1
|
Mamgain R, Mishra G, Kriti S, Singh FV. Organoselenium compounds beyond antioxidants. Future Med Chem 2024; 16:2663-2685. [PMID: 39711134 PMCID: PMC11734649 DOI: 10.1080/17568919.2024.2435254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties. The review includes synthesis and study of organo-selenium compounds as anticancer, antimicrobial, antiviral, antidiabetic, antithyroid, anti-inflammatory therapies, contributing to disease treatment. This review covers the synthesis and medicinal applications of synthetic organoselenium compounds over the past 10 years, thus making it a valuable resource for researchers in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Ritu Mamgain
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Garima Mishra
- Department of Chemistry, Western Illinois University-Quad Cities, Moline, IL, USA
| | - Saumya Kriti
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India
| |
Collapse
|
2
|
Adyukov IS, Pelipko VV, Baichurin RI, Makarenko SV. Synthesis of Thiadiazole-4- and Pyrazole-3-сarboxylates Based on Ethyl Pyruvates (Het)aroylhydrazones. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Chaudhry AR, Alhujaily M, Muhammad S, Elbadri GA, Belali TM, Al-Sehemi AG. Insighting the optoelectronic, charge transfer and biological potential of benzo-thiadiazole and its derivatives. Z NATURFORSCH C 2022; 77:403-415. [PMID: 35438853 DOI: 10.1515/znc-2021-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
Abstract
The current investigation applies the dual approach containing quantum chemical and molecular docking techniques to explore the potential of benzothiadiazole (BTz) and its derivatives as efficient electronic and bioactive materials. The charge transport, electronic and optical properties of BTz derivatives are explored by quantum chemical techniques. The density functional theory (DFT) and time dependent DFT (TD-DFT) at B3LYP/6-31G** level of theory utilized to optimize BTz and newly designed ligands at the ground and first excited states, respectively. The heteroatoms substitution effects on different properties of 4,7-bis(4-methylthiophene-2yl) benzo[c] [1,2,5]thiadiazole (BTz2T) as initial compound are studied at molecular level. Additionally, we also study the possible inhibition potential of COVID-19 from benzothiadiazole (BTz) containing derivatives by implementing the grid based molecular docking methods. All the newly designed ligands docked with the main protease (MPRO:PDB ID 6LU7) protein of COVID-19 through molecular docking methods. The studied compounds showed strong binding affinities with the binding site of MPRO ranging from -6.9 to -7.4 kcal/mol. Furthermore, the pharmacokinetic properties of the ligands are also studied. The analysis of these results indicates that the studied ligands might be promising drug candidates as well as suitable for photovoltaic applications.
Collapse
Affiliation(s)
- Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia.,Deanship of Scientific Research, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Muhanad Alhujaily
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Gamal A Elbadri
- Department of Biology, College of Science, University of Bisha, Bisha 61922, P.O. Box 334, Saudi Arabia
| | - Tareg M Belali
- Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
4
|
Kostin RK, Marshavin AS. Pyrazoles, isoxazoles, and 1,2,3-triazoles as analogs of the natural cytostatic combretastatin A-4: efficient routes of synthesis, tubulin inhibition, and cytotoxicity. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Dong C, Mai S, Wang S, Li X, Song Q. Base-promoted anaerobic intramolecular cyclization synthesis of 4,5-disubstituted-1,2,3-thiadiazoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alkali-promoted, transition-metal-free and oxidant-free method to construct 4,5-disubstituted-1,2,3-thiadiazoles from N-tosylhydrazone-bearing thiocarbamates by employing a sustainable intramolecular reaction strategy has been developed.
Collapse
Affiliation(s)
- Cong Dong
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
- State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Synthesis of Novel Thiazolyl Hydrazine Derivatives and Their Antifungal Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/6563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of novel thiazolyl hydrazine derivatives 3a–3o were synthesized and evaluated for their in vitro antifungal activity against six phytopathogenic strains, namely, Botryosphaeria dothidea (B. d.), Gibberella sanbinetti (G. s.), Fusarium oxysporum (F. o.), Thanatephorus cucumeris (T. c.), Sclerotinia sclerotiorum (S. s.), and Verticillium dahliae (V. d.), by the classical mycelial growth rate method. Biological assessment results showed that most of these target compounds showed good antifungal activity toward tested strains. Especially, compound 3l showed excellent antifungal activities against B. d. and G. s. with relatively lower EC50 values of 0.59 and 0.69 µg/mL, respectively, which were extremely superior to those of commercial fungicides fluopyram, boscalid, and hymexazol and were comparable to those of carbendazim. Given the excellent bioactivity of designed compounds, this kind of thiazolyl hydrazine framework can provide a suitable point for exploring highly efficient antifungal agents.
