1
|
Kageler L, Aquilanti E. Discovery of telomerase inhibitors: existing strategies and emerging innovations. Biochem Soc Trans 2024; 52:1957-1968. [PMID: 39194999 DOI: 10.1042/bst20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Telomerase, crucial for maintaining telomere length, is an attractive target for cancer therapy due to its role in cellular immortality. Despite three decades of research efforts, no small-molecule telomerase inhibitors have been clinically approved, highlighting the extensive challenges in developing effective telomerase-based therapeutics. This review examines conventional and emerging methods to measure telomerase activity and discusses existing inhibitors, including oligonucleotides and small molecules. Furthermore, this review highlights recent breakthroughs in structural studies of telomerase using cryo-electron microscopy, which can facilitate improved structure-based drug design. Altogether, advancements in structural methodologies and high-throughput screening offer promising prospects for telomerase-based cancer therapeutic development.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, U.S.A
| | - Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
| |
Collapse
|
2
|
Kuriakose D, Xiao ZC. Protocol to detect telomerase activity in adult mouse hippocampal neural progenitor cells using the telomeric repeat amplification protocol assay. STAR Protoc 2024; 5:103108. [PMID: 38824637 PMCID: PMC11176821 DOI: 10.1016/j.xpro.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Changes in telomerase activity and telomere length contribute to aging-related decline. Investigating telomerase in aging models provides insights into related pathologies. Here, we present a protocol to detect telomerase activity in adult mouse hippocampal neural progenitor cells using the telomeric repeat amplification protocol assay. We describe steps for isolating and expanding aged mouse hippocampal neural progenitor cells (NPCs) and assessing telomerase using a non-radioactive technique. The protocol emphasizes the significance of understanding telomerase activity in NPCs for neurogenesis and age-related diseases.
Collapse
Affiliation(s)
- Diji Kuriakose
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
3
|
Zhao G, Ma Q, Yang H, Jiang H, Xu Q, Luo S, Meng Z, Liu J, Zhu L, Lin Q, Li M, Fang J, Ma L, Qiu W, Mao Z, Lu Z. Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology 2024; 79:1310-1323. [PMID: 38016019 DOI: 10.1097/hep.0000000000000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Base editing has shown great potential for treating human diseases with mutated genes. However, its potential for treating HCC has not yet been explored. APPROACH AND RESULTS We employed adenine base editors (ABEs) to correct a telomerase reverse transcriptase ( TERT ) promoter mutation, which frequently occurs in various human cancers, including HCC. The mutated TERT promoter -124 C>T is corrected to -124 C by a single guide (sg) RNA-guided and deactivated Campylobacter jejuni Cas9 (CjCas9)-fused adenine base editor (CjABE). This edit impairs the binding of the E-twenty six/ternary complex factor transcription factor family, including E-twenty six-1 and GABPA, to the TERT promoter, leading to suppressed TERT promoter and telomerase activity, decreased TERT expression and cell proliferation, and increased cell senescence. Importantly, injection of adeno-associated viruses expressing sgRNA-guided CjABE or employment of lipid nanoparticle-mediated delivery of CjABE mRNA and sgRNA inhibits the growth of liver tumors harboring TERT promoter mutations. CONCLUSIONS These findings demonstrate that a sgRNA-guided CjABE efficiently converts the mutated TERT promoter -124 C>T to -124 C in HCC cells and underscore the potential to treat HCC by the base editing-mediated correction of TERT promoter mutations.
Collapse
Affiliation(s)
- Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qingxia Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Hongfei Jiang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qianqian Xu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Shudi Luo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaoyuan Meng
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Juanjuan Liu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Lei Zhu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Qian Lin
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Min Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Fang
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Leina Ma
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang 310029, China
| |
Collapse
|
4
|
Saretzki G. Measuring telomerase activity using TRAP assays. Methods Cell Biol 2023; 181:127-149. [PMID: 38302235 DOI: 10.1016/bs.mcb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Telomerase is a reverse transcriptase that consists of the telomerase reverse transcriptase (TERT) protein and the telomerase RNA component TERC which also harbors the template region for telomere synthesis. In its canonical function the enzyme adds single-stranded telomeric hexanucleotides de novo to the ends of linear chromosomes, telomeres, in telomerase-positive cells such as germline, stem- and cancer cells. This potential biochemical activity of telomerase can be measured with the help of a telomerase repeat amplification protocol (TRAP) which often includes a PCR amplification due to the low abundance of telomerase in most cells and tissues. The current chapter describes various TRAP methods to detect telomerase activity (TA) using gel-based methods, its advantages and deficits, how to perform an ELISA-based TRAP assay and how best to interpret its results. Since development of the TRAP assay in 1994, there have been numerous modifications and adaptations of the method from real-time PCR analysis, isothermal amplification and nanotechnology to CRISPR/Cas-based methods which will be briefly mentioned. However, it is not possible to cover all different TRAP methods and thus there is no comprehensiveness claimed by this chapter. Instead, the author describes various aspects of using TRAP assays including required controls, sample preparation, etc. in order to avoid pitfalls and set-backs in applying this rather complex and demanding technique. The TRAP assay is particularly important to support clinical diagnosis of cancer, analyze tumor therapy as well as to evaluate various approaches to inhibit TA as a form of anti-cancer therapy.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
5
|
Afshari N, Al-Gazally ME, Rasulova I, Jalil AT, Matinfar S, Momeninejad M. Sensitive bioanalytical methods for telomerase activity detection: a cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4174-4184. [PMID: 36254582 DOI: 10.1039/d2ay01315k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Telomerase is an enzyme that protects the length of telomeres by adding guanine-rich repetitive sequences. In tumors, gametes, and stem cells, telomerase activity is exerted. Telomerase activity can be a cancer biomarker for therapeutic and diagnosis approaches. So, a number of studies concentrating on the discovery of telomerase activity were reported. Bioanalytical devices, in comparison with other tests, have numerous advantages including low expense, simplicity, and excellent sensitivity and specificity. In this article we reviewed recent studies on the subject of various bioanalytical methods based on different nanomaterials. Optical, electrochemical, and quartz crystal microbalance (QCM) are prominent analytical techniques that are mentioned in this paper.
Collapse
Affiliation(s)
- Nasim Afshari
- Department of Microbiology, Islamic Azad University Science & Research Branch, Tehran, Iran
| | | | - Iroda Rasulova
- "Kasmed" Private Medical Centre, Tashkent, Uzbekistan
- School of Medicine, Akfa University, Tashkent, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Solmaz Matinfar
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Momeninejad
- Department of Social Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
6
|
Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2021; 197:113732. [PMID: 34741959 DOI: 10.1016/j.bios.2021.113732] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
CRISPR diagnostics (CRISPR-Dx) offer a wide range of enhancements compared to traditional nanobiosensors by taking advantage of the excellent trans-cleavage activity of the CRISPR/Cas systems. However, the single-stranded DNA/RNA reporters of the current CRISPR-Dx suffer from poor stability and limited sensitivity, which make their application in complex biological environments difficult. In comparison, nanomaterials, especially metal nanoparticles, exhibits robust stability and desirable optical and electrocatalytical properties, which make them ideal as reporter molecules. Therefore, biosensing research is moving towards the use of the trans-cleavage activity of CRISPR/Cas effectors on metal nanoparticles and apply the new phenomenon to develop novel nanobiosensors to target various targets such as viral infections, genetic mutations and tumor biomarkers, by using different sensing methods, including, but not limited to fluorescence, luminescence resonance, colorimetric and electrochemical signal readout. In this review, we explore some of the most recent advances in the field of CRISPR-powered nanotechnological biosensors. Demonstrating high accuracy, sensitivity, selectivity and versatility, nanobiosensors along with CRISPR/Cas technology offer tremendous potential for next-generation diagnostics of multiple targets, especially at the point of care and without any target amplification.
