliferation and intestinal stemness. Based on these observations, we reason that ZIP7-dependent zinc transport facilitates the vigorous epithelial proliferation in the intestine by ameliorating ER stress.
Collapse
Affiliation(s)
- Wakana Ohashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tarou Irié
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Atsushi Hijikata
- Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, Japan
| | - Takafumi Hara
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Toshiro Sato
- Department of Gastroenterology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Sylvie Robine
- Equipe de Morphogenese et Signalisation cellulaires UMR 144 CNRS/Institut Curie, Paris, France
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Hiroshi Watarai
- Division of Stem Cell Cellomics, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Division of Mucosal Barriology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail: (KH); (TF)
| | - Toshiyuki Fukada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa-ku, Tokyo, Japan
- Molecular and Cellular Physiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Tokushima, Japan
- * E-mail: (KH); (TF)
| |
Collapse
|
23
|
Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J 2016; 473:2531-44. [PMID: 27274087 PMCID: PMC4980808 DOI: 10.1042/bcj20160388] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Zinc is involved in cell migration during embryo development and in cancer. We show that a zinc transporter consisting of two proteins, ZIP6 and ZIP10, stimulates both cell migration and division in mammalian cells and in the zebrafish embryo. There is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3β and down-regulation of E-cadherin (CDH1). Morpholino-mediated knockdown of zip10 causes delayed epiboly and deformities of the head, eye, heart and tail. Furthermore, zip10 deficiency results in overexpression of cdh1, zip6 and stat3, the latter gene product driving transcription of both zip6 and zip10. The non-redundant requirement of Zip6 and Zip10 for epithelial to mesenchymal transition (EMT) is consistent with our finding that they exist as a heteromer. We postulate that a subset of ZIPs carrying prion protein (PrP)-like ectodomains, including ZIP6 and ZIP10, are integral to cellular pathways and plasticity programmes, such as EMT.
Collapse
|
24
|
Du Y, Guo D, Wu Q, Shi J, Liu D, Bi H. Protective effects of appropriate Zn2+ levels against UVB radiation-induced damage in human lens epithelial cells in vitro. J Biol Inorg Chem 2015; 21:213-26. [DOI: 10.1007/s00775-015-1324-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/14/2015] [Indexed: 12/16/2022]
|
25
|
Cui XB, Shen YY, Jin TT, Li S, Li TT, Zhang SM, Peng H, Liu CX, Li SG, Yang L, Li N, Hu JM, Jiang JF, Li M, Liang WH, Li Y, Wei YT, Sun ZZ, Wu CY, Chen YZ, Li F. SLC39A6: a potential target for diagnosis and therapy of esophageal carcinoma. J Transl Med 2015; 13:321. [PMID: 26444413 PMCID: PMC4595240 DOI: 10.1186/s12967-015-0681-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal cancer, and its underlying molecular mechanisms are poorly understood. Recent large-scale genome-wide association studies in Chinese Han populations have identified an ESCC susceptibility locus within the SLC39A6 gene. Here, we sought to explore the expression and biological function of SLC39A6 in ESCC. Methods Multiethnic validation of SLC39A6 protein expression was performed in different cohorts of patients from Chinese Han and Kazakh populations in the Xinjiang region by immunohistochemistry. The associations among SLC39A6 expression, clinicopathological parameters, and prognosis outcomes of ESCC were analyzed. And the effects of SLC39A6 silencing by siRNA on cell proliferation, apoptosis, and invasiveness, as well as the proteins involved in epithelial-to-mesenchymal transition (EMT) of esophageal cancer cells, were studied. Results SLC39A6 protein expression increased progressively from normal esophageal epithelium (NEE) to low-grade intraepithelial neoplasia to ESCC, and finally reached the highest in high-grade intraepithelial neoplasia from Han ethnic. Similarly, SLC39A6 protein was significantly overexpressed in Kazakh ethnic ESCC compared with that in NEE. Increased expression of SLC39A6 was found to be closely correlated with histological grade and early Tumor-Node-Metastasis stage I/II. High tumorous SLC39A6 expression was significantly correlated with shorter overall survival (OS). Cox regression analysis confirmed that SLC39A6 expression was an independent prognostic factor for poor OS in ESCC. Experimentally, the suppression of SLC39A6 expression promoted ESCC cell apoptosis but abrogated proliferation and invasion, and induced an EMT phenotype that included enhanced expression of E-cadherin, loss of vimentin, and morphological changes in ESCC cells in vitro. Conclusions Combined, our findings highlight a tumor-promoting role for SLC39A6 in ESCC, suggesting that SLC39A6 could serve as an early detector of high-risk subjects and prognostic biomarker. The targeting of SLC39A6 might be a potential therapeutic strategy for blocking ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0681-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Yao-Yuan Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Ting-Ting Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Su Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Ting-Ting Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Shu-Gang Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Man Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Yu-Tao Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, 832002, Shihezi, China.
| | - Zhen-Zhu Sun
- Department of Pathology, People Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
| | - Chuan-Yue Wu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, North 4th Road, 832002, Shihezi, China. .,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
26
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. J Biol Chem 2015; 290:18757-69. [PMID: 25969539 PMCID: PMC4513131 DOI: 10.1074/jbc.m115.640524] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.
