1
|
Santos TDS, Lemos PVF, Santana JS, Anias FAS, Assis DDJ, Cardoso LG, Marcelino HR, Souza EFD, Silva JBAD, Souza COD. Characterization of xanthan gum-metal complexes biosynthesized using a medium containing produced water and cassava processing residues. Int J Biol Macromol 2024; 282:137229. [PMID: 39491695 DOI: 10.1016/j.ijbiomac.2024.137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The use of residues from petroleum and crop industries is a feasible and sustainable alternative approach for the production of xanthan gum (XG). This study aimed to evaluate the biosynthesis of XG and the resulting final product obtained using Xanthomonas axonopodis pv. manihotis 1182 in a medium containing produced water (PW) and cassava processing residues. The combined use of PW and cassava crop residues was beneficial for XG production, achieving a product yield of 6.80 g L-1. The micrographs of recovered XG revealed the presence of elongated fiber-like microstructures rather than large agglomerates. The X-ray diffraction profiles of recovered xanthan comprised well-defined peaks rather than an amorphous halo. The thermogravimetry profiles revealed the presence of approximately 60 % of remaining solids in recovered xanthan, in contrast to 30 % in the commercial sample. All the samples demonstrated a pseudoplastic behavior; however, the consistency indices of the recovered samples were approximately 50-times lower than those of commercial XG. The emulsification indices of the recovered XG were > 50 % and comparable to those of commercial xanthan. In this study, for the first time, we obtained a complex XG-metal structure possessing a high emulsification capacity and low viscosity.
Collapse
Affiliation(s)
- Thaís de Souza Santos
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Jamille Santos Santana
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Felipe Antônio Silva Anias
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Denílson de Jesus Assis
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | - Lucas Guimarães Cardoso
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; School of Exact and Technological Sciences, Salvador University, Salvador, BA, Brazil
| | | | - Ederlan Ferreira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Jania Betânia Alves da Silva
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil; Center for Exact and Technological Sciences, Faculty of Mechanical Engineering, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil
| | - Carolina Oliveira de Souza
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil; College of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
2
|
Sun H, Ni J, Yang G, Liu Z, Wang Z, Zhu S, Li Z, Jiang Y, Zhan X, Wang Y, Gao M. A novel coupled fermentation system for low-molecular-weight xanthan gum with diverse biological activities. Int J Biol Macromol 2024; 279:135283. [PMID: 39233163 DOI: 10.1016/j.ijbiomac.2024.135283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Xanthan gum (XG) is a bacterial exopolysaccharide widely used in various industries due to its stability and rheological properties. Low-molecular-weight xanthan gum (LXG) exhibits enhanced properties and broader applications, but current degradation methods are limited. This study introduces an innovative coupled fermentation system for the efficient production of LXG. Endo-xanthanase from Microbacterium sp. XT11 was expressed in Pichia pastoris GS115, exhibiting optimal activity at pH 6.0 and 40 °C, with broad pH tolerance. The optimized coupled fermentation system used bean sprouts juice as nitrogen source, the inoculation quantity of X. campestris: P. pastoris was 1: 3, and the pH was controlled at 6.0. In the bioreactor, the total sugar concentration reached 12.12 g/L, the reducing sugar concentration reached 5.32 g/L, and the endo-xanthanase activity increased to 1150.26 U/L, which were 2.13, 2.3, and 3.71 times higher than those at the shake flask level, respectively. The prepared LXG had a molecular weight of 1093 Da and a monosaccharide ratio of 2.0:1.57:0.89 (glucose, mannose, and glucuronic acid). Bioactivity analysis revealed its antioxidant and prebiotic properties, promoting the growth of beneficial intestinal microbiota and metabolite production. This suggests the potential of LXG as a functional ingredient in intestinal health-focused foods and supplements.
Collapse
Affiliation(s)
- Haoqing Sun
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jialin Ni
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guoshuai Yang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhilei Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shengyong Zhu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Moravej R, Azin M, Mohammadjavad S. The importance of acetate, pyruvate, and citrate feeding times in improving xanthan production by Xanthomonas citri. Lett Appl Microbiol 2024; 77:ovae078. [PMID: 39147561 DOI: 10.1093/lambio/ovae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 h by X. citri-386 using Box-Behnken design were 25.7 g/l and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese-whey-based medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.