Collapse
Affiliation(s)
- Quynh Anh Phan
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA; Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Linh B Truong
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Can Dincer
- Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, 79110, Germany; FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Wang DX, Zhu XD, Ma XR, Wang LB, Dong ZJ, Lin RR, Cao YN, Zhao JW. Loss of Growth Differentiation Factor 11 Shortens Telomere Length by Downregulating Telomerase Activity. Front Physiol 2021; 12:726345. [PMID: 34588995 PMCID: PMC8473905 DOI: 10.3389/fphys.2021.726345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Maintenance of telomere length is essential to delay replicative cellular senescence. It is controversial on whether growth differentiation factor 11 (GDF11) can reverse cellular senescence, and this work aims to establish the causality between GDF11 and the telomere maintenance unequivocally. Using CRISPR/Cas9 technique and a long-term in vitro culture model of cellular senescence, we show here that in vitro genetic deletion of GDF11 causes shortening of telomere length, downregulation of telomeric reverse transcriptase (TERT) and telomeric RNA component (TERC), the key enzyme and the RNA component for extension of the telomere, and reduction of telomerase activity. In contrast, both recombinant and overexpressed GDF11 restore the transcription of TERT in GDF11KO cells to the wild-type level. Furthermore, loss of GDF11-induced telomere shortening is likely caused by enhancing the nuclear entry of SMAD2 which inhibits the transcription of TERT and TERC. Our results provide the first proof-of-cause-and-effect evidence that endogenous GDF11 plays a causal role for proliferative cells to maintain telomere length, paving the way for potential rejuvenation of the proliferative cells, tissues, and organs.
Collapse
Affiliation(s)
- Di-Xian Wang
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu-Dong Zhu
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiao-Ru Ma
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Bin Wang
- The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhao-Jun Dong
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong-Rong Lin
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Na Cao
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing-Wei Zhao
- Department of Pathology and Department of Human Anatomy, Histology, and Embryology, Sir Run Run Shaw Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Nersisyan L, Simonyan A, Binder H, Arakelyan A. Telomere Maintenance Pathway Activity Analysis Enables Tissue- and Gene-Level Inferences. Front Genet 2021; 12:662464. [PMID: 33897770 PMCID: PMC8058386 DOI: 10.3389/fgene.2021.662464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
Telomere maintenance is one of the mechanisms ensuring indefinite divisions of cancer and stem cells. Good understanding of telomere maintenance mechanisms (TMM) is important for studying cancers and designing therapies. However, molecular factors triggering selective activation of either the telomerase dependent (TEL) or the alternative lengthening of telomeres (ALT) pathway are poorly understood. In addition, more accurate and easy-to-use methodologies are required for TMM phenotyping. In this study, we have performed literature based reconstruction of signaling pathways for the ALT and TEL TMMs. Gene expression data were used for computational assessment of TMM pathway activities and compared with experimental assays for TEL and ALT. Explicit consideration of pathway topology makes bioinformatics analysis more informative compared to computational methods based on simple summary measures of gene expression. Application to healthy human tissues showed high ALT and TEL pathway activities in testis, and identified genes and pathways that may trigger TMM activation. Our approach offers a novel option for systematic investigation of TMM activation patterns across cancers and healthy tissues for dissecting pathway-based molecular markers with diagnostic impact.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| | - Arman Simonyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| |
Collapse
|
9
|
Pinto TNC, Fernandes JR, Arruda LB, Duarte AJDS, Benard G. Cost-Effective Trap qPCR Approach to Evaluate Telomerase Activity: an Important Tool for Aging, Cancer, and Chronic Disease Research. Clinics (Sao Paulo) 2021; 76:e2432. [PMID: 33567048 PMCID: PMC7847253 DOI: 10.6061/clinics/2021/e2432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Telomeres are a terminal "DNA cap" that prevent chromosomal fusion and degradation. However, aging is inherent to life, and so is the loss of terminal sequences. Telomerase is a specialized reverse transcriptase encoded by self-splicing introns that counteract chromosome erosion. Telomerase activity is observed during early embryonic development, but after the blastocyst stage, the expression of telomerase reduces. The consequences of either insufficient or unrestrained telomerase activity underscore the importance of ongoing studies aimed at elucidating the regulation of telomerase activity in humans. In the present study, we aimed to standardize a simplified telomerase repeat-amplification protocol (TRAP) assay to detect telomerase activity in unstimulated and PHA-stimulated mononuclear cells. METHODS AND RESULTS Our optimized qPCR-based can efficiently evaluate telomerase activity. Quantification of protein and DNA between unstimulated and PHA-stimulated peripheral blood mononuclear cells revealed cellular activation and cell-cycle entry. The assay also showed that relative telomerase activity is significantly different between these two conditions, supporting the applicability of the assay. Furthermore, our findings corroborated that telomerase activity decreases with age. CONCLUSIONS Telomeres and telomerase are implicated in aging and development of chronic diseases and cancer; however, difficulty in accessing commercial kits to investigate these aspects is a critical constraint in health surveillance studies. Our optimized assay was successfully used to differentiate telomerase activity between unstimulated and stimulated cells, clearly showing the reactivation of telomerase upon cell activation. This assay is affordable, reproducible, and can be executed in resource-limited settings.
Collapse
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratorio de Dermatologia e Imunodeficiencias (LIM56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Juliana Ruiz Fernandes
- Laboratorio de Dermatologia e Imunodeficiencias (LIM56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Liã Barbara Arruda
- Division of Infection and Immunity, Center for Clinical Microbiology, Royal Free Hospital Campus, London, University College London, Division of Infection and Immunity, Center for Clinical Microbiology, Royal Free Hospital Campus, LondonUniversity College London UK
| | - Alberto José da Silva Duarte
- Laboratorio de Dermatologia e Imunodeficiencias (LIM56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gil Benard
- Laboratorio de Dermatologia e Imunodeficiencias (LIM56), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio de Micologia Medica, Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
10
|
Zheng KW, Liu C, Meng Q, Hao YH, Zheng JP, Li W, Tan Z. One-Step High-Throughput Telomerase Activity Measurement of Cell Populations, Single Cells, and Single-Enzyme Complexes. ACS OMEGA 2020; 5:24666-24673. [PMID: 33015483 PMCID: PMC7528320 DOI: 10.1021/acsomega.0c03246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Telomerase, a key enzyme involved in telomere homeostasis, is a major player involved in or required for sustained cell proliferation. It is expressed in ∼90% tumor but rarely in normal somatic cells. Therefore, telomerase serves as a diagnostic marker and therapeutic target of cancers. Although many methods are available for measuring telomerase activity, a convenient, fast, sensitive, and reliable method is still lacking for routine use in both clinics and research. Here, we present a single-enzyme sensitivity telomere repeat amplification protocol for quantifying telomerase activity. With multiple optimizations, the protocol pushes the ultimate detection limit down to a single telomerase complex, enabling measurement of telomerase activity of not only multiple cancerous/normal cell samples but also single cancer cells alone or even in the presence of 8000 normal cells. Implemented in a one-step mix-and-run format, the protocol offers a most sensitive, fast, accurate, and reproducible quantification of telomerase activity with linearity ranging from 20,000 HeLa cancer cells to a single telomerase complex. It requires minimal manual operation and experimental skill and is convenient for either low or high throughput of samples. We expect that the protocol should provide practical routine analyses of telomerase in both research and clinical applications. As an example, we demonstrate how telomerase activity evolves at the single-cell level and partitions in cell division in early mouse embryo development.