Collapse
|
7
|
Sameem B, Moghadam ES, Darabi M, Shahsavari Z, Amini M. Triarylpyrazole Derivatives as Potent Cytotoxic Agents; Synthesis and Bioactivity Evaluation "Pyrazole Derivatives as Anticancer Agent". Drug Res (Stuttg) 2021; 71:388-394. [PMID: 34010979 DOI: 10.1055/a-1498-1714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND During the last recent years, several anti-cancer agents were introduced for the treatment of diverse kinds of cancer. Despite their potential in the treatment of cancer, drug resistance and adverse toxicity such as peripheral neuropathy are some of the negative criteria of anti-cancer agents and for this reason, the design and synthesis of new anti-cancer agents are important. OBJECTIVE Design, synthesis, and anticancer activity evaluation of some pyrazole derivatives. METHODS A series of Target compounds were prepared using multistep synthesis. Their cytotoxic activity against three different human cancer cell lines namely human colon carcinoma cells (HT-29), epithelial carcinoma cells (U-87MG), pancreatic cancerous cells (Panc-1) as well as AGO1522 normal cell line using in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was investigated. RESULTS 1,3-Diaryl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole and 1,3-Diaryl-5-(3,4,5-trimethoxyphenyl)- 1H-pyrazole were synthesized in good yields and their structure and purity were confirmed using 1H-NMR, 13C-NMR, and elemental analysis. Generally, the synthesized scaffolds exhibited good cytotoxicity against cancerous cell lines in comparison to the reference standard, paclitaxel. Compounds 3A: and 3C: , in Annexin V/ PI staining assay, exerted remarkable activity in apoptosis induction in HT-29 cell lines. Both of them also led to cell cycle arrest in the sub-G1 phase which is inconsistent with the results of apoptosis assay. CONCLUSION Concerning obtained results, it is interesting to synthesis more pyrazole derivatives as anticancer agents.
Collapse
Affiliation(s)
- Bilqees Sameem
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Majid Darabi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahsavari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Li W, Li X, Feng Y, Liu P, Ma X, Zhao J. Synthesis of novel 4-substituted 1,2,3-thiadiazoles via iodine-catalyzed cyclization reactions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Popova EA, Kornev AA, Bessonov VV, Androsov DA, Petrov ML, Boitsov VM, Stepakov AV. In Vitro Activity of Organochalcogen Compounds: III. Cytotoxic Effect of 4-(2-Hydroxyaryl)-1,2,3-thiadiazoles Against K562 and Hela Tumor Cell Lines. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363220120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Selective transformations of 2-(p-toluenesulfonyl)-N-tosylhydrazones to substituted 1,2,3-thiadiazoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorg Med Chem Lett 2020; 30:127592. [PMID: 33010448 DOI: 10.1016/j.bmcl.2020.127592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
In search of new active molecules against MCF-7, A549 and HepG2, tetrazole based pyrazoline and isoxazoline derivatives under both conventional and ultrasonic irradiation method were designed and efficiently synthesized. Structures of newly synthesized compounds 5a-h and 6a-h were characterized by 1H NMR, 13C NMR, MS and elemental analysis. Several derivatives were found to be excellent cytotoxic against MCF-7, A549 and HepG2 cell lines characterized by lower IC50 values (0.78-3.12 µg/mL). Compounds 5b and 5c demonstrated an antiproliferative effect comparable to that of CA-4. Western blot analysis revealed that, reported compounds accumulate more tubulin in the soluble fraction. Docking studies suggested that, binding of these compounds mimics at the colchicine site of tubulin. In vitro study revealed that the tetrazole based pyrazolines and isoxazolines may possess ideal structural requirements for further development of novel therapeutic agents.
Collapse
|
12
|
Remizov YO, Kornev AA, Pevzner LM, Petrov ML, Boitsov VM, Stepakov AV. In Vitro Activity of Organochalcogen Compounds: I. Cytotoxic Effect of 4-(1,2,3-Thiadiazol-4-yl)furans Against K562 and HeLa Tumor Cell Lines. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220110328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
A 2-step synthesis of Combretastatin A-4 and derivatives as potent tubulin assembly inhibitors. Bioorg Med Chem 2020; 28:115684. [DOI: 10.1016/j.bmc.2020.115684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
|
14
|
Szeliga M. Thiadiazole derivatives as anticancer agents. Pharmacol Rep 2020; 72:1079-1100. [PMID: 32880874 PMCID: PMC7550299 DOI: 10.1007/s43440-020-00154-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
In spite of substantial progress made toward understanding cancer pathogenesis, this disease remains one of the leading causes of mortality. Thus, there is an urgent need to develop novel, more effective anticancer therapeutics. Thiadiazole ring is a versatile scaffold widely studied in medicinal chemistry. Mesoionic character of this ring allows thiadiazole-containing compounds to cross cellular membrane and interact strongly with biological targets. Consequently, these compounds exert a broad spectrum of biological activities. This review presents the current state of knowledge on thiadiazole derivatives that demonstrate in vitro and/or in vivo efficacy across the cancer models with an emphasis on targets of action. The influence of the substituent on the compounds' activity is depicted. Furthermore, the results from clinical trials assessing thiadiazole-containing drugs in cancer patients are summarized.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Str, 02-106, Warsaw, Poland.
| |
Collapse
|
15
|
Li W, Zhang J, He J, Xu L, Vaccaro L, Liu P, Gu Y. I 2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Front Chem 2020; 8:466. [PMID: 32596205 PMCID: PMC7304252 DOI: 10.3389/fchem.2020.00466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/04/2020] [Indexed: 12/05/2022] Open
Abstract
An iodine/DMSO catalyzed selective cyclization of N-tosylhydrazones with sulfur without adding external oxidant was developed for the synthesis of 4-aryl-1,2,3-thiadiazoles. In this reaction, oxidation of HI by using DMSO as dual oxidant and solvent is the key, which allowed the regeneration of I2, ensuring thus the success of the synthesis. This protocol features by simple operation, high step-economy (one-pot fashion), broad substrate scope as well as scale-up ability.