Collapse
Affiliation(s)
- Ying Liu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Battsetseg Batchuluun
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Louisa Ho
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kacey J Prentice
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alpana Bhattacharjee
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Ming Zhang
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Farzaneh Pourasgari
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kathryn M Taylor
- the Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB United Kingdom
| | - Herbert Gaisano
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Feihan F Dai
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Michael B Wheeler
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
28
|
Sussman D, Smith LM, Anderson ME, Duniho S, Hunter JH, Kostner H, Miyamoto JB, Nesterova A, Westendorf L, Van Epps HA, Whiting N, Benjamin DR. SGN-LIV1A: a novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol Cancer Ther 2014; 13:2991-3000. [PMID: 25253783 DOI: 10.1158/1535-7163.mct-13-0896] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this article, we describe a novel antibody-drug conjugate (ADC; SGN-LIV1A), targeting the zinc transporter LIV-1 (SLC39A6) for the treatment of metastatic breast cancer. LIV-1 was previously known to be expressed by estrogen receptor-positive breast cancers. In this study, we show that LIV-1 expression is maintained after hormonal therapy in primary and metastatic sites and is also upregulated in triple-negative breast cancers. In addition to breast cancer, other indications showing LIV-1 expression include melanoma, prostate, ovarian, and uterine cancer. SGN-LIV1A consists of a humanized antibody conjugated through a proteolytically cleavable linker to monomethyl auristatin E, a potent microtubule-disrupting agent. When bound to surface-expressed LIV-1 on immortalized cell lines, this ADC is internalized and traffics to the lysozome. SGN-LIV1A displays specific in vitro cytotoxic activity against LIV-1-expressing cancer cells. In vitro results are recapitulated in vivo where antitumor activity is demonstrated in tumor models of breast and cervical cancer lineages. These results support the clinical evaluation of SGN-LIV1A as a novel therapeutic agent for patients with LIV-1-expressing cancer.
Collapse
|
29
|
Jong NN, McKeage MJ. Emerging roles of metal solute carriers in cancer mechanisms and treatment. Biopharm Drug Dispos 2014; 35:450-62. [DOI: 10.1002/bdd.1903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/27/2014] [Accepted: 05/23/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy N. Jong
- Department of Pharmacology and Clinical Pharmacology and Auckland Cancer Society Research Centre; University of Auckland; Auckland 1142 New Zealand
| | - Mark J. McKeage
- Department of Pharmacology and Clinical Pharmacology and Auckland Cancer Society Research Centre; University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
30
|
Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers: pathological and therapeutic perspectives. Tumour Biol 2014; 35:9523-30. [PMID: 25168372 DOI: 10.1007/s13277-014-2537-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Gynecorelogic cancers like ovarian, cervical, and endometrial cancers are among the major threats to modern life, especially to female health. Like some other types of cancers, all of these gynecological cancers have found to be associated with the developmental stage epithelial to mesenchymal transition (EMT). More specifically, the aberrant expression of major EMT markers, such as lower expressions of E-cadherin and alpha-catenin, and overexpressions of N-cadherin, beta-catenin, vimentin, and matrix metalloproteinases, have been reported in ovarian, cervical, and endometrial cancers. The transcription factors, such as Twist, Snail, Slug, and Zeb, which regulate these EMT mediators, are also reported to be overexpressed in gynecological cancers. In addition to the over/lower expression, the promoter methylation of some of these genes has been identified too. In the era of target-specific cancer therapeutics, some promising studies showed that targeting EMT markers might be an interesting and successful tool in future cancer therapy. In this study, we have reviewed the recent development in the research on the association of EMT markers with three major gynecological cancers in the perspectives of carcinogenesis and therapeutics.
