1
|
Boelrijk J, Molenaar SRA, Bos TS, Dahlseid TA, Ensing B, Stoll DR, Forré P, Pirok BWJ. Enhancing LC×LC separations through multi-task Bayesian optimization. J Chromatogr A 2024; 1726:464941. [PMID: 38749274 DOI: 10.1016/j.chroma.2024.464941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Method development in comprehensive two-dimensional liquid chromatography (LC×LC) is a challenging process. The interdependencies between the two dimensions and the possibility of incorporating complex gradient profiles, such as multi-segmented gradients or shifting gradients, make trial-and-error method development time-consuming and highly dependent on user experience. Retention modeling and Bayesian optimization (BO) have been proposed as solutions to mitigate these issues. However, both approaches have their strengths and weaknesses. On the one hand, retention modeling, which approximates true retention behavior, depends on effective peak tracking and accurate retention time and width predictions, which are increasingly challenging for complex samples and advanced gradient assemblies. On the other hand, Bayesian optimization may require many experiments when dealing with many adjustable parameters, as in LC×LC. Therefore, in this work, we investigate the use of multi-task Bayesian optimization (MTBO), a method that can combine information from both retention modeling and experimental measurements. The algorithm was first tested and compared with BO using a synthetic retention modeling test case, where it was shown that MTBO finds better optima with fewer method-development iterations than conventional BO. Next, the algorithm was tested on the optimization of a method for a pesticide sample and we found that the algorithm was able to improve upon the initial scanning experiments. Multi-task Bayesian optimization is a promising technique in situations where modeling retention is challenging, and the high number of adjustable parameters and/or limited optimization budget makes traditional Bayesian optimization impractical.
Collapse
Affiliation(s)
- Jim Boelrijk
- AI4Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands; AMLab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| | - Stef R A Molenaar
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands; Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Tijmen S Bos
- Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands; Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Tina A Dahlseid
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, United States
| | - Bernd Ensing
- AI4Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands; Computational Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, United States
| | - Patrick Forré
- AI4Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands; AMLab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands
| | - Bob W J Pirok
- AI4Science Lab, Informatics Institute, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands; Analytical Chemistry Group, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| |
Collapse
|
2
|
Ahmad R, Alam MB, Cho E, Park CB, Shafique I, Lee SH, Sunghwan K. Development of a rapid screening method utilizing 2D LC for effect-directed analysis in the identification of environmental toxicants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172199. [PMID: 38580108 DOI: 10.1016/j.scitotenv.2024.172199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Effect-directed analysis (EDA) is a crucial tool in environmental toxicology, effectively integrating toxicity testing with chemical analysis. The conventional EDA approach, however, presents challenges such as significant solvent consumption, extended analysis time, labor intensity, and potential contamination risks. In response, we introduce an innovative alternative to the conventional EDA. This method utilizes the MTT bioassay and online two-dimensional liquid chromatography (2D LC) coupled with high-resolution mass spectrometry (HR-MS), significantly reducing the fractionation steps and leveraging the enhanced sensitivity of the bioassay and automated chemical analysis. In the chemical analysis phase, a switching valve interface is employed for comprehensive analysis. We tested the performance of both the conventional and our online 2D LC-based methods using a household product. Both methods identified the same number of toxicants in the sample. Our alternative EDA is 22.5 times faster than the conventional method, fully automated, and substantially reduces solvent consumption. This novel approach offers ease, cost-effectiveness, and represents a paradigm shift in EDA methodologies. By integrating a sensitive bioassay with online 2D LC, it not only enhances efficiency but also addresses the challenges associated with traditional methods, marking a significant advancement in environmental toxicology research.