Collapse
Affiliation(s)
- Ke-wei Zheng
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, P. R. China
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive
Biology, Institute of Zoology, Chinese Academy
of Sciences, Beijing 100101, P. R. China
| | - Qing Meng
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Jin-ping Zheng
- Center
for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive
Biology, Institute of Zoology, Chinese Academy
of Sciences, Beijing 100101, P. R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- Center
for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P. R. China
| |
Collapse
|
11
|
Abstract
Increasing evidence suggests that environmental stress, such as UV radiation, generates reactive oxygen and nitrogen species in skin cells, leading to histochemical changes including skin disorders and aging, hyper pigmentation, and increased formation of wrinkles. Besides the defensive system in skin composed of vitamins and intrinsic antioxidant enzymes, topical and skin conditioning products have been used commonly to eradicate or eliminate these skin ailments. Among various ingredients providing nourishing and moisturizing effect in skin, antioxidants have been reported to be a key ingredient to counteract skin aging processes and skin disorders. Derived from a patented extraction process, a polyphenol rich sugarcane concentrate (Officinol™) becomes the focus of this study due to its rich content of polyphenols known to be strong antioxidants. In this work, we carried out a series of cell-based in vitro studies to examine the use of Officinol™ in anti-aging and skin care functions. Our studies show that Officinol™ activated telomerase, a major biomarker that have been reported to be associated with slowed cellular aging process. When skin cells were under environmental stress such as UV radiation, Officinol™ inhibited MMP-1, an interstitial collagenase in skin cells, and deterred the breakdown of collagen that provides supple texture in skin. Officinol™ also inhibited cellular expression of melanin pigmentation and tyrosinase activity, two major biomarkers causing skin pigmentation and aging spots, and inhibited elastase, an enzyme that facilities the reduction of skin elasticity. At the end of the investigation, we carried out a 10-person, pilot study to examine the effect of Officinol™ on skin lightening and fine line and wrinkle reduction in human skin. The combination of the in vitro and the human pre-study indicates that Officinol™ could provide significant preventative and protective functions including antioxidant, anti-aging, wrinkle reduction, and skin brightening for human skin suffering from aging and other stress. These findings are to be confirmed with a larger scale clinical study at a later stage.
Collapse
|
12
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Ganesh M, Narayanan GS, Kumar R. Change of telomerase activity in peripheral blood of patients with head and neck squamous cell carcinoma pre and post curative treatment. Rep Pract Oncol Radiother 2020; 25:28-34. [PMID: 31866769 PMCID: PMC6906671 DOI: 10.1016/j.rpor.2019.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/25/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND There is no clinically applicable tumor marker for head and neck cancers. Telomerase is detected in approximately 90% of all malignant tumors, it may predict poor or favorable outcomes, thus being both a highly attractive biomarker and a target for the development of molecular-based cancer diagnostics, prognostics, and therapeutics. AIM Primary aim was to detect a change of telomerase activity before and after curative treatment. MATERIALS AND METHODS Patients with biopsy proven head and neck squamous cell carcinoma, stage I-IVB treated with a curative intent, performance status 0-2 and malignancy at one primary site were included in the study. Telomerase levels were tested in tissue biopsy. Plasma telomerase levels were tested at baseline, 5 days and at 3 months after treatment using ELISA. RESULTS Raised plasma telomerase activity was seen in all the patients with cancer at baseline. The mean plasma telomerase level at baseline was 861.4522 ng/ml, at 5 days after completion of curative treatment was 928.92 ng/ml and at 3 months of follow up was 898.87 ng/ml. The mean tissue biopsy telomerase level was 19768.53 ng/mg. There was a significant increase in baseline telomerase levels in cancer patients compared to normals (volunteers) (t = -3.52, p = 0.001).There was a significant increase in plasma levels of telomerase at 3 months compared to baseline values (z = -1.98, p = 0.04). The increase in telomerase level did not correlate with the response of the treatment. CONCLUSION In patients with head and neck squamous cell carcinomas treated with a curative intent, the change in levels of telomerase correlates neither with the disease status nor with prognostic factors.
Collapse
Affiliation(s)
- M.S. Ganesh
- Surgical Oncology Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Geeta S. Narayanan
- Radiation Oncology Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Rishabh Kumar
- Radiation Oncology Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| |
Collapse
|
14
|
Xie R, Tuo B, Yang S, Chen XQ, Xu J. Calcium-sensing receptor bridges calcium and telomerase reverse transcriptase in gastric cancers via Akt. Clin Transl Oncol 2019; 22:1023-1032. [PMID: 31650467 DOI: 10.1007/s12094-019-02226-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/03/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE Human telomerase reverse transcriptase (hTERT) and calcium-sensing receptor (CaSR) act as an oncogene in gastric cancers, however, their relationship in the progression of gastric cancers is yet to be elucidated. Herein, we aimed to access the potential interaction between hTERT and CaSR in the development of gastric cancers. METHODS The clinical data of 41 patients with gastric cancers were analyzed regarding the expressions of hTERT and CaSR by immunohistochemistry. Among them, five patients' specimens were also analyzed by Western blotting. The regulation of calcium on the expression level of hTERT and the possible underlying mechanism via CaSR were explored in gastric cancer cell lines MKN45 and SGC-7901. RESULTS Both hTERT and CaSR were increased and positively correlated in human gastric cancers, which also occurs in gastric cancer cells MKN45 and SGC-7901. Calcium induced hTERT expression at the transcriptional level in a CaSR-dependent manner followed by an increase in telomerase activity, as either a CaSR shRNA or the CaSR antagonist NPS2143 abolished the calcium-mediated regulation of hTERT and telomerase activity. Further studies showed that CaSR-mediated cytosolic calcium rise followed by Akt activation was involved in the regulation of hTERT by extracellular calcium. Finally, neither CaSR overexpression nor shRNA-mediated CaSR downregulation had an effect on the expression level of hTERT. CONCLUSIONS Our findings established a functional linkage between CaSR and hTERT in the development of gastric cancers and CaSR-hTERT coupling might serve as a novel target for therapeutic strategy against human gastric cancers.
Collapse
Affiliation(s)
- R Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - B Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - S Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - X-Q Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, 92093, USA.
