1
|
Huang B, Zhang Z, Jiao J, Liu W, Yan X. Redox-Paired Reductive Heck Reaction and Oxidative Esterification Catalyzed by Mesoionic Carbenes. Org Lett 2024; 26:7419-7424. [PMID: 39172063 DOI: 10.1021/acs.orglett.4c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Paring a reductive reaction and an oxidative reaction in one reaction could be immensely important in achieving atom economic and environmental advantages. Herein, we report a simple protocol that combines two such reductive Heck reactions and oxidative esterification by using mesoionic carbenes as catalysts to synthesize multiple valuable products under mild conditions.
Collapse
Affiliation(s)
- Benkai Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Jie Jiao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
2
|
Wang T, Zhang Z, Gao F, Yan X. Homologation of Ketones: Direct Transformation of Alkyl Ketones to Aryl Ketones via Photoredox Catalyzed Deacylation-Aroylation Sequence. Org Lett 2024; 26:6915-6920. [PMID: 39115264 DOI: 10.1021/acs.orglett.4c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ketones, as essential functional group skeletons, have garnered significant interest due to their diverse transformations. Herein, we describe a versatile photoredox catalyzed deacylation-aroylation strategy that enables the direct transformation of alkyl ketones to aryl ketones. This process involves photoredox deacylation of dihydroquinazolinones derived from alkyl ketones to generate alkyl radicals, followed by subsequent NHC-catalyzed or NHC-mediated radical aroylation.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Fan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
3
|
Wang B, Shao Y, Chen Z, Xia Y, Xue F, Jin W, Wu S, Zhang Y, Liu C. Photoinduced Catalyst-Free Deuterodefunctionalization of Aryltriazenes with CDCl 3. Org Lett 2024; 26:4329-4334. [PMID: 38743509 DOI: 10.1021/acs.orglett.4c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A photoinduced deuterodetriazenation of aryltriazenes with CDCl3 under catalyst-free conditions is reported. The reactions featured simple operation, ecofriendly conditions, readily available reagents, inexpensive D sources, precise site selectivity, and a wide range of substrates. Since aryltriazenes could be readily synthesized from arylamine, this protocol can be used as a general method for easily and accurately incorporating deuterium into aromatic systems by using CDCl3 as a D source.
Collapse
Affiliation(s)
- Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Analysis and Testing Center, Xinjiang University, Urumqi 830017, P. R. China
| | - Yang Shao
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
4
|
Xu Q, Ou W, Hou H, Wang Q, Yu L, Su C. Photosynthesis of C-1-Deuterated Aldehydes via Chlorine Radical-Mediated Selective Deuteration of the Formyl C-H Bond. Org Lett 2024; 26:4098-4103. [PMID: 38708839 DOI: 10.1021/acs.orglett.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
C-1-deuterated aldehydes are essential building blocks in the synthesis of deuterated chemicals and pharmaceuticals. This has led chemists to devise mild methodologies for their efficient production. Ideally, hydrogen-deuterium exchange (HDE) is the most effective approach. However, the traditional HDE for creating C-1-deuterated aldehydes often requires a complex system involving multiple catalysts and/or ligands. In this study, we present a mild photocatalytic HDE of the formyl C-H bond with D2O. This process is facilitated by chlorine radicals that are generated in situ from low-cost FeCl3. This strategy demonstrated a broad reaction scope and high functional group tolerance, affording good yields and ≤99% D incorporation. To bridge the gap between research and industrial applications, we designed a new flow photoreactor equipped with a high-intensity light-emitting diode bucket, enabling the synthesis of C-1-deuterated aldehydes on a scale of 85 g. Finally, we successfully produced several important deuterated aldehydes that are integral to the synthesis of deuterated pharmaceuticals.
Collapse
Affiliation(s)
- Qingzhu Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Qiyuan Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Lei Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Aysin RR, Galkin KI. Impact of Backbone Substitution on Organocatalytic Activity of Sterically Encumbered NHC in Benzoin Condensation. Molecules 2024; 29:1704. [PMID: 38675524 PMCID: PMC11051995 DOI: 10.3390/molecules29081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we provide a theoretical explanation for the experimentally observed decrease in the organocatalytic activity of N-aryl imidazolylidenes methylated at the C4/5-H positions in the benzoin condensation of aromatic aldehydes. A comparative quantum chemical study of energy profiles for the NHC-mediated benzoin condensation of furfural has revealed a high energy barrier to the formation of the IPrMe-based furanic Breslow intermediate that can be attributed to the negative steric interactions between the imidazole backbone methyl groups and N-aryl substituents.