Collapse
Affiliation(s)
- Xiao-Mei Zhou
- Department of Gynaecolgy and Obstetrics, Shenzhen FuTian District Traditional Chinese Medicine Hospital, No. 6001 Beihuan Blvd., Futian District, Shenzhen, 518000, China,
| | | | | |
Collapse
|
31
|
Davis FM, Stewart TA, Thompson EW, Monteith GR. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci 2014; 35:479-88. [PMID: 25042456 DOI: 10.1016/j.tips.2014.06.006] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 02/09/2023]
Abstract
The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- St. Vincent's Institute, Fitzroy, VIC, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, VIC, Australia; Institute of Health and Biomedical Innovation, Queensland Institute of Technology, Kelvin Grove, QLD, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
32
|
Xu X, Guo HJ, Xie HY, Li J, Zhuang RZ, Ling Q, Zhou L, Wei XY, Liu ZK, Ding SM, Chen KJ, Xu ZY, Zheng SS. ZIP4, a novel determinant of tumor invasion in hepatocellular carcinoma, contributes to tumor recurrence after liver transplantation. Int J Biol Sci 2014; 10:245-56. [PMID: 24643086 PMCID: PMC3957080 DOI: 10.7150/ijbs.7401] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 01/21/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, evidence that Zinc transporter ZRT/IRT-like protein 4 (ZIP4) is involved in invasiveness and apoptosis has emerged in pancreatic cancer and prostate cancer. Our aim was to assess the role of ZIP4 in invasiveness, migration and apoptosis of hepatocellular carcinoma (HCC). The prognostic value of ZIP4 in HCC after liver transplantation was evaluated. METHODS The role of ZIP4 in HCC was investigated by overexpressing ZIP4 in BEL7402 and HepG2 cells and inhibiting ZIP4 in HuH-7 and HepG2 cells, using overexpression and shRNA plasmids in vitro studies. Immunohistochemical analysis was used to evaluate ZIP4 expression in HCC tissues from 60 patients undergoing liver transplantation, 36 cirrhotic tissue samples, and 6 normal tissue samples. Prognostic significance was assessed using the Kaplan-Meier method and the log-rank test. RESULTS Specific suppression of ZIP4 reduced cell migration and invasiveness, whereas ZIP4 overexpression caused increases in cell migration and invasiveness. Furthermore, overexpression of ZIP4 resulted in increased expression of pro-metastatic genes (MMP-2, MMP-9) and decreased expression of pro-apoptotic genes (caspase-3, caspase-9, Bax). In contrast, suppression of ZIP4 resulted in an opposite effect. ZIP4 was more highly expressed in tumor tissues than non-tumor tissues (P < 0.0001). ZIP4 expression was significantly associated with tumor recurrence (P = 0.002), tumor node metastasis stage (P = 0.044), Child-Turcotte-Pugh score (P = 0.042), and tumor size (P = 0.022). Univariate analysis showed that ZIP4 expression was significantly associated with overall survival (P = 0.020) and tumor-free survival (P = 0.049). Multivariate analysis revealed that ZIP4 was an independent predictor of overall survival (P = 0.037) after liver transplantation. CONCLUSIONS ZIP4 could promote migration, invasiveness, and suppress apoptosis in hepatocellular carcinoma, and represent a novel predictor of poor prognosis and therapeutic target for patients with HCC who undergo liver transplantation.
Collapse
Affiliation(s)
- Xiao Xu
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 3. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hai-Jun Guo
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Hai-Yang Xie
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Jie Li
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Run-Zhou Zhuang
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Qi Ling
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Lin Zhou
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Xu-Yong Wei
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Zhi-Kun Liu
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Song-Ming Ding
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Kang-Jie Chen
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Zhi-Yuan Xu
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 2. Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, Hangzhou, China
| | - Shu-Sen Zheng
- 1. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated, Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- 3. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
33
|
Unno J, Masamune A, Hamada S, Shimosegawa T. The zinc transporter LIV-1 is a novel regulator of stemness in pancreatic cancer cells. Scand J Gastroenterol 2014; 49:215-21. [PMID: 24294832 DOI: 10.3109/00365521.2013.865075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Recent studies have identified the existence a portion of cancer cells, called "cancer stem cells", within the entire cancer tissue. Cancer stem cells harbor highly tumorigenic and chemo-resistant phenotypes, which lead to recurrence or re-growth of the tumor after surgery. The mechanisms that regulate the stemness of cancer cells remain largely unknown. We hypothesized that LIV-1, a zinc transporter, regulates the stemness in pancreatic cancer cells. MATERIAL AND METHODS We established two stable Panc-1 pancreatic cancer cell lines in which LIV-1 expression was knocked down by the introduction of siRNA against LIV-1. Expression of cancer stem cell-related molecules was examined by quantitative real-time PCR. Expression of ATP-binding cassette sub-family G member 2 was also determined by flow cytometry. Spheroid culture was performed in low-adhesion coated plates. Cell migration was determined by using a modified 2-chamber migration assay. In vivo tumor formation was assessed in nude mice after the subcutaneous injection of cancer cells. The Agilent's miRNA microarray was used to identify differentially expressed miRNAs. RESULTS Knockdown of LIV-1 expression resulted in (i) decreased expression of cancer stem cell-related molecules such as LIN28 and ATP-binding cassette sub-family G member 2, (ii) decreased spheroid-forming ability, (iii) decreased migration, (iv) decreased incidence of tumor formation in nude mice, and (v) upregulation of miR-7 expression. CONCLUSIONS Our results suggest that LIV-1 might act as a novel regulator of stemness in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jun Unno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | | | | | |
