1
|
Cheng Y, Chen ZY, Deng YF, Zhang YZ. 3 nm-wide Cyanometallate Fe-Co Tape Exhibiting Single-Chain Magnet Behavior. Inorg Chem 2024; 63:4063-4071. [PMID: 38364201 DOI: 10.1021/acs.inorgchem.3c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Treatment of Co(OTf)2·6H2O, Li[(pzTp)FeIII(CN)3], and H3PMo12O40·nH2O in protic solvents afforded two structurally related Fe-Co cyanometallate complexes: [{(pzTp)Fe(CN)3}3Co3(MeOH)10][PMo12O40]·H2O·11MeOH (1, pzTp- = tetra(pyrazolyl)borate) and {[(pzTp)Fe(CN)3]4Co3(MeOH)5(H2O)3}n[HPMo12O40]n·3 nMeOH·6.5nH2O (2). Complex 1 consists of a cyanide-bridged hexanuclear [Fe3Co3] cage, characterized by the fused conjunction of two mutually perpendicular trigonal bipyramids (TBPs, [Fe2Co3] and [Co2Fe3]), while complex 2 showcases an intricate cyanide-bridged Fe-Co tape comprising a central chain backbone of vertex-sharing [Fe2Co3] TBPs alongside peripheral [Fe2Co2] squares. Complex 2 is among the widest one-dimensional coordination assemblies characterized by the single-crystal X-ray diffraction technique. Magnetic studies revealed that complex 2 behaved as a single chain magnet with an effective energy barrier (Ueff/kB) of 46.8 K. Our findings highlight the possibilities in the development of cyanometallate-POM hybrid materials with captivating magnetic properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
2
|
Kharel R, Yadav J, Konar S. Modulation of single-chain magnet behaviour in a heterometallic Fe 2Co cyanide-bridged 2D sheet. Chem Commun (Camb) 2024; 60:839-842. [PMID: 38131359 DOI: 10.1039/d3cc03647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A cyanide-bridged Fe2Co 2D sheet exhibiting electron transfer coupled spin transition (ETCST) with co-existence of magnetic ordering below 50 K is reported. The complex exhibits single-chain magnet behaviour where the uncoordinated water molecules act as an exchange-breaking impurity by allowing only a fraction of the molecule to undergo a spin state change. The paramagnetic centres prevail throughout the chain on desolvation, thereby increasing the number of correlated units in the chain.
Collapse
Affiliation(s)
- Ranjan Kharel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| | - Jyoti Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
3
|
Wang CY, Jia JG, Weng GG, Qin MF, Xu K, Zheng LM. Macroscopic handedness inversion of terbium coordination polymers achieved by doping homochiral ligand analogues. Chem Sci 2023; 14:10892-10901. [PMID: 37829014 PMCID: PMC10566478 DOI: 10.1039/d3sc03230b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.
Collapse
Affiliation(s)
- Chang-Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
4
|
Näther C, Jess I. Synthesis and crystal structure of catena-poly[cobalt(II)-di-μ-chlorido-μ-pyridazine-κ 2N1: N2]. Acta Crystallogr E Crystallogr Commun 2023; 79:872-876. [PMID: 37817962 PMCID: PMC10561210 DOI: 10.1107/s2056989023007065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 10/12/2023]
Abstract
The reaction of cobalt dichloride hexa-hydrate with pyridazine leads to the formation of crystals of the title compound, [CoCl2(C4H4N2)]n. This compound is isotypic to a number of compounds with other divalent metal ions. Its asymmetric unit consists of a Co2+ atom (site symmetry 2/m), a chloride ion (site symmetry m) and a pyridazine mol-ecule (all atoms with site symmetry m). The Co2+ cations are coordinated by four chloride anions and two pyridazine ligands, generating trans-CoN4Cl2 octa-hedra, and are linked into [010] chains by pairs of μ-1,1-bridging chloride anions and bridging pyridazine ligands. In the crystal structure, the pyridazine ligands of neighboring chains are stacked onto each other, indicating π-π inter-actions. Powder X-ray diffraction proves that a pure crystalline phase was obtained. Differential thermonalysis coupled to thermogravimetry (DTA-TG) reveal that decomposition is observed at about 710 K. Magnetic measurements indicate low-temperature metamagnetic behavior as already observed in a related compound.
Collapse
Affiliation(s)
- Christian Näther
- Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
| | - Inke Jess
- Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
5
|
Xu FX, Zhou YT, Zhang CC, Zhang XY, Wei HY, Wang XY. Syntheses, Structures, and Magnetic Properties of Three Cyano-Bridged Fe II-Mo III Single-Molecule Magnets. Inorg Chem 2023; 62:15465-15478. [PMID: 37699414 DOI: 10.1021/acs.inorgchem.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three new cyano-bridged FeII-MoIII complexes assembled from the [MoIII(CN)7]4- unit, FeII ions, and three pentadentate N3O2 ligands, namely {[Fe2H3(dapab)2][Mo(CN)6]}n·2H2O·3.5MeCN (1), [Fe(H2dapb)(H2O)][Fe(Hdapb)(H2O)][Mo(CN)6]·4H2O·3MeCN (2), and [Fe(H2dapba)(H2O)]2[Mo(CN)7]·6H2O (3) (H2dapab = 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone), H2dapb = 2,6-diacetylpyridine bis(benzoylhydrazone), H2dapba = 2,6-diacetylpyridine bis(4-aminobenzoylhydrazone)), have been synthesized and characterized. Single-crystal structure analyses suggest that complex 1 contains a one-dimensional (1D) chain structure where two FeII ions are bridged by the in situ generated [MoIII(CN)6]3- unit through two trans-cyanide groups into trinuclear Fe2IIMoIII clusters that are further linked by the amino of the ligand into an infinite chain. Complexes 2 and 3 are cyano-bridged Fe2IIMoIII trinuclear clusters with two FeII ions connected by the [MoIII(CN)6]3- and [MoIII(CN)7]4- units, respectively. Direct current magnetic studies confirmed the ferromagnetic interactions between the cyano-bridged FeII and MoIII centers and significant easy-axis magnetic anisotropy for all three complexes. Furthermore, complexes 1-3 exhibit slow magnetic relaxation under a zero dc field, with relaxation barriers of 42.3, 21.6, and 14.4 K, respectively, making them the first examples of cyano-bridged FeII-MoIII single-molecule magnets.