Collapse
Affiliation(s)
- Weiwei Li
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jun Zhang
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jing He
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Liang Xu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Ping Liu
- The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhang J, Li W, Liu Y, Liu P. HI/DMSO‐Catalyzed Cyclization of Aryl(sulfo)acylhydrazones with Sulfur. ChemistrySelect 2020. [DOI: 10.1002/slct.202001310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun Zhang
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Weiwei Li
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi City 832004 P. R. China
| |
Collapse
|
17
|
Nourmahammadi J, Moghadam ES, Shahsavari Z, Amini M. Design, Synthesis and Biological Evaluation of Novel Diaryl Pyrazole Derivatives as Anticancer Agents. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190514090158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is one of the major causes of mortality all around the world. Globally, nearly 1 in 6
deaths is due to cancer. Researchers are trying to synthesize new anticancer agents. Previous studies
demonstrated that some pyrazole derivatives could be considered as potential anticancer agents. Herein,
ten novel derivatives of 1,5-diarylpyrazole were synthesized in four step reactions and cytotoxic activity
was investigated by MTT cell viability assay. All of the compounds were characterized by 1H
NMR and 13C NMR and their purity was confirmed by elemental analysis. The cytotoxicity was determined
against three cancerous cell lines (HT-29, U87MG and MDA-MB 468) and AGO1522 as a
normal cell line. Compound 5a showed the best cytotoxic activity on cancerous cell lines in comparison
to paclitaxel. Annexin V/ PI staining assay also showed that compounds 5a and 5i would lead to
significant apoptosis induction in MDA-MB 486 cell line.
Collapse
Affiliation(s)
- Jalal Nourmahammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Shahsavari
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
18
|
Yang Z, Liang Y, Li A, Liu K, Li L, Yang T, Zhou C. One-Pot Synthesis of 5-Acyl-1,2,3-Thiadiazoles from Enaminones, Tosylhydrazine, and Elemental Sulfur under Transition-Metal-Free Conditions. J Org Chem 2019; 84:16262-16267. [DOI: 10.1021/acs.joc.9b02866] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zan Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yemei Liang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - An Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Lijun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
19
|
Saravani F, Moghadam ES, Salehabadi H, Ostad S, Hamedani MP, Amanlou M, Faramarzi MA, Amini M. Synthesis, Anti-proliferative Evaluation, and Molecular Docking Studies of 3-(alkylthio)-5,6-diaryl-1,2,4-triazines as Tubulin Polymerization Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180727114216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background:
The role of microtubules in cell division and signaling, intercellular transport,
and mitosis has been well known. Hence, they have been targeted for several anti-cancer drugs.
Methods:
A series of 3-(alkylthio)-5,6-diphenyl-1,2,4-triazines were prepared and evaluated for
their cytotoxic activities in vitro against three human cancer cell lines; human colon carcinoma cells
HT-29, human breast adenocarcinoma cell line MCF-7, human Caucasian gastric adenocarcinoma
cell line AGS as well as fibroblast cell line NIH-3T3 by MTT assay. Docking simulation was performed
to insert these compounds into the crystal structure of tubulin at the colchicine binding site
to determine a probable binding model. Compound 5d as the most active compound was selected
for studying of microtubule disruption.
Results:
Compound 5d showed potent cytotoxic activity against all cell lines. The molecular modeling
study revealed that some derivatives of triazine strongly bind to colchicine binding site. The
tubulin polymerization assay kit showed that the cytotoxic activity of 5d may be related to inhibition
of tubulin polymerization.
Conclusion:
The cytotoxicity and molecular modeling study of the synthesized compounds with
their inhibition activity in tubulin polymerization demonstrate the potential of triazine derivatives
for development of new anti-cancer agents.
Collapse
Affiliation(s)
- Farhad Saravani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hafezeh Salehabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyednasser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Pirali Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Filimonov VO, Dianova LN, Beryozkina TV, Mazur D, Beliaev NA, Volkova NN, Ilkin VG, Dehaen W, Lebedev AT, Bakulev VA. Water/Alkali-Catalyzed Reactions of Azides with 2-Cyanothioacetamides. Eco-Friendly Synthesis of Monocyclic and Bicyclic 1,2,3-Thiadiazole-4-carbimidamides and 5-Amino-1,2,3-triazole-4-carbothioamides. J Org Chem 2019; 84:13430-13446. [PMID: 31547663 DOI: 10.1021/acs.joc.9b01599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reactions of thioamides with azides in water were studied. It was reliably shown that the reaction of 2-cyanothioacetamides 1 with various types of azides 2 in water in the presence of alkali presents an efficient, general, one-step, atom-economic, and eco-friendly method for the synthesis of 1,2,3-thiadiazol-4-carbimidamides 5 and 1,2,3-triazole-4-carbothioamides 4. This method can be extended to the one-pot reaction of sulfonyl chlorides and 6-chloropyrimidines 2'o with sodium azide, leading to final products in higher yields, that is, avoiding the isolation of unsafe sulfonyl azides. The method was furthermore applied to the reaction of N,N'-bis-(2-cyanothiocarbonyl)pyrazine 1h with sulfonyl azides to afford bicyclic 1,2,3-thiadiazoles 8 and 1,2,3-triazoles 9 connected via a 1,1'-piperazinyl linker. 2-Cyanothioacetamides 1 were also shown to react with aromatic azides in water in the presence of alkali to afford 1-aryl-5-amino-1,2,3-triazole-4-carbothioamides 11. In contrast to aromatic azides and similarly to sulfonyl azides, 6-azidopyrimidine-2,4-diones 2o-q react with cyanothioacetamides to form N-pyrimidin-6-yl-5-dialkylamino-1,2,3-thiadiazole-4-N-l-carbimidamides 12. A mechanism was proposed to rationalize the role of water in changing the reactivity of azides toward 2-cyanothioacetamides.