| | - J Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
15
|
Thiazole orange – Spermine conjugate: A potent human telomerase inhibitor comparable to BRACO-19. Eur J Med Chem 2019; 175:20-33. [DOI: 10.1016/j.ejmech.2019.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/31/2019] [Accepted: 04/14/2019] [Indexed: 11/17/2022]
|
16
|
Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F. The telomere world and aging: Analytical challenges and future perspectives. Ageing Res Rev 2019; 50:27-42. [PMID: 30615937 DOI: 10.1016/j.arr.2019.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Telomeres, the terminal nucleoprotein structures of eukaryotic chromosomes, play pleiotropic functions in cellular and organismal aging. Telomere length (TL) varies throughout life due to the influence of genetic factors and to a complex balancing between "shortening" and "elongation" signals. Telomerase, the only enzyme that can elongate a telomeric DNA chain, and telomeric repeat-containing RNA (TERRA), a long non-coding RNA involved in looping maintenance, play key roles in TL during life. Despite recent advances in the knowledge of TL, TERRA and telomerase activity (TA) biology and their measurement techniques, the experimental and theoretical issues involved raise a number of problems that should carefully be considered by researchers approaching the "telomere world". The increasing use of such parameters - hailed as promising clinically relevant biomarkers - has failed to be paralleled by the development of automated and standardized measurement technology. Consequently, associating given TL values to specific pathological conditions involves on the one hand technological issues and on the other clinical-biological issues related to the planning of clinically relevant association studies. Addressing these issues would help avoid major biases in association studies involving TL and a number of outcomes, especially those focusing on psychological and bio-behavioral variables. The main challenge in telomere research is the development of accurate and reliable measurement methods to achieve simple and sensitive TL, TERRA, and TA detection. The discovery of the localization of telomeres and TERRA in cellular and extracellular compartments had added an additional layer of complexity to the measurement of these age-related biomarkers. Since combined analysis of TL, TERRA and TA may well provide more exhaustive clinical information than a single parameter, we feel it is important for researchers in the various fields to become familiar with their most common measurement techniques and to be aware of the respective merits and drawbacks of these approaches.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Biosciences Laboratory, Meldola, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
17
|
de Punder K, Heim C, Wadhwa PD, Entringer S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology 2019; 101:87-100. [PMID: 30445409 PMCID: PMC6458519 DOI: 10.1016/j.psyneuen.2018.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
Chronic stress is associated with the accelerated aging of the immune system and represents a potent risk factor for the development and progression of a wide range of physical and mental disorders. The elucidation of molecular pathways and mechanisms underlying the link between stress and cellular aging is an area of considerable interest and investigation. In this context, telomere biology has emerged as a particularly attractive candidate mechanism. Several studies have linked immune cell telomere length with stress-related conditions and states, and also with several physical and mental disorders. Because the cellular reverse transcriptase enzyme telomerase is the primary regulator of telomere length (by adding telomeric DNA to telomeres and thereby attenuating telomere shortening), the understanding of its regulation and regulatory functions constitutes a prime target for developing strategies to prevent, attenuate or reverse the adverse consequences of immune system aging (immunosenescence). In this review we provide an overview of the mechanistic pathways linking telomerase with stress and cellular aging, with an emphasis on the immune system. We summarize and synthesize the current state of the literature on immune cell telomerase in different stress- and aging-related disease states and provide recommendations for future research directions.
Collapse
Affiliation(s)
- Karin de Punder
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany.
| | - Christine Heim
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, USA
| | - Pathik D Wadhwa
- Department of Psychiatry & Human Behavior, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Obstetrics & Gynecology, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA, USA; Development, Health and Disease Research Program, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
18
|
Yang B, Shi L, Lei J, Li B, Jin Y. Advances in optical assays for detecting telomerase activity. LUMINESCENCE 2019; 34:136-152. [PMID: 30706686 DOI: 10.1002/bio.3595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/14/2022]
Abstract
Telomerase uses its RNA as template and its protein unit as reverse transcriptase to synthesize TTAGGG repeats at the ends of the eukaryotic chromosome to maintain the lengths of telomeres. Telomerase activity up-regulates in about 85% of human tumors compared with somatic cells, which indicates that telomerase is a tumor biomarker. Reliable assay of telomerase activity is thus essential in diagnosis and management of malignant tumors. In this review, recent developed optical assays are summarized based on the readout signal, including chemiluminescence assay, colorimetric assay, and fluorescence assay.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jing Lei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
19
|
Jiang S, Tang M, Xin H, Huang J. Assessing Telomerase Activities in Mammalian Cells Using the Quantitative PCR-Based Telomeric Repeat Amplification Protocol (qTRAP). Methods Mol Biol 2018; 1587:95-101. [PMID: 28324501 DOI: 10.1007/978-1-4939-6892-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Telomerase expression and activity appear elevated in >80% of human cancers. The activity of the telomerase may serve as a diagnostic marker for malignancy, and an indicator of the proliferative potential of somatic and stem cells. The telomeric repeat amplification protocol (TRAP) is a sensitive and accurate PCR-based assay for telomerase detection and measurement. Here, we describe a quantitative PCR-based TRAP assay (qTRAP) that is more convenient and amenable to high-throughput applications compared to traditional gel-based TRAP assays. qTRAP can not only facilitate drug screening processes for compounds that regulate telomerase activities but also enable the measurement of total telomerase activities of cultured cells or clinical specimens; the latter should prove particularly valuable to investigators of malignancies and diseases that are associated with telomerase and telomere dysfunction.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang West Road, Guangzhou, China
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Huawei Xin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang West Road, Guangzhou, China.
| |
Collapse
|
20
|
Eitsuka T, Nakagawa K, Kato S, Ito J, Otoki Y, Takasu S, Shimizu N, Takahashi T, Miyazawa T. Modulation of Telomerase Activity in Cancer Cells by Dietary Compounds: A Review. Int J Mol Sci 2018; 19:E478. [PMID: 29415465 PMCID: PMC5855700 DOI: 10.3390/ijms19020478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
Telomerase is expressed in ~90% of human cancer cell lines and tumor specimens, whereas its enzymatic activity is not detectable in most human somatic cells, suggesting that telomerase represents a highly attractive target for selective cancer treatment. Accordingly, various classes of telomerase inhibitors have been screened and developed in recent years. We and other researchers have successfully found that some dietary compounds can modulate telomerase activity in cancer cells. Telomerase inhibitors derived from food are subdivided into two groups: one group directly blocks the enzymatic activity of telomerase (e.g., catechin and sulfoquinovosyldiacylglycerol), and the other downregulates the expression of human telomerase reverse transcriptase (hTERT), the catalytic subunit of human telomerase, via signal transduction pathways (e.g., retinoic acid and tocotrienol). In contrast, a few dietary components, including genistein and glycated lipid, induce cellular telomerase activity in several types of cancer cells, suggesting that they may be involved in tumor progression. This review summarizes the current knowledge about the effects of dietary factors on telomerase regulation in cancer cells and discusses their molecular mechanisms of action.
Collapse
Affiliation(s)
- Takahiro Eitsuka
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Kiyotaka Nakagawa
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Shunji Kato
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Junya Ito
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Yurika Otoki
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Soo Takasu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Naoki Shimizu
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Takumi Takahashi
- Food & Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan.
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan.