Collapse
Affiliation(s)
- Fang-Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Ting Zhou
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Cheng Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hai-Yan Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Rams M, Lohmiller T, Böhme M, Jochim A, Foltyn M, Schnegg A, Plass W, Näther C. Weakening the Interchain Interactions in One Dimensional Cobalt(II) Coordination Polymers by Preventing Intermolecular Hydrogen Bonding. Inorg Chem 2023. [PMID: 37319419 DOI: 10.1021/acs.inorgchem.3c01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The reaction of Co(NCS)2 with N-methylaniline leads to the formation of [Co(NCS)2(N-methylaniline)2]n (1), in which the cobalt(II) cations are octahedrally coordinated and linked into linear chains by pairs of thiocyanate anions. In contrast to [Co(NCS)2(aniline)2]n (2) reported recently, in which the Co(NCS)2 chains are linked by strong interchain N-H···S hydrogen bonding, such interactions are absent in 1. Computational studies reveal that the cobalt(II) ions in compound 1 show an easy-axis anisotropy that is lower than in 2, but with the direction of the easy axis being similar in both compounds. The high magnetic anisotropy is also confirmed by magnetic and FD-FT THz-EPR spectroscopy, which yield a consistent gz value. These investigations prove that the intrachain interactions in 1 are slightly higher than in 2. Magnetic measurements reveal that the critical temperature for magnetic ordering in 1 is significantly lower than in 2, which indicates that the elimination of the hydrogen bonds leads to a weakening of the interchain interactions. This is finally proven by FD-FT THz-EPR experiments, which show that the interchain interaction energy in the N-methylaniline compound 1 is nine-fold smaller than in the aniline compound 2.
Collapse
Affiliation(s)
- Michał Rams
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489 Berlin, Germany
| | - Michael Böhme
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Aleksej Jochim
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Magdalena Foltyn
- M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489 Berlin, Germany
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim Ruhr, Germany
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| |
Collapse
|
7
|
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex. Molecules 2023; 28:molecules28031516. [PMID: 36771182 PMCID: PMC9921754 DOI: 10.3390/molecules28031516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.
Collapse
|
8
|
Li ZY, Shao EH, Shi YL, Zhang XF, Zhai B. Structure and magnetic properties of one carboxylate-bridged one-dimensional polymer with linear trinuclear [Co3] cluster unit. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Moreno Pineda E, Wernsdorfer W, Vostrikova KE. Very Anisotropic 2D Molecular Magnetic Materials Based on Pentagonal Bipyramidal Heptacyanidorhenate(IV). MATERIALS (BASEL, SWITZERLAND) 2022; 15:8324. [PMID: 36499815 PMCID: PMC9739847 DOI: 10.3390/ma15238324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The first neutral 2D heterometallic assemblies based on orbitally degenerate heptacyanidorhenate(IV) were prepared and structurally characterized. An analysis of the magnetic data for the polycrystalline samples of Ph4P[{Mn(acacen)}2Re(CN)7]·Solv (1) and PPN[{Mn(acacen)}2Re(CN)7]·Solv (2) have shown that both materials display slow magnetic relaxation at temperatures below 10 and 21 K for 1 and 2, respectively. Despite the presence of the same molecular magnetic modules that make up the anionic layers, the studied 2D networks differ significantly in magnetic anisotropy, having a small coercive field (0.115 T) for 1 and a large one (~2.5 T) for 2 at 2 K. In addition, for both polymers a M(H) value does not saturate at the maximum available field of 7 T, and the material 2 is a metamagnet. This intriguing difference originates from the cooperative anisotropic spin interaction in ReIV-CN-MnIII pairs and the zero field splitting (ZFS) effect of MnIII ions with a noncollinear alignment of the local magnetic axes in crystals of the compounds.
Collapse
Affiliation(s)
- Eufemio Moreno Pineda
- Departamento de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Transístmica 0874, Panama
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, 1 Wolfgang-Gaede-Str., D-76131 Karlsruhe, Germany
| | - Kira E. Vostrikova
- Nikolayev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Parreiras J, Faria EN, Oliveira WXC, Pinheiro CB, do Pim WD, da Silva Júnior EN, Pedroso EF, Julve M, Pereira CLM. X-ray structure and magnetic properties of a mononuclear complex and a 1D coordination polymer assembled by cobalt(II) ions and a flexible oxamate ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2135436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Parreiras
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica N. Faria
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Willian X. C. Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos B. Pinheiro
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walace D. do Pim
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eufrânio N. da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emerson F. Pedroso
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Miguel Julve
- Instituto de Ciencia Molecular/Departament de Química Inorgànica, Universitat de València, Paterna, València, Spain
| | - Cynthia L. M. Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Dong X, Shi Z, Li D, Li Y, An N, Shang Y, Sakiyama H, Muddassir M, Si C. The regulation research of topology and magnetic exchange models of CPs through Co(II) concentration adjustment. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Böhme M, Rams M, Krebs C, Mangelsen S, Jess I, Plass W, Näther C. Co(NCS) 2 Chain Compound with Alternating 5- and 6-Fold Coordination: Influence of Metal Coordination on the Magnetic Properties. Inorg Chem 2022; 61:16841-16855. [PMID: 36218356 DOI: 10.1021/acs.inorgchem.2c02813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of Co(NCS)2 with 3-bromopyridine leads to the formation of discrete complexes [Co(NCS)2(3-bromopyridine)4] (1), [Co(NCS)2(3-bromopyridine)2(H2O)2] (2), and [Co(NCS)2(3-bromopyridine)2(MeOH)2] (3) depending on the solvent. Thermogravimetric measurements on 2 and 3 show a transformation into [Co(NCS)2(3-bromopyridine)2]n (4), which upon further heating is converted to [{Co(NCS)2}2(3-bromopyridine)3]n (5), whereas 1 transforms directly into 5 upon heating. Compound 5 can also be obtained from solution, which is not possible for 4. In 4 and 5, the cobalt(II) cations are linked by pairs of μ-1,3-bridging thiocyanate anions into chains. In compound 4, all cobalt(II) cations are octahedrally coordinated (OC-6), as is usually observed in such compounds, whereas in 5, a previously unkown alternating 5- and 6-fold coordination is observed, leading to vacant octahedral (vOC-5) and octahedral (OC-6) environments, respectively. In contrast to 4, the chains in 5 are very efficiently packed and linked by π···π stacking of the pyridine rings and interchain Co···Br interactions, which is the basis for the formation of this unusual chain. The spin chains in 4 demonstrate ferromagnetic intrachain exchange and much weaker interchain interactions, as is usually observed for such linear chain compounds. In contrast, compound 5 shows almost single-ion-like magnetic susceptibility, but the magnetic ordering temperature deduced from specific heat measurements is twice as high as that in 4, which might originate from π···π stacking and Co···Br interactions between neighboring chains. More importantly, unlike all linear Co(NCS)2 chain compounds, a dominant antiferromagnetic exchange is observed for 5, which is explained by density functional theory calculations predicting an alternating ferro- and aniferromagnetic exchange within the chains. Theoretical calculations on the two different cobalt(II) ions present in 5 predict an easy-axis anisotropy that is much stronger for the octahedral cobalt(II) ion than for the one with the vacant octahedral coordination, with the magnetic axes of the two ions being canted by an angle of 84°. This almost orthogonal orientation of the easy axis of magnetization for the two cobalt(II) ions is the rationale for the observed non-Ising behavior of 5.