Collapse
Affiliation(s)
- Roya Moravej
- Department of biology, Snandaj branch, Islamic Azad University, Sanandaj 6616935391, Iran
| | - Mehrdad Azin
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| | - Samaneh Mohammadjavad
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran
| |
Collapse
|
4
|
Hammad Hussain M, Sajid S, Martuscelli M, Aldahmash W, Zubair Mohsin M, Ashraf K, Guo M, Mohsin A. Sustainable biosynthesis of lycopene by using evolutionary adaptive recombinant Escherichia coli from orange peel waste. Heliyon 2024; 10:e34366. [PMID: 39114001 PMCID: PMC11305264 DOI: 10.1016/j.heliyon.2024.e34366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
This study aimed to evaluate the hydrolysates from orange peel waste (OPW) as the low-cost carbon source for lycopene production. Initially, the dilute acid pretreatment combined with enzymatic hydrolysis of OPW resulted in a total sugar concentration of 62.18 g/L. Meanwhile, a four-month adaptive laboratory evolution (ALE) experiment using a d-galacturonic acid minimal medium resulted in an improvement in the growth rate of our previously engineered Escherichia coli strain for lycopene production. After evolutionary adaptation, response surface methodology (RSM) was adapted to optimize the medium composition in fermentation. The results obtained from RSM analysis revealed that the 5.53 % carbon source of orange peel hydrolysate (OPH), 6.57 g/L nitrogen source, and 30 °C temperature boosted lycopene production in the final strain. Subsequently, the optimized treatment for lycopene fermentation was then conducted in a 5 L batch fermenter under the surveillance of a kinetic model that uses the Logistic equation for strain growth (μm = 0.441 h-1), and Luedeking-Piret equations for lycopene production (Pm = 1043 mgL-1) with growth rate constant (α = 0.1491). At last, lycopene biosynthesized from OPH was extracted and analyzed for qualitative validation. Likewise, its data on phytic acid (between 1.01 % and 0.86 %) and DPPH radical scavenging (between 38.06 % and 29.08 %) highlighted the better antioxidant capacity of lycopene. In conclusion, the OPH can be used as a fermentation feedstock which opens new possibilities of exploiting fruit crop residues for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Subra Sajid
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Maria Martuscelli
- Department of Bioscience and Food, Agricultural and Environmental Technology, University of the Studies of Teramo, Via Balzarini 1, 64100, Teramo (TE), Italy
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
5
|
Ansari SA, Kumar T, Sawarkar R, Gobade M, Khan D, Singh L. Valorization of food waste: A comprehensive review of individual technologies for producing bio-based products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121439. [PMID: 38870792 DOI: 10.1016/j.jenvman.2024.121439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The escalating global concerns about food waste and the imperative need for sustainable practices have fuelled a burgeoning interest in the valorization of food waste. This comprehensive review delves into various technologies employed for converting food waste into valuable bio-based products. The article surveys individual technologies, ranging from traditional to cutting-edge methods, highlighting their respective mechanisms, advantages, and challenges. SCOPE AND APPROACH The exploration encompasses enzymatic processes, microbial fermentation, anaerobic digestion, and emerging technologies such as pyrolysis and hydrothermal processing. Each technology's efficacy in transforming food waste into bio-based products such as biofuels, enzymes, organic acids, prebiotics, and biopolymers is critically assessed. The review also considers the environmental and economic implications of these technologies, shedding light on their sustainability and scalability. The article discusses the role of technological integration and synergies in creating holistic approaches for maximizing the valorization potential of food waste. Key finding and conclusion: This review consolidates current knowledge on the valorization of food waste, offering a comprehensive understanding of individual technologies and their contributions to the sustainable production of bio-based products. The synthesis of information presented here aims to guide researchers, policymakers, and industry stakeholders in making informed decisions to address the global challenge of food waste while fostering a circular and eco-friendly economy.
Collapse
Affiliation(s)
- Suhel A Ansari
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Tinku Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Riya Sawarkar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Mahendra Gobade
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Debishree Khan
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| | - Lal Singh
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur, India.
| |
Collapse
|
6
|
Li ZX, Deng HQ, Jiang J, He ZQ, Li DM, Ye XG, Chen Y, Hu Y, Huang C. Effect of hydrothermal treatment on the rheological properties of xanthan gum. Int J Biol Macromol 2024; 270:132229. [PMID: 38734337 DOI: 10.1016/j.ijbiomac.2024.132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
In this study, the effect of hydrothermal treatment with different temperatures (120-180 °C) on the rheological properties of xanthan gum was evaluated. When the temperature of hydrothermal treatment was relatively low (120 °C), the rheological properties of the hydrothermally treated xanthan gum was similar to the untreated xanthan gum (pseudoplastic and solid-like/gel-like behavior). However, as the temperature of hydrothermal treatment was higher, the rheological properties of the hydrothermally treated xanthan gum changed greatly (e.g., a wider range of Newtonian plateaus in flow curves, existence of a critical frequency between the storage modulus (G') and the loss modulus (G") in the dynamic viscoelasticity measurement, variation of complex viscosity). Although the hydrothermal treatment showed little influence on the functional groups of xanthan gum, it altered the micromorphology of xanthan gum from uneven and rough lump-like to thinner and smoother flake-like. In addition, higher concentration (2 %) of hydrothermally treated xanthan gum made its viscosity close to that of the untreated xanthan gum (1 %). Besides, hydrothermal treatment also affected the effect of temperature and salt (CaCl2) adding on the rheological properties of xanthan gum. Overall, this study can provide some useful information on the rheological properties of xanthan gum after hydrothermal treatment.