Collapse
Affiliation(s)
| | - Lidia N Dianova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | | | - Dmitrii Mazur
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Nikolai A Beliaev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Natalia N Volkova
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Vladimir G Ilkin
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven B-3001 , Belgium
| | - Albert T Lebedev
- Department of Chemistry , Lomonosov Moscow State University , Moscow 119991 , Russia
| | - Vasiliy A Bakulev
- Ural Federal University , 19 Mira St. , Yekaterinburg 620002 , Russia
| |
Collapse
|
21
|
Li W, He J, Liu P, Zhang J, Dai B. Synthesis of 4‐Aryl‐1,2,3‐Thiadiazoles via NH
4
I‐Catalyzed Cyclization of
N
‐Tosylhydrazones with Sulfur. ChemistrySelect 2019. [DOI: 10.1002/slct.201902684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weiwei Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Jing He
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Ping Liu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang BingtuanShihezi University Shihezi 832003 P. R. China
| |
Collapse
|
22
|
Gudala S, Ambati SR, Patel JL, Vedula RR, Penta S. An Efficient Synthesis of Pyrazolyl‐1,2,3‐thiadiazoles
via
Hurd–Mori Reaction. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Satish Gudala
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| | - Srinivasa Rao Ambati
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
- Department of Research and DevelopmentMSN R&D Center Pashamylarram, Medak 502307 TS India
| | - Jeevan Lal Patel
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| | - Rajeswar Rao Vedula
- Department of ChemistryNational Institute of Technology Warangal Telangana India
| | - Santhosh Penta
- Department of ChemistryNational Institute of Technology Raipur 492010 CG India
| |
Collapse
|
23
|
Romagnoli R, Oliva P, Salvador MK, Camacho ME, Padroni C, Brancale A, Ferla S, Hamel E, Ronca R, Grillo E, Bortolozzi R, Rruga F, Mariotto E, Viola G. Design, synthesis and biological evaluation of novel vicinal diaryl-substituted 1H-Pyrazole analogues of combretastatin A-4 as highly potent tubulin polymerization inhibitors. Eur J Med Chem 2019; 181:111577. [PMID: 31400707 DOI: 10.1016/j.ejmech.2019.111577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
A series of 3-(3',4',5'-trimethoxyphenyl)-4-substituted 1H-pyrazole and their related 3-aryl-4-(3',4',5'-trimethoxyphenyl)-1-H-pyrazole regioisomeric derivatives, prepared as cis-rigidified combretastatin A-4 (CA-4) analogues, were synthesized and evaluated for their in vitro antiproliferative against six different cancer cell lines and, for selected highly active compounds, inhibitory effects on tubulin polymerization, cell cycle effects and in vivo potency. We retained the 3',4',5'-trimethoxyphenyl moiety as ring A throughout the present investigation, and a structure-activity relationship (SAR) information was obtained by adding electron-withdrawing (OCF3, CF3) or electron-releasing (alkyl and alkoxy) groups on the second aryl ring, corresponding to the B-ring of CA-4, either at the 3- or 4-position of the pyrazole nucleus. In addition, the B-ring was replaced with a benzo[b]thien-2-yl moiety. For many of the compounds, their activity was greater than, or comparable with, that of CA-4. Maximal activity was observed with the two regioisomeric derivatives characterized by the presence of a 4-ethoxyphenyl and a 3',4',5'-trimethoxyphenyl group at the C-3 and C-4 positions, and vice versa, of the 1H-pyrazole ring. The data showed that the 3',4',5'-trimethoxyphenyl moiety can be moved from the 3- to the 4-position of the 1H-pyrazole ring without significantly affecting antiproliferative activity. The most active derivatives bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. In vivo experiments, on an orthotopic murine mammary tumor, revealed that 4c inhibited tumor growth even at low concentrations (5 mg/kg) compared to CA-4P (30 mg/kg).
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Luigi Borsari 46, Università di Ferrara, 44121, Ferrara, Italy.