Collapse
|
34
|
A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J 2013; 455:229-37. [PMID: 23919497 PMCID: PMC3789231 DOI: 10.1042/bj20130483] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genes involved in normal developmental processes attract attention as mediators of tumour progression as they facilitate migration of tumour cells. EMT (epithelial–mesenchymal transition), an essential part of embryonic development, tissue remodelling and wound repair, is crucial for tumour metastasis. Previously, zinc transporter ZIP6 [SLC39A6; solute carrier family 39 (zinc transporter), member 6; also known as LIV-1) was linked to EMT in zebrafish gastrulation through a STAT3 (signal transducer and activator of transcription 3) mechanism, resulting in nuclear localization of transcription factor Snail. In the present study, we show that zinc transporter ZIP6 is transcriptionally induced by STAT3 and unprecedented among zinc transporters, and is activated by N-terminal cleavage which triggers ZIP6 plasma membrane location and zinc influx. This zinc influx inactivates GSK-3β (glycogen synthase kinase 3β), either indirectly or directly via Akt or GSK-3β respectively, resulting in activation of Snail, which remains in the nucleus and acts as a transcriptional repressor of E-cadherin (epithelial cadherin), CDH1, causing cell rounding and detachment. This was mirrored by ZIP6-transfected cells which underwent EMT, detached from monolayers and exhibited resistance to anoikis by their ability to continue proliferating even after detachment. Our results indicate a causative role for ZIP6 in cell motility and migration, providing ZIP6 as a new target for prediction of clinical cancer spread and also suggesting a ZIP6-dependent mechanism of tumour metastasis. We demonstrate a novel mechanism for the ability of cellular zinc to drive cell detachment and migration with implications for breast cancer spread. This mechanism involves a zinc uptake channel ZIP6 (also known as SLC39A6) and a transcription factor, STAT3.
Collapse
|
35
|
Sun P, Wang S, Jiang Y, Tao Y, Tian Y, Zhu K, Wan H, Zhang L, Zhang L. Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature. Biol Trace Elem Res 2013; 155:11-22. [PMID: 23921484 DOI: 10.1007/s12011-013-9764-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/14/2013] [Indexed: 01/08/2023]
Abstract
Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r = 0.5133, P = 0.0371; r = 0.6719, P = 0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r = -0.5264, P = 0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P < 0.05, P < 0.05).
Collapse
Affiliation(s)
- Ping Sun
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol Aspects Med 2013; 34:612-9. [PMID: 23506894 DOI: 10.1016/j.mam.2012.05.011] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/15/2012] [Indexed: 12/16/2022]
Abstract
Zinc is a trace element nutrient that is essential for life. This mineral serves as a cofactor for enzymes that are involved in critical biochemical processes and it plays many structural roles as well. At the cellular level, zinc is tightly regulated and disruption of zinc homeostasis results in serious physiological or pathological issues. Despite the high demand for zinc in cells, free or labile zinc must be kept at very low levels. In humans, two major zinc transporter families, the SLC30 (ZnT) family and SLC39 (ZIP) family control cellular zinc homeostasis. This review will focus on the SLC39 transporters. SLC39 transporters primarily serve to pass zinc into the cytoplasm, and play critical roles in maintaining cellular zinc homeostasis. These proteins are also significant at the organismal level, and studies are revealing their link to human diseases. Therefore, we will discuss the function, structure, physiology, and pathology of SLC39 transporters.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
37
|
Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma. Nat Genet 2013; 45:632-8. [PMID: 23644492 DOI: 10.1038/ng.2638] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/12/2013] [Indexed: 12/18/2022]
Abstract
We conducted a genome-wide scan of SNPs to identify variants associated with length of survival in 1,331 individuals with esophageal squamous-cell carcinoma (ESCC), with associations validated in 2 independent sets including 1,962 individuals with this cancer. We identified rs1050631 in SLC39A6 as associated with the survival times of affected individuals, with the hazard ratio for death from ESCC in the combined sample being 1.30 (95% confidence interval (CI) = 1.19-1.43; P = 3.77 × 10(-8)). rs7242481, located in the 5' UTR of SLC39A6, disturbs a transcriptional repressor binding site and results in upregulation of SLC39A6 expression. Immunohistochemical staining of ESCC tissues showed that higher expression of SLC39A6 protein was correlated with shorter length of survival in individuals with advanced ESCC (P = 0.013). Knockdown of SLC39A6 expression suppressed proliferation and invasion in ESCC cells. These results suggest that SLC39A6 has an important role in the prognosis of ESCC and may be a potential therapeutic target.
