1
|
Tran NT, Graf R, Acevedo-Ochoa E, Trombke J, Weber T, Sommermann T, Salomon C, Kühn R, Rajewsky K, Chu VT. In vivo CRISPR/Cas9-mediated screen reveals a critical function of TFDP1 and E2F4 transcription factors in hematopoiesis. Leukemia 2024; 38:2003-2015. [PMID: 39043964 PMCID: PMC11347378 DOI: 10.1038/s41375-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Hematopoiesis is a continuous process of blood cell production driven by hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. Proliferation and differentiation of HSPCs are regulated by complex transcriptional networks. In order to identify transcription factors with key roles in HSPC-mediated hematopoietic reconstitution, we developed an efficient and robust CRISPR/Cas9-based in vivo genetic screen. Using this experimental system, we identified the TFDP1 transcription factor to be essential for HSPC proliferation and post-transplant hematopoiesis. We further discovered that E2F4, an E2F transcription factor, serves as a binding partner of TFDP1 and is required for HSPC proliferation. Deletion of TFDP1 caused downregulation of genes associated with the cell cycle, with around 50% of these genes being identified as direct targets of TFDP1 and E2F4. Thus, our study expands the transcriptional network governing hematopoietic development through an in vivo CRISPR/Cas9-based genetic screen and identifies TFDP1/E2F4 as positive regulators of cell cycle genes in HSPCs.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Robin Graf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, 13125, Germany
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin, Berlin, Germany
| | - Ernesto Acevedo-Ochoa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Janine Trombke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Timm Weber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Biobank OWL (BOWL), Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Dynamic42 GmbH, Jena, Germany
| | - Claudia Salomon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany.
| |
Collapse
|
2
|
Schiroli G, Kartha V, Duarte FM, Kristiansen TA, Mayerhofer C, Shrestha R, Earl A, Hu Y, Tay T, Rhee C, Buenrostro JD, Scadden DT. Cell of origin epigenetic priming determines susceptibility to Tet2 mutation. Nat Commun 2024; 15:4325. [PMID: 38773071 PMCID: PMC11109152 DOI: 10.1038/s41467-024-48508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.
Collapse
Affiliation(s)
- Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Vinay Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Trine A Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Rojesh Shrestha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
3
|
Guo P, Lim RC, Rajawasam K, Trinh T, Sun H, Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024; 13:e86168. [PMID: 38346162 PMCID: PMC10901513 DOI: 10.7554/elife.86168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Rebecca C Lim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Tiffany Trinh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| |
Collapse
|
4
|
Yan M, Liu M, Davis AG, Stoner SA, Zhang DE. Single-cell RNA sequencing of a new transgenic t(8;21) preleukemia mouse model reveals regulatory networks promoting leukemic transformation. Leukemia 2024; 38:31-44. [PMID: 37838757 PMCID: PMC10776403 DOI: 10.1038/s41375-023-02063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation. Conversely, overexpression of a truncated variant, AML1-ETO9a (AE9a), promotes fully penetrant leukemia and is too potent for studying pre-leukemic changes. To overcome these limitations, we devised a germline-transmitted Rosa26 locus AE9a knock-in mouse model that moderately overexpressed AE9a and developed leukemia with long latency and low penetrance. We observed pre-leukemic alterations in AE9a mice, including skewing of progenitors towards granulocyte/monocyte lineages and replating of stem and progenitor cells. Next, we performed single-cell RNA sequencing to identify specific cell populations that contribute to these pre-leukemic phenotypes. We discovered a subset of common myeloid progenitors that have heightened granulocyte/monocyte bias in AE9a mice. We also observed dysregulation of key hematopoietic transcription factor target gene networks, blocking cellular differentiation. Finally, we identified Sox4 activation as a potential contributor to stem cell self-renewal during the pre-leukemic stage.
Collapse
Affiliation(s)
- Ming Yan
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Samuel A Stoner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
He T, Wang S, Li S, Shen H, Hou L, Liu Y, Wei Y, Xie F, Zhang Z, Zhao Z, Mo C, Guo H, Huang Q, Zhang R, Shen D, Li B. Suppression of preadipocyte determination by SOX4 limits white adipocyte hyperplasia in obesity. iScience 2023; 26:106289. [PMID: 36968079 PMCID: PMC10030912 DOI: 10.1016/j.isci.2023.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Preadipocyte determination expanding the pool of preadipocytes is a vital process in adipocyte hyperplasia, but the molecular mechanisms underlying this process are yet to be elucidated. Herein, SRY-related HMG box transcription factor 4 (SOX4) was identified as a critical target in response to BMP4- and TGFβ-regulated preadipocyte determination. SOX4 deficiency is sufficient to promote preadipocyte determination in mesenchymal stem cells (MSCs) and acquisition of preadipocyte properties in nonadipogenic lineages, while its overexpression impairs the adipogenic capacity of preadipocytes and converts them into nonadipogenic lineages. Mechanism studies indicated that SOX4 activates and cooperates with LEF1 to retain the nuclear localization of β-catenin, thus mediating the crosstalk between TGFβ/BMP4 signaling pathway and Wnt signaling pathway to regulate the preadipocyte determination. In vivo studies demonstrated that SOX4 promotes the adipogenic-nonadipogenic conversion and suppresses the adipocyte hyperplasia. Together, our findings highlight the importance of SOX4 in regulating the adipocyte hyperplasia in obesity.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Fuan Xie
- Xiamen University Research Center of Retroperitoneal, Tumor Committee of Oncology Society of Chinese Medical Association, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiming Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Zehang Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Chunli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Qingsong Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
- Corresponding author
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Corresponding author
| |
Collapse
|
6
|
Che JLC, Bode D, Kucinski I, Cull AH, Bain F, Becker HJ, Jassinskaja M, Barile M, Boyd G, Belmonte M, Zeng AGX, Igarashi KJ, Rubio‐Lara J, Shepherd MS, Clay A, Dick JE, Wilkinson AC, Nakauchi H, Yamazaki S, Göttgens B, Kent DG. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep 2022; 23:e55502. [PMID: 35971894 PMCID: PMC9535767 DOI: 10.15252/embr.202255502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.
Collapse
Affiliation(s)
- James L C Che
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Iwo Kucinski
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Alyssa H Cull
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Fiona Bain
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Hans J Becker
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Melania Barile
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Grace Boyd
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Andy G X Zeng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyomi J Igarashi
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Juan Rubio‐Lara
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - John E Dick
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hiromitsu Nakauchi
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Laboratory of Stem Cell Therapy, Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
7
|
Gerber JP, Russ J, Chandrasekar V, Offermann N, Lee HM, Spear S, Guzzi N, Maida S, Pattabiraman S, Zhang R, Kayvanjoo AH, Datta P, Kasturiarachchi J, Sposito T, Izotova N, Händler K, Adams PD, Marafioti T, Enver T, Wenzel J, Beyer M, Mass E, Bellodi C, Schultze JL, Capasso M, Nimmo R, Salomoni P. Aberrant chromatin landscape following loss of the H3.3 chaperone Daxx in haematopoietic precursors leads to Pu.1-mediated neutrophilia and inflammation. Nat Cell Biol 2021; 23:1224-1239. [PMID: 34876685 PMCID: PMC8683376 DOI: 10.1038/s41556-021-00774-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
Defective silencing of retrotransposable elements has been linked to inflammageing, cancer and autoimmune diseases. However, the underlying mechanisms are only partially understood. Here we implicate the histone H3.3 chaperone Daxx, a retrotransposable element repressor inactivated in myeloid leukaemia and other neoplasms, in protection from inflammatory disease. Loss of Daxx alters the chromatin landscape, H3.3 distribution and histone marks of haematopoietic progenitors, leading to engagement of a Pu.1-dependent transcriptional programme for myelopoiesis at the expense of B-cell differentiation. This causes neutrophilia and inflammation, predisposing mice to develop an autoinflammatory skin disease. While these molecular and phenotypic perturbations are in part reverted in animals lacking both Pu.1 and Daxx, haematopoietic progenitors in these mice show unique chromatin and transcriptome alterations, suggesting an interaction between these two pathways. Overall, our findings implicate retrotransposable element silencing in haematopoiesis and suggest a cross-talk between the H3.3 loading machinery and the pioneer transcription factor Pu.1.