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Via Luigi Borsari 46, Università di Ferrara, 44121, Ferrara, Italy
| | - Maria Kimatrai Salvador
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Maria Encarnacion Camacho
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Chiara Padroni
- Aptuit, an Evotec Company, Via A. Fleming 4, 37135, Verona, Italy
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Elisabetta Grillo
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Fatlum Rruga
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Elena Mariotto
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128, Padova, Italy.
| |
Collapse
|
24
|
Wang C, Geng X, Zhao P, Zhou Y, Wu YD, Cui YF, Wu AX. I 2/CuCl 2-promoted one-pot three-component synthesis of aliphatic or aromatic substituted 1,2,3-thiadiazoles. Chem Commun (Camb) 2019; 55:8134-8137. [PMID: 31240291 DOI: 10.1039/c9cc04254g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient I2/CuCl2-promoted one-pot three-component strategy for the construction of 1,2,3-thiadiazoles from aliphatic- or aromatic-substituted methyl ketones, p-toluenesulfonyl hydrazide, and potassium thiocyanate has been developed. Simple and commercially available starting materials, a broad substrate scope, and excellent functional group tolerability make this strategy practical for applications. Furthermore, 1,2,3-thiadiazole synthesis was realized by using potassium thiocyanate as an odorless sulfur source.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yan-Fang Cui
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
25
|
Singh I, El-Emam AA, Pathak SK, Srivastava R, Shukla VK, Prasad O, Sinha L. Experimental and theoretical DFT (B3LYP, X3LYP, CAM-B3LYP and M06-2X) study on electronic structure, spectral features, hydrogen bonding and solvent effects of 4-methylthiadiazole-5-carboxylic acid. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1629434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Isha Singh
- Department of Physics, University of Lucknow, Lucknow, India
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| | | | | | - Vikas K. Shukla
- Department of Physics, University of Lucknow, Lucknow, India
| | - Onkar Prasad
- Department of Physics, University of Lucknow, Lucknow, India
| | - Leena Sinha
- Department of Physics, University of Lucknow, Lucknow, India
| |
Collapse
|
26
|
Synthesis and bioevaluation of diarylpyrazoles as antiproliferative agents. Eur J Med Chem 2019; 171:1-10. [DOI: 10.1016/j.ejmech.2019.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/28/2022]
|
27
|
Medicinal chemistry of vicinal diaryl scaffold: A mini review. Eur J Med Chem 2018; 162:1-17. [PMID: 30396033 DOI: 10.1016/j.ejmech.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
The privileged structures have been widely used as a valuable template in new drug discovery. 1,2-Diaryl or vicinal diaryl is a simple scaffold found in many drugs and naturally occurring compounds. From synthetic point of view, the vicinal diaryl derivatives are easily accessible due to their facile and expedient syntheses. These scaffolds have shown numerous interesting pharmacological activities against various diseases with lot of clinical potentials. This review aims to highlight the evidence of vicinal diaryl motif as a privileged scaffold in COX-2 inhibitors and CA-4 analogs.
Collapse
|
28
|
Guttenberger N, Breinbauer R. C H and C C bond insertion reactions of diazo compounds into aldehydes. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur J Med Chem 2017; 141:293-305. [DOI: 10.1016/j.ejmech.2017.09.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
|
30
|
Shahraki S, Shiri F, Saeidifar M. Evaluation of in silico ADMET analysis and human serum albumin interactions of a new lanthanum(III) complex by spectroscopic and molecular modeling studies. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Shiri F, Shahraki S, Shahriyar A, Majd MH. Exploring isoxsuprine hydrochloride binding with human serum albumin in the presence of folic acid and ascorbic acid using multispectroscopic and molecular modeling methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:152-163. [DOI: 10.1016/j.jphotobiol.2017.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
|
32
|
Romagnoli R, Baraldi PG, Prencipe F, Oliva P, Baraldi S, Salvador MK, Lopez-Cara LC, Brancale A, Ferla S, Hamel E, Ronca R, Bortolozzi R, Mariotto E, Porcù E, Basso G, Viola G. Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents. Sci Rep 2017; 7:46356. [PMID: 28406191 PMCID: PMC5390315 DOI: 10.1038/srep46356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Antimitotic agents that interfere with microtubule formation are one of the major classes of cytotoxic drugs for cancer treatment. Multiple 2-methyl-4-(3′,4′,5′-trimethoxyphenyl)-5-substituted oxazoles and their related 4-substituted-5-(3′,4′,5′-trimethoxyphenyl) regioisomeric derivatives designed as cis-constrained combretastatin A-4 (CA-4) analogues were synthesized and evaluated for their antiproliferative activity in vitro against a panel of cancer cell lines and, for selected highly active compounds, interaction with tubulin, cell cycle effects and in vivo potency. Both these series of compounds were characterized by the presence of a common 3′,4′,5′-trimethoxyphenyl ring at either the C-4 or C-5 position of the 2-methyloxazole ring. Compounds 4g and 4i, bearing a m-fluoro-p-methoxyphenyl or p-ethoxyphenyl moiety at the 5-position of 2-methyloxazole nucleus, respectively, exhibited the greatest antiproliferative activity, with IC50 values of 0.35-4.6 nM (4g) and 0.5–20.2 nM (4i), which are similar to those obtained with CA-4. These compounds bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. Furthermore, 4i strongly induced apoptosis that follows the mitochondrial pathway. In vivo, 4i in a mouse syngeneic model demonstrated high antitumor activity which significantly reduced the tumor mass at doses ten times lower than that required for CA-4P, suggesting that 4i warrants further evaluation as a potential anticancer drug.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Filippo Prencipe