Collapse
Affiliation(s)
- Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena 07743, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Christoph Krebs
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Sebastian Mangelsen
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Inke Jess
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena 07743, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, Kiel 24118, Germany
| |
Collapse
|
13
|
Liu Q, Yao NT, Sun HY, Hu JX, Meng YS, Liu T. Light actuated single-chain magnet with magnetic coercivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide-bridged {Fe2Co}-based coordination polymer was synthesized. It showed photo-induced slow relaxation of magnetization and a coercive field of 400 Oe.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
14
|
Li ZY, Zhang R, Zhu PY, Zhang C, Wu DQ, Zhai B. Structures and magnetic properties of two heterometallic Cu( ii)–Cd( ii) polymers exhibiting antiferromagnetic ordering. CrystEngComm 2022. [DOI: 10.1039/d2ce00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two heterometallic Cu(ii)–Cd(ii) polymers (1 and 2) with a 2D layer or 1D chain structure were obtained and their magneto-structural correlations were discussed, and 1 displayed antiferromagnetic ordering at lower temperature.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ran Zhang
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Peng-Yu Zhu
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Chi Zhang
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Dong-Qing Wu
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Bin Zhai
- Engineering Research Center of Photoelectric Functional Material, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
15
|
Charytanowicz T, Jankowski R, Zychowicz M, Chorazy S, Sieklucka B. The rationalized pathway from field-induced slow magnetic relaxation in CoII–WIV chains to single-chain magnetism in isotopological CoII–WV analogues. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01427g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The change of the oxidation state from WIV to WV in isotopological CoII–[W(CN)8]n− chains leads to the appearence of pronounced single-chain magnet behaviour.
Collapse
Affiliation(s)
- Tomasz Charytanowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Robert Jankowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
16
|
Zeng D, Ren M, Bao SS, Zheng T. Two three-dimensional mixed-ligated cobalt phosphonate coordination polymers: Syntheses, crystal structures and magnetic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|
18
|
Pichon C, Duhayon C, Delahaye E, Sutter J. Discrete
versus
1D Compounds based on Pentagonal Bipyramid Coordination Geometries: A Matter of Solubility? Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Emilie Delahaye
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Jean‐Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| |
Collapse
|
19
|
Chen ZY, Cheng Y, Liu Q, Deng YF, Zhang YZ. Polyoxometalate-Assisted Assembly of Pearl-Chain-Like Cyanide-Bridged Single-Chain Magnets. Inorg Chem 2021; 61:931-938. [PMID: 34962120 DOI: 10.1021/acs.inorgchem.1c02922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of Keggin-type POMs of [PMo12O40]3- or [SiW12O40]4- as counteranions into the FeIII-MII cyanometalate system afforded three chain complexes: [(Tp*)Fe(CN)3Ni(DMF)4]2{[(Tp*)Fe(CN)3Ni(DMF)3(H2O)]2Ni(DMF)4}[PMo12O40]2·14DMF (1, Tp*= hydridotris(3,5-dimethylpyrazol-1-yl)borate) and {[(Tp*)Fe(CN)3M(DMF)3(H2O)]2M(DMF)4}[SiW12O40]·3DMF (2, M = NiII; 3, M = CoII). Complex 1 contains both discrete cationic [Fe2Ni2]2+ squares and less-studied {Fe2Ni3}n pearl chains, namely 3,2-chains, while 2 and 3 consist of pure 3,2-chains due to the replacement of [PMo12O40]3- with [SiW12O40]4- bearing one more negative charge. Magnetic studies revealed that all of the complexes exhibit single-chain-magnet (SCM) behaviors with the effective thermal barriers of Δτ1/kB = 61.6 K (infinite regime) and Δτ2/kB = 36.5 K (finite regime) for 1, Δτ/kB = 46.9 K for 2 (finite), and Δτ/kB = 30.6 K for 3 (finite). The POM moieties may play a pivotal role for the realization of this promising archetype of favoring SCM property: (1) the highly negatively charged POMs may facilitate the formation of the uncommon highly positive "pearl chain"; (2) the nanosized POMs necessarily led to the good isolation of the chains in the title complexes, and (3) the employment of POMs with different charges may regulate the resultant complexes in both structure and magnetism.
Collapse
Affiliation(s)
- Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yue Cheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Qi Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, People's Republic of China
| |
Collapse
|
20
|
Cheng Y, Liu Q, Chen ZY, Zhang YZ. A cyanide-bridged Fe-Co pearl-chain-like single-chain magnet containing 4-coordinate cobalt(II) ions. Dalton Trans 2021; 50:17372-17377. [PMID: 34792060 DOI: 10.1039/d1dt02844h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of CoCl2·6H2O and tris(pyrazolyl-1-yl)borate tricyanoiron(III) anions at an elevated temperature (55 °C) afforded two less-common pearl-chain-like compounds, {[(TpR)Fe(CN)3CoCl2]2Co(DMF)4}·nDMF (1, TpR = Tp4-Me = hydridotris(4-methylpyrazol-1-yl)borate, n = 1 and 2, TpR = Tp*Me = hydridotris(3,4,5-trimethylpyrazol-1-yl)borate, n = 4.5), in which the 4-coordinate Co(II) ions and [(TpR)FeIII(CN)3]- units are alternately bridged by cyanide groups into squares, which are further linked with the 6-coordinate Co(II) ions into an infinite chain. Interestingly, the magnetic study revealed that 1 exhibits a typical single-chain magnet behaviour with an effective energy barrier of 28.0 K, while surprisingly no Glauber dynamics was observed for 2 despite their very similar structures. The variations of the local coordination environments of the cobalt ions and the cyanide linkages were evidenced, and they may account for the significant difference in their magnetic properties related to the global magnetic anisotropy and magnetic exchange of the chain.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Qi Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Zi-Yi Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
21
|
Krebs C, Thiele S, Ceglarska M, Näther C. Synthesis, Crystal Structures and Properties of Ni(NCS)
2
‐3‐Cyanopyridine Coordination Compounds including a Ferromagnetic Layered Compound. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Krebs
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Solveig Thiele
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| | - Magdalena Ceglarska
- Institute of Physics Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Christian Näther
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Straße 2 24118 Kiel Germany
| |
Collapse
|
22
|
Briganti M, Totti F, Andruh M. Hetero-tri-spin systems: an alternative stairway to the single molecule magnet heaven? Dalton Trans 2021; 50:15961-15972. [PMID: 34647933 DOI: 10.1039/d1dt02511b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The search for molecule-based magnetic materials has stimulated over the years the development of extremely rich coordination chemistry. Various combinations of spin carriers have been investigated and illustrated by a plethora of hetero-spin complexes: 3d-nd, 3d-4f, 2p-3d, and 2p-4f. More recently, two other classes of hetero-spin complexes have grown rapidly: compounds containing three different paramagnetic metal ions, or one radical and two different paramagnetic metal ions (all within the same molecular entity). Such new classes of systems represent a challenge both from a synthetic and theoretical point of view. Indeed, the synthetic control and the understanding of the spin topology effect on the overall magnetic behavior from first-principles is a difficult problem to be solved. The presence of different spin carriers in a single molecule makes such compounds particularly interesting because they offer the possibility of developing new magnetic properties, different from those of hetero-bi-spin or homo-spin systems. A critical overview taking the case of 2p-3d-4f complexes is the focus of this perspective paper. An original organic picture of the state-of-art in this field and new hints about the main directions that should be pursued to achieve hetero-tri-spin systems with large anisotropy barriers, low quantum tunneling of magnetization and, possibly, large blocking temperatures are provided in this article through an analysis based on numerically revisiting already published data and a critical survey of the literature reported so far. The reasons for the limited success obtained for the largely used 3d-2p-4f topology are given along with the ones explaining the failure for the 2p-4f-3d case. The still never synthesized linear 2p-3d-4f spin topology seemed to be the most promising one based on the results obtained for the unique closed hetero-tri-spin closed triangular system synthesized so far.