Collapse
Affiliation(s)
- Raees Ahmad
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Chang-Beom Park
- Gyeongnam Branch, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Imran Shafique
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kim Sunghwan
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Mass Spectrometry based Convergence Research Institute, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Zhang H, Wang Q, Wang J, Zhang S, Jia W, He N, Xia X, Wang T, Lai L, Li J, DU J, Olaleye OE, Chen X, Yang J, Li C. Composition analysis of Compound Shenhua Tablet, a seven-herb Chinese medicine for IgA nephropathy: evaluation of analyte-capacity of the assays. Chin J Nat Med 2024; 22:178-192. [PMID: 38342570 DOI: 10.1016/s1875-5364(24)60553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 02/13/2024]
Abstract
Compound Shenhua Tablet, a medicine comprising seven herbs, is employed in treating IgA nephropathy. This study aimed to meticulously analyze its chemical composition. Based on a list of candidate compounds, identified through extensive literature review pertinent to the tablet's herbal components, the composition analysis entailed the systematic identification, characterization, and quantification of the constituents. The analyte-capacity of LC/ESI-MS-based and GC/EI-MS-based assays was evaluated. The identified and characterized constituents were quantified to determine their content levels and were ranked based on the constituents' daily doses. A total of 283 constituents, classified into 12 distinct categories, were identified and characterized in the Compound Shenhua Tablet. These constituents exhibited content levels of 1-10 982 μg·g-1, with daily doses of 0.01-395 μmol·d-1. The predominant constituents, with daily doses of ≥ 10 μmol·d-1, include nine organic acids (citric acid, quinic acid, chlorogenic acid, cryptochlorogenic acid, gallic acid, neochlorogenic acid, isochlorogenic acid C, isochlorogenic acid B, and linoleic acid), five iridoids (specnuezhenide, nuezhenoside G13, nuezhenidic acid, secoxyloganin, and secologanoside), two monoterpene glycosides (paeoniflorin and albiflorin), a sesquiterpenoid (curzerenone), a triterpenoid (oleanolic acid), and a phenylethanoid (salidroside). Additionally, there were 83, 126, and 55 constituents detected in the medicine with daily doses of 1-10, 0.1-1, and 0.01-0.1 μmol·d-1, respectively. The combination of the LC/ESI-MS-based and GC/EI-MS-based assays demonstrated a complementary relationship in their analyte-capacity for detecting the constituents present in the medicine. This comprehensive composition analysis establishes a solid foundation for further pharmacological research on Compound Shenhua Tablet and facilitates the quality evaluation of this complex herbal medicine.
Collapse
Affiliation(s)
- Haiyan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Sichao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiwei Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liyu Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing DU
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Olajide E Olaleye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Junling Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Zhongshan 528400, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Falev DI, Voronov IS, Onuchina AA, Faleva AV, Ul’yanovskii NV, Kosyakov DS. Analysis of Softwood Lignans by Comprehensive Two-Dimensional Liquid Chromatography. Molecules 2023; 28:8114. [PMID: 38138599 PMCID: PMC10745517 DOI: 10.3390/molecules28248114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Lignans constitute a large group of phenolic plant secondary metabolites possessing high bioactivity. Their accurate determination in plant extracts with a complex chemical composition is challenging and requires advanced separation techniques. In the present study, a new approach to the determination of lignans in coniferous knotwood extracts as the promising industrial-scale source of such compounds based on comprehensive two-dimensional liquid chromatography separation and UV spectrophotometric detection is proposed. First and second-dimension column screening showed that the best results can be obtained using a combination of non-polar and polar hydroxy group embedded octadecyl stationary phases with moderate (~40%) "orthogonality". The optimization of LC × LC separation conditions allowed for the development of a new method for the quantification of the five lignans (secoisolariciresinol, matairesinol, pinoresinol, 7-hydroxymatairesinol, and nortrachelogenin) in knotwood extracts with limits of quantification in the range of 0.27-0.95 mg L-1 and a linear concentration range covering at least two orders of magnitude. Testing the developed method on coniferous (larch, fir, spruce, and pine) knotwood extracts demonstrated the high selectivity of the analysis and the advantages of LC × LC in the separation and accurate quantification of the compounds co-eluting in one-dimensional HPLC.