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Paola Oliva
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy
| | - Maria Kimatrai Salvador
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Luisa Carlota Lopez-Cara
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123 Brescia, Italy
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Elena Mariotto
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Elena Porcù
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
33
|
Filimonov VO, Dianova LN, Galata KA, Beryozkina TV, Novikov MS, Berseneva VS, Eltsov OS, Lebedev AT, Slepukhin PA, Bakulev VA. Switchable Synthesis of 4,5-Functionalized 1,2,3-Thiadiazoles and 1,2,3-Triazoles from 2-Cyanothioacetamides under Diazo Group Transfer Conditions. J Org Chem 2017; 82:4056-4071. [PMID: 28328204 DOI: 10.1021/acs.joc.6b02736] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High yield solvent-base-controlled, transition metal-free synthesis of 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles from 2-cyanothioacetamides and sulfonyl azides is described. Under diazo transfer conditions in the presence of a base in an aprotic solvent 2-cyanothioacetamides operating as C-C-S building blocks produce 5-amino-4-cyano-1,2,3-thiadiazoles exclusively. The use of alkoxide/alcohol system completely switches the reaction course due to the change of one of the reaction centers in the 2-cyanothioacetamide (C-C-N building block) resulting in the formation of 5-sulfonamido-1,2,3-triazole-4-carbothioamide sodium salts as the only products. The latter serve as good precursors for 5-amino-1,2,3-thiadiazole-4-carboximidamides, the products of Cornforth-type rearrangement occurring in neutral protic medium or under acid conditions. According to DFT calculations (B3LYP/6-311+G(d,p)) the rearrangement proceeds via intermediate formation of a diazo compound, and can be catalyzed by acids via the protonation of oxygen atom of the sulfonamide group.
Collapse
Affiliation(s)
- Valeriy O Filimonov
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Lidia N Dianova
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Kristina A Galata
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Tetyana V Beryozkina
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Vera S Berseneva
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Oleg S Eltsov
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| | - Albert T Lebedev
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia
| | - Pavel A Slepukhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia.,I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences , 20 S. Kovalevskaya st., Yekaterinburg 620990, Russia
| | - Vasiliy A Bakulev
- Ural Federal University named after the first President of Russia B. N. Yeltsin , 19 Mira st., Yekaterinburg 620002, Russia
| |
Collapse
|
34
|
Chen L, Zhu YJ, Fan ZJ, Guo XF, Zhang ZM, Xu JH, Song YQ, Yurievich MY, Belskaya NP, Bakulev VA. Synthesis of 1,2,3-Thiadiazole and Thiazole-Based Strobilurins as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:745-751. [PMID: 28055187 DOI: 10.1021/acs.jafc.6b05128] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Strobilurin fungicides play a crucial role in protecting plants against different pathogens and securing food supplies. A series of 1,2,3-thiadiazole and thiazole-based strobilurins were rationally designed, synthesized, characterized, and tested against various fungi. Introduction of 1,2,3-thiadiazole greatly improved the fungicidal activity of the target molecules. Compounds 8a, 8c, 8d, and 10i exhibited a relatively broad spectrum of fungicidal activity. Compound 8a showed excellent activities against Gibberella zeae, Sclerotinia sclerotiorum, and Rhizoctonia cerealis with median effective concentrations (EC50) of 2.68, 0.44, and 0.01 μg/mL, respectively; it was much more active than positive controls enestroburin, kresoxim-methyl, and azoxystrobin with EC50 between 0.06 and 15.12 μg/mL. Comparable or better fungicidal efficacy of compound 8a compared with azoxystrobin and trifloxystrobin against Sphaerotheca fuliginea and Pseudoperonspera cubensis was validated in cucumber fields at the same application dosages. Therefore, compound 8a is a promising fungicidal candidate worthy of further development.
Collapse
Affiliation(s)
- Lai Chen
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Yu-Jie Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Zhi-Jin Fan
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Xiao-Feng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Zhi-Ming Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Jing-Hua Xu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Ying-Qi Song
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Morzherin Y Yurievich
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU , 620002 Ekaterinburg, Russia
| | - Nataliya P Belskaya
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU , 620002 Ekaterinburg, Russia
| | - Vasiliy A Bakulev
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU , 620002 Ekaterinburg, Russia
| |
Collapse
|
35
|
Shahraki S, Shiri F, Beyzaei H, Khosravi F. Synthesis, characterization, protein interaction and antibacterial activity of a lanthanum(iii) complex [La(Trp)3(OH2)2] (Trp = tryptophan) as a new precursor for synthesis of La2O2CO3 nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c7nj00692f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, a lanthanum(iii) complex containing tryptophan amino acid was synthesized and characterized.