Collapse
Grants
- P01 AG031862 NIA NIH HHS
- C416/A25145 Cancer Research UK
- C16420/A18066 Cancer Research UK
- MC_U132670601 Medical Research Council
- C33499/A20265 Cancer Research UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (German Center for Neurodegenerative Diseases)
- Worldwide Cancer Research
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme People Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster Immunosensation2
- Aging and Metabolic Programming (AMPro) Consortium from Helmholtz
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster Immunosensation2ImmunoSensation2
- Cancer Research UK (CRUK)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster ImmunoSensation2
- EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: Ideas Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- Wilhelm Sander-Stiftung (Wilhelm Sander Foundation)
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC2151 – 390873048, Excellence Cluster ImmunoSensation2 Aging and Metabolic Programming (AMPro) Consortium from Helmholtz
Collapse
Affiliation(s)
- Julia P Gerber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Jenny Russ
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Nina Offermann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hang-Mao Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sarah Spear
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simona Maida
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Ruoyu Zhang
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amir H Kayvanjoo
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Preeta Datta
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | | | - Teresa Sposito
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Natalia Izotova
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Teresa Marafioti
- Department of Cancer Biology, UCL Cancer Institute, London, UK
- Department of Pathology, University College London, London, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Jörg Wenzel
- Department of Dermatology and Allergy, University Medical Center, Bonn, Germany
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Elvira Mass
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Joachim L Schultze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rachael Nimmo
- Department of Cancer Biology, UCL Cancer Institute, London, UK
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Cancer Biology, UCL Cancer Institute, London, UK.
| |
Collapse
|
8
|
Fli1 + cells transcriptional analysis reveals an Lmo2-Prdm16 axis in angiogenesis. Proc Natl Acad Sci U S A 2021; 118:2008559118. [PMID: 34330825 DOI: 10.1073/pnas.2008559118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg( f li1:EGFP) y1 , we identified two endothelial cell populations, high-fli1 + and low-fli1 +, by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1 -) with these two (fli1 +) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1 - and low-fli1 + cells, high-fli1 + cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1 + cells at the expense of high-fli1 + cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31+) cells compared with CD31- cells isolated from l mo2-mutants (l mo2-mut) embryos. Chromatin immunoprecipitation-PCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16 This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair.
Collapse
|
9
|
Ah-Cann C, Wimmer VC, Weeden CE, Marceaux C, Law CW, Galvis L, Filby CE, Liu J, Breslin K, Willson T, Ritchie ME, Blewitt ME, Asselin-Labat ML. A functional genetic screen identifies aurora kinase b as an essential regulator of Sox9-positive mouse embryonic lung progenitor cells. Development 2021; 148:269134. [PMID: 34121118 DOI: 10.1242/dev.199543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Development of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo. In vivo conditional knockout studies confirmed that Aurkb was required for lung development but was not necessary for postnatal growth and the repair of the adult lung after injury. Deletion of Aurkb in embryonic Sox9+ cells led to the formation of a stunted lung that retained the expression of Sox2 in the proximal airways, as well as Sox9 in the distal tips. Although we found no change in cell polarity, we showed that loss of Aurkb or chemical inhibition of Aurkb caused Sox9+ cells to arrest at G2/M, likely responsible for the lack of branch bifurcation. This work demonstrates the power of genetic screens in identifying novel regulators of Sox9+ progenitor cells and lung branching morphogenesis.
Collapse
Affiliation(s)
- Casey Ah-Cann
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Verena C Wimmer
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Clare E Weeden
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Claire Marceaux
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Laura Galvis
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Caitlin E Filby
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Joy Liu
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Kelsey Breslin
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Tracy Willson
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia.,School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Marie-Liesse Asselin-Labat
- Personalised Oncology Divison, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
10
|
Renders S, Svendsen AF, Panten J, Rama N, Maryanovich M, Sommerkamp P, Ladel L, Redavid AR, Gibert B, Lazare S, Ducarouge B, Schönberger K, Narr A, Tourbez M, Dethmers-Ausema B, Zwart E, Hotz-Wagenblatt A, Zhang D, Korn C, Zeisberger P, Przybylla A, Sohn M, Mendez-Ferrer S, Heikenwälder M, Brune M, Klimmeck D, Bystrykh L, Frenette PS, Mehlen P, de Haan G, Cabezas-Wallscheid N, Trumpp A. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun 2021; 12:608. [PMID: 33504783 PMCID: PMC7840807 DOI: 10.1038/s41467-020-20801-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.
Collapse
Affiliation(s)
- Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper Panten
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Anna Rita Redavid
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Seka Lazare
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manon Tourbez
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bertien Dethmers-Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Korn
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Simon Mendez-Ferrer
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Leonid Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Tognon CE, Sears RC, Mills GB, Gray JW, Tyner JW. Ex Vivo Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020; 5:39-57. [PMID: 34222745 DOI: 10.1146/annurev-cancerbio-043020-125955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of ex vivo drug sensitivity testing to predict drug activity in individual patients has been actively explored for almost 50 years without delivering a generally useful predictive capability. However, extended failure should not be an indicator of futility. This is especially true in cancer research where ultimate success is often preceded by less successful attempts. For example, both immune- and genetic-based targeted therapies for cancer underwent numerous failed attempts before biological understanding, improved targets, and optimized drug development matured to facilitate an arsenal of transformational drugs. Similarly, the concept of directly assessing drug sensitivity of primary tumor biopsies-and the use of this information to help direct therapeutic approaches-has a long history with a definitive learning curve. In this review, we will survey the history of ex vivo testing as well as the current state of the art for this field. We will present an update on methodologies and approaches, describe the use of these technologies to test cutting-edge drug classes, and describe an increasingly nuanced understanding of tumor types and models for which this strategy is most likely to succeed. We will consider the relative strengths and weaknesses of predicting drug activity across the broad biological context of cancer patients and tumor types. This will include an analysis of the potential for ex vivo drug sensitivity testing to accurately predict drug activity within each of the biological hallmarks of cancer pathogenesis.