Collapse
|
38
|
Shen R, Xie F, Shen H, liu Q, Zheng T, Kou X, Wang D, Yang J. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells. PLoS One 2013; 8:e56542. [PMID: 23437163 PMCID: PMC3577881 DOI: 10.1371/journal.pone.0056542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
LIV-1, a zinc transporter, is a mediator downstream of STAT3 both in zebrafish and mammalian cells, and is involved in epithelial-mesenchymal transition (EMT). Despite LIV-1 participates in cancer growth and metastasis, little is known about the association of LIV-1 with human liver cancer development. Therefore, the expression of LIV-1 mRNA was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) in 4 cultured cell lines (3 carcinoma and 1 normal liver cell lines), and the localization of LIV-1 protein was investigated by immunohistochemistry. Expression of LIV-1 protein was analyzed by Western blot both in 4 cultured cell lines and 120 liver tissues (100 carcinoma and 20 histologically normal tissues), and the relationship between its expression and clinicopathological finding was investigated in 100 hepatocellular carcinoma(HCC) tissues. Then stable siRNA expressing Hep-G2 cells were generated to assess the function of LIV-1 in liver cancer cells. We found that LIV-1 mRNA was more highly expressed in liver cancer cell lines compared to normal liver cell line. Western blot showed the expression of LIV-1 was higher in 61% liver carcinoma tissues than that in normal liver tissues. Down-regulated LIV-1 cells showed significant inhibition of proliferation in vitro and reduction of tumor growth in vivo. Furthermore, E-cadherin expression increased in LIV-1 siRNA expressing Hep-G2. These findings indicated that LIV-1 may induce the EMT in HCC cells.
Collapse
Affiliation(s)
- Rongxi Shen
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Xie
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Military Hygiene, Second Military Medical University, Shanghai, China
| | - Qu liu
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tao Zheng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xingrui Kou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, China
| | - Dexian Wang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jiamei Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
39
|
Zhang X, Liang D, Guo B, Sun L, Chi ZH, Cai Y, Wang L, Ma J. Zinc transporter 7 induced by high glucose attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Biol Trace Elem Res 2013; 151:138-47. [PMID: 23104082 DOI: 10.1007/s12011-012-9533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Grattan BJ, Freake HC. Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 2012; 4:648-75. [PMID: 22852056 PMCID: PMC3407987 DOI: 10.3390/nu4070648] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/07/2012] [Accepted: 06/27/2012] [Indexed: 01/21/2023] Open
Abstract
Zinc is a trace mineral which is vital for the functioning of numerous cellular processes, is critical for growth, and may play an important role in cancer etiology and outcome. The intracellular levels of this mineral are regulated through the coordinated expression of zinc transporters, which modulate both zinc influx as well as efflux. LIV-1 (ZIP6) was first described in 1988 as an estrogen regulated gene with later work suggesting a role for this transporter in cancer growth and metastasis. Despite evidence of its potential utility as a target gene for cancer prognosis and treatment, LIV-1 has received relatively little attention, with only three prior reviews being published on this topic. Herein, the physiological effects of zinc are reviewed in light of this mineral’s role in cancer growth with specific attention being given to LIV-1 and the potential importance of this transporter to breast cancer etiology.