Collapse
Affiliation(s)
- Danil I. Falev
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | | | | | | - Nikolay V. Ul’yanovskii
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia; (I.S.V.); (A.A.O.); (A.V.F.); (D.S.K.)
| | | |
Collapse
|
5
|
Rexiti K, Jiang X, Kong Y, Chen X, Liu H, Peng H, Wei X. Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients. Xenobiotica 2023; 53:603-612. [PMID: 37991412 DOI: 10.1080/00498254.2023.2287168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
1. This study aimed to establish a population pharmacokinetic (PPK) model of mycophenolic acid (MPA), quantify the effect of clinical factors and pharmacogenomics of MPA, and optimise the dosage for adult kidney transplant recipients.2. One-hundred and four adult renal transplant patients were enrolled. The PPK model was established using the Phoenix® NMLE software and the stepwise methods were filtered for significant covariates. Monte Carlo simulations were performed to optimise the dosage regimen.3. A two-compartment model with first-order absorption and elimination (including lag time) provided a more accurate description of MPA pharmacokinetics. Serum albumin (ALB) significantly affected the central apparent clearance (CL/F), whereas post-transplant time and creatinine clearance were associated with a central apparent volume of distribution (V/F). The estimated population values obtained by the final model were 17.5 L/h and 93.97 L for CL/F and V/F, respectively. Simulation results revealed that larger mycophenolate mofetil doses are required as the ALB concentration decreases. This study established a PPK model of MPA and validated it using various methods. ALB significantly affected CL/F and recommended optimal dose strategies were given based on the final model. These results provide a reference for the personalised therapy of MPA for kidney transplant patients.
Collapse
Affiliation(s)
- Kaisaner Rexiti
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuehui Jiang
- Department of Pharmacy, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu Chen
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Niezen LE, Bos TS, Schoenmakers PJ, Somsen GW, Pirok BWJ. Capacitively coupled contactless conductivity detection to account for system-induced gradient deformation in liquid chromatography. Anal Chim Acta 2023; 1271:341466. [PMID: 37328247 DOI: 10.1016/j.aca.2023.341466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The time required for method development in gradient-elution liquid chromatography (LC) may be reduced by using an empirical modelling approach to describe and predict analyte retention and peak width. However, prediction accuracy is impaired by system-induced gradient deformation, which can be especially prominent for steep gradients. As the deformation is unique to each LC instrument, it needs to be corrected for if retention modelling for optimization and method transfer is to become generally applicable. Such a correction requires knowledge of the actual gradient profile. The latter has been measured using capacitively coupled "contactless" conductivity detection (C4D), featuring a low detection volume (approximately 0.05 μL) and compatibility with very high pressures (80 MPa or more). Several different solvent gradients, from water to acetonitrile, water to methanol, and acetonitrile to tetrahydrofuran, could be measured directly without the addition of a tracer component to the mobile phase, exemplifying the universal nature of the approach. Gradient profiles were found to be unique for each solvent combination, flowrate, and gradient duration. The profiles could be described by convoluting the programmed gradient with a weighted sum of two distribution functions. Knowledge of the exact profiles was used to improve the inter-system transferability of retention models for toluene, anthracene, phenol, emodin, sudan-I and several polystyrene standards.
Collapse
Affiliation(s)
- Leon E Niezen
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Tijmen S Bos
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter J Schoenmakers
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands
| | - Govert W Somsen
- Centre for Analytical Sciences Amsterdam (CASA), the Netherlands; Division of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Bob W J Pirok
- Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), the Netherlands.