Collapse
Affiliation(s)
- Rinat R. Aysin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Street 28, bld. 1, 119991 Moscow, Russia;
| | - Konstantin I. Galkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect 47, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Green Chemistry, Bauman Moscow State Technical University, 2nd Baumanskaya Street 5/1, 105005 Moscow, Russia
| |
Collapse
|
6
|
Aysin RR, Galkin KI. Adaptive carbonyl umpolung involving a carbanionic carbene Breslow intermediate: an alternative mechanism for NHC-mediated organocatalysis. Org Biomol Chem 2023; 21:8702-8707. [PMID: 37867444 DOI: 10.1039/d3ob01195j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Herein, we propose a novel mechanistic model for NHC-mediated carbonyl umpolung which involves the formation of a carbanionic carbene Breslow intermediate (CCBI). We have demonstrated theoretically that this reactive intermediate can be formed by inserting an aldehyde into the C4-H position of an N-aryl-substituted imidazolium-derived NHC via the generation of an H-bonded ditopic carbanionic NHC (dcNHC). Our DFT study on benzoin condensation has revealed that the mechanism of polarity inversion proceeding through the CCBI may be more energetically favorable than the classical mechanism of umpolung that uses the C2 carbene position in NHC. The potential existence of the CCBI highlights the dynamic and adaptive nature of NHC-mediated organocatalysis, particularly in relation to carbonyl umpolung. This finding also sheds light on new pathways in organocatalytic transformations employing the ambident reactivity of NHC, which may be particularly attractive for reactions involving furanic aldehydes and sterically encumbered N-aryl-substituted carbenes.
Collapse
Affiliation(s)
- Rinat R Aysin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova, 28, 119991 Moscow, Russia
| | - Konstantin I Galkin
- Bauman Moscow State Technical University, 2nd Baumanskaya ul., 5/1, 105005 Moscow, Russia.
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, ul. Leninsky Prospekt, 47, 119991, Moscow, Russia
| |
Collapse
|
7
|
Su F, Lu F, Tang K, Lv X, Luo Z, Che F, Long H, Wu X, Chi YR. Organocatalytic C-H Functionalization of Simple Alkanes. Angew Chem Int Ed Engl 2023; 62:e202310072. [PMID: 37731165 DOI: 10.1002/anie.202310072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
The direct functionalization of inert C(sp3 )-H bonds to form carbon-carbon and carbon-heteroatom bonds offers vast potential for chemical synthesis and therefore receives increasing attention. At present, most successes come from strategies using metal catalysts/reagents or photo/electrochemical processes. The use of organocatalysis for this purpose remains scarce, especially when dealing with challenging C-H bonds such as those from simple alkanes. Here we disclose the first organocatalytic direct functionalization/acylation of inert C(sp3 )-H bonds of completely unfunctionalized alkanes. Our approach involves N-heterocyclic carbene catalyst-mediated carbonyl radical intermediate generation and coupling with simple alkanes (through the corresponding alkyl radical intermediates generated via a hydrogen atom transfer process). Unreactive C-H bonds are widely present in fossil fuel feedstocks, commercially important organic polymers, and complex molecules such as natural products. Our present study shall inspire a new avenue for quick functionalization of these molecules under the light- and metal-free catalytic conditions.
Collapse
Affiliation(s)
- Fen Su
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fengfei Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xiaokang Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Fengrui Che
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Hongyan Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
8
|
Eitzinger A, Reitz J, Antoni PW, Mayr H, Ofial AR, Hansmann MM. Pushing the Upper Limit of Nucleophilicity Scales by Mesoionic N-Heterocyclic Olefins. Angew Chem Int Ed Engl 2023; 62:e202309790. [PMID: 37540606 DOI: 10.1002/anie.202309790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Abstract
A series of mesoionic, 1,2,3-triazole-derived N-heterocyclic olefins (mNHOs), which have an extraordinarily electron-rich exocyclic CC-double bond, was synthesized and spectroscopically characterized, in selected cases by X-ray crystallography. The kinetics of their reactions with arylidene malonates, ArCH=C(CO2 Et)2 , which gave zwitterionic adducts, were investigated photometrically in THF at 20 °C. The resulting second-order rate constants k2 (20 °C) correlate linearly with the reported electrophilicity parameters E of the arylidene malonates (reference electrophiles), thus providing the nucleophile-specific N and sN parameters of the mNHOs according to the correlation lg k2 (20 °C)=sN (N+E). With 21
Collapse
Affiliation(s)
- Andreas Eitzinger
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Justus Reitz
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Hu CH, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylation of α-Oxo Carboxylic Acids to C1-Deuterated Aldehydes and Aldehydes. J Org Chem 2022; 88:6401-6406. [DOI: 10.1021/acs.joc.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chun-Hong Hu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
11
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Catalytic Vilsmeier-Haack Reactions for C1-Deuterated Formylation of Indoles. J Org Chem 2022; 87:15539-15546. [PMID: 36348629 DOI: 10.1021/acs.joc.2c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Vilsmeier-Haack reaction is a powerful tool to introduce formyl groups into electron-rich arenes, but its wide application is significantly restricted by stoichiometric employment of caustic POCl3. Herein, we reported a catalytic version of the Vilsmeier-Haack reaction enabled by a P(III)/P(V)═O cycle. This catalytic reaction provides a facile and efficient route for the direct construction of C1-deuterated indol-3-carboxaldehyde under mild conditions with stoichiometric DMF-d7 as the deuterium source. The products feature a remarkably higher deuteration level (>99%) than previously reported ones and are not contaminated by the likely unselective deuteration at other sites. The present transformation can also be used to transfer other carbonyl groups. Further downstream derivatizations of these deuterated products manifested their potential applications in the synthesis of deuterated bioactive molecules. Mechanistic insight was disclosed from studies of kinetics and intermediates.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| |
Collapse
|
12
|
Xiang Z, Huang S, Zhao LL, Zhang Z, Chen K, Cao W, Zheng K, Yan X. Base-catalyzed H/D exchange of polychlorinated biphenyls. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Barnett C, Cole ML, Harper JB. The Core Difference between a Mesoionic and a Normal N-Heterocyclic Carbene. ACS OMEGA 2022; 7:34657-34664. [PMID: 36188285 PMCID: PMC9520694 DOI: 10.1021/acsomega.2c04682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The properties of the abnormal N-heterocyclic carbene (NHC) 1,4-dimesityl-3-methyl-1,2,3-triazolin-5-ylidene were comprehensively compared to those of the related normal carbene 1,3-dimesitylimidazolin-2-ylidene using a range of steric and electronic probe techniques (% V bur, steric maps, Tolman electronic parameter, alane, Huynh electronic parameter, selone, and pK a values). The two NHCs were determined to be sterically equivalent (isostructural), while the triazolin-5-ylidene was found to be a stronger σ-electron donor and a much weaker π-electron acceptor. These results were used to demonstrate that the electronic properties of these NHCs could affect the stereochemical outcome of an NHC-catalyzed reaction.