Collapse
Affiliation(s)
- Bruce J. Grattan
- Department of Family Medicine, Stony Brook University Hospital Medical Center, Stony Brook, New York, NY 11597, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| | - Hedley C. Freake
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06268, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| |
Collapse
|
42
|
Lue HW, Yang X, Wang R, Qian W, Xu RZH, Lyles R, Osunkoya AO, Zhou BP, Vessella RL, Zayzafoon M, Liu ZR, Zhau HE, Chung LWK. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One 2011; 6:e27720. [PMID: 22110740 PMCID: PMC3218022 DOI: 10.1371/journal.pone.0027720] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/23/2011] [Indexed: 12/30/2022] Open
Abstract
LIV-1, a zinc transporter, is an effector molecule downstream from soluble growth factors. This protein has been shown to promote epithelial-to-mesenchymal transition (EMT) in human pancreatic, breast, and prostate cancer cells. Despite the implication of LIV-1 in cancer growth and metastasis, there has been no study to determine the role of LIV-1 in prostate cancer progression. Moreover, there was no clear delineation of the molecular mechanism underlying LIV-1 function in cancer cells. In the present communication, we found increased LIV-1 expression in benign, PIN, primary and bone metastatic human prostate cancer. We characterized the mechanism by which LIV-1 drives human prostate cancer EMT in an androgen-refractory prostate cancer cells (ARCaP) prostate cancer bone metastasis model. LIV-1, when overexpressed in ARCaPE (derivative cells of ARCaP with epithelial phenotype) cells, promoted EMT irreversibly. LIV-1 overexpressed ARCaPE cells had elevated levels of HB-EGF and matrix metalloproteinase (MMP) 2 and MMP 9 proteolytic enzyme activities, without affecting intracellular zinc concentration. The activation of MMPs resulted in the shedding of heparin binding-epidermal growth factor (HB-EGF) from ARCaPE cells that elicited constitutive epidermal growth factor receptor (EGFR) phosphorylation and its downstream extracellular signal regulated kinase (ERK) signaling. These results suggest that LIV-1 is involved in prostate cancer progression as an intracellular target of growth factor receptor signaling which promoted EMT and cancer metastasis. LIV-1 could be an attractive therapeutic target for the eradication of pre-existing human prostate cancer and bone and soft tissue metastases.
Collapse
Affiliation(s)
- Hui-Wen Lue
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Xiaojian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruoxiang Wang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Weiping Qian
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Roy Z. H. Xu
- Department of Biostatistics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Robert Lyles
- Department of Biostatistics, Emory University School of Public Health, Atlanta, Georgia, United States of America
| | - Adeboye O. Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Binhua P. Zhou
- The Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Haiyen E. Zhau
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (LWKC); (HEZ)
| | - Leland W. K. Chung
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail: (LWKC); (HEZ)
| |
Collapse
|
43
|
Nam H, Knutson MD. Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver. Biometals 2011; 25:115-24. [PMID: 21826460 DOI: 10.1007/s10534-011-9487-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/31/2011] [Indexed: 01/22/2023]
Abstract
The mammalian ZIP (Zrt-, Irt-like Protein) family of transmembrane transport proteins consists of 14 members that share considerable homology. ZIP proteins have been shown to mediate the cellular uptake of the essential trace elements zinc, iron, and manganese. The aim of the present study was to determine the effect of dietary iron deficiency and overload on the expression of all 14 ZIP transporters in the liver, the main site of iron storage. Weanling male rats (n = 6/group) were fed iron-deficient (FeD), iron-adequate (FeA), or iron-overloaded (FeO) diets in two independent feeding studies. In study 1, diets were based on the TestDiet 5755 formulation and contained iron at 9 ppm (FeD), 215 ppm (FeA), and 27,974 ppm (3% FeO). In study 2, diets were based on the AIN-93G formulation and contained iron at 9 ppm Fe (FeD), 50 ppm Fe (FeA), or 18916 ppm (2% FeO). After 3 weeks, the FeD diets depleted liver non-heme iron stores and induced anemia, whereas FeO diets resulted in hepatic iron overload. Quantitative RT-PCR revealed that ZIP5 mRNA levels were 3- and 8-fold higher in 2% FeO and 3% FeO livers, respectively, compared with FeA controls. In both studies, a consistent downregulation of ZIP6, ZIP7, and ZIP10 was also observed in FeO liver relative to FeA controls. Studies in H4IIE hepatoma cells further documented that iron loading affects the expression of these ZIP transporters. Overall, our data suggest that ZIP5, ZIP6, ZIP7, and ZIP10 are regulated by iron, indicating that they may play a role in hepatic iron/metal homeostasis during iron deficiency and overload.