| |
Collapse
|
21
|
Ma F, Wei SH, Leng J, Tang B, Zhang CY. A simple “mix-and-detection” method for the sensitive detection of telomerase from cancer cells under absolutely isothermal conditions. Chem Commun (Camb) 2018; 54:2483-2486. [DOI: 10.1039/c8cc00093j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We develop a simple “mix-and-detection” method for the sensitive detection of telomerase from cancer cells under absolutely isothermal conditions.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Shu-hua Wei
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Junhong Leng
- Jinan Maternity and Child Care Hospital
- Jinan 250000
- China
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
22
|
Tichy ED, Sidibe DK, Tierney MT, Stec MJ, Sharifi-Sanjani M, Hosalkar H, Mubarak S, Johnson FB, Sacco A, Mourkioti F. Single Stem Cell Imaging and Analysis Reveals Telomere Length Differences in Diseased Human and Mouse Skeletal Muscles. Stem Cell Reports 2017; 9:1328-1341. [PMID: 28890163 PMCID: PMC5639167 DOI: 10.1016/j.stemcr.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022] Open
Abstract
Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. MuQ-FISH is a telomere analysis assay of mouse and human muscle stem cells Highly sensitive telomere analysis on small numbers of cells Detection of both telomere length and number of telomere foci with MuQ-FISH assay Telomere analysis is now possible in quiescent and/or cycling stem cells
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 112A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - David K Sidibe
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 112A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Matthew T Tierney
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael J Stec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Maryam Sharifi-Sanjani
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 112A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Harish Hosalkar
- Joint Preservation Center, Tricity Medical Center, Joint Preservation & Deformity Correction Center & Traumatic Brain Injury Program, Paradise Valley Hospital, National City, CA 91950, USA
| | - Scott Mubarak
- Department of Orthopedic Surgery, Rady Children's Hospital, 3030 Children's Way, San Diego, CA 92123, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, The University of Pennsylvania, 112A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Liu W, Wang S, Dotsenko IA, Samoshin VV, Xue L. Arylsulfanyl groups - Suitable side chains for 5-substituted 1,10-phenanthroline and nickel complexes as G4 ligands and telomerase inhibitors. J Inorg Biochem 2017; 173:12-20. [PMID: 28476011 DOI: 10.1016/j.jinorgbio.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/14/2017] [Accepted: 04/21/2017] [Indexed: 01/03/2023]
Abstract
Guanine-rich DNA sequences can undergo self-assembly into unique G-quadruplex structures that interfere with the binding of proteins to the same DNA region. The formation of DNA G-quadruplexes requires monovalent cations (Na+ and K+) or small molecules known as G-quadruplex (G4) ligands. Phenanthroline is a type of G4 ligand scaffold known for its coordination with metal ions to form complexes with a large aromatic surface area, which aptly stack with G-quartets. In this report, we have investigated the side chain effect on G-quadruplex recognition by evaluating a series of 5-substituted phenanthroline-based metal complexes (Phen-Ni) binding to telomeric G-quadruplex DNA. Results from biophysical methods including fluorescence and circular dichroism (CD) thermal denaturation, CD titration, and the fluorescent intercalator displacement (FID) assay suggest that several Phen-Ni complexes bind to G-quadruplex DNA with submicromolar G4DC50 values. Arylsulfanyl groups at the 5 position of 1,10-phenanthroline are the best side chains regarding binding affinity and selectivity towards G-quadruplex DNA. Most of the G-quadruplex binding Phen-Ni complexes can inhibit telomerase activity in vitro as indicated by the telomeric repeat amplification protocol (TRAP) assay and such inhibition is clearly concentration dependent. Our results here provide a guidance of utilizing 5-substituted phenanthroline derivatives as a viable and facile approach to design novel G4 ligands.
Collapse
Affiliation(s)
- Wanbo Liu
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Siwen Wang
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Irina A Dotsenko
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Vyacheslav V Samoshin
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States.
| |
Collapse
|
24
|
Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E, Tůmová P. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol Biochem Parasitol 2017; 211:31-38. [DOI: 10.1016/j.molbiopara.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
25
|
Al-Mayah AHJ, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA. Exosome-Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation. Radiat Res 2016; 187:98-106. [PMID: 27959588 DOI: 10.1667/rr14201.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.
Collapse
Affiliation(s)
- Ammar H J Al-Mayah
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Scott J Bright
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Debbie A Bowler
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Predrag Slijepcevic
- b Department of Life Sciences, College of Health and Life Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Edwin Goodwin
- c The New Mexico Consortium, Los Alamos, New Mexico 87544
| | - Munira A Kadhim
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
26
|
Ikawa Y, Katsumata S, Sakashita R, Sato S, Takenaka S, Furuta H. Water-soluble porphyrinoids as G-quadruplex binders and telomerase inhibitors. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s108842461650053x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water-soluble derivatives of three kinds of expanded porphyrins (N-fused pentaphyrin, hexaphyrin, and heptaphyrin) were synthesized and their binding ability to G-quadruplex (G4-) DNA was evaluated. The inhibitory effects on enzymatic telomere extension were also investigated together with other tetrapyrrolic porphyrinoids. While expanded porphyrins increased the melting temperature of G4-DNA more effectively than the regular porphyrins, a porphyrin isomer (N-confused porphyrin) showed the highest inhibitory effect on telomerase activity.
Collapse
Affiliation(s)
- Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Sho Katsumata
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryuichi Sakashita
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinobu Sato
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Shigeori Takenaka
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Deng W, Cheung ST, Tsao SW, Wang XM, Tiwari AFY. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: A systematic review. Psychoneuroendocrinology 2016; 64:150-63. [PMID: 26677763 DOI: 10.1016/j.psyneuen.2015.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To summarise and discuss the association between telomerase activity and psychological stress, mental disorders and lifestyle factors. METHOD A systematic review was carried out to identify prospective or retrospective studies and interventions published up to June 2015 that reported associations between telomerase activity and psychological stress, mental disorders and lifestyle factors. Electronic data bases of PubMed, ProQuest, CINAHL and Google Scholar were searched. RESULTS Twenty six studies on humans measured telomerase activity in peripheral blood mononuclear cells (PBMCs) or leukocytes and examined its association with psychological stress, mental disorders and lifestyle factors. Of those studies, three reported significantly decreased telomerase activity in individuals under chronic psychological stress. Interestingly, one of the three studies found that acute laboratory psychological stress significantly increased telomerase activity. Nine studies reported mixed results on association between mental disorders and telomerase activity. Of the nine studies, five reported that major depressive disorder (MDD) was associated with significantly increased telomerase activity. In thirteen out of fourteen studies on lifestyle factors, it was reported that physical exercise, diet micronutrient supplementation, mindfulness meditation, Qigong practice or yoga mediation resulted in increase in telomerase activity. In addition, two studies on animal models showed that depression-like behaviour was associated with decreased hippocampus telomerase activity. Five animal studies showed that physical exercise increased telomerase activity by cell-type-specific and genotype-specific manners. CONCLUSION Although multi-facet results were reported on the association between telomerase activity and psychological stress, mental disorders and lifestyle factors, there were some consistent findings in humans such as (1) decreased telomerase activity in individuals under chronic stress, (2) increased telomerase activity in individuals with MDD, and (3) increased telomerase activity in individuals under lifestyle interventions. Animal studies showed that physical exercise increased telomerase activity in specific cell-types. However, the exact mechanisms for the changes in telomerase activity have not been elucidated. We propose conglomerate models connecting chronic psychological stress, depression, mediation and physical exercise to telomerase activation. Several areas for future research are suggested.
Collapse
Affiliation(s)
- W Deng
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - S T Cheung
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - X M Wang
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - A F Y Tiwari
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Kulić A, Plavetić ND, Gamulin S, Jakić-Razumović J, Vrbanec D, Sirotković-Skerlev M. Telomerase activity in breast cancer patients: association with poor prognosis and more aggressive phenotype. Med Oncol 2016; 33:23. [PMID: 26833480 DOI: 10.1007/s12032-016-0736-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Abstract
Telomerase expression is an important mechanism of tumor unlimited replicative potential. The aim of this study was to evaluate prognostic impact of telomerase activity in breast cancer patients and to correlate telomerase activity with established prognostic factors. We analyzed tissue of 102 malignant breast lesions and 20 healthy breast tissues. Telomerase activity was determined by telomeric repeat amplification protocol assay. Telomerase activity was present in 77 (75.49 %) of 102 breast cancers. Telomerase activity in breast cancers was statistically significantly higher in comparison with the activity in normal breast tissue. The levels of telomerase activity were significantly positively correlated with tumor size, axillary nodal status, histological grade, HER-2/neu protein expression in tumor tissue and expression of the nuclear antigen Ki-67. A statistically significant negative correlation was found between the presence of ER and telomerase activity. There was no correlation between telomerase activity and concentration of PR or the age of patients. Kaplan-Meier analysis showed that patients with higher telomerase activity had significantly shorter 10-year disease-free survival (p < 0.0001) and 10-year overall survival (p < 0.0001) than those with lower telomerase activity. These results were confirmed by logistic regression analysis. Our results support the prognostic role of telomerase activity and its relationship with the more aggressive phenotype of breast cancer.