| |
Collapse
|
7
|
Wysor SK, Marcus RK. Two-dimensional separation of water-soluble polymers using size exclusion and reversed phase chromatography employing capillary-channeled polymer fiber columns. J Chromatogr A 2023; 1701:464051. [PMID: 37209520 DOI: 10.1016/j.chroma.2023.464051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
8
|
Lin Z, Wang Q, Zhou Y, Shackman JG. Trapping mode two-dimensional liquid chromatography for quantitative low-level impurity enrichment in pharmaceutical development. J Chromatogr A 2023; 1700:464043. [PMID: 37172541 DOI: 10.1016/j.chroma.2023.464043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Trapping mode two-dimensional liquid chromatography (2D-LC) has recently found applications in pharmaceutical analysis to clean, refocus, and enrich analytes. Given its enrichment capability, 2D-LC with multiple trappings is appealing for low-level impurity monitoring that cannot be solved by single dimensional LC (1D-LC) or unenriched 2D-LC analysis. However, the quantitative features of multi-trapping 2D-LC remain largely unknown at impurity levels from parts-per-million (ppm) to 0.15% (w/w). We present a simple heart-cutting trapping mode 2D-LC workflow using only common components and software found in typical off-the-shelf 1D-LC instruments. This robust, turn-key system's quantitative capabilities were evaluated using a variety of standard markers, demonstrating linear enrichment for up to 20 trapping cycles and achieving a recovery of over 97.0%. Next, the trapping system was applied to several real-world low-level impurity pharmaceutical case studies including (1) the identification of two unknown impurities at sub-ppm levels resulting in material discoloration, (2) the discovery of a new impurity at 0.05% (w/w) co-eluted with a known impurity, making the undesired summation above the target specification, and (3) the quantification of a potential mutagenic impurity at 10-ppm level in a poorly soluble substrate. The recovery in all studies was better than 97.0% with RSD lower than 3.0%, demonstrating accuracy and precision of the 2D-LC trapping workflow. As no specialized equipment or software is required, we envision that the system could be used to develop low-impurity monitoring methods suitable for validation and potential execution in quality-control laboratories.
Collapse
Affiliation(s)
- Ziqing Lin
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA.
| | - Qinggang Wang
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| | - Yiyang Zhou
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| | - Jonathan G Shackman
- Bristol Myers Squibb Company, Chemical Process Development, One Squibb Drive, New Brunswick, NJ 08903, USA
| |
Collapse
|
9
|
Jiang X, Fu Q, Jing Y, Kong Y, Liu H, Peng H, Rexiti K, Wei X. Personalized Dose of Adjuvant Imatinib in Patients with Gastrointestinal Stromal Tumors: Results from a Population Pharmacokinetic Analysis. Drug Des Devel Ther 2023; 17:809-820. [PMID: 36942304 PMCID: PMC10024496 DOI: 10.2147/dddt.s400986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Purpose Imatinib is the first-line treatment for patients with gastrointestinal stromal tumors (GIST) after surgery. However, its pharmacokinetic profile varies remarkably between individuals and has not been well characterized in postoperative Chinese patients with GIST. Therefore, this study aimed to develop a population pharmacokinetic (PPK) model and recommend appropriate doses for different patients to achieve the target trough concentration in such a population. Patients and Methods A total of 110 surgically treated GIST patients were enrolled, of which 85 were applied to conduct a PPK analysis with a nonlinear mixed-effect model and 25 for external validation of the model. Demographic and biomedical covariates, as well as six single nucleotide polymorphisms were tested to explore the sources of variation in pharmacokinetic parameters of imatinib. Monte Carlo simulations were performed to establish the initial dosing regimens. Results A one-compartment model was established in postoperative GIST patients. The red blood cell count (RBC) and ABCG2 rs2231142 were observed to have a significant effect on the clearance of imatinib. The typical values estimated by the final model were 9.72 L/h for clearance (CL/F) and 229 L for volume of distribution (V/F). Different from the fixed dose regimen of 400 mg each day, patients carrying rs2231142 heterozygous type and with a lower level of RBC (2.9 × 1012/L), 300 mg imatinib daily is enough to achieve the target trough concentration. When RBC rises to 4.9 × 1012/L, 500 mg daily is recommended. For patients with rs2231142 GG genotype, 500 mg a day is required at RBCs of 3.9 × 1012/L and 4.9 × 1012/L. Conclusion RBC and rs2231142 contribute to the pharmacokinetic variation of imatinib and personalized dose recommendations based on patient characteristics may be necessary.