Collapse
Affiliation(s)
- Christopher Barnett
- School
of Chemistry, The University of New South
Wales, Sydney 2052, Australia
- School
of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Marcus L. Cole
- School
of Chemistry, The University of New South
Wales, Sydney 2052, Australia
| | - Jason B. Harper
- School
of Chemistry, The University of New South
Wales, Sydney 2052, Australia
| |
Collapse
|
14
|
Qian P, Zhang S, Luo F, Wang J, Zhang X, Liu X, Chen X, Wang W, Chen X. Site-selective deuteration at the α-position of enals by an amine and bis(phenylsulfonyl)methane co-catalyzed H/D exchange reaction. Chem Commun (Camb) 2022; 58:11458-11461. [PMID: 36149351 DOI: 10.1039/d2cc04959g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amine and bis(phenylsulfonyl)methane co-catalyzed hydrogen-deuterium exchange (HDE) method via a Michael-retro-Michael pathway for site-selective introduction of deuterium at the α-position of enals using D2O as a deuterium source has been achieved. The mild, operationally simple protocol allows for high yielding and high level deuterium incorporation (up to 99%) for structurally diverse aromatic-derived enals and dienals.
Collapse
Affiliation(s)
- Pengfei Qian
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China.
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China.
| | - Fan Luo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Jiarui Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Xinyu Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| | - Xuejun Liu
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai, P. R. China
| | - Xiaodong Chen
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai, P. R. China
| | - Wei Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China. .,Department of Pharmacology and Toxicology, and BIO5 Institute, University of Arizona, 1703 E. Mabel St., P. O. Box 210207, Tucson, AZ 85721-0207, USA.
| | - Xiaobei Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
15
|
Wu MC, Li MZ, Chen YX, Liu F, Xiao JA, Chen K, Xiang HY, Yang H. Photoredox-Catalyzed C–H Trideuteromethylation of Quinoxalin-2(1 H)-ones with CDCl 3 as the “CD 3” source. Org Lett 2022; 24:6412-6416. [DOI: 10.1021/acs.orglett.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
16
|
Zhao B, Wang Q, Zhu T, Feng B, Ma M. Palladium-Catalyzed Synthesis of C-1 Deuterated Aldehydes from (Hetero) Arenes Mediated by C (sp 2)-H Thianthrenation. Org Lett 2022; 24:5608-5613. [PMID: 35880900 DOI: 10.1021/acs.orglett.2c02328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed deuterated formylation of aryl sulfonium salts is prepared conveniently from readily available arenes, which enables the expedient synthesis of a series of structurally diverse C-1 deuterated aldehydes with 96%-99% deuterium incorporation. The easy to handle and cost-effective DCOONa provides a deuterium source, which can be introduced onto the formyl units with excellent selectivity under the palladium-catalytic redox neutral conditions. This catalytic route can accomplish the direct late-stage C-H functionalization of bioactive molecules and natural product derivatives assisted by C (sp2)-H thianthrenation. Moreover, on the basis of this practical approach, several deuterated drugs and analogues could be prepared with excellent levels of deuterium incorporation.