Collapse
Affiliation(s)
- Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Hui-Qiong Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jie Jiang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zi-Qing He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
7
|
Amenaghawon AN, Igemhokhai S, Eshiemogie SA, Ugbodu F, Evbarunegbe NI. Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process. Heliyon 2024; 10:e25432. [PMID: 38322872 PMCID: PMC10845917 DOI: 10.1016/j.heliyon.2024.e25432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
In this study, the focus was to produce xanthan gum from pineapple waste using Xanthomonas campestris. Six machine learning models were employed to optimize fermentation time and key metabolic stimulants (KH2PO4 and NH4NO3). The production of xanthan gum was optimized using two evolutionary optimization algorithms, particle swarm optimization, and genetic algorithm while the importance of input features was ranked using global sensitivity analysis. KH2PO4 was the most important input and was found to be beneficial for xanthan gum production, while a limited amount of nitrogen was needed. The extreme learning machine model was the most adequate for modeling xanthan gum production, predicting a maximum xanthan yield of 10.34 g/l (an 11.9 % increase over the control) at a fermentation time of 3 days, KH2PO4 of 15 g/l, and NH4NO3 of 2 g/l. This study has provided important insights into the intelligent modeling of a biostimulated process for valorizing pineapple waste.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
- Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Favour Ugbodu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Nelson Iyore Evbarunegbe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
8
|
Dey R, Chatterji BP. Sources and methods of manufacturing xanthan by fermentation of various carbon sources. Biotechnol Prog 2023; 39:e3379. [PMID: 37523474 DOI: 10.1002/btpr.3379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Xanthan gum, an anionic polysaccharide with an exceptionally high molecular weight, is produced by the bacterium Xanthomonas sp. It is a versatile compound that has been utilized in various industries for decades. Xanthan gum was the second exopolysaccharide to be commercially produced, following dextran. In 1969, the US Food and Drug Administration (FDA) approved xanthan gum for use in the food and pharmaceutical industries. The food industry values xanthan gum for its exceptional rheological properties, which make it a popular thickening agent in many products. Meanwhile, the cosmetics industry capitalizes on xanthan gum's ability to form stable emulsions. The industrial production process of xanthan gum involves fermenting Xanthomonas in a medium that contains glucose, sucrose, starch, etc. as a substrate and other necessary nutrients to facilitate growth. This is achieved through batch fermentation under optimal conditions. However, the increasing costs of glucose in recent years have made the production of xanthan economically unviable. Therefore, many researchers have investigated alternative, cost-effective substrates for xanthan production, using various modified and unmodified raw materials. The objective of this analysis is to investigate how utilizing different raw materials can improve the cost-efficient production of xanthan gum.
Collapse
Affiliation(s)
- Rahul Dey
- Department of Biotechnology, Assam down town University, Guwahati, India
| | | |
Collapse
|
9
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
10
|
Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates. Polymers (Basel) 2022; 15:polym15010020. [PMID: 36616373 PMCID: PMC9823382 DOI: 10.3390/polym15010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial exopolysaccharides (EPS) are promising alternatives to synthetic polymers in a variety of applications. Their high production costs, however, limit their use despite their outstanding properties. The use of low-cost substrates such as agro-industrial wastes in their production, can help to boost their market competitiveness. In this work, an alternative low-cost culture medium (CSLM) was developed for EPS production by Rhizobium viscosum CECT908, containing sugarcane molasses (60 g/L) and corn steep liquor (10 mL/L) as sole ingredients. This medium allowed the production of 6.1 ± 0.2 g EPS/L, twice the amount produced in the standard medium (Syn), whose main ingredients were glucose and yeast extract. This is the first report of EPS production by R. viscosum using agro-industrial residues as sole substrates. EPSCSLM and EPSSyn exhibited a similar carbohydrate composition, mainly 4-linked galactose, glucose and mannuronic acid. Although both EPS showed a good fit to the Herschel-Bulkley model, EPSCSLM displayed a higher yield stress and flow consistency index when compared with EPSSyn, due to its higher apparent viscosity. EPSCSLM demonstrated its potential use in Microbial Enhanced Oil Recovery by enabling the recovery of nearly 50% of the trapped oil in sand-pack column experiments using a heavy crude oil.
Collapse
|
11
|
Zhong X, Jian H, Dou G, Liu J, Tan H. Preparation and Characterization of a Bentonite-Based Hybrid Gel for Coal Spontaneous Combustion Prevention. ACS OMEGA 2022; 7:46536-46549. [PMID: 36570190 PMCID: PMC9773800 DOI: 10.1021/acsomega.2c05359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 05/30/2023]
Abstract
This paper presents an investigation of the feasibility of intercalating lignocellulose/xanthan gum (XG) and organic polymers into bentonite to obtain an efficient fire extinguishing gel material. The bentonite-based hybrid gel was prepared by adding polyacrylates, Al(OH)3, lignocellulose, and XG into a bentonite suspension, and the resulting gel was characterized. The results showed that no cracking and powdering were found on the surface of the hybrid gel due to the formation of the cross-linked network in the bentonite, and a wide mesopore size distribution and good thermal stability were observed. The hybrid gel also exhibits a wide range of water adsorption ratios, excellent water retention, adjustable gelation times, shear thinning characteristics, and improved compressive strength (the yield stress reaches up to 13 MPa). Based on these characterizations, the mechanism of hybrid gel formation is proposed. The inhibition performance of the hybrid gel on coal spontaneous combustion indicates that the addition of the gel slows down the oxygen chemisorption and thus increases the ignition temperature. Due to the presence of the hybrid gel in the coal, the crossing point temperatures were increased and the lowest CO concentration was produced.