Collapse
Affiliation(s)
- Hyeyoung Nam
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
44
|
|
45
|
Weaver BP, Zhang Y, Hiscox S, Guo GL, Apte U, Taylor KM, Sheline CT, Wang L, Andrews GK. Zip4 (Slc39a4) expression is activated in hepatocellular carcinomas and functions to repress apoptosis, enhance cell cycle and increase migration. PLoS One 2010; 5. [PMID: 20957146 PMCID: PMC2950147 DOI: 10.1371/journal.pone.0013158] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/10/2010] [Indexed: 12/27/2022] Open
Abstract
Background The zinc transporter ZIP4 (Slc39a4) is important for proper mammalian development and is an essential gene in mice. Recent studies suggest that this gene may also play a role in pancreatic cancer. Methods/Principal Findings Herein, we present evidence that this essential zinc transporter is expressed in hepatocellular carcinomas. Zip4 mRNA and protein were dramatically elevated in hepatocytes in the majority of human hepatocellular carcinomas relative to noncancerous surrounding tissues, as well as in hepatocytes in hepatocellular carcinomas occurring in farnesoid X receptor-knockout mice. Interestingly, meta-analysis of microarray data in the Geo and Oncomine databases suggests that Zip4 mRNA may also be elevated in many types of cancer. Potential mechanisms of action of ZIP4 were examined in cultured cell lines. RNAi knockdown of Zip4 in mouse Hepa cells significantly increased apoptosis and modestly slowed progression from G0/G1 to S phase when cells were released from hydroxyurea block into zinc-deficient medium. Cell migration assays revealed that RNAi knockdown of Zip4 in Hepa cells depressed in vitro migration whereas forced over-expression in Hepa cells and MCF-7 cells enhanced in vitro migration. Conclusions ZIP4 may play a role in the acquisition of zinc by hepatocellular carcinomas, and potentially many different cancerous cell-types, leading to repressed apoptosis, enhanced growth rate and enhanced invasive behavior.
Collapse
Affiliation(s)
- Benjamin P. Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yuxia Zhang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephen Hiscox
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kathryn M. Taylor
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, Cardiff, United Kingdom
| | - Christian T. Sheline
- Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana, United States of America
| | - Li Wang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Sharir H, Zinger A, Nevo A, Sekler I, Hershfinkel M. Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem 2010; 285:26097-106. [PMID: 20522546 DOI: 10.1074/jbc.m110.107490] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A role for Zn(2+) in accelerating wound healing is established, yet, the signaling pathways linking Zn(2+) to tissue repair are not well known. We show that in the human HaCaT keratinocytes extracellular Zn(2+) induces a metabotropic Ca(2+) response that is abolished by silencing the expression of the G-protein-coupled receptor GPR39, suggesting that this Zn(2+)-sensing receptor, ZnR, is mediating the response. Keratinocytic-ZnR signaling is highly selective for Zn(2+) and can be triggered by nanomolar concentrations of this ion. Interestingly, Zn(2+) was also released following cellular injury, as monitored by a specific non-permeable fluorescent Zn(2+) probe, ZnAF-2. Chelation of Zn(2+) and scavenging of ATP from conditioned medium, collected from injured epithelial cultures, was sufficient to eliminate the metabotropic Ca(2+) signaling. The signaling triggered by Zn(2+), via ZnR, or by ATP further activated MAP kinase and induced up-regulation of the sodium/proton exchanger NHE1 activity. Finally, activation of ZnR/GPR39 signaling or application of ATP enhanced keratinocytes scratch closure in an in vitro model. Thus our results indicate that extracellular Zn(2+), which is either applied or released following injury, activates ZnR/GPR39 to promote signaling leading to epithelial repair.
Collapse
Affiliation(s)
- Haleli Sharir
- Departments of Morphology, Ben Gurion University, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
47
|
Schmitt S, Küry S, Giraud M, Dréno B, Kharfi M, Bézieau S. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. Hum Mutat 2009; 30:926-33. [PMID: 19370757 DOI: 10.1002/humu.20988] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acrodermatitis enteropathica (AE) is a very rare inherited recessive disease caused by severe zinc deficiency. It typically occurs in early infancy and is characterized by periorificial and acral dermatitis, alopecia, and diarrhea. In 2002, both we and others identified the AE SLC39A4 gene located at 8q24.3, and described the first causative mutations for the disease. The SLC39A4 gene encodes a zinc-specific transporter belonging to the Zinc/Iron-regulated transporter-like family, which is highly expressed in the duodenum and jejunum. The SLC39A4 mutations are spread over the entire gene and include many different types of mutations. We report here the identification of five novel variants, including three likely pathogenic mutations. Since the first description, 31 mutations or unclassified variants of SLC39A4 have been reported in this gene. Although most of the patients with AE carry homozygous or compound heterozygous mutations, some of them have either no SLC39A4 mutation or only a monoallelic mutation. Thus, a genotype-phenotype correlation is not easily defined for all AE patients, and the molecular basis of the disease could be more complex than previously described. In cases unexplained by current genetic analyses, the most plausible molecular causes could be a dysregulation of the SLC39A4 gene transcription -- involving either metal response elements (MREs) or a modifier gene -- or the existence of another putative AE gene. In this review, we summarize the current knowledge of SLC39A4 mutations, as well as the future prospects to fully unravel the pathogenesis of AE.