Collapse
Affiliation(s)
- Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuzhu Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Tianxiang Zhu
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bin Feng
- College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Sharma D, Chatterjee R, Dhayalan V, Dhanusuraman R, Dandela R. Recent Advances in Practical Synthesis of C1 Deuterated Aromatic Aldehydes Enabled by Catalysis and Beyond. Chem Asian J 2022; 17:e202200485. [PMID: 35844079 DOI: 10.1002/asia.202200485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Indexed: 11/07/2022]
Abstract
C 1 -selective deuteration of aromatic aldehydes is of great importance for isotopic labeling and for improving the characteristics of drug molecules. Due to the recent increase in the use of deuterated pharmacological drugs, there is a pressing need for synthetic procedures that are efficient to produce deuterated aromatic aldehyde analouges. Deuterium labeling approaches are typically used as an effective tool for researching pharmaceutical absorption, distribution, metabolism, and excretion (ADME). Furthermore, deuterium-labeled pharmaceuticals are intended to increase therapeutic effectiveness and reduce side effects by extending the half-life of drug response. In the last few years, several catalytic or non-catalytic methods have been developed to synthesize deuterated aromatic aldehydes. In this concern, we offer a brief overview of the various synthetic strategies and practical methods for the formyl-selective deuterium labeling of aromatic aldehydes using different deuterium sources.
Collapse
Affiliation(s)
- Deepika Sharma
- Institute of Chemical Technology Mumbai - IndianOil Odisha Campus Bhubaneswar, Department of Industrial and Engineering Chemistry, INDIA
| | - Rana Chatterjee
- Institute of Chemical Technology Mumbai - IndianOil Odisha Campus Bhubaneswar, Department of Industrial and Engineering Chemistry, INDIA
| | - Vasudevan Dhayalan
- NIT Puducherry: National Institute of Technology Puducherry, Department of Chemistry, Yathaval street, 609609, Karaikal, INDIA
| | | | - Rambabu Dandela
- Institute of Chemical Technology Mumbai - IndianOil Odisha Campus Bhubaneswar, Department of Industrial and Engineering Chemistry, INDIA
| |
Collapse
|
18
|
Dong Y, Li X, Ji P, Gao F, Meng X, Wang W. Synthesis of C-1 Deuterated 3-Formylindoles by Organophotoredox Catalyzed Direct Formylation of Indoles with Deuterated Glyoxylic Acid. Org Lett 2022; 24:5034-5039. [PMID: 35799325 DOI: 10.1021/acs.orglett.2c01768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Direct formylation of feedstock indoles with newly developed, cost-effective deuterated glyoxylic acid as formylation agent under visible light and air (O2) as terminal oxidant has been developed. An isatin byproduct produced from the corresponding indole reactant serves as a facilitator for the formylation process. The simple, mild, metal- and oxidant-free protocol enables the synthesis of structurally diverse C1-deuterated 3-formylindoles with broad functional group tolerance and late-stage functionalization at a high level of D-incorporation (95-99%).
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiangmin Li
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Peng Ji
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Feng Gao
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Xiang Meng
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
|
20
|
Min XT, Mei YK, Chen BZ, He LB, Song TT, Ji DW, Hu YC, Wan B, Chen QA. Rhodium-Catalyzed Deuterated Tsuji-Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. J Am Chem Soc 2022; 144:11081-11087. [PMID: 35709491 DOI: 10.1021/jacs.2c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,β-unsaturated aldehydes are within reach.
Collapse
Affiliation(s)
- Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhang Z, Li CY, Yan X. Mesoionic carbene-catalyzed arylacylation of alkenes. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Huang S, Wu Y, Huang L, Hu C, Yan X. Synthesis, Characterization and Photophysical Properties of Mesoionic N-Heterocyclic Imines. Chem Asian J 2022; 17:e202200281. [PMID: 35502454 DOI: 10.1002/asia.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Abstract
N -heterocyclic imines are widely used in transition-metal chemistry, main-group chemistry as well as catalysis, due to their enhanced basicity and nucleophilicity which benefit from their ylidic form. As their analogs, mesoionic N -heterocyclic imines, which feature more highly ylidic form, is still in its infancy though excellent works also achieved. Here we reported the synthesis, characterization and photophysical properties of mesoionic N -heterocyclic imines. TD-DFT are employed to get deeper insight into the mechanism of the photophysical behaviors. The unsubstituted mesoionic N-heterocyclic imines ( 1-3 ) displayed considerable quantum yields (QY: up to 43.8%) and could be potentially applied as luminescent materials.
Collapse
Affiliation(s)
| | - Yixin Wu
- Renmin University of China, Chemistry, CHINA
| | | | - Chubin Hu
- Renmin University of China, Chemistry, CHINA
| | - Xiaoyu Yan
- Renmin University of China, Department of Chemistry, Renmin University of China, Beijing 100872, China, 100872, Beijing, CHINA
| |
Collapse
|
23
|
Zheng Y, He XC, Gao J, Xie ZZ, Wang ZW, Liu ZL, Chen K, Xiang HY, Chen XQ, Yang H. Programmable iodization/deuterolysis sequences of phosphonium ylides to access deuterated benzyl iodides and aromatic aldehydes. Chem Commun (Camb) 2022; 58:4215-4218. [PMID: 35274648 DOI: 10.1039/d2cc00537a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a tunable iodization/deuterolysis protocol for phosphonium ylides by employing D2O as the deuterium source was designed. Notably, this process could be manipulated by tuning the base, thus leading to two valuable deuterated building blocks - benzyl iodides and aromatic aldehydes with broad substrate scope, good functional group compatibility and excellent deuteration degree. Concise syntheses of a series of deuterated drug analogues have been achieved based on the developed deuteration reaction platform.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
24
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
25
|
Kase D, Haraguchi R. Fluoride-Mediated Nucleophilic Aromatic Amination of Chloro-1 H-1,2,3-triazolium Salts. Org Lett 2021; 24:90-94. [PMID: 34914400 DOI: 10.1021/acs.orglett.1c03677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a fluoride-mediated nucleophilic aromatic amination of chloro-1H-1,2,3-triazolium salts with aliphatic amines. The reaction proceeded under mild reaction conditions to provide amino-1,2,3-triazolium salts with various functional groups, which can be utilized for further transformations. Moreover, it was found that an amino-1,2,3-triazolium salt was transformed via deprotonation into the N-heterocyclic imine (NHI), which exhibited the excellent catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide.