Collapse
Affiliation(s)
- Matteo Briganti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Federico Totti
- Department of Chemistry "U. Schiff" and INSTM UdR Firenze, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.
| | - Marius Andruh
- Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464 Bucharest, Romania. .,"Costin D. Nenitzescu" Institute of Organic Chemistry of the Romanian Academy, Spl. Independentei nr. 202B, Bucharest, Romania
| |
Collapse
|
23
|
Pichon C, Suaud N, Jubault V, Duhayon C, Guihéry N, Sutter JP. Trinuclear Cyanido-Bridged [Cr 2 Fe] Complexes: To Be or not to Be a Single-Molecule Magnet, a Matter of Straightness. Chemistry 2021; 27:15484-15495. [PMID: 34523758 DOI: 10.1002/chem.202102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/08/2022]
Abstract
Trinuclear systems of formula [{Cr(LN3O2Ph )(CN)2 }2 M(H2 LN3O2R )] (M=MnII and FeII , LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M-N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2 M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph )(CN)2 ]- and divalent pentagonal bipyramid complexes [MII (H2 LN3O2R )]2+ with various R substituents (R=NH2 , cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M-N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2 Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C-N-Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.
Collapse
Affiliation(s)
- Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique quantiques (LCPQ), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique quantiques (LCPQ), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| |
Collapse
|
24
|
Exchange coupling in a thiocyanato-bridged copper(II) chain: Computational approach to magnetostructural correlations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Beach SA, Rheingold AL, Doerrer LH. Comparison of {O,S}- vs {N,S}-donor ligands in PtNi heterobimetallic lantern complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Alexandru MG, Visinescu D, Cula B, Shova S, Rabelo R, Moliner N, Lloret F, Cano J, Julve M. A rare isostructural series of 3d-4f cyanido-bridged heterometallic squares obtained by assembling [Fe III{HB(pz) 3}(CN) 3] - and Ln III ions: synthesis, X-ray structure and cryomagnetic study. Dalton Trans 2021; 50:14640-14652. [PMID: 34581372 DOI: 10.1039/d1dt02512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of cyanido-bridged {FeIIILnIII}2 neutral molecular squares of general formula [Fe{HB(pz)3}(CN)(μ-CN)2Ln(NO3)2(pyim)(Ph3PO)]2·2CH3CN [Ln = Ce (1), Pr (2), Nd (3), Gd (4), Tb (5), Dy (6) and Er (7); {HB(pz)3}- = hydrotris(pyrazolyl)borate, pyim = 2-(1H-imidazol-2-yl)pyridine and Ph3PO = triphenylphosphine oxide] were obtained by reacting the low-spin [Fe{HB(pz)3}(CN)3]- species with the preformed [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ complex anions (generated in situ by mixing the nitrate salt of each Ln(III) ion with pyim and Ph3PO molecules). Single-crystal X-ray diffraction studies show that 1-7 are isostructural compounds that crystallize in the triclinic P1̄ space group. Their crystal structures consist of centrosymmetric cyanido-bridged {FeIIILnIII}2 molecular squares where two [Fe{HB(pz)3}(CN)3]- units adopt bis-monodentate coordination modes towards two [LnIII(pyim)(NO3)2(pyim)(Ph3PO)]+ moieties. The cis-oriented convergent sites from both low-spin FeIII and LnIII fragments form a quasi square-shaped molecule in which the 3d and 4f ions alternatively occupy the corners of the square. Both FeIII ions show a distorted octahedral surrounding (C3v symmetry), whereas the LnIII ions exhibit a distorted muffin-like geometry (Cs symmetry) in 1-7. The intramolecular FeIII⋯LnIII distances across the two cyanido-bridges range from ca. 5.48/5.46 up to ca. 5.58/5.61 Å. The molecular squares in 1-7 are interlinked through hydrogen bonds, weak π⋯π stacking and very weak C-H⋯π type interactions into three-dimensional supramolecular networks. The analysis of the solid-state direct-current (dc) magnetic susceptibility data of 1-7 in the temperature range 1.9-300 K reveals the occurrence of weak intra- and intermolecular antiferromagnetic interactions. The small intramolecular antiferromagnetic couplings in 4 compare well with those previously reported for parent systems. Although the coexistence of the spin-orbit coupling (SOC) of the low-spin iron(III) and lanthanide(III) ions in the remaining compounds together with the ligand field effects mask the visualization and make difficult the evaluation of the possible magnetic interactions in them, we were able to do it through a SOC model applied on exact or effective Hamiltonians. Frequency-dependent alternating current magnetic susceptibility signals in the temperature range 2.0-9.0 K under zero and non-zero static fields were observed for 5-7 which indicate slow magnetic relaxation (SMM) behavior. The usual absence of χ''M maxima moved us to estimate their energy barriers through ln(χ''M/ χ'M) vs. 1/T plots, obtaining values from 25 to 40 cm-1.