Collapse
Affiliation(s)
- Cristina E Tognon
- Division of Hematology & Medical Oncology, Oregon Health & Science University.,Knight Cancer Institute, Oregon Health & Science University
| | - Rosalie C Sears
- Knight Cancer Institute, Oregon Health & Science University.,Department of Molecular and Medical Genetics, Oregon Health and Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| | - Joe W Gray
- Knight Cancer Institute, Oregon Health & Science University.,Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University.,Department of Biomedical Engineering, Oregon Health & Science University.,Center for Spatial Systems Biomedicine, Oregon Health & Science University
| | - Jeffrey W Tyner
- Division of Hematology & Medical Oncology, Oregon Health & Science University.,Knight Cancer Institute, Oregon Health & Science University.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University
| |
Collapse
|
12
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Chen C, Yu W, Tober J, Gao P, He B, Lee K, Trieu T, Blobel GA, Speck NA, Tan K. Spatial Genome Re-organization between Fetal and Adult Hematopoietic Stem Cells. Cell Rep 2020; 29:4200-4211.e7. [PMID: 31851943 PMCID: PMC7262670 DOI: 10.1016/j.celrep.2019.11.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023] Open
Abstract
Fetal hematopoietic stem cells (HSCs) undergo a developmental switch to become adult HSCs with distinct functional properties. To better understand the molecular mechanisms underlying the developmental switch, we have conducted deep sequencing of the 3D genome, epigenome, and transcriptome of fetal and adult HSCs in mouse. We find that chromosomal compartments and topologically associating domains (TADs) are largely conserved between fetal and adult HSCs. However, there is a global trend of increased compartmentalization and TAD boundary strength in adult HSCs. In contrast, intra-TAD chromatin interactions are much more dynamic and wide-spread, involving over a thousand gene promoters and distal enhancers. These developmental-stage-specific enhancer-promoter interactions are mediated by different sets of transcription factors, such as TCF3 and MAFB in fetal HSCs, versus NR4A1 and GATA3 in adult HSCs. Loss-of-function studies of TCF3 confirm the role of TCF3 in mediating condition-specific enhancer-promoter interactions and gene regulation in fetal HSCs. A developmental transition occurs between fetal and adult hematopoietic stem cells. How the 3D genome folding contributes to this transition is poorly understood. Chen et al. show global genome organization is largely conserved, but a large fraction of enhancer-promoter interactions is reorganized and regulate genes contributing to the phenotypic differences.
Collapse
Affiliation(s)
- Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, PA 19140, USA
| | - Tuan Trieu
- Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Gerd A Blobel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Wang X, Yang L, Wang YC, Xu ZR, Feng Y, Zhang J, Wang Y, Xu CR. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res 2020; 30:1109-1126. [PMID: 32690901 PMCID: PMC7784864 DOI: 10.1038/s41422-020-0378-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.
Collapse
Affiliation(s)
- Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Zi-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Ye Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China
| | - Jing Zhang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Yi Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Department of Human Anatomy, Histology, and Embryology, and School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol 2020; 13:91. [PMID: 32660524 PMCID: PMC7359022 DOI: 10.1186/s13045-020-00920-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin-associated protein that has been widely reported to play a pivotal role in the pathogenesis of hematopoietic malignancies. As a representative damage-associated molecular pattern (DAMP), HMGB1 normally exists inside cells but can be secreted into the extracellular environment through passive or active release. Extracellular HMGB1 binds with several different receptors and interactors to mediate the proliferation, differentiation, mobilization, and senescence of hematopoietic stem cells (HSCs). HMGB1 is also involved in the formation of the inflammatory bone marrow (BM) microenvironment by activating proinflammatory signaling pathways. Moreover, HMGB1-dependent autophagy induces chemotherapy resistance in leukemia and multiple myeloma. In this review, we systematically summarize the emerging roles of HMGB1 in carcinogenesis, progression, prognosis, and potential clinical applications in different hematopoietic malignancies. In summary, targeting the regulation of HMGB1 activity in HSCs and the BM microenvironment is highly beneficial in the diagnosis and treatment of various hematopoietic malignancies.
Collapse
Affiliation(s)
- Shunling Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
16
|
Courties G, Frodermann V, Honold L, Zheng Y, Herisson F, Schloss MJ, Sun Y, Presumey J, Severe N, Engblom C, Hulsmans M, Cremer S, Rohde D, Pittet MJ, Scadden DT, Swirski FK, Kim DE, Moskowitz MA, Nahrendorf M. Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circ Res 2020; 124:1372-1385. [PMID: 30782088 DOI: 10.1161/circresaha.118.314518] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE After a stroke, patients frequently experience altered systemic immunity resulting in peripheral immunosuppression and higher susceptibility to infections, which is at least partly attributed to lymphopenia. The mechanisms that profoundly change the systemic leukocyte repertoire after stroke are incompletely understood. Emerging evidence indicates that stroke alters hematopoietic output of the bone marrow. OBJECTIVE To explore the mechanisms that lead to defects of B lymphopoiesis after ischemic stroke. METHODS AND RESULTS We here report that ischemic stroke triggers brain-bone marrow communication via hormonal long-range signals that regulate hematopoietic B lineage decisions. Bone marrow fluorescence-activated cell sorter analyses and serial intravital microscopy indicate that transient middle cerebral artery occlusion in mice arrests B-cell development beginning at the pro-B-cell stage. This phenotype was not rescued in Myd88-/- and TLR4-/- mice with disrupted TLR (Toll-like receptor) signaling or after blockage of peripheral sympathetic nerves. Mechanistically, we identified stroke-induced glucocorticoid release as the main instigator of B lymphopoiesis defects. B-cell lineage-specific deletion of the GR (glucocorticoid receptor) in CD19-Cre loxP Nr3c1 mice attenuated lymphocytopenia after transient middle cerebral artery. In 20 patients with acute stroke, increased cortisol levels inversely correlated with blood lymphocyte numbers. CONCLUSIONS Our data demonstrate that the hypothalamic-pituitary-adrenal axis mediates B lymphopoiesis defects after ischemic stroke.
Collapse
Affiliation(s)
- Gabriel Courties
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Vanessa Frodermann
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Lisa Honold
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Yi Zheng
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Fanny Herisson
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Maximilian J Schloss
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Yuan Sun
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Jessy Presumey
- Massachusetts General Hospital and Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics (J.P.), Harvard Medical School, Boston
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.).,Harvard Stem Cell Institute, Cambridge, MA (N.S., D.T.S.).,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.S., D.T.S.)
| | - Camilla Engblom
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Maarten Hulsmans
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Sebastian Cremer
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - David Rohde
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Mikael J Pittet
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston (N.S., D.T.S.).,Harvard Stem Cell Institute, Cambridge, MA (N.S., D.T.S.).,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.S., D.T.S.)
| | - Filip K Swirski
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, South Korea (D.-E.K.)
| | - Michael A Moskowitz
- Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown (M.A.M.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology and Radiology Department (G.C., V.F., L.H., F.H., M.J.S., Y.S., C.E., M.H., S.C., D.R., M.J.P., F.K.S., M.N.), Harvard Medical School, Boston.,Cardiovascular Research Center (M.N.), Harvard Medical School, Boston
| |
Collapse
|
17
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
18
|
Oncogenic heterogeneous nuclear ribonucleoprotein D-like modulates the growth and imatinib response of human chronic myeloid leukemia CD34 + cells via pre-B-cell leukemia homeobox 1. Oncogene 2019; 39:443-453. [PMID: 31488872 DOI: 10.1038/s41388-019-0998-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Chronic myeloid leukemia (CML) originates from normal hematopoietic stem cells acquiring BCR-ABL fusion gene, specific BCR-ABL inhibitors (e.g., imatinib mesylate, IM) have greatly improved patient management. However, some patients are still suffering from relapse and drug resistance, which urges better understanding of the growth/survival mechanisms of CML stem/progenitor cells. In the present study, the role and its underlying mechanism of heterogeneous nuclear ribonucleoprotein D-like (HNRPDL) in CML cells were investigated. Firstly, overexpression of HNRPDL promoted the growth of murine BaF3 cells in vitro and induced leukemia in vivo, which was enhanced by co-expression of BCR-ABL. Conversely, HNRPDL silencing inhibited colony-forming cell (CFC) production of CML CD34+ cells and attenuated BCR-ABL induced leukemia. In addition, HNRPDL modulated imatinib response of K562 cells and HNRPDL silencing sensitized CML CD34+ cells to imatinib treatment. Mechanistically, we found the stability of pre-B-cell leukemia homeobox 1 (PBX1) mRNA was sustained by HNRPDL through its binding to a specific motif (ACUAGC) in 3'-untranslated region (3'-UTR) of PBX1. The expression of PBX1 was significantly higher in CML CD34+ cells than that in control cells and PBX silencing inhibited the growth of CML cells and sensitized them to imatinib treatment. In contrast, overexpression of PBX1 elevated the CFC production of normal hematopoietic CD34+ cells and "rescued" HNRPDL silencing induced growth inhibition and imatinib sensitization. Taken together, our data have demonstrated that HNRPDL transforms hematopoietic cells and a novel HNRPDL/PBX1 axis plays an important role in human CML CD34+ cells.