Collapse
Affiliation(s)
- Sébastien Schmitt
- Centre Hospitalier Universitaire (CHU) de Nantes, Pôle de Biologie, Service de Génétique Médicale, Nantes, France.
| | | | | | | | | | | |
Collapse
|
48
|
Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 2009; 15:101-11. [PMID: 19246244 DOI: 10.1016/j.molmed.2009.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 12/17/2022]
Abstract
Zinc, which is essential for many cellular processes, is controlled by zinc transporters and through buffering by metallothioneins and glutathione. Although zinc is increasingly implicated in disease states, little is known about how zinc regulates cellular biochemical pathways. Recent seminal articles have revealed discrete zinc-trafficking pathways that are linked to signalling cascades, particularly those involving protein phosphatase inhibition and downstream activation of mitogen-activated protein kinases and tyrosine kinases. Here, we discuss the mechanisms of cellular zinc homeostasis, and we propose an important role for the zinc transporter solute carrier family 39, member 7 (SLC39A7; commonly referred to as ZIP7). ZIP7 releases zinc from the endoplasmic reticulum and might be required for tyrosine kinase activation. These observations position ZIP7 at a critical node in zinc-mediated tyrosine kinase signalling and suggest that this protein might form a novel target for diseases such as cancer where prevention of tyrosine kinase activation would be therapeutically advantageous.
Collapse
|
49
|
Abstract
Zinc, essential for normal cell growth, is tightly controlled in cells by two families of zinc transporters. The aberrant expression of zinc transporters from the LIV-1 family of ZIP (Zrt/Irt-like protein) transporters is increasingly being implicated in a variety of disease states. In the present paper, I describe a mechanism for the role of ZIP7 in the progression of breast cancer, identifying it as a new target in breast cancer. Furthermore, I document a link between another zinc transporter, LIV-1, and breast cancer metastasis, identifying it as a potential new prognostic indicator of breast cancer spread.
Collapse
|
50
|
Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, Huo S. Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy. Med Oncol 2008; 26:215-21. [PMID: 18988000 DOI: 10.1007/s12032-008-9109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/13/2008] [Indexed: 11/29/2022]
Abstract
The aim of this study is to globally screen and identify the expression protein profiles of lung squamous carcinoma cell (SqCC) using shot-gun proteomics strategy and to further analyze function of individual proteins by bioinformatics, which may likely result in the identification of new biomarkers and provide helpful clues for pathogenesis, early diagnosis, and progression of lung SqCC. The specific tumor cells were isolated and collected from the tissues of six patients with lung SqCC by laser capture microdissection (LCM). Total proteins from the LCM cells were extracted, digested with trypsin. The sequence information of resulting peptides was acquired by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (TMS). The global protein profiles of lung SqCC cell were identified with BioworksTM software in IPI human protein database. Cellular component, molecular function, and biological process of the all proteins were analyzed using gene ontology (GO). About 720,000 tumor cells were satisfactorily collected from tissues of six patients with lung SqCC by LCM and the homogeneities of cell population were estimated to be over 95% as determined by microscopic visualization. The high resolution profiles including HPLC, full mass spectrum, and tandem mass spectrum were successfully obtained. Database searching of the resulting bimolecular sequence information identified 1982 proteins in all samples. The bioinformatics of these proteins, including amino acids sequence, fraction of coverage, molecular weight, isoelectric point, etc., were analyzed in detail. Among them, the function of most proteins was recognized by using GO. Five candidate proteins, Prohibitin (PHB), Mitogen-activated protein kinase (MAPK), Heat shock protein27 (HSP27), Annexin A1(ANXA1), and High mobility group protein B1 (HMGB1), might play an important role in SqCC genesis, progression, recurrence, and metastasis according to relative literatures. We have successfully isolated the interesting cells and effectively solved the heterogeneous problem of lung SqCC using LCM. The globally expressional proteins of lung SqCC cell were identified by shot-gun proteomics strategy. The five proteins might be hopefully used as markers of lung SqCC.
Collapse
Affiliation(s)
- Yandong Nan
- Department of Respiratory Medicine, Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|