Collapse
Affiliation(s)
- Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania.
| | - Beatrice Cula
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Ro, an Academy, mani, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Renato Rabelo
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Nicolás Moliner
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Joan Cano
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| |
Collapse
|
27
|
Cui Y, Ding Y, Molina SEV, Li Y. A mixed-valence CuII/CuI coordination polymer based on bridged thiocyanate and in situ formed di(N-heterocyclic) sulfide: Synthesis, structure, and magnetic properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Georgopoulou A, Pissas M, Psycharis V, Sanakis Y, Raptopoulou CP. A single-chain magnet based on bis(end-on azido/alkoxo)-bridged linear [MnIII2MnII] repeating units. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Hodorowicz M, Szklarzewicz J, Jurowska A, Mikuriya M, Mitsuhashi R, Yoshioka D. ANION–CATION VERSUS WEAK INTERMOLECULAR
INTERACTIONS IN THE STRUCTURES OF Et4N+, Pr4N+,
AND Bu4N+ CATION SALTS WITH THE [W(CN)6(bpy)]2– ANION. J STRUCT CHEM+ 2021. [DOI: 10.1134/s002247662106010x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Antkowiak M, Majee MC, Maity M, Mondal D, Kaj M, Lesiów M, Bieńko A, Kronik L, Chaudhury M, Kamieniarz G. Generalized Heisenberg-Type Magnetic Phenomena in Coordination Polymers with Nickel–Lanthanide Dinuclear Units. THE JOURNAL OF PHYSICAL CHEMISTRY C 2021; 125:11182-11196. [DOI: 10.1021/acs.jpcc.1c01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Affiliation(s)
- Michał Antkowiak
- Faculty of Physics, A. Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mithun Chandra Majee
- Banwarilal Bhalotia College, Kazi Nazrul University, Asansol, West Bengal-713303, India
| | - Manoranjan Maity
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Dhrubajyoti Mondal
- Department of Chemistry, Government General Degree College Mangalkote, University of Burdwan, Burdwan, West Bengal-713143, India
| | - Michalina Kaj
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Monika Lesiów
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610000, Israel
| | - Muktimoy Chaudhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Grzegorz Kamieniarz
- Faculty of Physics, A. Mickiewicz University, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610000, Israel
| |
Collapse
|
31
|
New Cyanido-Bridged Heterometallic 3d-4f 1D Coordination Polymers: Synthesis, Crystal Structures and Magnetic Properties. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7050057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three new 1D cyanido-bridged 3d-4f coordination polymers, {[Gd(L)(H2O)2Fe(CN)6]·H2O}n (1GdFe), {[Dy(L)(H2O)2Fe(CN)6]·3H2O}n (2DyFe), and {[Dy(L)(H2O)2Co(CN)6]·H2O}n (3DyCo), were assembled following the building-block approach (L = pentadentate bis-semicarbazone ligand resulting from the condensation reaction between 2,6-diacetyl-pyridine and semicarbazide). The crystal structures consist of crenel-like LnIII-MIII alternate chains, with the LnIII ions connected by the hexacyanido metalloligands through two cis cyanido groups. The magnetic properties of the three complexes have been investigated. Field-induced slow relaxation of the magnetization was observed for compounds 2DyFe and 3DyCo. Compound 3DyCo is a new example of chain of Single Ion Magnets.
Collapse
|
32
|
|
33
|
Guo Z, Deng YF, Pikramenou Z, Dunbar KR, Zhang YZ. Strong Coupling and Slow Relaxation of the Magnetization for an Air-Stable [Co 4] Square with Both Tetrazine Radicals and Azido Bridges. Inorg Chem 2021; 60:3651-3656. [PMID: 33656338 DOI: 10.1021/acs.inorgchem.0c03158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introducing both tetrazine radical and azido bridges afforded two air-stable square complexes [MII4(bpztz•-)4(N3)4] (MII = Zn2+, 1; Co2+, 2; bpztz = 3,6-bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine), where the metal ions are cobridged by μ1,1-azido bridges and tetrazine radicals. Magnetic studies revealed strong antiferromagnetic metal-radical interaction with a coupling constant of -64.7 cm-1 in the 2J formalism in 2. Remarkably, 2 exhibits slow relaxation of magnetization with an effective barrier for spin reverse of 96 K at zero applied field.
Collapse
Affiliation(s)
- Zhilin Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zoe Pikramenou
- School of Chemistry, The University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Bondì L, Rodríguez-Jiménez S, Feltham HLC, Garden AL, Brooker S. Probing the generality of spin crossover complex T½vs. ligand 15N NMR chemical shift correlations: towards predictable tuning. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00919b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study of 6 families (42 members) demonstrates that within a family the easily calculated 15N-NMR values of ligands enable predictable tuning of T1/2 in the corresponding complexes, except for 2 families with weakly influencing meta-substituents.
Collapse
Affiliation(s)
- Luca Bondì
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Department of Chemistry ‘Ugo Schiff’ and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Santiago Rodríguez-Jiménez
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Humphrey L. C. Feltham
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Anna L. Garden
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
35
|
Świtlicka A, Machura B, Bieńko A, Kozieł S, Bieńko DC, Rajnák C, Boča R, Ozarowski A, Ozerov M. Non-traditional thermal behavior of Co( ii) coordination networks showing slow magnetic relaxation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00667c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new Co(ii) coordination polymers show the DC magnetic data consistent with the S = 3/2 spin system with large zero-field splitting D > 0, which was confirmed by HF EPR and FIRMS measurements.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| |
Collapse
|
36
|
Sun J, Wu Q, Lu J, Jing P, Du Y, Li L. Slow relaxation of magnetization in lanthanide-biradical complexes based on a functionalized nitronyl nitroxide biradical. Dalton Trans 2020; 49:17414-17420. [PMID: 33216082 DOI: 10.1039/d0dt03312j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three novel lanthanide-biradical complexes {[Ln(hfac)3]2(mbisNITPyPh)(H2O)}{[Ln(hfac)3](mbisNITPyPh)}·CHCl3 (1-Gd; 2-Tb; 3-Dy) were successfully achieved by reacting the biradical mbisNITPyPh (5-(3-pyridyl)-1,3-bis(1-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) with Ln(hfac)3·2H2O (hfac = hexafluoroacetylacetonate). These Ln-biradical complexes consist of two kinds of spin moieties, namely, dinuclear {[Ln(hfac)3]2(mbisNITPyPh)(H2O)} and mononuclear {[Ln(hfac)3](mbisNITPyPh)}, in which two adjacent dinuclear units are linked by intermolecular hydrogen bonds involving the uncoordinated nitroxide units and the coordinated water molecules of Ln ions, forming a cyclic tetranuclear structure unit. The magnetization study reveals that intramolecular Ln(iii)-coordinated NO ferromagnetic interactions are dominant in the present system. Moreover, the clear frequency dependence of ac magnetic susceptibilities of complex 3-Dy is indicative of slow relaxation of magnetization behavior, indicating its single-molecule magnet nature.