Collapse
|
19
|
Synergy of NUP98-HOXA10 Fusion Gene and NrasG12D Mutation Preserves the Stemness of Hematopoietic Stem Cells on Culture Condition. Cells 2019; 8:cells8090951. [PMID: 31443434 PMCID: PMC6770072 DOI: 10.3390/cells8090951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.
Collapse
|
20
|
A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood 2019; 133:2198-2211. [DOI: 10.1182/blood-2018-10-881441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.
Collapse
|
21
|
Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discov 2019; 5:2. [PMID: 30622738 PMCID: PMC6323118 DOI: 10.1038/s41421-018-0072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 11/23/2022] Open
Abstract
The limited number of human hematopoietic stem cells (HSCs) has restrained their widespread clinical application. Despite great efforts in recent years, the in vitro expansion of HSCs remains a challenge due to incomplete understanding of the signaling networks underlying HSC self-renewal. Here, we show that culturing human cord blood (CB) CD34+ cells with JNK-IN-8, an inhibitor of the JNK signaling pathway, can enhance the self-renewal of HSCs with a 3.88-fold increase in cell number. These cultured CD34+ cells repopulated recipient mice for 21 weeks and can form secondary engraftment that lasted for more than 21 weeks. Knockdown of c-Jun, a major downstream target in the JNK pathway, promoted the expansion of hematopoietic stem and progenitor cells (HSPCs). Our findings demonstrate a critical role of the JNK pathway in regulating HSC expansion, provide new insights into HSC self-renewal mechanism, and may lead to improved clinical application of HSCs.
Collapse
|
22
|
Muench DE, Ferchen K, Velu CS, Pradhan K, Chetal K, Chen X, Weirauch MT, Colmenares C, Verma A, Salomonis N, Grimes HL. SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24-e34. [PMID: 30249787 PMCID: PMC6251005 DOI: 10.1182/blood-2018-06-860890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway controls hematopoietic stem cell (HSC) behavior in the marrow niche; however, TGF-β signaling becomes chronic in early-stage myelodysplastic syndrome (MDS). Although TGF-β signaling normally induces negative feedback, in early-stage MDS, high levels of microRNA-21 (miR-21) contribute to chronic TGF-β signaling. We found that a TGF-β signal-correlated gene signature is sufficient to identify an MDS patient population with abnormal RNA splicing (eg, CSF3R) independent of splicing factor mutations and coincident with low HNRNPK activity. Levels of SKI messenger RNA (mRNA) encoding a TGF-β antagonist are sufficient to identify these patients. However, MDS patients with high SKI mRNA and chronic TGF-β signaling lack SKI protein because of miR-21 activity. To determine the impact of SKI loss, we examined murine Ski -/- HSC function. First, competitive HSC transplants revealed a profound defect in stem cell fitness (competitive disadvantage) but not specification, homing, or multilineage production. Aged recipients of Ski -/- HSCs exhibited mild phenotypes similar to phenotypes in those with macrocytic anemia. Second, blastocyst complementation revealed a dramatic block in Ski -/- hematopoiesis in the absence of transplantation. Similar to SKI-high MDS patient samples, Ski -/- HSCs strikingly upregulated TGF-β signaling and deregulated expression of spliceosome genes (including Hnrnpk). Moreover, novel single-cell splicing analyses demonstrated that Ski -/- HSCs and high levels of SKI expression in MDS patient samples share abnormal alternative splicing of common genes (including those that encode splicing factors). We conclude that miR-21-mediated loss of SKI activates TGF-β signaling and alternative splicing to impair the competitive advantage of normal HSCs (fitness), which could contribute to selection of early-stage MDS-genic clones.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chinavenmeni S Velu
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Matthew T Weirauch
- Division of Biomedical Informatics
- Center for Autoimmune Genomics and Etiology, and
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; and
| | | | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
23
|
Xu X, Schneider B. Therapeutic targeting potential of chromatin-associated proteins in MLL-rearranged acute leukemia. Cell Oncol (Dordr) 2018; 42:117-130. [DOI: 10.1007/s13402-018-0414-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
|
24
|
You Y, Cuevas-Diaz Duran R, Jiang L, Dong X, Zong S, Snyder M, Wu JQ. An integrated global regulatory network of hematopoietic precursor cell self-renewal and differentiation. Integr Biol (Camb) 2018; 10:390-405. [PMID: 29892750 PMCID: PMC6047913 DOI: 10.1039/c8ib00059j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Systematic study of the regulatory mechanisms of Hematopoietic Stem Cell and Progenitor Cell (HSPC) self-renewal is fundamentally important for understanding hematopoiesis and for manipulating HSPCs for therapeutic purposes. Previously, we have characterized gene expression and identified important transcription factors (TFs) regulating the switch between self-renewal and differentiation in a multipotent Hematopoietic Progenitor Cell (HPC) line, EML (Erythroid, Myeloid, and Lymphoid) cells. Herein, we report binding maps for additional TFs (SOX4 and STAT3) by using chromatin immunoprecipitation (ChIP)-Sequencing, to address the underlying mechanisms regulating self-renewal properties of lineage-CD34+ subpopulation (Lin-CD34+ EML cells). Furthermore, we applied the Assay for Transposase Accessible Chromatin (ATAC)-Sequencing to globally identify the open chromatin regions associated with TF binding in the self-renewing Lin-CD34+ EML cells. Mass spectrometry (MS) was also used to quantify protein relative expression levels. Finally, by integrating the protein-protein interaction database, we built an expanded transcriptional regulatory and interaction network. We found that MAPK (Mitogen-activated protein kinase) pathway and TGF-β/SMAD signaling pathway components were highly enriched among the binding targets of these TFs in Lin-CD34+ EML cells. The present study integrates regulatory information at multiple levels to paint a more comprehensive picture of the HSPC self-renewal mechanisms.
Collapse
Affiliation(s)
- Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang T, Xia C, Dong Y, Chen X, Wang J, Du J. Trim27 confers myeloid hematopoiesis competitiveness by up-regulating myeloid master genes. J Leukoc Biol 2018; 104:799-809. [PMID: 29897614 DOI: 10.1002/jlb.1a1217-480r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Trim27 (Zinc finger protein RFP) is a potential regulator of hematopoietic stem cells (HSC), yet its role in hematopoiesis remains elusive. Here, we investigated the roles of Trim27 in hematopoiesis by enforcing its expression in mouse and human hematopoietic stem and progenitor cells (HSPC). Ectopic expression of Trim27 in mouse fetal liver (FL) HSPC confers repopulating advantage with myeloid dominance. However, the number of HSC from Trim27 group was comparable with empty vector control group, indicating that overexpression of Trim27 unlikely expanded HSC. Transcriptome analysis of Trim27-overexpressing myeloid progenitor cells (MP) indicated that Trim27 up-regulated essential regulators of myelopoiesis, including Spi1 and Cebpg, up-regulated myeloid proliferation-related signaling genes Nras, Runx1, and Cbfb, up-regulated JAK/STAT signaling inhibitors Socs2, Socs3, and Cish, and up-regulated myeloid maturation-related genes Adam8 and Dek. Moreover, the myeloproliferative advantage caused by overexpressing Trim27/TRIM27 is conserved between mouse and human hematopoiesis. To our knowledge, this is the first study showing that Trim27 confers competitive hematopoiesis by promoting myeloid bias differentiation of HSPC, but not by expanding HSC.