Collapse
Affiliation(s)
- Somaye Shahraki
- Department of Chemistry
- Faculty of Science
- University Of Zabol
- Zabol
- Iran
| | - Fereshteh Shiri
- Department of Chemistry
- Faculty of Science
- University Of Zabol
- Zabol
- Iran
| | - Hamid Beyzaei
- Department of Chemistry
- Faculty of Science
- University Of Zabol
- Zabol
- Iran
| | - Fatemeh Khosravi
- Department of Chemistry
- Faculty of Science
- University Of Zabol
- Zabol
- Iran
| |
Collapse
|
36
|
2,3-Diaryl-3 H-imidazo[4,5- b]pyridine derivatives as potential anticancer and anti-inflammatory agents. Acta Pharm Sin B 2017; 7:73-79. [PMID: 28119811 PMCID: PMC5237703 DOI: 10.1016/j.apsb.2016.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
In this study we examined the suitability of the 3H-imidazo[4,5-b]pyridine ring system in developing novel anticancer and anti-inflammatory agents incorporating a diaryl pharmacophore. Eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives retrieved from our in-house database were evaluated for their cytotoxic activity against nine cancer cell lines. The results indicated that the compounds showed moderate cytotoxic activity against MCF-7, MDA-MB-468, K562 and SaOS2 cells, with K562 being the most sensitive among the four cancer cell lines. The eight 2,3-diaryl-3H-imidazo[4,5-b]pyridine derivatives were also evaluated for their COX-1 and COX-2 inhibitory activity in vitro. The results showed that compound 3f exhibited 2-fold selectivity with IC50 values of 9.2 and 21.8 µmol/L against COX-2 and COX-1, respectively. Molecular docking studies on the most active compound 3f revealed a binding mode similar to that of celecoxib in the active site of the COX-2 enzyme.
Collapse
|
37
|
Dai H, Ge S, Li G, Chen J, Shi Y, Ye L, Ling Y. Synthesis and bioactivities of novel pyrazole oxime derivatives containing a 1,2,3-thiadiazole moiety. Bioorg Med Chem Lett 2016; 26:4504-4507. [DOI: 10.1016/j.bmcl.2016.07.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/08/2016] [Accepted: 07/28/2016] [Indexed: 02/03/2023]
|
38
|
Design and Synthesis of Potent in Vitro and in Vivo Anticancer Agents Based on 1-(3',4',5'-Trimethoxyphenyl)-2-Aryl-1H-Imidazole. Sci Rep 2016; 6:26602. [PMID: 27216165 PMCID: PMC4877593 DOI: 10.1038/srep26602] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022] Open
Abstract
A novel series of tubulin polymerization inhibitors, based on the 1-(3′,4′,5′-trimethoxyphenyl)-2-aryl-1H-imidazole scaffold and designed as cis-restricted combretastatin A-4 analogues, was synthesized with the goal of evaluating the effects of various patterns of substitution on the phenyl at the 2-position of the imidazole ring on biological activity. A chloro and ethoxy group at the meta- and para-positions, respectively, produced the most active compound in the series (4o), with IC50 values of 0.4-3.8 nM against a panel of seven cancer cell lines. Except in HL-60 cells, 4o had greater antiproliferative than CA-4, indicating that the 3′-chloro-4′-ethoxyphenyl moiety was a good surrogate for the CA-4 B-ring. Experiments carried out in a mouse syngenic model demonstrated high antitumor activity of 4o, which significantly reduced the tumor mass at a dose thirty times lower than that required for CA-4P, which was used as a reference compound. Altogether, our findings suggest that 4o is a promising anticancer drug candidate that warrants further preclinical evaluation.
Collapse
|
39
|
Fan W, Li Q, Li Y, Sun H, Jiang B, Li G. I2/O2-Enabled N–S Bond Formation to Access Functionalized 1,2,3-Thiadiazoles. Org Lett 2016; 18:1258-61. [DOI: 10.1021/acs.orglett.6b00079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei Fan
- Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Qun Li
- Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Yanrong Li
- Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Hao Sun
- Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Bo Jiang
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States; and
- School
of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, P. R. China
| | - Guigen Li
- Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States; and
| |
Collapse
|
40
|
Cui HW, Peng S, Gu XZ, Chen H, He Y, Gao W, Lv F, Wang JH, Wang Y, Xie J, Liu MY, Yi Z, Qiu WW. Synthesis and biological evaluation of D-ring fused 1,2,3-thiadiazole dehydroepiandrosterone derivatives as antitumor agents. Eur J Med Chem 2016; 111:126-37. [DOI: 10.1016/j.ejmech.2016.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 12/19/2022]
|
41
|
Shiri F, Shahraki S, Baneshi S, Nejati-Yazdinejad M, Majd MH. Synthesis, characterization, in vitro cytotoxicity, in silico ADMET analysis and interaction studies of 5-dithiocarbamato-1,3,4-thiadiazole-2-thiol and its zinc(ii) complex with human serum albumin: combined spectroscopy and molecular docking investigations. RSC Adv 2016. [DOI: 10.1039/c6ra17322e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The binding site of new complex Zn(ii) of 5-dithiocarbamato-1,3,4-thiadiazole-2-thiol and HAS.