Collapse
Affiliation(s)
- Juan Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China.
| | | | | | | | | | | |
Collapse
|
37
|
Babeshkin KA, Gavrikov AV, Petrosyants SP, Ilyukhin AB, Belova EV, Efimov NN. Unexpected Supremacy of Non‐Dysprosium Single‐Ion Magnets within a Series of Isomorphic Lanthanide Cyanocobaltate(III) Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Konstantin A. Babeshkin
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Andrey V. Gavrikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Svetlana P. Petrosyants
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Andrey B. Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| | - Ekaterina V. Belova
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
- Department of Chemistry Lomonosov Moscow State University GSP1 119991 Moscow Russian Federation
| | - Nikolay N. Efimov
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Leninsky prosp. 31 119991 Moscow Russian Federation
| |
Collapse
|
38
|
Jochim A, Rams M, Böhme M, Ceglarska M, Plass W, Näther C. Thermodynamically metastable chain and stable layered Co(NCS) 2 coordination polymers: thermodynamic relations and magnetic properties. Dalton Trans 2020; 49:15310-15322. [PMID: 33118568 DOI: 10.1039/d0dt03227a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reaction of Co(NCS)2 with 4-bromopyridine leads to the formation of discrete complexes with the composition Co(NCS)2(4-bromopyridine)4·(CH3CN)0.67 (1), Co(NCS)2(4-bromopyridine)2(H2O)2 (2), Co(NCS)2(4-bromopyridine)2(CH3OH)2 (3) and Co(NCS)2(4-bromopyridine)2(CH3CN)2 (4). Upon heating compounds 2 and 4 transform into a crystalline product with the composition Co(NCS)2(4-bromopyridine)2 (5-I) that also can easily be obtained from solution. In this compound, the Co cations are linked by single μ-1,3-bridging thiocyanate anions into layers. Thermal decomposition of 3 leads to a second isomer (5-II), which is thermodynamically metastable and can also be synthesized from solution under kinetic control. In contrast to 5-I, the Co cations are linked by pairs of anionic ligands into linear chains. The magnetic exchange is very weak in 5-I, but much stronger and ferromagnetic along the linear chains in 5-II. AF ordering in 5-II is reached at 3.05 K, and magnetic relaxation is observed at the metamagnetic transition with an Arrhenius barrier of 17.1(3) cm-1. Ab initio computational studies reveal a different type of magnetic anisotropy to be present in the two crystallographically - independent Co centers in 5-II.
Collapse
Affiliation(s)
- Aleksej Jochim
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Magdalena Ceglarska
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| |
Collapse
|
39
|
Bondì L, Garden AL, Jerabek P, Totti F, Brooker S. Quantitative and Chemically Intuitive Evaluation of the Nature of M-L Bonds in Paramagnetic Compounds: Application of EDA-NOCV Theory to Spin Crossover Complexes. Chemistry 2020; 26:13677-13685. [PMID: 32671882 PMCID: PMC7702084 DOI: 10.1002/chem.202002146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Indexed: 11/16/2022]
Abstract
To improve understanding of M-L bonds in 3d transition metal complexes, analysis by energy decomposition analysis and natural orbital for chemical valence model (EDA-NOCV) is desirable as it provides a full, quantitative and chemically intuitive ab initio description of the M-L interactions. In this study, a generally applicable fragmentation and computational protocol was established and validated by using octahedral spin crossover (SCO) complexes, as the transition temperature (T1/2 ) is sensitive to subtle changes in M-L bonding. Specifically, EDA-NOCV analysis of Fe-N bonds in five [FeII (Lazine )2 (NCBH3 )2 ], in both low-spin (LS) and paramagnetic high-spin (HS) states led to: 1) development of a general, widely applicable, corrected M+L6 fragmentation, tested against a family of five LS [FeII (Lazine )3 ](BF4 )2 complexes; this confirmed that three Lazine are stronger ligands (ΔEorb,σ+π =-370 kcal mol-1 ) than 2 Lazine +2 NCBH3 (=-335 kcal mol-1 ), as observed. 2) Analysis of Fe-L bonding on LS→HS, reveals more ionic (ΔEelstat ) and less covalent (ΔEorb ) character (ΔEelstat :ΔEorb 55:45 LS→64:36 HS), mostly due to a big drop in σ (ΔEorb,σ ↓50 %; -310→-145 kcal mol-1 ), and a drop in π contributions (ΔEorb,π ↓90 %; -30→-3 kcal mol-1 ). 3) Strong correlation of observed T1/2 and ΔEorb,σ+π , for both LS and HS families (R2 =0.99 LS, R2 =0.95 HS), but no correlation of T1/2 and ΔΔEorb,σ+π (LS-HS) (R2 =0.11). Overall, this study has established and validated an EDA-NOCV protocol for M-L bonding analysis of any diamagnetic or paramagnetic, homoleptic or heteroleptic, octahedral transition metal complex. This new and widely applicable EDA-NOCV protocol holds great promise as a predictive tool.
Collapse
Affiliation(s)
- Luca Bondì
- Department of Chemistry andMacDiarmid Institute of Advanced Materials and NanotechnologyUniversity of OtagoPO Box 56Dunedin9054New Zealand
- Department of Chemistry “Ugo Schiff” and INSTM Research UnitUniversity of Florence50019Sesto FiorentinoItaly
| | - Anna L. Garden
- Department of Chemistry andMacDiarmid Institute of Advanced Materials and NanotechnologyUniversity of OtagoPO Box 56Dunedin9054New Zealand
| | - Paul Jerabek
- Centre for Theoretical Chemistry and PhysicsThe New Zealand Institute for Advanced Study andthe Institute for Natural and Mathematical SciencesMassey UniversityAucklandNew Zealand
- Department of NanotechnologyHelmholtz Centre for Materials and Coastal ResearchMax-Planck-Straße 121502GeesthachtGermany
| | - Federico Totti
- Department of Chemistry “Ugo Schiff” and INSTM Research UnitUniversity of Florence50019Sesto FiorentinoItaly
| | - Sally Brooker
- Department of Chemistry andMacDiarmid Institute of Advanced Materials and NanotechnologyUniversity of OtagoPO Box 56Dunedin9054New Zealand
| |
Collapse
|
40
|
Bassey EN, Paddison JAM, Keyzer EN, Lee J, Manuel P, da Silva I, Dutton SE, Grey CP, Cliffe MJ. Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS) 2. Inorg Chem 2020; 59:11627-11639. [PMID: 32799496 DOI: 10.1021/acs.inorgchem.0c01478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically simple layered molecular frameworks. Here, we report two new members of the family, manganese(II) thiocyanate, Mn(NCS)2, and iron(II) thiocyanate, Fe(NCS)2. Using magnetic susceptibility measurements on these materials and on cobalt(II) thiocyanate and nickel(II) thiocyanate, Co(NCS)2 and Ni(NCS)2, respectively, we identify significantly stronger net antiferromagnetic interactions between the earlier TM ions-a decrease in the Weiss constant, θ, from 29 K for Ni(NCS)2 to -115 K for Mn(NCS)2-a consequence of more diffuse 3d orbitals, increased orbital overlap, and increasing numbers of unpaired t2g electrons. We elucidate the magnetic structures of these materials: Mn(NCS)2, Fe(NCS)2, and Co(NCS)2 order into the same antiferromagnetic commensurate ground state, while Ni(NCS)2 adopts a ground state structure consisting of ferromagnetically ordered layers stacked antiferromagnetically. We show that significantly stronger exchange interactions can be realized in these thiocyanate frameworks by using earlier TMs.