Collapse
Affiliation(s)
- Tongjie Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengxiang Xia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yong Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaoli Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jinyong Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Juan Du
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| |
Collapse
|
26
|
Frech M, Teichler S, Feld C, Bouchard C, Berberich H, Sorg K, Mernberger M, Bullinger L, Bauer UM, Neubauer A. MYB induces the expression of the oncogenic corepressor SKI in acute myeloid leukemia. Oncotarget 2018; 9:22423-22435. [PMID: 29854289 PMCID: PMC5976475 DOI: 10.18632/oncotarget.25051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) arises through clonal expansion of transformed myeloid progenitor cells. The SKI proto-oncogene is highly upregulated in different solid tumors and leukemic cells, but little is known about its transcriptional regulation during leukemogenesis. MYB is an important hematopoietic transcription factor involved in proliferation as well as differentiation and upregulated in most human acute leukemias. Here, we find that MYB protein binds within the regulatory region of the SKI gene in AML cells. Reporter gene assays using MYB binding sites present in the SKI gene locus show MYB-dependent transcriptional activation. SiRNA-mediated depletion of MYB in leukemic cell lines reveals that MYB is crucial for SKI gene expression. Consistently, we observed a positive correlation of MYB and SKI expression in leukemic cell lines and in samples of AML patients. Moreover, MYB and SKI both were downregulated by treatment with histone deacetylase inhibitors. Strikingly, differentiation of AML cells induced by depletion of MYB is attenuated by overexpression of SKI. Our findings identify SKI as a novel MYB target gene, relevant for the MYB-induced differentiation block in leukemic cells.
Collapse
Affiliation(s)
- Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Sabine Teichler
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Christine Feld
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany.,Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Caroline Bouchard
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Hannah Berberich
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Katharina Sorg
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps University Marburg, Marburg 35043, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| |
Collapse
|
27
|
Zhang YH, Hu Y, Zhang Y, Hu LD, Kong X. Distinguishing three subtypes of hematopoietic cells based on gene expression profiles using a support vector machine. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2255-2265. [PMID: 29241664 DOI: 10.1016/j.bbadis.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
Hematopoiesis is a complicated process involving a series of biological sub-processes that lead to the formation of various blood components. A widely accepted model of early hematopoiesis proceeds from long-term hematopoietic stem cells (LT-HSCs) to multipotent progenitors (MPPs) and then to lineage-committed progenitors. However, the molecular mechanisms of early hematopoiesis have not been fully characterized. In this study, we applied a computational strategy to identify the gene expression signatures distinguishing three types of closely related hematopoietic cells collected in recent studies: (1) hematopoietic stem cell/multipotent progenitor cells; (2) LT-HSCs; and (3) hematopoietic progenitor cells. Each cell in these cell types was represented by its gene expression profile among a total number of 20,475 genes. The expression features were analyzed by a Monte-Carlo Feature Selection (MCFS) method, resulting in a feature list. Then, the incremental feature selection (IFS) and a support vector machine (SVM) optimized with a sequential minimum optimization (SMO) algorithm were employed to access the optimal classifier with the highest Matthews correlation coefficient (MCC) value of 0.889, in which 6698 features were used to represent cells. In addition, through an updated program of MCFS method, seventeen decision rules can be obtained, which can classify the three cell types with an overall accuracy of 0.812. Using a literature review, both the rules and the top features used for building the optimal classifier were confirmed to be commonly used or potential biological markers for distinguishing the three cell types of HSPCs. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yuchao Zhang
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Lan-Dian Hu
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Xiangyin Kong
- Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
28
|
Tirone M, Tran NL, Ceriotti C, Gorzanelli A, Canepari M, Bottinelli R, Raucci A, Di Maggio S, Santiago C, Mellado M, Saclier M, François S, Careccia G, He M, De Marchis F, Conti V, Ben Larbi S, Cuvellier S, Casalgrandi M, Preti A, Chazaud B, Al-Abed Y, Messina G, Sitia G, Brunelli S, Bianchi ME, Vénéreau E. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 2017; 215:303-318. [PMID: 29203538 PMCID: PMC5748844 DOI: 10.1084/jem.20160217] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 09/11/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. Tirone et al. show that alternative redox forms of high mobility group box 1 (HMGB1), the “alarmin” signal released by damaged cells, trigger inflammation or tissue repair after injury by interacting with distinct receptors and that a nonoxidizable HMGB1 mutant promotes regeneration without exacerbating inflammation. Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine. Here we report that fully reduced HMGB1 orchestrates muscle and liver regeneration via CXCR4, whereas disulfide HMGB1 and its receptors TLR4/MD-2 and RAGE (receptor for advanced glycation end products) are not involved. Injection of HMGB1 accelerates tissue repair by acting on resident muscle stem cells, hepatocytes, and infiltrating cells. The nonoxidizable HMGB1 mutant 3S, in which serines replace cysteines, promotes muscle and liver regeneration more efficiently than the wild-type protein and without exacerbating inflammation by selectively interacting with CXCR4. Overall, our results show that the reduced form of HMGB1 coordinates tissue regeneration and suggest that 3S may be used to safely accelerate healing after injury in diverse clinical contexts.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Ceriotti
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Gorzanelli
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdepartmental Centre for the Study of Biology and Sports Medicine, University of Pavia, Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Stefania Di Maggio
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - César Santiago
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | | | - Giorgia Careccia
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mingzhu He
- The Feinstein Institute for Medical Research, Manhasset, NY
| | - Francesco De Marchis
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Conti
- Neural Stem Cell Biology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Ben Larbi
- Institut NeuroMyogène, CNRS UMR5310, INSERM U1217, Université Lyon 1 Claude Bernard, Lyon, France
| | - Sylvain Cuvellier
- INSERM U1016, Institut Cochin, CNRS, UMR8104, Université Paris Descartes, Paris, France
| | | | | | - Bénédicte Chazaud
- Institut NeuroMyogène, CNRS UMR5310, INSERM U1217, Université Lyon 1 Claude Bernard, Lyon, France
| | - Yousef Al-Abed
- The Feinstein Institute for Medical Research, Manhasset, NY
| | | | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Emilio Bianchi
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy .,San Raffaele University, Milan, Italy
| | - Emilie Vénéreau
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy .,HMGBiotech S.r.l., Milan, Italy
| |
Collapse
|
29
|
Weidner CI, Lin Q, Birkhofer C, Gerstenmaier U, Kaifie A, Kirschner M, Bruns H, Balabanov S, Trummer A, Stockklausner C, Höchsmann B, Schrezenmeier H, Wlodarski M, Panse J, Brümmendorf TH, Beier F, Wagner W. DNA methylation in PRDM8 is indicative for dyskeratosis congenita. Oncotarget 2017; 7:10765-72. [PMID: 26909595 PMCID: PMC4905437 DOI: 10.18632/oncotarget.7458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Dyskeratosis congenita (DKC) is associated with impaired telomere maintenance and with clinical features of premature aging. In this study, we analysed global DNA methylation (DNAm) profiles of DKC patients. Age-associated DNAm changes were not generally accelerated in DKC, but there were significant differences to DNAm patterns of healthy controls, particularly in CpG sites related to an internal promoter region of PR domain containing 8 (PRDM8). Notably, the same genomic region was also hypermethylated in aplastic anemia (AA) – another bone marrow failure syndrome. Site-specific analysis of DNAm level in PRDM8 with pyrosequencing and MassARRAY validated aberrant hypermethylation in 11 DKC patients and 27 AA patients. Telomere length, measured by flow-FISH, did not directly correlate with DNAm in PRDM8. Therefore the two methods may be complementary to also identify patients with still normal telomere length. In conclusion, blood of DKC patients reveals aberrant DNAm patterns, albeit age-associated DNAm patterns are not generally accelerated. Aberrant hypermethylation is particularly observed in PRDM8 and this may support identification and classification of bone marrow failure syndromes.