Collapse
Affiliation(s)
- Ana Kulić
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Natalija Dedić Plavetić
- Department of Oncology, Division of Medical Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Jasminka Jakić-Razumović
- Department of Pathology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Damir Vrbanec
- Department of Oncology, Division of Medical Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Sirotković-Skerlev
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia. .,School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
29
|
Telomere homeostasis in mammalian germ cells: a review. Chromosoma 2015; 125:337-51. [DOI: 10.1007/s00412-015-0555-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
|
30
|
Valentijn AJ, Saretzki G, Tempest N, Critchley HOD, Hapangama DK. Human endometrial epithelial telomerase is important for epithelial proliferation and glandular formation with potential implications in endometriosis. Hum Reprod 2015; 30:2816-28. [PMID: 26498179 DOI: 10.1093/humrep/dev267] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION How does regulation of telomerase activity (TA) in human endometrial epithelial cells (EEC) by ovarian hormones impact on telomere lengths (TL) and cell proliferation? SUMMARY ANSWER Healthy endometrial epithelial cell proliferation is characterized by high TA and endometrial TL changes according to the ovarian hormone cycle, with shortest TL observed in the progesterone dominant mid-secretory phase, when TA is lowest, implicating progesterone in the negative regulation of TA and TL. WHAT IS KNOWN ALREADY Critical shortening of telomeres may result in permanent cell cycle arrest while the enzyme telomerase maintains telomere length (TL) and replicative capacity of cells. Telomerase expression and activity change in the human endometrium with the ovarian hormone cycle, however the effect of this on endometrial TL and cell growth is not known. STUDY DESIGN, SIZE, DURATION A prospective observational study, which included endometrial and blood samples collected from 196 women. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied endometrial samples from five different groups of women. Endometrial and matched blood TL and circulating steroid hormones were studied in samples collected from 85 women (Group 1). Fresh epithelial and stromal cell isolation and culture in vitro for TL and TA was done on endometrial biopsies collected from a further 74 healthy women not on hormonal therapy (Group 2) and from 5 women on medroxyprogesterone acetate (MPA) for contraception (Group 3). The epithelial TL and telomerase protein expression was examined in active, peritoneal, ectopic endometriotic and matched uterine (eutopic) endometrial samples collected from 10 women with endometriosis (Group 4); the in vivo effect of mifepristone on telomerase protein expression by immunohistochemistry (IHC) was examined in endometrium from 22 healthy women in mid-secretory phase before (n = 8), and after administering 200 mg mifepristone (n = 14) (Group 5). TA was measured by telomere repeat amplification protocol (TRAP) assay; TL by qPCR, and Q-FISH; cell proliferation was assessed by immunoblotting of histone H3 and 3D-culture to assess the ability of EECs to form spheroids; telomerase reverse transcriptase protein levels and Ki-67 (proliferative index) were assessed with IHC. MAIN RESULTS AND THE ROLE OF CHANCE Endometrial TLs correlated negatively with serum progesterone levels (n = 58, r = -0.54) and were significantly longer than corresponding blood TLs (4893 ± 929 bp versus 3955 ± 557 bp, P = 0.002) suggesting a tissue-specific regulation. High TA and short TLs were observed in proliferating EECs in vivo and in vitro. During the progesterone dominant mid-secretory phase endometrial TL were significantly shorter compared with the proliferative phase (P = 0.0002). Progestagen treatment suppressed EEC TA in vivo and reduced endometrial TA in explant (P = 0.01) and in vitro cultures (P = 0.02) compared with untreated cells. Mifepristone (progesterone receptor antagonist) increased telomerase protein levels in vivo (P < 0.05). In 2D culture, Imetelstat inhibited EEC TA (P = 0.03), proliferation (P = 0.009) and in 3D culture disrupted endometrial glandular architecture (P = 0.03). LIMITATIONS, REASONS FOR CAUTION The in vitro telomerase inhibition data were tested in a mono-cellular system for a short-term. Further confirmation of the results in an in vivo model is necessary. The women in group 2 included a high proportion of women although with a regular menstrual cycle, with an increased BMI (>25) therefore this may affect extrapolation of data to other groups. WIDER IMPLICATIONS OF THE FINDINGS The observed effects of telomerase inhibition in vitro on epithelial cell proliferation, suggest that telomerase might be an attractive target in developing new therapies for proliferative disorders of the endometrium, such as endometriosis.
Collapse
Affiliation(s)
- A J Valentijn
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK
| | - G Saretzki
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - N Tempest
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| | - H O D Critchley
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - D K Hapangama
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L8 7SS, UK Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
31
|
Li H, Fu HW, Zhao T, Kong DM. Simple, PCR-free telomerase activity detection using G-quadruplex–hemin DNAzyme. RSC Adv 2015. [DOI: 10.1039/c4ra14460k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A G-quadruplex DNAzyme-based telomerase activity detection method is developed by utilizing telomerase-triggered generation of short G-rich extension products.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hai-Wei Fu
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ting Zhao
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
32
|
Meijers RWJ, Betjes MGH, Baan CC, Litjens NHR. T-cell ageing in end-stage renal disease patients: Assessment and clinical relevance. World J Nephrol 2014; 3:268-276. [PMID: 25374821 PMCID: PMC4220360 DOI: 10.5527/wjn.v3.i4.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/08/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
End-stage renal disease (ESRD) patients have a defective T-cell-mediated immune system which is related to excessive premature ageing of the T-cell compartment. This is likely to be caused by the uremia-associated pro-inflammatory milieu, created by loss of renal function. Therefore, ESRD patients are highly susceptible for infections, have an increased risk for virus-associated cancers, respond poorly to vaccination and have an increased risk for atherosclerotic diseases. Three ageing parameters can be used to assess an immunological T-cell age. First, thymic output can be determined by assessing the T-cell receptor excision circles-content together with CD31 expression within the naïve T cells. Second, the telomere length of T cells and third the T-cell differentiation status are also indicators of T-cell ageing. Analyses based on these parameters in ESRD patients revealed that the immunological T-cell age is increased by on average 20 years compared to the chronological age. After kidney transplantation (KTx) the aged T-cell phenotype persists although the pro-inflammatory milieu is diminished. This might be explained by epigenetic modifications at hematopoietic stem cells level. Assessment of an immunological T-cell age could be an important tool to identify KTx recipients who are at risk for allograft rejection or to prevent over-immunosuppression.
Collapse
|
33
|
Wei Y, Liu R, Sun Z, Wang Y, Cui Y, Zhao Y, Cai Z, Gao X. Luminescent silver nanoclusters anchored by oligonucleotides detect human telomerase ribonucleic acid template. Analyst 2013; 138:1338-41. [PMID: 23338699 DOI: 10.1039/c3an36689h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent silver nanoclusters were anchored by designed oligonucleotides. After hybridizing with human telomerase RNA template, the luminescence of the cluster decreased linearly with respect to the concentration of the complementary strand (25-250 nM). The cluster is therefore a potential candidate for human telomerase detection.