Collapse
Affiliation(s)
- Daiya Kase
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
26
|
Gadekar SC, Dhayalan V, Nandi A, Zak IL, Mizrachi MS, Kozuch S, Milo A. Rerouting the Organocatalytic Benzoin Reaction toward Aldehyde Deuteration. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Santosh C. Gadekar
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Vasudevan Dhayalan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ashim Nandi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Inbal L. Zak
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Meital Shema Mizrachi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
27
|
Hu C, Huang S, Zhang Z, Yao H, Wu Y, Huang L, Yan X. Experimental and Computational Study on Photophysical Properties of Mesoionic Chalcogenones. Chem Asian J 2021; 16:4165-4170. [PMID: 34729937 DOI: 10.1002/asia.202101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Indexed: 12/14/2022]
Abstract
N-Heterocyclic carbene adducts with main group elements (NHC=E) have aroused great interest and have been widely investigated in coordination chemistry. Among them, N-heterocyclic carbene adducts with chalcogens (NHC=Ch) have been known for a long time. Their investigations mostly focused on synthesis, coordination chemistry and electrochemistry. Their photophysical properties still remain unexplored. In this work, the photophysical properties of mesoionic carbene adducts with sulfur and selenium have been investigated both in solution and solid state. These compounds showed blue fluorescence in dichloromethane. While in solid state, orange to red room-temperature phosphorescence can be observed, and dual emission was found in mesoionic thiones. Furthermore, time-dependent density functional theory (TD-DFT) calculations were used to obtain insights into the luminescent mechanism.
Collapse
Affiliation(s)
- Chubin Hu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Shiqing Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Zengyu Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Haidan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yixin Wu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Linwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Xiaoyu Yan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
28
|
Xu J, Lou Y, Wang L, Wang Z, Xu W, Ma W, Chen Z, Chen X, Wu Q. Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yujiao Lou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Lanlan Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People’s Republic of China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Wenqian Ma
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xiaoyang Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
29
|
Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV. Mesoionic and N-Heterocyclic Carbenes Coordinated N + Center: Experimental and Computational Analysis. Chempluschem 2021; 86:1416-1420. [PMID: 34636173 DOI: 10.1002/cplu.202100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
N-Heterocyclic carbenes, carbocyclic carbenes, remote N-heterocyclic carbenes and N-heterocyclic silylenes are known to form L→N+ coordination bonds. However, mesoionic carbenes (MICs) are not reported to form coordination bonds with cationic nitrogen. Herein, synthesis and quantum chemical studies were performed on 1,2,3-triazol-5-ylidene stabilized N+ center. Six compounds with MIC→N+ ←NHC were synthesized. Density functional theory calculations and energy decomposition analysis were carried out to explore the bonding situation between MIC and N+ center. The C→N+ bond lengths were in the range of 1.295-1.342 Å and bond dissociation energies were <400 kcal/mol. Natural bond orbital analysis supported the presence of excess electron density (>3 electrons) at the N+ center. The computational and X-ray diffraction analysis results confirmed the presence of divalent NI character of center nitrogen and MIC→N+ ←NHC coordination interactions.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Shruti Awari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|
30
|
Li J, Li J, Ji X, He R, Liu Y, Chen Z, Huang Y, Liu Q, Li Y. Synthesis of Deuterated ( E)-Alkene through Xanthate-Mediated Hydrogen-Deuterium Exchange Reactions. Org Lett 2021; 23:7412-7417. [PMID: 34499519 DOI: 10.1021/acs.orglett.1c02600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we have developed a reversible hydrogen-deuterium exchange reaction of nonactivated olefins. By using EtOCS2K as a mediator, the H/D exchange reaction was realized through repeated addition and elimination reactions, demonstrating reversible H/D exchange between ordinary olefins and deuterated olefins. Using the lowest cost D2O without precious metal catalysts and ligands, a broad spectrum of compatibility of functional groups was achieved.