Collapse
Affiliation(s)
- Carola I Weidner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | | | | | - Andrea Kaifie
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Balabanov
- Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Arne Trummer
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Clemens Stockklausner
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Marcin Wlodarski
- Department of Pediatrics, Hematology and Oncology, University of Freiburg, Freiburg, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| |
Collapse
|
30
|
Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney CM, Goodell MA, Nakada D. Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep 2017; 17:1453-1461. [PMID: 27783956 DOI: 10.1016/j.celrep.2016.09.092] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the mechanisms that regulate hematopoietic stem/progenitor cells (HSPCs) has been advanced by the ability to genetically manipulate mice; however, germline modification is time consuming and expensive. Here, we describe fast, efficient, and cost-effective methods to directly modify the genomes of mouse and human HSPCs using the CRISPR/Cas9 system. Using plasmid and virus-free delivery of guide RNAs alone into Cas9-expressing HSPCs or Cas9-guide RNA ribonucleoprotein (RNP) complexes into wild-type cells, we have achieved extremely efficient gene disruption in primary HSPCs from mouse (>60%) and human (∼75%). These techniques enabled rapid evaluation of the functional effects of gene loss of Eed, Suz12, and DNMT3A. We also achieved homology-directed repair in primary human HSPCs (>20%). These methods will significantly expand applications for CRISPR/Cas9 technologies for studying normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Michael C Gundry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, 06156 Perugia, Italy
| | - Angelique Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison E Mayle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dimitrios Wagner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA; Institute for Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Joanne I Hsu
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Margaret A Goodell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital and Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
31
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
32
|
Novel regulators in hematopoietic stem cells can be revealed by a functional approach under leukemic condition. Leukemia 2016; 30:2074-2077. [PMID: 27133818 DOI: 10.1038/leu.2016.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
PRDM16 Suppresses MLL1r Leukemia via Intrinsic Histone Methyltransferase Activity. Mol Cell 2016; 62:222-236. [PMID: 27151440 DOI: 10.1016/j.molcel.2016.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
PRDM16 is a transcription co-factor that plays critical roles in development of brown adipose tissue, as well as maintenance of adult hematopoietic and neural stem cells. Here we report that PRDM16 is a histone H3K4 methyltransferase on chromatin. Mutation in the N-terminal PR domain of PRDM16 abolishes the intrinsic enzymatic activity of PRDM16. We show that the methyltransferase activity of PRDM16 is required for specific suppression of MLL fusion protein-induced leukemogenesis both in vitro and in vivo. Mechanistic studies show that PRDM16 directly activates the SNAG family transcription factor Gfi1b, which in turn downregulates the HOXA gene cluster. Knockdown Gfi1b represses PRDM16-mediated tumor suppression, while Gfi1b overexpression mimics PRDM16 overexpression. In further support of the tumor suppressor function of PRDM16, silencing PRDM16 by DNA methylation is concomitant with MLL-AF9-induced leukemic transformation. Taken together, our study reveals a previously uncharacterized function of PRDM16 that depends on its PR domain activity.
Collapse
|
34
|
Holmfeldt P, Ganuza M, Marathe H, He B, Hall T, Kang G, Moen J, Pardieck J, Saulsberry AC, Cico A, Gaut L, McGoldrick D, Finkelstein D, Tan K, McKinney-Freeman S. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 2016; 213:433-49. [PMID: 26880577 PMCID: PMC4813668 DOI: 10.1084/jem.20150806] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/07/2016] [Indexed: 11/12/2022] Open
Abstract
Holmfeldt et al. perform a transplant-based screen to identify regulators of HSPC engraftment and report that Foxa3 is critical for optimal HSC function after transplant. Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp521. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3−/− HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Himangi Marathe
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Bing He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Joseph Moen
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Jennifer Pardieck
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Alba Cico
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ludovic Gaut
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Daniel McGoldrick
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kai Tan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
35
|
Won KJ, Park SW, Lee S, Kong IK, Chae JI, Kim B, Lee EJ, Kim DK. A New Triggering Receptor Expressed on Myeloid Cells (TREM) Family Member, TLT-6, is Involved in Activation and Proliferation of Macrophages. Immune Netw 2015; 15:232-40. [PMID: 26557807 PMCID: PMC4637344 DOI: 10.4110/in.2015.15.5.232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 01/24/2023] Open
Abstract
The triggering receptor expressed on myeloid cells (TREM) family, which is abundantly expressed in myeloid lineage cells, plays a pivotal role in innate and adaptive immune response. In this study, we aimed to identify a novel receptor expressed on hematopoietic stem cells (HSCs) by using in silico bioinformatics and to characterize the identified receptor. We thus found the TREM-like transcript (TLT)-6, a new member of TREM family. TLT-6 has a single immunoglobulin domain in the extracellular region and a long cytoplasmic region containing 2 immunoreceptor tyrosine-based inhibitory motif-like domains. TLT-6 transcript was expressed in HSCs, monocytes and macrophages. TLT-6 protein was up-regulated on the surface of bone marrow-derived and peritoneal macrophages by lipopolysaccharide stimulation. TLT-6 exerted anti-proliferative effects in macrophages. Our results demonstrate that TLT-6 may regulate the activation and proliferation of macrophages.
Collapse
Affiliation(s)
- Kyung-Jong Won
- Department of Physiology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | - Sung-Won Park
- Departmet of Biomedical Science, College of Life Science, CHA University, Seongnam 13496, Korea
| | - Seunghoon Lee
- National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Il-Keun Kong
- Department of Animal Sciences, Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 54907, Korea
| | - Bokyung Kim
- Department of Physiology, School of Medicine, Konkuk University, Chungju 27478, Korea
| | | | | |
Collapse
|
36
|
Cambuli FM, Correa BR, Rezza A, Burns SC, Qiao M, Uren PJ, Kress E, Boussouar A, Galante PAF, Penalva LOF, Plateroti M. A Mouse Model of Targeted Musashi1 Expression in Whole Intestinal Epithelium Suggests Regulatory Roles in Cell Cycle and Stemness. Stem Cells 2015; 33:3621-34. [PMID: 26303183 DOI: 10.1002/stem.2202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
The intestinal epithelium is very peculiar for its continuous cell renewal, fuelled by multipotent stem cells localized within the crypts of Lieberkühn. Several lines of evidence have established the evolutionary conserved RNA-binding protein Musashi1 as a marker of adult stem cells, including those of the intestinal epithelium, and revealed its roles in stem cell self-renewal and cell fate determination. Previous studies from our laboratories have shown that Musashi1 controls stem cell-like features in medulloblastoma, glioblastoma, and breast cancer cells, and has pro-proliferative and pro-tumorigenic properties in intestinal epithelial progenitor cells in vitro. To undertake a detailed study of Musashi1's function in the intestinal epithelium in vivo, we have generated a mouse model, referred to as v-Msi, overexpressing Musashi1 specifically in the entire intestinal epithelium. Compared with wild type litters, v-Msi1 mice exhibited increased intestinal crypt size accompanied by enhanced proliferation. Comparative transcriptomics by RNA-seq revealed Musashi1's association with gut stem cell signature, cell cycle, DNA replication, and drug metabolism. Finally, we identified and validated three novel mRNA targets that are stabilized by Musashi1, Ccnd1 (Cyclin D1), Cdk6, and Sox4. In conclusion, the targeted expression of Musashi1 in the intestinal epithelium in vivo increases the cell proliferation rate and strongly suggests its action on stem cells activity. This is due to the modulation of a complex network of gene functions and pathways including drug metabolism, cell cycle, and DNA synthesis and repair.