Collapse
Affiliation(s)
- Yueteng Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol Hum Reprod 2013; 20:15-30. [DOI: 10.1093/molehr/gat055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Powers AD, Palecek SP. Protein analytical assays for diagnosing, monitoring, and choosing treatment for cancer patients. JOURNAL OF HEALTHCARE ENGINEERING 2012; 3:503-534. [PMID: 25147725 DOI: 10.1260/2040-2295.3.4.503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer treatment is often hindered by inadequate methods for diagnosing the disease or insufficient predictive capacity regarding therapeutic efficacy. Targeted cancer treatments, including Bcr-Abl and EGFR kinase inhibitors, have increased survival for some cancer patients but are ineffective in other patients. In addition, many patients who initially respond to targeted inhibitor therapy develop resistance during the course of treatment. Molecular analysis of cancer cells has emerged as a means to tailor treatment to particular patients. While DNA analysis can provide important diagnostic information, protein analysis is particularly valuable because proteins are more direct mediators of normal and diseased cellular processes. In this review article, we discuss current and emerging protein assays for improving cancer treatment, including trends toward assay miniaturization and measurement of protein activity.
Collapse
Affiliation(s)
- Alicia D Powers
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| | - Sean P Palecek
- Department of Chemical and Biological Engineering University of Wisconsin-Madison
| |
Collapse
|
36
|
Exploring the utility of genetic markers for predicting biological age. Leg Med (Tokyo) 2012; 14:279-85. [PMID: 22770678 DOI: 10.1016/j.legalmed.2012.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/31/2012] [Indexed: 12/28/2022]
Abstract
DNA evidence can be analyzed for genetic markers to determine phenotypes such as hair and eye color, ancestry, and even age estimation. Currently, telomere length is the only genetic biomarker that has been correlated to cell replication and replicative cell senescence--both strong indicators of tissue aging in humans. Unfortunately, while many studies have found a strong correlation between telomere length and age, many data sets show extreme variability, technical assay malfunction, inadequate evaluation of other variables that can impact telomere, altogether conflicting results, or insignificant correlations due to low sample size. Other, non-telomere based methods are problematic, as they often have only the ability to identify newborns or are only viable for specific tissue or cell types, and for most, the effects of outside variables have not been fully evaluated. Thus, telomeres remain the most promising biomarker for age estimation; mechanisms for telomere repeat attrition over time have been well documented. Unfortunately, assays currently used determine mean telomere length of a sample, are not precise or reproducible. New techniques should be robust enough to determine age across a broad spectrum of age ranges, and the effect of other variables (gender, race, disease, etc.), must be explored.
Collapse
|
37
|
Abstract
Human telomerase is a ribonucleoprotein complex that functions as a telomere terminal transferase by adding multiple TTAGGG hexamer repeats using its integral RNA as the template. There is a very strong association between telomerase activity and malignancy in nearly all types of cancer, suggesting that telomerase could be used not only as a diagnostic and prognostic marker but also as a therapeutic target for managing cancer. The significant progress in biomedical telomerase research has necessitated the development of new bioanalytical methods for the rapid, sensitive, and reliable detection of telomerase activity in a particular cell or clinical tissue and body fluids. In this review, we highlight some of the latest methods for identifying telomerase activity and inhibition and discuss some of the challenges for designing innovative telomerase assays. We also summarise the current technologies and speculate on future directions for telomerase testing.
Collapse
Affiliation(s)
- Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
38
|
Jeon BG, Kwack DO, Rho GJ. Variation of telomerase activity and morphology in porcine mesenchymal stem cells and fibroblasts during prolonged in vitro culture. Anim Biotechnol 2012; 22:197-210. [PMID: 22132813 DOI: 10.1080/10495398.2011.624651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to examine the telomerase activity, population doubling time (PDT), morphological alterations, and the cell cycle status with activity of senescence-associated-ß-galactosidase in porcine mesenchymal stem cells (MSCs) and fibroblasts during an extended in vitro culture. MSCs and fibroblasts were isolated from bone marrow and ear skin of a miniature pig, respectively, and cultured up to 20 passages. The analysis was carried out in MSCs and fibroblasts at 1, 5, 10, 15, and 20 passages. Relative telomerase activity (RTA) levels were significantly (P < 0.05) higher in MSCs than in fibroblasts at all the passages. The PDT and cellular size slightly increased in MSCs at later passages. In contrast, fibroblasts had significantly (P < 0.05) increased PDT and cellular size, and the morphology revealed senescent-like abnormal type after passage 10. Further, the high incidence of ß-galactosidase stained cells was observed in fibroblasts compared to that of MSCs at passage 15, and cell cycle stage at G0 / G1 phase was significantly (P < 0.05) increased in the fibroblasts at 15 and 20 passages compared to that of MSCs. Based on these observations, we concluded that porcine MSCs possessed more tolerance against senescence and aging compared to fibroblasts following prolonged in vitro culture.
Collapse
Affiliation(s)
- Byeong-Gyun Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | |
Collapse
|
39
|
Cheglakov IB, Radko SP, Yarygin KN, Vishniakova KS, Egorov EE. Comparative analysis of expression of human telomerase catalytic subunit at the transcription level in cell cultures of different origin. Bull Exp Biol Med 2012; 150:744-6. [PMID: 22235433 DOI: 10.1007/s10517-011-1239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The expression of human telomerase catalytic subunit in HL-60 and HT-1080 malignant transformed cells and telomerized fibroblasts was studied by quantitative PCR. It was found that the number of transcripts of human telomerase catalytic subunit per cell in telomerized fibroblasts could be hundreds of times higher than in HL-60 and HT-1080 cells. Telomerized fibroblast cultures are suggested as experimental systems for selection of basal compounds for creation of anticancer drug prototypes, the molecular target of which is human telomerase catalytic subunit. The effects of human telomerase catalytic subunit expression on the fibroblast proteome are analyzed.
Collapse
Affiliation(s)
- I B Cheglakov
- V. N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
40
|
HARA R, KAWAGUCHI H. Highly Sensitive Detection of Telomerase by Using G-Quartet DNA Binder Conjugated Polymeric Microspheres. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Podlevsky JD, Chen JJL. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 2011; 730:3-11. [PMID: 22093366 DOI: 10.1016/j.mrfmmm.2011.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/30/2011] [Accepted: 11/01/2011] [Indexed: 12/18/2022]
Abstract
Telomerase is a reverse transcriptase specialized in the addition of telomeric DNA repeats onto the ends of chromosomes. Telomere extension offsets the loss of telomeric repeats from the failure of DNA polymerases to fully replicate linear chromosome ends. Telomerase functions as a ribonucleoprotein, requiring an integral telomerase RNA (TR) component, in addition to the catalytic telomerase reverse transcriptase (TERT). Extensive studies have identified numerous structural and functional features within the TR and TERT essential for activity. A number of accessory proteins have also been identified with various functions in enzyme biogenesis, localization, and regulation. Understanding the molecular mechanism of telomerase function has significance for the development of therapies for telomere-mediated disorders and cancer. Here we review telomerase structural and functional features, and the techniques for assessing telomerase dysfunction.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
42
|
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1563-83. [PMID: 21417995 DOI: 10.1134/s0006297910130055] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50-70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.
Collapse
Affiliation(s)
- M I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | |
Collapse
|
43
|
Abstract
Levels of telomerase activity can be an indicator of the proliferative potential of somatic cells and may serve as a diagnostic biomarker of malignancy. Telomeric repeat amplification protocol (TRAP) is a fast and sensitive PCR-based assay for detection and measurement of telomerase activity. Since its introduction, the TRAP assay has been widely used in cancer and aging studies. It provides a powerful alternative to other in vitro telomerase detection methods, and has been combined with other molecular techniques to screen telomerase inhibitors, and to study human malignancy and other diseases associated with telomere or telomerase dysfunction.