Collapse
|
12
|
Saroglu O, Karadag A, Cakmak ZHT, Karasu S. The formulation and microstructural, rheological, and textural characterization of salep-xanthan gum-based liposomal gels. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Li ZX, Chen JY, Wu Y, Huang ZY, Wu ST, Chen Y, Gao J, Hu Y, Huang C. Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Application of xanthan gum and konjac gum to improve the texture, rheological properties and microstructure of Oviductus Ranae gel. Int J Biol Macromol 2022; 222:2709-2718. [DOI: 10.1016/j.ijbiomac.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
15
|
Şen E, Demirci AS, Palabiyik I. Xanthan Gum Characterization and Production Kinetics from Pomace of
Vitis vinifera. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Ebru Şen
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| | - Ahmet Sukru Demirci
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| | - Ibrahim Palabiyik
- Department of Food Engineering, Faculty of Agriculture Tekirdağ Namık Kemal University 59030 Tekirdağ Turkey
| |
Collapse
|
16
|
Niknezhad SV, Kianpour S, Jafarzadeh S, Alishahi M, Najafpour Darzi G, Morowvat MH, Ghasemi Y, Shavandi A. Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: a kinetic and optimization study. Sci Rep 2022; 12:10128. [PMID: 35710936 PMCID: PMC9203581 DOI: 10.1038/s41598-022-14417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
The bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp. BCCS 001 GH in submerged culture. During kinetics studies, the logistic model and Luedeking-Piret equation are precisely fit with the obtained experimental data. The response surface methodology (RSM)-central composite design (CCD) method is applied to evaluate the effects of four factors (SBM, peptone, Na2HPO4, and Triton X-100) on the concentration of Pantoan in batch culture of Pantoea sp. BCCS 001 GH. The experimental and predicted maximum Pantoan production yields are found 9.9 ± 0.5 and 10.30 g/L, respectively, and the best prediction factor concentrations are achieved at 31.5 g/L SBM, 2.73 g/L peptone, 3 g/L Na2HPO4, and 0.32 g/L Triton X-100 after 48 h of submerged culture fermentation, at 30 °C. The functional groups and major monosaccharides (glucose and galactose) of a purified Pantoan are described and confirmed by 1HNMR and FTIR. The produced Pantoan is also characterized by thermogravimetric analysis and the rheological properties of the biopolymer are investigated. The present work guides the design and optimization of the Pantoea sp. BCCS 001 GH culture media, to be fine-tuned and applied to invaluable EPS, which can be applicable in food and biotechnology applications.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs, Lyngby, Denmark
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran
| | - Ghasem Najafpour Darzi
- Department of Chemical Engineering, Faculty of Engineering, Noshirvani University of Technology, Babol, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F. D. Roosevelt, 50-CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
17
|
Bhat IM, Wani SM, Mir SA, Masoodi F. Advances in xanthan gum production, modifications and its applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wollschlaeger JO, Maatz R, Albrecht FB, Klatt A, Heine S, Blaeser A, Kluger PJ. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022; 8:94. [PMID: 35200476 PMCID: PMC8871916 DOI: 10.3390/gels8020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
Collapse
Affiliation(s)
- Jannis O. Wollschlaeger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Robin Maatz
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
| | - Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
19
|
Valorisation of fruit waste for enhanced exopolysaccharide production by Xanthomonas campestries using statistical optimisation of medium and process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Gupta S, Nadda AK, Gupta A, Singh J, Mulla SI, Sharma S. Transforming Wastes into High Value-Added Products: An Introduction. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Mohsin A, Hussain MH, Zaman WQ, Mohsin MZ, Zhang J, Liu Z, Tian X, Salim-Ur-Rehman, Khan IM, Niazi S, Zhuang Y, Guo M. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit Rev Biotechnol 2021; 42:1284-1303. [PMID: 34856847 DOI: 10.1080/07388551.2021.2002805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orange peel waste (OPW), a discarded part of orange fruit, is a rich source of essential constituents that can be transformed into highly value-added bioproducts. OPW is being generated in million tonnes globally and returns to the environment without complete benefit. Thus, a high volume of annually produced OPW in the industry requires effective valorization. In this regard, limited data is available that summarizes the broader spectrum for the sustainable fate of OPW to produce value-added bioproducts. The main objective of this treatise is to explore the sustainable production of bioproducts from OPW. Therefore, this review covers all the aspects of OPW, from its production to complete valorization. The review encompasses the extraction technologies employed for extracting different valuable bioactive compounds, such as: essential oil (EO), pectin, and carotenoids, from OPW. Furthermore, the suitability of bioconversion technologies (digestion/fermentation) in transforming OPW to other useful bioproducts, such as: biochemicals (lactic acid and succinic acid), biopolysaccharides (xanthan and curdlan gum), and bioenergy (biomethane and bioethanol) is discussed. Also, it includes the concept of OPW-based biorefineries and their development that shall play a definite role in future to cover demands for: food, chemicals, materials, fuels, power, and heat. Lastly, this review focuses on OPW-supplemented functional food products such as: beverages, yogurts, and extruded products. In conclusion, insights provided in this review maximize the potential of OPW for commercial purposes, leading to a safe, and waste-free environment.
Collapse
Affiliation(s)
- Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environment Science and Engineering, School of Civil and Environment Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junhong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Salim-Ur-Rehman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mehmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Sarraf M, Naji‐Tabasi S, Beig‐babaei A. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum. Food Sci Nutr 2021; 9:6728-6736. [PMID: 34925802 PMCID: PMC8645777 DOI: 10.1002/fsn3.2624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
Interaction between biopolymers generates different rheological behaviors, which can be effective on the structure of food products. One way to control the polysaccharide-protein interaction is the variation of acidic and ionic strength. In this research, the different amounts of pHs (3-7) and calcium chloride (5-20 mM) were investigated on a soluble complex of whey protein concentrate (WPC) with xanthan gum (XG) and basil seed gum (BSG). The complex characteristic was investigated according to turbidity, viscosity behavior, and electrostatic interactions. The turbidity test showed that WPC:BSG and WPC:XG absorbance increased at pH 3.5 and 4.5, respectively, due to the formation of insoluble complex. pH 6 was the start point of the turbidity increment, which showed the formation of soluble complexes between WPC and polysaccharides. The FTIR analysis confirmed creation of soluble complex at pH 6. The absorbance raised with increasing the molar of CaCl2 to 10 mM, but no significant difference was observed by turbidity test in the range of CaCl2<10 mM. Also, the highest viscosity value was obtained by 10 mM CaCl2.