Collapse
Affiliation(s)
- Euan N Bassey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Joseph A M Paddison
- Churchill College, University of Cambridge, Storey's Way, Cambridge, CB3 0DS, United Kingdom.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom.,Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States of America
| | - Evan N Keyzer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Jeongjae Lee
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.,School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, United Kingdom
| | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, United Kingdom
| | - Siân E Dutton
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Matthew J Cliffe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.,School of Chemistry, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Jochim A, Lohmiller T, Rams M, Böhme M, Ceglarska M, Schnegg A, Plass W, Näther C. Influence of the Coligand onto the Magnetic Anisotropy and the Magnetic Behavior of One-Dimensional Coordination Polymers. Inorg Chem 2020; 59:8971-8982. [PMID: 32551545 DOI: 10.1021/acs.inorgchem.0c00815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reaction of Co(NCS)2 with different coligands leads to the formation of three compounds with the general composition [Co(NCS)2(L)2]n (L = aniline (1), morpholine (2), and ethylenethiourea (3)). In all of these compounds the cobalt(II) cations are octahedrally coordinated by two trans thiocyanate N and S atoms and the apical donor atoms of the coligands and are linked into linear chains by pairs of anionic ligands. The magnetic behavior was investigated by a combination of static and dynamic susceptibility as well as specific-heat measurements, computational studies, and THz-EPR spectroscopy. All compounds show antiferromagnetic ordering as observed for similar compounds with pyridine derivatives as coligands. In contrast to the latter, for 1-3 significantly higher critical temperatures and no magnetic single-chain relaxations are observed, which can be traced back to stronger interchain interactions and a drastic change in the magnetic anisotropy of the metal centers. These results are discussed and compared with those of the pyridine-based compounds, which provides important insights into the parameters that govern the magnetic behavior of such one-dimensional coordination polymers.
Collapse
Affiliation(s)
- Aleksej Jochim
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30348 Kraków, Poland
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Magdalena Ceglarska
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30348 Kraków, Poland
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstrasse 5, 12489 Berlin, Germany.,EPR Research Group, MPI for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstrasse 8, 07743 Jena, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany
| |
Collapse
|
42
|
Xu Y, Wu LN, Li MX, Shi FN, Wang ZX. Syntheses, crystal structures and magnetic properties of two 1D copper complexes with Fe(IV) building block. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Liu X, Feng X, Meihaus KR, Meng X, Zhang Y, Li L, Liu J, Pedersen KS, Keller L, Shi W, Zhang Y, Cheng P, Long JR. Coercive Fields Above 6 T in Two Cobalt(II)–Radical Chain Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaowen Feng
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Katie R. Meihaus
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Xixi Meng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Yuan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Liang Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Kasper S. Pedersen
- Department of Chemistry Technical University of Denmark DK-2800 Kgs. Lyngby Denmark
| | - Lukas Keller
- Laboratory for Neutron Scattering and Imaging Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jeffrey R. Long
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Chemical and Biomolecular Engineering University of California Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
44
|
Liu X, Feng X, Meihaus KR, Meng X, Zhang Y, Li L, Liu JL, Pedersen KS, Keller L, Shi W, Zhang YQ, Cheng P, Long JR. Coercive Fields Above 6 T in Two Cobalt(II)-Radical Chain Compounds. Angew Chem Int Ed Engl 2020; 59:10610-10618. [PMID: 32285987 DOI: 10.1002/anie.202002673] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide-free hard magnets. Zero- and one-dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom-up nature of their synthesis. Here, we present two one-dimensional cobalt(II) systems Co(hfac)2 (R-NapNIT) (R-NapNIT=2-(2'-(R-)naphthyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R=MeO or EtO) supported by air-stable nitronyl nitroxide radicals. These compounds are single-chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three-dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaowen Feng
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Xixi Meng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Lukas Keller
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
45
|
Böhme M, Jochim A, Rams M, Lohmiller T, Suckert S, Schnegg A, Plass W, Näther C. Variation of the Chain Geometry in Isomeric 1D Co(NCS) 2 Coordination Polymers and Their Influence on the Magnetic Properties. Inorg Chem 2020; 59:5325-5338. [PMID: 32091883 DOI: 10.1021/acs.inorgchem.9b03357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two different isomers of [Co(NCS)2(4-chloropyridine)2]n (3C and 3L) were synthesized from solution and by thermal decomposition of Co(NCS)2(4-chloropyridine)2(H2O)2 (2), which show a different metal coordination leading to corrugated chains in 3C and to linear chains in 3L. Solvent mediated conversion experiments prove that 3C is thermodynamically stable at room temperature where 3L is metastable. Magnetic measurements reveal that the magnetic exchange in 3L is comparable to that observed for previously reported related chain compounds, whereas in 3C with corrugated chains, the ferromagnetic interaction within the chains is strongly suppressed. The magnetic ordering takes place at 2.85 and 0.89 K, for 3L and 3C, respectively, based on specific heat measurements. For 3L the field dependence of magnetic relaxations in antiferromagnetically ordered ferromagnetic chains is presented. In addition, 3L is investigated by FD-FT THz-EPR spectroscopy, revealing a ground to first excited state energy gap of 14.0 cm-1. Broken-symmetry DFT calculations for 3C and 3L indicate a ferromagnetic intrachain interaction. Ab initio CASSCF/CASPT2/RASSI-SO computational studies reveal significantly different single-ion anisotropies for the crystallographically independent cobalt(II) centers in 3C and 3L. Together with the geometry of the chains this explains the magnetic properties of 3C and 3L. The ab initio results also explain the weaker exchange interaction in 3C and 3L as compared to previously reported [Co(NCS)2(L)2]n compounds with linear chains.