Collapse
|
42
|
Chen J, Jiang Y, Yu JT, Cheng J. TBAI-Catalyzed Reaction between N-Tosylhydrazones and Sulfur: A Procedure toward 1,2,3-Thiadiazole. J Org Chem 2015; 81:271-5. [DOI: 10.1021/acs.joc.5b02280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiangfei Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yan Jiang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiang Cheng
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
43
|
Huang W, Rong HY, Xu J. Cyclic α-Alkoxyphosphonium Salts from (2-(Diphenylphosphino)phenyl)methanol and Aldehydes and Their Application in Synthesis of Vinyl Ethers and Ketones via Wittig Olefination. J Org Chem 2015; 80:6628-38. [PMID: 26067375 DOI: 10.1021/acs.joc.5b01031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic α-alkoxyphosphonium salts have been synthesized from (2-(diphenylphosphino)phenyl)methanol and aldehydes in 36-89% yields. These phosphonium salts are bench-stable solids and undergo Wittig olefination with aldehydes under basic conditions (K2CO3 or t-BuOK) to form benzylic vinyl ethers, which are readily hydrolyzed to 1,2-disubstituted ethanones under acidic conditions. The formation mechanism of these phosphonium salts via hemiacetal is also proposed.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Hong-Ying Rong
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Jie Xu
- Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
44
|
Abstract
Vascular disrupting agents (VDAs) are an important class of compounds that exhibit selective activity against pre-existing tumor vasculature, causing rapid shutdown of the tumor blood flow and consequent necrosis of the tumor mass. The VDAs can be divided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding agents. Tubulin-binding agents represent the largest group of VDAs and are characterized by different chemical structures, although most of them are derivatives of the lead compound combretastatin (CA-4). They demonstrated clinical activity, although recent findings have established that they have insufficient activity as single agents. Several resistance mechanisms occur, such as the resistance of the tumor rim cells, while promising results have been described in combination with other chemotherapeutics.
Collapse
|
45
|
Design, synthesis and biological evaluation of novel pyrazoline-containing derivatives as potential tubulin assembling inhibitors. Eur J Med Chem 2015; 94:447-57. [DOI: 10.1016/j.ejmech.2015.02.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/05/2014] [Accepted: 02/28/2015] [Indexed: 12/20/2022]
|
46
|
Kamal A, Subba Rao AV, Srinivasa Reddy T, Polepalli S, Shaik SP, Bagul C, Vishnuvardhan MVPS, Jain N. Aryl-imidazothiadiazole analogues as microtubule disrupting agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00155b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disruption of tubulin polymerization and the docked pose of 5k in the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Academy of Scientific and Innovative Research
| | - A. V. Subba Rao
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Academy of Scientific and Innovative Research
| | - T. Srinivasa Reddy
- IICT-RMIT Research Centre
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Sowjanya Polepalli
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Chandrakant Bagul
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad 500 037
- India
| | | | - Nishant Jain
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
47
|
Guan Q, Yang F, Guo D, Xu J, Jiang M, Liu C, Bao K, Wu Y, Zhang W. Synthesis and biological evaluation of novel 3,4-diaryl-1,2,5-selenadiazol analogues of combretastatin A-4. Eur J Med Chem 2014; 87:1-9. [PMID: 25233100 DOI: 10.1016/j.ejmech.2014.09.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 11/28/2022]
Abstract
A set of novel selenium-containing heterocyclic analogues of combretastatin A-4 (CA-4) have been designed and synthesised using a rigid 1,2,5-selenadiazole as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro anti-proliferative activities. Among these compounds, compounds 3a, 3i, 3n and 3q exhibited superior potency against different tumour cell lines with IC50 values at the nanomolar level. Moreover, compound 3n significantly induced cell cycle arrest in the G2/M phase, inhibited tubulin polymerisation into microtubules and caused microtubule destabilisation. A molecular modelling study of compound 3n was performed to elucidate its binding mode at the colchicine site in the tubulin dimer and to provide a basis for the further structure-guided design of novel CA-4 analogues.
Collapse
Affiliation(s)
- Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fushan Yang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dandan Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Mingyang Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chunjiang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Kai Bao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
48
|
Allwood DM, Blakemore DC, Ley SV. Preparation of Unsymmetrical Ketones from Tosylhydrazones and Aromatic Aldehydes via Formyl C–H Bond Insertion. Org Lett 2014; 16:3064-7. [DOI: 10.1021/ol5011714] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel M. Allwood
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| | - David C. Blakemore
- Neusentis Chemistry,
Pfizer Worldwide Research and Development, The Portway Building, Granta Park, Cambridge, CB21 6GS, U.K
| | - Steven V. Ley
- Department
of Chemistry, University of Cambridge, Cambridge, CB2 1EW, U.K
| |
Collapse
|
49
|
Nagaraju A, Ramulu BJ, Shukla G, Srivastava A, Verma GK, Raghuvanshi K, Singh MS. A facile and straightforward synthesis of 1,2,3-thiadiazoles from α-enolicdithioesters via nitrosation/reduction/diazotization/cyclization cascade in one-pot. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.02.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Penthala NR, Janganati V, Bommagani S, Crooks PA. Synthesis and evaluation of a series of quinolinyl trans-cyanostilbene analogs as anticancer agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00115j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
2-Quinolyl- and 3-quinolyl-cyanocombretastatin analogs exhibit potent growth inhibition against a panel of 60 human cancer cell lines.
Collapse
Affiliation(s)
- Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock, USA
| | - Shobanbabu Bommagani
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock, USA
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Arkansas for Medical Sciences
- Little Rock, USA
| |
Collapse
|