Collapse
Affiliation(s)
- Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Zebin Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China.,Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| |
Collapse
|
31
|
Kong J, Jiang ZJ, Xu J, Li Y, Cao H, Ding Y, Tang B, Chen J, Gao Z. Ortho-Deuteration of Aromatic Aldehydes via a Transient Directing Group-Enabled Pd-Catalyzed Hydrogen Isotope Exchange. J Org Chem 2021; 86:13350-13359. [PMID: 34516112 DOI: 10.1021/acs.joc.1c01411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and scalable ortho-selective deuteration of aromatic aldehydes was accomplished by Pd-catalyzed hydrogen isotope exchange with deuterium oxide as an inexpensive deuterium source. The use of tert-leucine as a transient directing group facilitates the exchange, affording a wide range of ortho-deuterated aromatic aldehydes with deuterium incorporation up to 97%. The control experiments suggest that the addition of silver trifluoroacetate resists the unexpected reduction of Pd(II), while the theoretical study indicates a rapid reversible concerted metalation-deprotonation process.
Collapse
Affiliation(s)
- Junhua Kong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Jiayuan Xu
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Yan Li
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.,College of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, P. R. China
| | - Hong Cao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yanan Ding
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Jia Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Zhanghua Gao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| |
Collapse
|
32
|
Yang X, Ben H, Ragauskas AJ. Recent Advances in the Synthesis of Deuterium‐Labeled Compounds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoli Yang
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Haoxi Ben
- State Key Laboratory of BioFibers and Eco-textiles Qingdao University Qingdao 266071 P. R. China
| | - Arthur J. Ragauskas
- Center for Renewable Carbon Department of Forestry Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
- Department of Chemical and Biomolecular Engineering University of Tennessee Knoxville TN 37996 USA
- Joint Institute for Biological Science Biosciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- The Center for Bioenergy Innovation (CBI) Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
33
|
Okamura H, Yasuno Y, Nakayama A, Kumadaki K, Kitsuwa K, Ozawa K, Tamura Y, Yamamoto Y, Shinada T. Selective oxidation of alcohol- d 1 to aldehyde- d 1 using MnO 2. RSC Adv 2021; 11:28530-28534. [PMID: 35478564 PMCID: PMC9037989 DOI: 10.1039/d1ra05405h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
The selective oxidation of alcohol-d1 to prepare aldehyde-d1 was newly developed by means of NaBD4 reduction/activated MnO2 oxidation. Various aldehyde-d1 derivatives including aromatic and unsaturated aldehyde-d1 can be prepared with a high deuterium incorporation ratio (up to 98% D). Halogens (chloride, bromide, and iodide), alkene, alkyne, ester, nitro, and cyano groups in the substrates are tolerated under the mild conditions. A facile method for deutrium incorporation into aldehydes by mild reduction of NaBD4 of aldehydes and MnO2 oxidation (98% D) is disclosed.![]()
Collapse
Affiliation(s)
- Hironori Okamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Katsushi Kumadaki
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Kohei Kitsuwa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Keita Ozawa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yusaku Tamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yuki Yamamoto
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| |
Collapse
|
34
|
Huang S, Wang Y, Hu C, Yan X. Nucleophilic Activation of Sulfur Hexafluoride by N-Heterocyclic Carbenes and N-Heterocyclic Olefins: A Computational Study. Chem Asian J 2021; 16:2687-2693. [PMID: 34320272 DOI: 10.1002/asia.202100770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Indexed: 11/10/2022]
Abstract
Sulfur hexafluoride (SF6 ) is considered as a potent greenhouse gas, whose effective degradation is challenging. Here we report a computational study on the nucleophilic activation of sulfur hexafluoride by N-heterocyclic carbenes and N-heterocyclic olefins. The result shows that the activation of SF6 is both thermodynamically and kinetically favorable at mild condition using NHOs with fluoro-substituted azolium and sulfur pentafluoride anion being formed. The Gibbs free energy barrier during the activation of SF6 has a linear relationship with the energy of HOMO of substrates, which could be a guideline for applying those compounds that feature higher energy in HOMO to activate SF6 in high efficiency.
Collapse
Affiliation(s)
- Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yedong Wang
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Chubin Hu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| |
Collapse
|
35
|
Organophotocatalytic selective deuterodehalogenation of aryl or alkyl chlorides. Nat Commun 2021; 12:2894. [PMID: 34001911 PMCID: PMC8129137 DOI: 10.1038/s41467-021-23255-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
Development of practical deuteration reactions is highly valuable for organic synthesis, analytic chemistry and pharmaceutic chemistry. Deuterodehalogenation of organic chlorides tends to be an attractive strategy but remains a challenging task. We here develop a photocatalytic system consisting of an aryl-amine photocatalyst and a disulfide co-catalyst in the presence of sodium formate as an electron and hydrogen donor. Accordingly, many aryl chlorides, alkyl chlorides, and other halides are converted to deuterated products at room temperature in air (>90 examples, up to 99% D-incorporation). The mechanistic studies reveal that the aryl amine serves as reducing photoredox catalyst to initiate cleavage of the C-Cl bond, at the same time as energy transfer catalyst to induce homolysis of the disulfide for consequent deuterium transfer process. This economic and environmentally-friendly method can be used for site-selective D-labeling of a number of bioactive molecules and direct H/D exchange of some drug molecules. Deuterodehalogenation of organic chlorides is a useful strategy to install deuterium atoms at specific positions, however, it has several drawbacks. In this study, the authors report an organophotocatalytic system consisting of an aryl-amine-based photocatalyst and a common disulfide co-catalyst, for efficient deuteration of a wide range of aryl chlorides, alkyl chlorides and other halides, at room temperature in air.