Collapse
Affiliation(s)
- F M Cambuli
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - B R Correa
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - A Rezza
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - S C Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - P J Uren
- Molecular and Computational Biology Section, Division of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - E Kress
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - A Boussouar
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| | - P A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - L O F Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - M Plateroti
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Université Lyon, France
| |
Collapse
|
37
|
Chen X, Zhao Q, Li C, Geng Y, Huang K, Zhang J, Wang X, Yang J, Wang T, Xia C, Liu X, Meng M, Yang D, Zheng Y, Du J, Zhang X, Chen J, Pan G, Wang J. OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo. Stem Cell Res 2015; 15:395-402. [PMID: 26339946 DOI: 10.1016/j.scr.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 02/04/2023] Open
Abstract
Generating engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) is an ideal approach for obtaining induced HSCs for cell therapy. However, the path from PSCs to robustly induced HSCs (iHSCs) in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study, we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2) accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly, the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore, the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoli Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Qianhao Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Li
- Department of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Geng
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Ke Huang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jian Zhang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaoshan Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jiaqi Yang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Tongjie Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Chengxiang Xia
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiaofei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Minghui Meng
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Dan Yang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yi Zheng
- Flow Core facility, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Du
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Xiangzhong Zhang
- Department of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Guangjin Pan
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Jinyong Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China.
| |
Collapse
|
38
|
Li L, Li Q, Chen X, Xu M, Li X, Nie L, Chen N, Gong J, Mao Q, Zhou Q. SOX4 is overexpressed in diffusely infiltrating astrocytoma and confers poor prognosis. Neuropathology 2015; 35:510-7. [PMID: 26096696 DOI: 10.1111/neup.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/10/2015] [Indexed: 02/05/2023]
Abstract
The SOX4 (sex-determining region Y-related high-mobility-group box transcription factor 4) gene plays critical roles in embryonic development and cell-fate determination. Recently, SOX4 overexpression has been found in various tumors. However, its expression status and prognostic significance in astrocytoma remain unknown. In this study, SOX4 expression in diffusely infiltrating astrocytoma (WHO grades II-IV) tissues (in comparison with pilocytic astrocytomas) was examined by immunohistochemistry, and its relevance with prognosis was analyzed. Our data showed that SOX4 was over-expressed in diffusely infiltrating astrocytomas and its expression was positively correlated with astrocytoma grade (WHO grades II-IV). Significantly, Kaplan-Meier analysis revealed that SOX4 nuclear overexpression (SOX4-N) was associated with poorer progression-free survival (PFS) and disease-specific survival (DSS) in diffusely infiltrating astrocytoma patients (P < 0.05). Cox regression analysis further showed that nuclear SOX4-N was a significant independent negative prognostic factor for these patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiuyao Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.,Qilu Hospital of Shandong University, Qingdao, China
| | - Xueqin Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xinglan Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Gong
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Sheridan JM, Ritchie ME, Best SA, Jiang K, Beck TJ, Vaillant F, Liu K, Dickins RA, Smyth GK, Lindeman GJ, Visvader JE. A pooled shRNA screen for regulators of primary mammary stem and progenitor cells identifies roles for Asap1 and Prox1. BMC Cancer 2015; 15:221. [PMID: 25879659 PMCID: PMC4399223 DOI: 10.1186/s12885-015-1187-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background The molecular regulators that orchestrate stem cell renewal, proliferation and differentiation along the mammary epithelial hierarchy remain poorly understood. Here we have performed a large-scale pooled RNAi screen in primary mouse mammary stem cell (MaSC)-enriched basal cells using 1295 shRNAs against genes principally involved in transcriptional regulation. Methods MaSC-enriched basal cells transduced with lentivirus pools carrying shRNAs were maintained as non-adherent mammospheres, a system known to support stem and progenitor cells. Integrated shRNAs that altered culture kinetics were identified by next generation sequencing as relative frequency changes over time. RNA-seq-based expression profiling coupled with in vitro progenitor and in vivo transplantation assays was used to confirm a role for candidate genes in mammary stem and/or progenitor cells. Results Utilizing a mammosphere-based assay, the screen identified several candidate regulators. Although some genes had been previously implicated in mammary gland development, the vast majority of genes uncovered have no known function within the mammary gland. RNA-seq analysis of freshly purified primary mammary epithelial populations and short-term cultured mammospheres was used to confirm the expression of candidate regulators. Two genes, Asap1 and Prox1, respectively implicated in breast cancer metastasis and progenitor cell function in other systems, were selected for further analysis as their roles in the normal mammary gland were unknown. Both Prox1 and Asap1 were shown to act as negative regulators of progenitor activity in vitro, and Asap1 knock-down led to a marked increase in repopulating activity in vivo, implying a role in stem cell activity. Conclusions This study has revealed a number of novel genes that influence the activity or survival of mammary stem and/or progenitor cells. Amongst these, we demonstrate that Prox1 and Asap1 behave as negative regulators of mammary stem/progenitor function. Both of these genes have also been implicated in oncogenesis. Our findings provide proof of principle for the use of short-term cultured primary MaSC/basal cells in functional RNAi screens. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie M Sheridan
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Matthew E Ritchie
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Sarah A Best
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kun Jiang
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| | - Tamara J Beck
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| | - François Vaillant
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kevin Liu
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| | - Ross A Dickins
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Geoffrey J Lindeman
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Medical Oncology, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Jane E Visvader
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
40
|
Koumangoye RB, Andl T, Taubenslag KJ, Zilberman ST, Taylor CJ, Loomans HA, Andl CD. SOX4 interacts with EZH2 and HDAC3 to suppress microRNA-31 in invasive esophageal cancer cells. Mol Cancer 2015; 14:24. [PMID: 25644061 PMCID: PMC4374188 DOI: 10.1186/s12943-014-0284-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/26/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tumor metastasis is responsible for 90% of cancer-related deaths. Recently, a strong link between microRNA dysregulation and human cancers has been established. However, the molecular mechanisms through which microRNAs regulate metastasis and cancer progression remain unclear. METHODS We analyzed the reciprocal expression regulation of miR-31 and SOX4 in esophageal squamous and adenocarcinoma cell lines by qRT-PCR and Western blotting using overexpression and shRNA knock-down approaches. Furthermore, methylation studies were used to assess epigenetic regulation of expression. Functionally, we determined the cellular consequences using migration and invasion assays, as well as proliferation assays. Immunoprecipitation and ChIP were used to identify complex formation of SOX4 and co-repressor components. RESULTS Here, we report that SOX4 promotes esophageal tumor cell proliferation and invasion by silencing miR-31 via activation and stabilization of a co-repressor complex with EZH2 and HDAC3. We demonstrate that miR-31 is significantly decreased in invasive esophageal cancer cells, while upregulation of miR-31 inhibits growth, migration and invasion of esophageal adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) cell lines. miR-31, in turn, targets SOX4 for degradation by directly binding to its 3'-UTR. Additionally, miR-31 regulates EZH2 and HDAC3 indirectly. SOX4, EZH2 and HDAC3 levels inversely correlate with miR-31 expression in ESCC cell lines. Ectopic expression of miR-31 in ESCC and EAC cell lines leads to down regulation of SOX4, EZH2 and HDAC3. Conversely, pharmacologic and genetic inhibition of SOX4 and EZH2 restore miR-31 expression. We show that SOX4, EZH2 and HDAC3 form a co-repressor complex that binds to the miR-31 promoter, repressing miR-31 through an epigenetic mark by H3K27me3 and by histone acetylation. Clinically, when compared to normal adjacent tissues, esophageal tumor samples show upregulation of SOX4, EZH2, and HDAC3, and EZH2 expression is significantly increased in metastatic ESCC tissues. CONCLUSIONS Thus, we identified a novel molecular mechanism by which the SOX4, EZH2 and miR-31 circuit promotes tumor progression and potential therapeutic targets for invasive esophageal carcinomas.