Collapse
Affiliation(s)
- Mozhdeh Sarraf
- Department of Food ChemistryResearch Institute of Food Science and TechnologyMashhadIran
| | - Sara Naji‐Tabasi
- Department of Food NanotechnologyResearch Institute of Food Science and TechnologyMashhadIran
| | - Adel Beig‐babaei
- Department of Food ChemistryResearch Institute of Food Science and TechnologyMashhadIran
| |
Collapse
|
23
|
Mohsin A, Akyliyaevna KA, Zaman WQ, Hussain MH, Mohsin MZ, Al-Rashed S, Tan X, Tian X, Aida K, Tariq M, Haider MS, Khan IM, Niazi S, Zhuang Y, Guo M. Kinetically modelled approach of xanthan production using different carbon sources: A study on molecular weight and rheological properties of xanthan. Int J Biol Macromol 2021; 193:1226-1236. [PMID: 34743029 DOI: 10.1016/j.ijbiomac.2021.10.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
The present study emphasizes improving the overall yield, productivity and quality of xanthan by Xanthomonas campestris using different carbon sources via optimizing the fermentation media and kinetic modelling work. After optimization, six carbon sources and one nitrogen source were selected for xanthan production in 5 L bioreactor. Kinetic modelling was applied to assess the experimental fermentation data and to check its influence on scale-up production. In this work, xanthan production reached 40.65 g/L with a growth-associated rate constant (α) of 2.831, and highest specific growth rate (μm) of 0.37/h while using maltose as the sole carbon source. Furthermore, rheological properties were determined, and Herschel-Bulkley model was employed to assess the experimental data. Interestingly, xanthan obtained from sucrose and glucose showed the highest yield stress (τ0) of 12.50 ± 0.31 and 7.17 ± 0.21. Moreover, the highest xanthan molecular weight of 3.53 × 107 and 3.25 × 107 g/mol were also found with sucrose and glucose. At last, the proposed mechanism of sugar metabolism and xanthan biosynthesis pathway were described. Conclusively, maltose appeared as the best carbon source for maximum xanthan production: while sucrose and glucose gave qualitatively best results. In short, this systematically modelled approach maximizes the potential output and provides a solid base for continuous cultivation of xanthan at large-scale production.
Collapse
Affiliation(s)
- Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kanagat Akbota Akyliyaevna
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O 2455, Riyadh 11451, Saudi Arabia
| | - Xin Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Kistaubayeva Aida
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Muhammad Tariq
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Muhammad Salman Haider
- Applied Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Chemical Engineering, University of Gujrat, HH Campus, 50700 Gujrat, Pakistan
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
24
|
Riaz T, Iqbal MW, Jiang B, Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 2021; 186:472-489. [PMID: 34217744 DOI: 10.1016/j.ijbiomac.2021.06.196] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Xanthan gum (XG), a bacterial polysaccharide has numerous valuable characteristics in the food, biomedical, pharmaceuticals, and agriculture sector. However, XG has also its particular limitations such as its vulnerability to microbial contamination, inadequate mechanical and thermal stability, unusable viscosity, and poor water solubility. Therefore, XG's structure and conformation need to be modified enzymatically, chemically, or physically to improve its optimistic features and decrease the formation of crystals, increase antioxidant ability, and radical scavenging activity. We have found out different means to modify XG and elaborate the importance and significance of the modified structure of XG. In this review, different enzymes are reviewed for XG degradation, which modifies their structure from different points (main chain or side chain). This article also reviews various physical methods (ultrasound, shear, pressure, sonication, annealing, and heat treatments) based on prevailing publications to alter XG conformation and produce low molecular weight (LMW) and less viscous end-product. Moreover, some chemical means are also discussed that result in modified XG through crosslinking, grafting, acetylation, pyruvation, as well as by applying different chemical agents. Overall, the current progress on XG degradation is very auspicious to develop a new molecule with considerable uses, in various industries with future assessments.
Collapse
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Revin VV, Liyas’kina EV, Pokidko BV, Pimenov NV, Mardanov AV, Ravin NV. Characteristics of the New Xanthan-Producing Strain Xanthomonas campestris М 28: Study of the Genome, Cultivation Conditions, and Physicochemical and Rheological Properties of the Polysaccharide. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Nejadmansouri M, Razmjooei M, Safdarianghomsheh R, Shad E, Delvigne F, Khalesi M. Semi-continuous production of xanthan in biofilm reactor using Xanthomonas campestris. J Biotechnol 2021; 328:1-11. [PMID: 33453292 DOI: 10.1016/j.jbiotec.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Semi-continuous production of xanthan gum using self-immobilized Xanthomonas campestris cells in biofilm reactors was studied. Fermentation was carried out using two different designs of biofilm reactor equipped with a) stainless-steel support (SSS) and b) polyethylene support (PES). Fermentation was performed in three cycles with refreshing the media at the beginning of each: cycle 1, 0-27 h; cycle 2, 27-54 h; and cycle 3, 54-78.5 h. Results showed that the glucose consumption and the pH reduction in the PES biofilm reactor was faster compared to the SSS biofilm reactor. Scanning electron microscopy showed that the SSS was capable to immobilize more cells during the growth of X. campestris. The maximum concentration of xanthan gum in the SSS biofilm reactor obtained after 27 h (3.47 ± 0.71 g/L), while the maximum concentration of xanthan in the PES biofilm reactor obtained after 78.5 h (3.21 ± 0.68 g/L). Thermal stability analysis of xanthan using differential scanning calorimetry showed the presence of two fractures attributed to dehydration and degradation of polymer. The thermogram represented both endothermal and exothermal behaviour of xanthan polymer. Furthermore, the functional groups and molecular structure of the xanthan produced in this study was evaluated using Fourier transform infrared spectrometry and also proton nuclear magnetic resonance. in addition, the surface tension of (0.2 %, w/v) xanthan gum solution was in a range of 52.16-56.5 mN/m. Rheological analysis of xanthan showed that the G' values were higher than the G″ in all frequencies demonstrating a relatively high elasticity of the produced xanthan gum.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Maryam Razmjooei
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Safdarianghomsheh
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ehsan Shad
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mohammadreza Khalesi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Biological Sciences, School of Natural Science, University of Limerick, Limerick, Ireland.