Collapse
|
36
|
Isolation and reactivity of an elusive diazoalkene. Nat Chem 2021; 13:587-593. [PMID: 33927373 DOI: 10.1038/s41557-021-00675-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/05/2021] [Indexed: 01/05/2023]
Abstract
Most functional groups, especially those consisting of the abundant elements of organic matter-carbon, nitrogen and oxygen-have been extensively studied and only very few remain speculative due to their high intrinsic reactivity. In contrast to the well-explored chemistry of diazoalkanes (R2C=N2), diazoalkenes (R2C=C=N2) have been postulated in several organic transformations, but remain elusive long-sought intermediates. Here, we present a room-temperature stable diazoalkene, utilizing a dinitrogen transfer from nitrous oxide. This functional group shows dual-site nucleophilicity (C and N atoms) and features a bent C-C-N entity (124°) and a long N-N bond together with a remarkable low infrared absorption (1,944 cm-1). Substitution of N2 by an isocyanide leads to a vinylidene ketenimine. Furthermore, photochemically triggered loss of dinitrogen might proceed through a transient triplet vinylidene. We anticipate the existence of a stable diazoalkene functional group to pave an exciting avenue into the chemistry of low-valent carbon and unsaturated carbenes.
Collapse
|
37
|
Huang L, Huang S, Zhang Z, Cao L, Xu X, Yan X. Mesoionic-Carbene-Stabilized Thiophosphoryl Cation (PS+). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Linwei Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Lei Cao
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| |
Collapse
|
38
|
Sawaguchi D, Hayakawa S, Sakuma M, Niitsuma K, Kase D, Michii S, Ozawa M, Sakai Y, Sakamaki K, Ueyama K, Haraguchi R. Improved Synthesis of 1,2,3‐Triazolium Salts via Oxidative [3+2] Cycloaddition of Triazenes with Alkynes and Their Deprotonative Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daiki Sawaguchi
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Shunsuke Hayakawa
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Masaaki Sakuma
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kenta Niitsuma
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Daiya Kase
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Shota Michii
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Miyuki Ozawa
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Yusuke Sakai
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kentaro Sakamaki
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kyohei Ueyama
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| |
Collapse
|
39
|
Ou W, Xiang X, Zou R, Xu Q, Loh KP, Su C. Room‐Temperature Palladium‐Catalyzed Deuterogenolysis of Carbon Oxygen Bonds towards Deuterated Pharmaceuticals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Xudong Xiang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Ru Zou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Qing Xu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang China
| | - Kian Ping Loh
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| |
Collapse
|
40
|
Huang L, Liu W, Zhao LL, Zhang Z, Yan X. Base-Catalyzed H/D Exchange Reaction of Difluoromethylarenes. J Org Chem 2021; 86:3981-3988. [PMID: 33591190 DOI: 10.1021/acs.joc.0c02827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The budding deuteriodifluoromethyl group (CF2D) is a potentially significant functional group in medicinal chemistry. Herein, we investigated t-BuOK-catalyzed H/D exchange reaction of difluoromethylarenes in DMSO-d6 solution. The method provides excellent deuterium incorporation at the difluoromethyl group. Meanwhile, the effect of a trace amount of D2O in DMSO-d6 solution on the deuteration reaction was also investigated.
Collapse
Affiliation(s)
- Linwei Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
41
|
Galkin KI, Gordeev EG, Ananikov VP. Organocatalytic Deuteration Induced by the Dynamic Covalent Interaction of Imidazolium Cations with Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Konstantin I. Galkin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt, 47 Moscow 119991 Russia
| | - Evgeniy G. Gordeev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt, 47 Moscow 119991 Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospekt, 47 Moscow 119991 Russia
| |
Collapse
|
42
|
Ou W, Xiang X, Zou R, Xu Q, Loh KP, Su C. Room-Temperature Palladium-Catalyzed Deuterogenolysis of Carbon Oxygen Bonds towards Deuterated Pharmaceuticals. Angew Chem Int Ed Engl 2021; 60:6357-6361. [PMID: 33332703 DOI: 10.1002/anie.202014196] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Site-specific incorporation of deuterium into drug molecules to study and improve their biological properties is crucial for drug discovery and development. Herein, we describe a palladium-catalyzed room-temperature deuterogenolysis of carbon-oxygen bonds in alcohols and ketones with D2 balloon for practical synthesis of deuterated pharmaceuticals and chemicals with benzyl-site (sp3 C-H) D-incorporation. The highlights of this deoxygenative deuteration strategy are mild conditions, broad scope, practicability and high chemoselectivity. To enable the direct use of D2 O, electrocatalytic D2 O-splitting is adapted to in situ supply D2 on demand. With this system, the precise incorporation of deuterium in the metabolic position (benzyl-site) of ibuprofen is demonstrated in a sustainable and practical way with D2 O.