Collapse
Affiliation(s)
- Xuehui Jiang
- School of Pharmacy, Nanchang University, Nanchang, People’s Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qun Fu
- Jiangxi Provincial Drug Inspector Center, Jiangxi Provincial Drug Administration, Nanchang, People’s Republic of China
| | - Yan Jing
- Department of Pharmacy, Linyi Central Hospital, Linyi, People’s Republic of China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hong Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kaisaner Rexiti
- School of Pharmacy, Nanchang University, Nanchang, People’s Republic of China
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Xiaohua Wei, Department of Pharmacy, The First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, 330006, People’s Republic of China, Tel +86 13803523639, Email
| |
Collapse
|
10
|
Chapel S, Rouvière F, Heinisch S. Sense and nonsense of shifting gradients in on-line comprehensive reversed-phase LC × reversed-phase LC. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123512. [DOI: 10.1016/j.jchromb.2022.123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
11
|
Amin R, Alam F, Dey BK, Mandhadi JR, Bin Emran T, Khandaker MU, Safi SZ. Multidimensional Chromatography and Its Applications in Food Products, Biological Samples and Toxin Products: A Comprehensive Review. SEPARATIONS 2022; 9:326. [DOI: 10.3390/separations9110326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Food, drugs, dyes, extracts, and minerals are all made up of complex elements, and utilizing unidimensional chromatography to separate them is inefficient and insensitive. This has sparked the invention of several linked chromatography methods, each of them with distinct separation principles and affinity for the analyte of interest. Multidimensional chromatography consists of the combination of multiple chromatography techniques, with great benefits at the level of efficiency, peak capacity, precision, and accuracy of the analysis, while reducing the time required for the analysis. Various coupled chromatography techniques have recently emerged, including liquid chromatography–gas chromatography (LC–GC), gas chromatography–gas chromatography (GC–GC), liquid chromatography–liquid chromatography (LC–LC), GCMS–MS, LCMS–MS, supercritical fluid techniques with chromatography techniques, and electro-driven multidimensional separation techniques. In this paper, the different coupled chromatography techniques will be discussed, along with their wide spectrum of applications for food, flavor, and environmental analysis, as well as their usefulness for the pharmaceutical, color, and dyes industries.
Collapse
|
12
|
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.201801134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry Sharif University of Technology Tehran Iran
| | - Roma Tauler
- Department of Environmental Chemistry IDAEA-CSIC 08034 Barcelona Spain
| |
Collapse
|
13
|
Foster SW, Parker D, Kurre S, Boughton J, Stoll DR, Grinias JP. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal Chim Acta 2022; 1228:340300. [DOI: 10.1016/j.aca.2022.340300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
14
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented.
Collapse
|
16
|
Wicht K, Baert M, Muller M, Bandini E, Schipperges S, von Doehren N, Desmet G, de Villiers A, Lynen F. Comprehensive two-dimensional temperature-responsive × reversed phase liquid chromatography for the analysis of wine phenolics. Talanta 2022; 236:122889. [PMID: 34635268 DOI: 10.1016/j.talanta.2021.122889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Phenolic compounds are an interesting class of natural products because of their proposed contribution to health benefits of foods and beverages and as a bio-source of organic (aromatic) building blocks. Phenolic extracts from natural products are often highly complex and contain compounds covering a broad range in molecular properties. While many 1D-LC and mass spectrometric approaches have been proposed for the analysis of phenolics, this complexity inevitably leads to challenging identification and purification. New insights into the composition of phenolic extracts can be obtained through online comprehensive two-dimensional liquid chromatography (LC × LC) coupled to photodiode array and mass spectrometric detection. However, several practical hurdles must be overcome to achieve high peak capacities and to obtain robust methods with this technique. In many LC × LC configurations, refocusing of analytes at the head of the 2D column is hindered by the high eluotropic strength of the solvent transferred from the 1D to the 2D, leading to peak breakthrough or broadening. LC × LC combinations whereby a purely aqueous mobile phase is used in the 1D and RPLC is used in the 2D are unaffected by these phenomena, leading to more robust methods. In this contribution, the combination of temperature-responsive liquid chromatography (TRLC) with RPLC is used for the first time for the analysis of phenolic extracts of natural origin to illustrate the potential of this alternative combination for natural product analyses. The possibilities of the combination are investigated through analysis of wine extracts by TRLC × RPLC-DAD and TRLC × RPLC-ESI-MS.