| |
Collapse
|
27
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
28
|
Vaishnav A, Upadhayay K, Tipre D, Dave S. Utilization of mixed fruit waste for exopolysaccharide production by Bacillus species SRA4: medium formulation and its optimization. 3 Biotech 2020; 10:550. [PMID: 33269184 DOI: 10.1007/s13205-020-02545-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022] Open
Abstract
The main focus of this research work was to carry out the fermentative production of EPS with mixed fruit waste as substrate. The medium formulation studied by sequential addition of medium components and replacement of sugar with mixed fruit waste. Amongst the six species of Bacillus studied, Bacillus species SRA4 produced EPS in range of 3.0-17.9 g/L, which was highest amongst all the species selected for the study. Thus for further optimization, the response surface methodology was used making use of Bacillus species SRA4. EPS production enhanced to 23.75 g/L. In 10 L shake flask and fermenter scale-up study was carried out. In the study, 10 L flask showed the highest EPS production of 17.95 g/L in 120 h, whereas in 10 L fermenter, it was as high as 25.1 g/L that too in 72 h only. The optimization study resulted in 1.76-fold increase in EPS production with nearly 48 h reduction in EPS production time as compared to initial production procedure. Replacement of sucrose with fruit waste extract made the process environmentally friendly; omission of l-cystine and use of 50% reduced amount of sodium acetate in the medium lowered the production cost of EPS. This method also solved the fruit waste disposal problem.
Collapse
Affiliation(s)
- Avni Vaishnav
- Department of Biochemistry and Biotechnology, Saint Xavier's Collage, Ahmedabad, India
| | - Kinjal Upadhayay
- Department of Biochemistry and Biotechnology, Saint Xavier's Collage, Ahmedabad, India
| | - Devayani Tipre
- Department of Microbiology, School of Science, Gujarat University, Ahmedabad, India
| | - Shailesh Dave
- Loyola Centre for Research and Development, Xavier's Research Foundation, Saint Xavier's Collage Campus, Ahmedabad, India
| |
Collapse
|
29
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
30
|
Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C. Utilization of food waste streams for the production of biopolymers. Heliyon 2020; 6:e04891. [PMID: 32995604 PMCID: PMC7502569 DOI: 10.1016/j.heliyon.2020.e04891] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023] Open
Abstract
Uncontrolled decomposition of agro-industrial waste leads to extensive contamination of water, land, and air. There is a tremendous amount of waste from various sources which causes serious environmental problems. The concern in the disposal problems has stimulated research interest in the valorization of waste streams. Valorization of the wastes not only reduces the volume of waste but also reduces the contamination to the environment. Waste from food industries has great potential as primary or secondary feedstocks for biopolymer production by extraction or fermentation with pre-treatment or without pre-treatment by solid-state fermentation to obtain fermentable sugars. Various types of waste can be used as substrates for the production of biomaterials but recently more focus has been observed on the agro-industrial wastes which have a high rate of production worldwide. This review collates in detail the different food wastes used for biopolymer, technologies for the production and characterization of the biopolymers, and their economic/technical viability.
Collapse
Affiliation(s)
- Saranya Ranganathan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Pudukkottai Road, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
31
|
Rončević Z, Bajić B, Vlajkov V, Dodić S, Grahovac J, Jokić A, Dodić J. Optimisation of xanthan production on glycerol-based medium using response surface methodology. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Dual-templated 3D nitrogen-enriched hierarchical porous carbon aerogels with interconnected carbon nanosheets from self-assembly natural biopolymer gel for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136514] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Simões BM, Cagnin C, Yamashita F, Olivato JB, Garcia PS, de Oliveira SM, Eiras Grossmann MV. Citric acid as crosslinking agent in starch/xanthan gum hydrogels produced by extrusion and thermopressing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Miranda AL, Costa SS, Assis DDJ, Jesus CS, Guimarães AG, Druzian JI. Influence of strain and fermentation time on the production, composition, and properties of xanthan gum. J Appl Polym Sci 2020. [DOI: 10.1002/app.48557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrea Lobo Miranda
- Institute of Health SciencesRENORBIO, Federal University of Bahia Reitor Miguel Calmon Avenue, s/n, Vale do Canela, CEP, 40.110‐100 Salvador Bahia Brazil
- Federal Institute Baiano BR 420, CEP 45320‐000 Santa Inês Bahia Brazil
| | - Samantha Serra Costa
- Institute of Health SciencesRENORBIO, Federal University of Bahia Reitor Miguel Calmon Avenue, s/n, Vale do Canela, CEP, 40.110‐100 Salvador Bahia Brazil
- Federal University of the Recôncavo of Bahia Godofredo Rebello de Figueiredo Filho Street, no. 697, SIM, CEP 44085‐132 Feira de Santana Bahia Brazil
| | - Denilson de Jesus Assis
- Department of Chemical EngineeringPolytechnic School, Federal University of Bahia Aristides Novis Street, no. 2, Second Floor, Federação, CEP 40210‐630 Salvador Bahia Brazil
| | - Cristiane Santos Jesus
- Department of Chemical EngineeringPolytechnic School, Federal University of Bahia Aristides Novis Street, no. 2, Second Floor, Federação, CEP 40210‐630 Salvador Bahia Brazil
| | - Alaíse Gil Guimarães
- Department of Bromatological AnalysisCollege of Pharmacy, Federal University of Bahia Barão of Geremoabo Street, s/n, Ondina, CEP 40171‐970 Salvador Bahia Brazil
| | - Janice Izabel Druzian
- Department of Bromatological AnalysisCollege of Pharmacy, Federal University of Bahia Barão of Geremoabo Street, s/n, Ondina, CEP 40171‐970 Salvador Bahia Brazil
| |
Collapse
|
35
|
Koduru L, Kim HY, Lakshmanan M, Mohanty B, Lee YQ, Lee CH, Lee D. Genome-scale metabolic reconstruction and in silico analysis of the rice leaf blight pathogen, Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:527-540. [PMID: 32068953 PMCID: PMC7060145 DOI: 10.1111/mpp.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/29/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.