Collapse
Affiliation(s)
- Rainelli B Koumangoye
- Department of Surgery, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA.
| | - Thomas Andl
- Division of Dermatology, Department of Medicine, 21st Ave South, A-2310 Medical Center North, Nashville, TN, 37232-6840, USA.
| | - Kenneth J Taubenslag
- Department of Surgery, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA.
| | - Steven T Zilberman
- Department of Surgery, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA.
| | - Chase J Taylor
- Department of Surgery, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA.
| | - Holli A Loomans
- Department of Cancer Biology, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA.
| | - Claudia D Andl
- Department of Surgery, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA. .,Department of Cancer Biology, 2213 Garland Ave. 10445 MRB IV, Nashville, TN, 37232-6840, USA. .,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232-6840, USA. .,Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN, 37232-6840, USA.
| |
Collapse
|
41
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
42
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
43
|
Khalaj M, Tavakkoli M, Stranahan AW, Park CY. Pathogenic microRNA's in myeloid malignancies. Front Genet 2014; 5:361. [PMID: 25477897 PMCID: PMC4237136 DOI: 10.3389/fgene.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.
Collapse
Affiliation(s)
- Mona Khalaj
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Alec W Stranahan
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Christopher Y Park
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA ; Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center NY, USA
| |
Collapse
|
44
|
Abstract
Multipotent long-term repopulating hematopoietic stem cells (LT-HSCs) can self-renew or differentiate into the less primitive short-term repopulating stem cells (ST-HSCs), which themselves produce progenitors that ensure the daily supply of all essential blood components. The Polycomb group (PcG) protein BMI1 is essential for the activity of both HSCs and progenitor cells. Although BMI1 operates by suppressing the Ink4a/Arf locus in progenitors and ST-HSCs, the mechanisms through which this gene regulates the activity of LT-HSCs remain poorly understood. Toward this goal, we isolated BMI1-containing protein complexes and identified UBAP2L as a novel BMI1-interacting protein. We also showed that UBAP2L is preferentially expressed in mouse and human HSC-enriched populations when compared with more mature cell types, and that this gene is essential for the activity of LT-HSCs. In contrast to what is observed for Bmi1 knockdown, we found that UBAP2L depletion does not affect the Ink4a/Arf locus. Given that we demonstrated that BMI1 overexpression is able to rescue the deleterious effects of Ubap2l downregulation on LT-HSC activity and that UBAP2L is part of a PcG subcomplex comprising BMI1, we propose a model in which at least 2 different BMI1-containing PcG complexes regulate HSC activity, which are distinguishable by the presence of UBAP2L.
Collapse
|
45
|
Sox4 links tumor suppression to accelerated aging in mice by modulating stem cell activation. Cell Rep 2014; 8:487-500. [PMID: 25043184 PMCID: PMC4905521 DOI: 10.1016/j.celrep.2014.06.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/29/2014] [Accepted: 06/19/2014] [Indexed: 12/20/2022] Open
Abstract
Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO) in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.
Collapse
|
46
|
Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood 2014; 124:1578-85. [PMID: 25006126 DOI: 10.1182/blood-2013-11-541391] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nuclear receptor corepressors (Ncors) are important for developmental and homeostatic processes in vertebrates, which exert transcriptional repression by coordinating with histone deacetylases. However, little is known about their roles in definitive hematopoiesis. In this study, we show that in zebrafish, ncor2 is required for hematopoietic stem cell (HSC) development by repressing fos-vegfd signaling. ncor2 is specifically expressed in the aorta-gonad-mesonephros (AGM) region in zebrafish embryos. ncor2 deficiency reduced the population of HSCs in both the AGM region and T cells in the thymus. Mechanistically, ncor2 knockdown upregulated fos transcription by modulating the acetylation level in the fos promoter region, which then enhanced Vegfd signaling. Consequently, the augmented Vegfd signaling induced Notch signaling to promote the arterial endothelial fate, therefore, possibly repressing the hemogenic endothelial specification, which is a prerequisite for HSC emergence. Thus, our findings identify a novel regulatory mechanism for Ncor2 through Fos-Vegfd-Notch signaling cascade during HSC development in zebrafish embryos.
Collapse
|
47
|
RNA interference screening to detect targetable molecules in hematopoietic stem cells. Curr Opin Hematol 2014; 21:283-8. [DOI: 10.1097/moh.0000000000000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Rimmelé P, Bigarella CL, Liang R, Izac B, Dieguez-Gonzalez R, Barbet G, Donovan M, Brugnara C, Blander JM, Sinclair DA, Ghaffari S. Aging-like phenotype and defective lineage specification in SIRT1-deleted hematopoietic stem and progenitor cells. Stem Cell Reports 2014; 3:44-59. [PMID: 25068121 PMCID: PMC4110778 DOI: 10.1016/j.stemcr.2014.04.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023] Open
Abstract
Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.
Collapse
Affiliation(s)
- Pauline Rimmelé
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carolina L Bigarella
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raymond Liang
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brigitte Izac
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebeca Dieguez-Gonzalez
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gaetan Barbet
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Donovan
- Department of Experimental Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlo Brugnara
- Department of Lab Medicine, Children's Hospital, Boston, MA 02115, USA
| | - Julie M Blander
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David A Sinclair
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Saghi Ghaffari
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA ; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
49
|
Identification of sexually dimorphic genes in the neonatal mouse cortex and hippocampus. Brain Res 2014; 1562:23-38. [PMID: 24661915 DOI: 10.1016/j.brainres.2014.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/08/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023]
Abstract
The cerebral cortex and hippocampus are important for the control of cognitive functions and social behaviors, many of which are sexually dimorphic and tightly regulated by gonadal steroid hormones via activation of their respective nuclear receptors. As different levels of sex steroid hormones are present between the sexes during early development and their receptors act as transcription factors to regulate gene expression, we hypothesize that sexually dimorphic gene expression in the developing mouse cortex and hippocampus might result in sex differences in brain structures and neural circuits governing distinct behaviors between the sexes as adults. To test our hypothesis, we used gene expression microarrays to identify 90 candidate genes differentially expressed in the neonatal cortex/hippocampus between male and female mice, including 55 male-biased and 35 female-biased genes. Among these genes, sexually dimorphic expression of eight sex chromosome genes was confirmed by reverse transcription with quantitative PCR (RT-qPCR), including three located on the X chromosome (Xist, Eif2s3x, and Kdm6a), three on the Y chromosome (Ddx3y, Eif2s3y, and Kdm5d), and two in the pseudoautosomal region of the X and Y chromosomes (Erdr1 and Mid1). In addition, five autosomal genes (Cd151, Dab2, Klk8, Meg3, and Prkdc) were also validated for their sexually dimorphic expression in the neonatal mouse cortex/hippocampus. Gene Ontology annotation analysis suggests that many of these sexually dimorphic genes are involved in histone modifications, cell proliferation/death, androgen/estrogen signaling pathways, and synaptic organization, and these biological processes have been implicated in differential neural development, cognitive function, and neurological diseases between the sexes.
Collapse
|
50
|
Singbrant S, Wall M, Moody J, Karlsson G, Chalk AM, Liddicoat B, Russell MR, Walkley CR, Karlsson S. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica 2014; 99:647-55. [PMID: 24415629 DOI: 10.3324/haematol.2013.093971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.
Collapse
|