Collapse
Affiliation(s)
- Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000, Ghent, Belgium
| | - Mathijs Baert
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000, Ghent, Belgium
| | - Magriet Muller
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, ZA-7602, Matieland, South Africa
| | - Elena Bandini
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000, Ghent, Belgium
| | - Sonja Schipperges
- Agilent Technologies, Hewlett Packard St 8, D-76337, Waldbronn, Germany
| | - Norwin von Doehren
- Agilent Technologies, Netherlands BV, NL-4330, EA, Middelburg, Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussel, Belgium
| | - André de Villiers
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, ZA-7602, Matieland, South Africa
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000, Ghent, Belgium.
| |
Collapse
|
17
|
Byrdwell WC, Kotapati HK, Goldschmidt R, Jakubec P, Nováková L. Three-dimensional liquid chromatography with parallel second dimensions and quadruple parallel mass spectrometry for adult/infant formula analysis. J Chromatogr A 2021; 1661:462682. [PMID: 34863062 DOI: 10.1016/j.chroma.2021.462682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
Abstract
Three dimensions of chromatographic separation, using split-flow two-dimensional liquid chromatography (SF-2D-LC) with two parallel second dimensions, LC × 2LC, combined with quadruple parallel mass spectrometry (LC3MS4) is demonstrated for analysis of NIST SRM 1849a adult/infant formula. The first dimension, 1D, was a conventional non-aqueous reversed-phase (NARP) HPLC separation using two C18 columns in series, followed by detection using an ultraviolet (UV) detector, a fluorescence detector (FLD), with flow then split to a corona charged aerosol detector (CAD), and then dual parallel mass spectrometry (MS), conducted in atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) modes. The first second dimension, 2D(1), UHPLC was conducted on a 50.0 mm C30 column using a NARP-UHPLC parallel gradient for separation of short-chain triacylglycerols (TAGs) from long-chain TAGs, with detection by UV and ESI-MS. The second dimension, 2D(2), UHPLC was conducted using a 100.0 mm C30 column with a NARP-UHPLC parallel gradient for improved separation of TAG isomers, with detection by UV, an evaporative light scattering detector, and high-resolution, accurate-mass (HRAM) ESI-MS. Transferred eluent dilution was used to refocus peaks and keep them sharp during elution in both 2Ds. The separation space in the 2D(2) was optimized using multi-cycle (aka, "constructive wraparound") elution, which employed flow rate programming. In the 1D, calibration lines for quantification of fat-soluble vitamins were constructed. A lipidomics approach to TAG identification and quantification by HRAM-ESI-MS was applied to the 2D(2). These experiments can be represented: LC1MS2 × (LC1MS1 + LC1MS1) = LC3MS4, or three-dimensional liquid chromatography with quadruple parallel mass spectrometry.