Collapse
Affiliation(s)
- Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xudong Xiang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Ru Zou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Qing Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
43
|
Huang S, Wang Y, Hu C, Yan X. Computational study of 1,2,3-triazol-5-ylidenes with p-block element substituents. NEW J CHEM 2021. [DOI: 10.1039/d1nj00050k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,3-Triazol-5-ylidenes with p-block element substituents have been investigated by DFT calculations, which show tunable electronic properties.
Collapse
Affiliation(s)
- Shiqing Huang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- People's Republic of China
| | - Yedong Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- People's Republic of China
| | - Chubin Hu
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- People's Republic of China
| |
Collapse
|
44
|
Zhou R, Ma L, Yang X, Cao J. Recent advances in visible-light photocatalytic deuteration reactions. Org Chem Front 2021. [DOI: 10.1039/d0qo01299h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in visible-light photocatalytic deuteration of X–H, C–halogen, CC, and other bonds for the synthesis of deuterium-labeled organic molecules have been summarized according to the type of bond deuterated in the reactions.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Lishuang Ma
- Department of Chemistry
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| | - Xiaona Yang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Jilei Cao
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| |
Collapse
|
45
|
Peltier JL, Tomás-Mendivil E, Tolentino DR, Hansmann MM, Jazzar R, Bertrand G. Realizing Metal-Free Carbene-Catalyzed Carbonylation Reactions with CO. J Am Chem Soc 2020; 142:18336-18340. [DOI: 10.1021/jacs.0c09938] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesse L. Peltier
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Eder Tomás-Mendivil
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV-EHU), Donostia-San Sebastián, 20018 Gipuzkoa, Spain
| | - Daniel R. Tolentino
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Max M. Hansmann
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Rodolphe Jazzar
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| | - Guy Bertrand
- UCSD−CNRS Joint Research Chemistry Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
46
|
Zhang Z, Qiu C, Xu Y, Han Q, Tang J, Loh KP, Su C. Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nat Commun 2020; 11:4722. [PMID: 32948764 PMCID: PMC7501254 DOI: 10.1038/s41467-020-18458-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Precisely controlled deuterium labeling at specific sites of N-alkyl drugs is crucial in drug-development as over 50% of the top-selling drugs contain N-alkyl groups, in which it is very challenging to selectively replace protons with deuterium atoms. With the goal of achieving controllable isotope-labeling in N-alkylated amines, we herein rationally design photocatalytic water-splitting to furnish [H] or [D] and isotope alkanol-oxidation by photoexcited electron-hole pairs on a polymeric semiconductor. The controlled installation of N-CH3, -CDH2, -CD2H, -CD3, and -13CH3 groups into pharmaceutical amines thus has been demonstrated by tuning isotopic water and methanol. More than 50 examples with a wide range of functionalities are presented, demonstrating the universal applicability and mildness of this strategy. Gram-scale production has been realized, paving the way for the practical photosynthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhaofei Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, 518060, Shenzhen, China
| | - Chuntian Qiu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, 518060, Shenzhen, China
| | - Yangsen Xu
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, 518060, Shenzhen, China
| | - Qing Han
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
- Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, 100081, Beijing, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Kian Ping Loh
- Department of Chemistry and Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
47
|
Zhang Z, Huang S, Huang L, Xu X, Zhao H, Yan X. Synthesis of Mesoionic N-Heterocyclic Olefins and Catalytic Application for Hydroboration Reactions. J Org Chem 2020; 85:12036-12043. [DOI: 10.1021/acs.joc.0c00257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Linwei Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xingyu Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hongyan Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
48
|
Zhang X, Chen Q, Song R, Xu J, Tian W, Li S, Jin Z, Chi YR. Carbene-Catalyzed α,γ-Deuteration of Enals under Oxidative Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaolei Zhang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Qiao Chen
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Runjiang Song
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Xu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Weiyi Tian
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Shaoyuan Li
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
49
|
Merschel A, Rottschäfer D, Neumann B, Stammler HG, Ghadwal RS. Quantifying the Electronic and Steric Properties of 1,3-Imidazole-Based Mesoionic Carbenes (iMICs). Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arne Merschel
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Dennis Rottschäfer
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Beate Neumann
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und Katalyse, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
50
|
Song Z, Zeng J, Li T, Zhao X, Fang J, Meng L, Wan Q. Water Compatible Hypophosphites- d2 Reagents: Deuteration Reaction via Deutero-deiodination in Aqueous Solution. Org Lett 2020; 22:1736-1741. [PMID: 32083886 DOI: 10.1021/acs.orglett.0c00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contrary to conventional deuteration approaches which typically entail deuterated solvents and/or moisture exclusion, an unprecedented deutero-deiodination reaction attainable in aqueous (H2O) solution is presented herein. By utilizing the stability of inorganic deuterated calcium/sodium hypophosphites against wayward H/D isotopic exchange within pH 2.5-11.7, these shelf-stable, nontoxic, cost-effective, and environmentally benign deuteration reagents mediate deuteration of a broad range alkyl and aryl iodides with ample isotopic incorporation in aqueous (H2O) solution.
Collapse
Affiliation(s)
- Zejin Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| |
Collapse
|