Collapse
Affiliation(s)
- Huawei Xin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
44
|
Chen JLY, Sperry J, Ip NY, Brimble MA. Natural products targeting telomere maintenance. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00241k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Abstract
The terminal chromatin structures at the ends of eukaryotic chromosomes, the telomeres, are a focus of intensive research due to their importance for the maintenance of chromosome integrity. Their shortening due to incomplete replication functions as a molecular clock counting the number of cell divisions, and ultimately results in cell-cycle arrest and cellular senescence. Telomere shortening can be compensated by the nucleoprotein enzyme complex called telomerase, which is able to extend shortened telomeres. In humans, only embryonic and germ cells show telomerase activity that is sufficient for telomere length stability and cellular immortality. Unfortunately, telomerase is activated in cancer cells, which, thus, achieve unlimited growth and a malignant phenotype. Even if there were no any other links of telomere biology to other essential processes in the cell nucleus such as DNA repair, chromosome positioning, and nuclear architecture in mitosis and meiosis, the close connection of telomere biology to aging and cancer makes telomeres and techniques for their analysis important enough from the point of view of us, mortal and disease-prone people. In this chapter, we describe the most common types of analyses used in telomere biology: screening for typical and variant telomeric sequences, determination of telomere lengths, and measurement of telomerase activity.
Collapse
Affiliation(s)
- Jirí Fajkus
- Department of Functional Genomics and Proteomics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
46
|
Monchaud D, Granzhan A, Saettel N, Guédin A, Mergny JL, Teulade-Fichou MP. "One ring to bind them all"-part I: the efficiency of the macrocyclic scaffold for g-quadruplex DNA recognition. J Nucleic Acids 2010; 2010. [PMID: 20725629 PMCID: PMC2915875 DOI: 10.4061/2010/525862] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023] Open
Abstract
Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects.
Collapse
Affiliation(s)
- David Monchaud
- Section Recherche, Institut Curie, CNRS UMR176, Centre Universitaire Paris XI, Batiment 110, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
47
|
Use of oligonucleotides conjugated to gold nanoparticles and streptavidin for amplification of optical biosensor signal during detection of telomeric repeats. Bull Exp Biol Med 2009; 147:746-9. [PMID: 19902073 DOI: 10.1007/s10517-009-0616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hybridization of telomeric repeats with a complementary oligonucleotide probe was studied by the surface plasmon resonance method. Conjugation of the probe with streptavidin and gold nanoparticles was shown to amplify the signal at similar concentrations of this probe (by 60 and 300 times, respectively). Nanoparticles can be used for biosensor signal amplification in studying the telomerase activity of malignant cells.
Collapse
|
48
|
Rothacker J, Ramsay RG, Ciznadija D, Gras E, Neylon CB, Elwood NJ, Bouchier-Hayes D, Gibbs P, Rosenthal MA, Nice EC. A novel magnetic bead-based assay with high sensitivity and selectivity for analysis of telomerase in exfoliated cells from patients with bladder and colon cancer. Electrophoresis 2008; 28:4435-46. [PMID: 17987629 DOI: 10.1002/elps.200600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Telomerase activity is elevated in more than 85% of cancer cells and absent in most of the normal cells and thus represents a potential cancer biomarker. We report its measurement in colon and bladder cancer cells captured using antibody-coated magnetic beads. The cells are lysed and telomerase activity is detected using a biosensor assay that employs an oligonucleotide containing the telomerase recognition sequence also covalently coupled to magnetic beads. Telomerase activity is measured by the incorporation of multiple biotinylated nucleotides at the 3'-end of the oligonucleotide strands during elongation which are then reacted with streptavidin-conjugated horseradish peroxidase. A luminescent signal is generated when hydrogen peroxidase is added in the presence of luminol and a signal enhancer. LOD experiments confirm sensitivity down to ten cancer cell equivalents. The telomerase assay reliably identified patient samples considered by an independent pathological review to contain cancer cells. Samples from normal healthy volunteers were all telomerase negative. The assay, which is amenable to automation, demonstrated high sensitivity and specificity in a small clinical cohort, making it of potential benefit as a first line assay for detection and monitoring of colon and bladder cancer.
Collapse
Affiliation(s)
- Julie Rothacker
- The Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kulla E, Katz E. Biosensor Techniques Used for Determination of Telomerase Activity in Cancer Cells. SENSORS 2008; 8:347-369. [PMID: 27879712 PMCID: PMC3681157 DOI: 10.3390/s8010347] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/15/2008] [Indexed: 01/29/2023]
Abstract
Measuring telomerase activity has proven successful for the determination of cancer in malignant somatic cells. Early conventional methods for the detection of telomerase activity include in vitro analysis via a primer extension assay, and the telomeric repeat amplification protocol (TRAP) assay. TRAP incorporates the polymerase chain reaction (PCR) step to increase the sensitivity of a given sample. However, research suggests that the TRAP technique suffers from false negative results, caused by failure of its PCR step. Other limitations of TRAP include the post-PCR steps involving polyacrylamide gel electrophoresis which are time inefficient. Thus, various efforts have been made to eliminate the PCR step of TRAP by using a variety of biosensor detection devices. This review mainly focuses on these alternatives including: optical, electrochemical, magnetic, and nanowire conductive signaling techniques to measure the telomerase activity produced via label free biosensor assay—via biocatalytic labels involving beacons, DNAzyme, ferrocenyl-naphthalene diimides, avidin-alkaline phosphatase and semiconductor quantum dots (QDs). These biosensor techniques are sensitive and provide precise and rapid results in the detection of telomerase activity.
Collapse
Affiliation(s)
- Eliona Kulla
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Evgeny Katz
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
50
|
Folini M, Bandiera R, Millo E, Gandellini P, Sozzi G, Gasparini P, Longoni N, Binda M, Daidone MG, Berg K, Zaffaroni N. Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Prolif 2007; 40:905-20. [PMID: 18021178 DOI: 10.1111/j.1365-2184.2007.00470.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Peptide nucleic acids (PNAs) are DNA mimics that have been demonstrated to be efficient antisense/antigene tools in cell-free systems. However, their potential as in vivo regulators of gene expression has been hampered by their poor uptake by living cells, and strategies need to be developed for their intracellular delivery. This study has aimed to demonstrate the possibility (i) of efficiently delivering a PNA, which targets mRNA of the catalytic component of human telomerase reverse transcriptase (hTERT), into DU145 prostate cancer cells through a combined approach based on conjugation of the PNA to Tat internalizing peptide (hTERT-PNA-Tat) and subsequent photochemical internalization, and (ii) to interfere with telomerase function. MATERIALS AND METHODS Treated cells were analysed for telomerase activity, hTERT expression, growth rate, ability to undergo apoptosis and telomere status. RESULTS After exposure to light, DU145 cells treated with hTERT-PNA-Tat and the photosensitiser TPPS2a showed dose-dependent inhibition of telomerase activity, which was accompanied by marked reduction of hTERT protein expression. A dose-dependent decline in DU145 cell population growth and induction of caspase-dependent apoptosis were also observed from 48 h after treatment. Such an antiproliferative effect was associated with the presence of telomeric dysfunction, as revealed by cytogenetic analysis, in the absence of telomere shrinkage, and with induction of DNA damage response as suggested by the increased expression of gamma-H2AX. CONCLUSIONS Our results (i) indicate photochemical internalization as an efficient approach for intracellular delivery of chimaeric PNAs, and (ii) corroborate earlier evidence suggesting pro-survival and anti-apoptotic roles of hTERT, which are independent of its ability to maintain telomere length.
Collapse
Affiliation(s)
- M Folini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|