Collapse
Affiliation(s)
- Lokanand Koduru
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Hyang Yeon Kim
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Bijayalaxmi Mohanty
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Yi Qing Lee
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
36
|
Hu X, Wang K, Yu M, He P, Qiao H, Zhang H, Wang Z. Characterization and Antioxidant Activity of a Low-Molecular-Weight Xanthan Gum. Biomolecules 2019; 9:biom9110730. [PMID: 31726797 PMCID: PMC6920750 DOI: 10.3390/biom9110730] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/16/2022] Open
Abstract
In the present work, a low-molecular-weight xanthan gum (LW-XG) was successfully obtained via biodegradation of commercial xanthan by the endophytic fungus Chaetomium globosum CGMCC 6882. The monosaccharide composition of LW-XG was glucose, mannose, and glucuronic acid in a molar ratio of 1.63:1.5:1.0. The molecular weight of LW-XG was 4.07 × 104 Da and much smaller than that of commercial xanthan (2.95 × 106 Da). Antioxidant assays showed that LW-XG had a good scavenging ability on DPPH radicals, superoxide anions, and hydroxyl radicals and good ferric reducing power. Moreover, LW-XG exhibited excellent protective effect on H2O2-injured Caco-2 cells. Results of this work suggested that LW-XG could be used in foods or pharmaceuticals to alleviate and resist the oxidative damage induced by the overproduction of reactive oxygen species.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kangli Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Yu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: ; Tel./Fax: +86-371-6775-6513
| |
Collapse
|
37
|
Boudoukhani M, Yahoum MM, Lefnaoui S, Moulai-Mostefa N, Banhobre M. Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm J 2019; 27:1127-1137. [PMID: 31885472 PMCID: PMC6921171 DOI: 10.1016/j.jsps.2019.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
This paper addressed the application of deacetylated xanthan (XGDS) and chitosan (CTS) as a mixture blend forming hydrophilic matrices for Tramadol (TD) sustained release tablets. XGDSs derivatives were obtained by alkaline treatment of xanthan gum (XG) with various degrees of deacetylation (DD). The obtained products were characterized in terms of structural, thermal and physicochemical properties. Different tablet formulations containing CTS/XGDSs were prepared by direct compression method and compared to CTS/XG tablets. Flow properties of powder mixtures and pharmaceutical characteristics were evaluated. The dissolution test of TD was realized under simulated gastric and intestinal conditions to achieve drug release more than 24 h. All developed tablets were found conforming to standard evaluation tests. It was shown that CTS/XGDSs matrices ensure a slower release of TD in comparison with CTS/XG based formulations. Meanwhile, increasing DD resulted in a decrease of drug release. In addition, TD release from XGDS matrices was faster at pH (6.8) than at acidic pH (1.2). The matrix tablets based on CTS/XGDS4 (DD = 98.08%) were selected as the best candidates compared to the other systems in prolonging drug release. The optimal formulation was found to release 99.99% of TD after 24 h following a non-Fickian type.
Collapse
Affiliation(s)
- Meriem Boudoukhani
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Madiha M Yahoum
- LME, Faculty of Technology, University of Medea, Ain D'Heb, Medea, Algeria
| | - Sonia Lefnaoui
- Faculty of Sciences, University of Medea, Ain D'Heb, Medea, Algeria
| | | | - Manuel Banhobre
- INL, International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
38
|
Sujithra B, Deepika S, Akshaya K, Ponnusami V. Production and optimization of xanthan gum from three-step sequential enzyme treated cassava bagasse hydrolysate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Rončević Z, Grahovac J, Dodić S, Vučurović D, Dodić J. Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimisation. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Brunchi CE, Avadanei M, Bercea M, Morariu S. Chain conformation of xanthan in solution as influenced by temperature and salt addition. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Mohsin A, Ni H, Luo Y, Wei Y, Tian X, Guan W, Ali M, Khan IM, Niazi S, Rehman SU, Zhuang Y, Guo M. Qualitative improvement of camel milk date yoghurt by addition of biosynthesized xanthan from orange waste. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Rodrigues PR, Assis DJ, Druzian JI. Simultaneous production of polyhydroxyalkanoate and xanthan gum: From axenic to mixed cultivation. BIORESOURCE TECHNOLOGY 2019; 283:332-339. [PMID: 30925313 DOI: 10.1016/j.biortech.2019.03.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In the present study, mixed and axenic submerged cultures of Cupriavidus necator and Xanthomonas campestris were performed for simultaneous and individual PHA and XG productions using palm oil (Elaeis guineensis) as substrate. Rotational Central Compound Design (RCCD) was successfully used in the optimization of individual productions of PHA (3.39 g L-1, Mw = 692.6 kDa) and XG (1.77 g L-1, Mw = 36.6 × 105 kDa). Novel simultaneous production of PHA (6.43 g L-1, Mw = 629.2 kDa) and XG (1.98 g L-1, Mw = 25.0 × 105 kDa), executed in bacterial co-cultivation, revealed to be a successful strategy to increment polymer synthesis, especially PHA. XG bioconversions followed a general trend of lower production in co-culture. Culture configurations also altered polymers properties and characteristics.