Collapse
Affiliation(s)
- Michael Böhme
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Aleksej Jochim
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Stefan Suckert
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstrasse 5, 12489 Berlin, Germany.,EPR Research Group, MPI for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Christian Näther
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| |
Collapse
|
46
|
Yang J, Deng YF, Zhang YZ. Two azido-bridged homospin Fe(ii)/Co(ii) coordination polymers featuring single-chain magnet behavior. Dalton Trans 2020; 49:4805-4810. [PMID: 32211706 DOI: 10.1039/d0dt00181c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two azido-bridged homospin Fe(ii)/Co(ii) coordination polymers [Fe2(Bzp)2(N3)4]n (1) and [Co4(Bzp)4(N3)8·(MeOH)2]n (2) (bzp = 2-benzoylpyridine) are prepared, which consist of one-dimensional neutral chains with pure EO-azido (μ2-1,1-N3) bridges. Magnetically, both 1 and 2 exhibit considerable intrachain ferromagnetic interactions which benefit from the EO-azido bridging mode, leading to typical single-chain magnet (SCM) behavior under both the "infinite-size" and "finite-size" regime and pronounced hysteresis loops. As far as the bridging network is concerned, complex 1 represents not only a rare example of homospin Fe(ii)-based SCMs but also the first Fe(ii) chain compound with pure EO-azido bridges.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
47
|
Rams M, Jochim A, Böhme M, Lohmiller T, Ceglarska M, Rams MM, Schnegg A, Plass W, Näther C. Single-Chain Magnet Based on Cobalt(II) Thiocyanate as XXZ Spin Chain. Chemistry 2020; 26:2837-2851. [PMID: 31702081 PMCID: PMC7078958 DOI: 10.1002/chem.201903924] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 11/11/2022]
Abstract
The cobalt(II) in [Co(NCS)2 (4-methoxypyridine)2 ]n are linked by pairs of thiocyanate anions into linear chains. In contrast to a previous structure determination, two crystallographically independent cobalt(II) centers have been found to be present. In the antiferromagnetic state, below the critical temperature (Tc =3.94 K) and critical field (Hc =290 Oe), slow relaxations of the ferromagnetic chains are observed. They originate mainly from defects in the magnetic structure, which has been elucidated by micromagnetic Monte Carlo simulations and ac measurements using pristine and defect samples. The energy barriers of the relaxations are Δτ1 =44.9(5) K and Δτ2 =26.0(7) K for long and short spin chains, respectively. The spin excitation energy, measured by using frequency-domain EPR spectroscopy, is 19.1 cm-1 and shifts 0.1 cm-1 due to the magnetic ordering. Ab initio calculations revealed easy-axis anisotropy for both CoII centers, and also an exchange anisotropy Jxx /Jzz of 0.21. The XXZ anisotropic Heisenberg model (solved by using the density renormalization matrix group technique) was used to reconcile the specific heat, susceptibility, and EPR data.
Collapse
Affiliation(s)
- Michał Rams
- Institute of PhysicsJagiellonian UniversityŁojasiewicza 1130348KrakówPoland
| | - Aleksej Jochim
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Michael Böhme
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstr. 807743JenaGermany
| | - Thomas Lohmiller
- EPR4Energy Joint LabInstitut für NanospektroskopieHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| | | | - Marek M. Rams
- Institute of PhysicsJagiellonian UniversityŁojasiewicza 1130348KrakówPoland
| | - Alexander Schnegg
- EPR4Energy Joint LabInstitut für NanospektroskopieHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
- EPR Research GroupMPI for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Winfried Plass
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstr. 807743JenaGermany
| | - Christian Näther
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
48
|
Fürmeyer F, Münzberg D, Carrella LM, Rentschler E. First Cobalt(II) Spin Crossover Compound with N 4S 2-Donorset. Molecules 2020; 25:molecules25040855. [PMID: 32075199 PMCID: PMC7070910 DOI: 10.3390/molecules25040855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Herein we report the synthesis and characterization of a novel bis-tridentate 1,3,4-thiadiazole ligand (L = 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole). Two new mononuclear complexes of the type [MII(L)2](ClO4)2 (with M = FeII (C1) and CoII (C2)) have been synthesized, containing the new ligand (L). In both complexes the metal centers are coordinated by an N4S2-donorset and each of the two ligands is donating to the metal ion with just one of the tridentate pockets. The iron(II) complex (C1) is in the low spin [LS] state below room temperature and shows an increase in the magnetic moment only above 300 K. In contrast, the cobalt(II) complex (C2) shows a gradual spin crossover (SCO) with T1/2 = 175 K. To our knowledge, this is the first cobalt(II) SCO complex with an N4S2-coordination.
Collapse
|
49
|
Świtlicka A, Machura B, Penkala M, Bieńko A, Bieńko DC, Titiš J, Rajnák C, Boča R, Ozarowski A. Slow magnetic relaxation in hexacoordinated cobalt(ii) field-induced single-ion magnets. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00257g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To gain an insight into the factors affecting the enhancement of the energy barrier in SMM/SIM, hexacoordinate pseudohalide Co(ii) complexes based on the tridentate ligand were investigated.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Mateusz Penkala
- Department of Inorganic
- Organometallic Chemistry and Catalysis
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Dariusz C. Bieńko
- Faculty of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Ján Titiš
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Cyril Rajnák
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Roman Boča
- Department of Chemistry
- Faculty of Natural Sciences
- University of SS Cyril and Methodius
- 917 01 Trnava
- Slovakia
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
50
|
Wang JY, Shi Y, Tao DL, Yin GY, Bo QB. 2D chain layer versus 1D chain: rigid aromatic benzoate disassembling flexible alicyclic dicarboxylate-based lanthanide coordination polymers with enhanced photoluminescence and characteristic single-molecule magnet behavior. CrystEngComm 2020. [DOI: 10.1039/d0ce00583e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Used as photosensitizer and structural separator, aromatic benzoate activator was grafted on cyclopropane dicarboxylate-based lanthanide coordination polymers with efficient photoluminescence and characteristic behavior of single molecule magnet.
Collapse
Affiliation(s)
- Jia-Yin Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| | - Yang Shi
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| | - Dong-Liang Tao
- College of Chemistry and Material Engineering
- Fuyang Normal University
- Fuyang236037
- PR China
| | - Guo-Yin Yin
- Analytical Department
- STA Pharmaceutical US LLC
- San Diego
- USA
| | - Qi-Bing Bo
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan250022
- PR China
| |
Collapse
|