Collapse
Affiliation(s)
- Plínio R Rodrigues
- University of Campinas - UNICAMP, Graduate Program in Chemical Engineering, Av. Albert Einstein, n 500, Cidade Universitária, 13083-852 Campinas, SP, Brazil.
| | - Denilson J Assis
- Federal University of Bahia - UFBA, Graduate Program in Chemical Engineering, Rua Aristides Novis, n 2, Federação, 40210-630 Salvador, BA, Brazil
| | - Janice I Druzian
- Federal University of Bahia - UFBA, Graduate Program in Chemical Engineering, Rua Aristides Novis, n 2, Federação, 40210-630 Salvador, BA, Brazil
| |
Collapse
|
43
|
Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur IS, Nair RB, Pandey A. Conversion of food and kitchen waste to value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:619-630. [PMID: 30885564 DOI: 10.1016/j.jenvman.2019.02.053] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Food and kitchen waste - omnipresent in every corner of the world serve as an excellent source of value added products owing to high organic content. Regardless of existence of various traditional methods of land filling or biogas production used to harness food waste energy, effective conversion of food to valuable resources is often challenged by its heterogenous nature and high moisture content. The current paper tries to lay down the prospects and consequences associated with food waste management. The various social, economical and environmental concerns associated with food waste management especially in terms of green house gas emission and extended rate of leachate generation also has been discussed. The difficulties in proper collection, storage and bioconversion of food waste to valuable by-products are pointed as a big hurdle in proper waste management. Finally, the wide array of value added products developed from food waste after pretreatment are also enlisted to emphasis the prospects of food waste management.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, GC A3, Station 18, CH, 1015, Lausanne, Switzerland
| | - Sharrel Rebello
- Communicable Disease Research Laboratory, St. Joseph's College, Irinjalakuda, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| |
Collapse
|
44
|
Nehal F, Sahnoun M, Smaoui S, Jaouadi B, Bejar S, Mohammed S. Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou. Microb Pathog 2019; 132:10-19. [DOI: 10.1016/j.micpath.2019.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/01/2022]
|
45
|
Kang Y, Li P, Zeng X, Chen X, Xie Y, Zeng Y, Zhang Y, Xie T. Biosynthesis, structure and antioxidant activities of xanthan gum from Xanthomonas campestris with additional furfural. Carbohydr Polym 2019; 216:369-375. [PMID: 31047079 DOI: 10.1016/j.carbpol.2019.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 01/11/2023]
Abstract
Lignocellulosic-like materials are potentially low-cost fermentation substrates, but their pretreatment brings about by-products. This work investigated the effects of furfural on xanthan gum (XG) production, and product quality was evaluated by structure, viscosity and antioxidant capacities. Xanthomonas campestris maintained steady polysaccharide yield (above 13 g·L-1) with enhanced cell growth at low furfural concentrations (below 3.2 g·L-1). The products were verified as XG by FT-IR, XRD, NMR and monosaccharide analysis. Moreover, they were found to have reduced acetyl, rising pyruvate and up-to-down glucuronic acid groups as increasing furfural concentration. Furthermore, XG product with 1 g·L-1 furfural addition showed the best hydroxyl scavenging effects, though reducing powers presented no variation. It was demonstrated that furfural, the common hydrolysis by-product, was not necessarily an inhibitor for fermentation, and an appropriate amount of furfural was beneficial to XG production with steady yield and good quality.
Collapse
Affiliation(s)
- Yan Kang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xiaotong Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xi Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yu Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
46
|
Demirci AS, Palabiyik I, Apaydın D, Mirik M, Gumus T. Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: Process optimization and fermentation kinetics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
48
|
Gel properties of xanthan containing a single repeating unit with saturated pyruvate produced by an engineered Xanthomonas campestris CGMCC 15155. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach. Carbohydr Polym 2019; 205:626-635. [DOI: 10.1016/j.carbpol.2018.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
|
50
|
Use of Chicken Feather Peptone and Sugar Beet Molasses as Low Cost Substrates for Xanthan Production by Xanthomonas campestris MO-03. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Xanthan gum is one of the polysaccharides most commonly used in a broad range of industries (food, cosmetics, pharmaceutical, etc.). Agro-industrial by-products are being explored as alternative low-cost nutrients to produce xanthan gum by Xanthomonas campestris. In this study, for the production of xanthan gum, sugar beet molasses and chicken feather peptone (CFP) were used as carbon and nitrogen sources, respectively. X. campestris produced the highest level of xanthan gum (20.5 g/L) at 60 h of cultivation using sugar beet molasses (40 g/L total sugar) supplemented with CFP (4 g/L) at pH 7, 200 rpm, and 30 °C. The pyruvic acid content of the xanthan gums increased with increasing CFP concentration. Compared with commercial organic nitrogen sources (tryptone, bacto peptone, and yeast extract), the highest production of xanthan gum was obtained with CFP. Moreover, among the tested peptones, the highest pyruvic acid (3.2%, w/w) content was obtained from CFP. The usage of sugar beet molasses and CFP as substrates in industries would enable a cost-efficient commercial production. These results suggest that sugar beet molasses and CFP can be used as available low-cost substrates for xanthan gum production by X. campestris.
Collapse
|