Collapse
Affiliation(s)
- William Craig Byrdwell
- Methods and Application of Food Composition Lab, Agricultural Research Service, U.S. Dept. of Agriculture, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Hari K Kotapati
- Methods and Application of Food Composition Lab, Agricultural Research Service, U.S. Dept. of Agriculture, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Robert Goldschmidt
- Methods and Application of Food Composition Lab, Agricultural Research Service, U.S. Dept. of Agriculture, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Pavel Jakubec
- Charles University, Faculty of Pharmacy, Dept. of Analytical Chemistry, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucie Nováková
- Charles University, Faculty of Pharmacy, Dept. of Analytical Chemistry, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
18
|
Burlet-Parendel M, Faure K. Opportunities and challenges of liquid chromatography coupled to supercritical fluid chromatography. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Chromatographic Fingerprinting Based on Column Switching Technology for Quality Evaluation of Tianmeng Oral Liquid. Int J Anal Chem 2021; 2021:2514762. [PMID: 34630567 PMCID: PMC8494583 DOI: 10.1155/2021/2514762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Separation power was limited when the conventional high-performance liquid chromatography (HPLC) fingerprinting method based on a single column was used to analyze very complex traditional Chinese medicine (TCM) preparations. In this research, a novel HPLC fingerprinting method based on column switching technology by using a single pump was established for evaluating the quality of Tianmeng oral liquid (TMOL). Twelve batches of TMOL samples were used for constructing HPLC fingerprints. Compared with the 16 common peaks in fingerprinting with a single column, 25 common peaks were achieved with two columns connected through a six-way valve. The similarity analysis combined with bootstrap method was applied to determine the similarity threshold, which was 0.992 to distinguish expired samples and unexpired samples. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) were also applied to classify the TMOL samples, and results revealed that expired and unexpired samples are classified into two categories. The HPLC fingerprinting based on column switching technology with better separation power and higher peak capacity could characterize chemical composition information more comprehensively, providing an effective and alternative method to control and evaluate the quality of TMOL, which would offer a valuable reference for other TCM preparations.
Collapse
|
20
|
Grübner M, Dunkel A, Steiner F, Hofmann T. Systematic Evaluation of Liquid Chromatography (LC) Column Combinations for Application in Two-Dimensional LC Metabolomic Studies. Anal Chem 2021; 93:12565-12573. [PMID: 34491041 DOI: 10.1021/acs.analchem.1c01857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In comparison to proteomics, the application of two-dimensional liquid chromatography (2D LC) in the field of metabolomics is still premature. One reason might be the elevated chemical complexity and the associated challenge of selecting proper separation conditions in each dimension. As orthogonality of dimensions is a major issue, the present study aimed for the identification of successful stationary phase combinations. To determine the degree of orthogonality, first, six different metrics, namely, Pearson's correlation coefficient (1 - |R|), the nearest-neighbor distances (H̅NND), the "asterisk equations" (AO), and surface coverage by bins (SCG), convex hulls (SCCH), and α-convex hulls (SCαH), were critically assessed by 15 artificial 2D data sets, and a systematic parameter optimization of α-convex hulls was conducted. SGG, SCαH with α = 0.1, and H̅NND generated valid results with sensitivity toward space utilization and data distribution and, therefore, were applied to pairs of experimental retention time sets obtained for >350 metabolites, selected to represent the chemical space of human urine. Normalized retention data were obtained for 23 chromatographic setups, comprising reversed-phase (RP), hydrophilic interaction liquid chromatography (HILIC), and mixed-mode separation systems with an ion exchange (IEX) contribution. As expected, no single LC setting provided separation of all considered analytes, but while conventional RP×HILIC combinations appeared rather complementary than orthogonal, the incorporation of IEX properties into the RP dimension substantially increased the 2D potential. Eventually, one of the most promising column combinations was implemented for an offline 2D LC time-of-flight mass spectrometry analysis of a lyophilized urine sample. Targeted screening resulted in a total of 164 detected metabolites and confirmed the outstanding coverage of the 2D retention space.
Collapse
Affiliation(s)
- Maria Grübner
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany.,Thermo Fisher Scientific, Dornierstraße 4, Germering 82110, Germany
| | - Andreas Dunkel
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany.,Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany
| | - Frank Steiner
- Thermo Fisher Scientific, Dornierstraße 4, Germering 82110, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, Freising 85354, Germany
| |
Collapse
|
21
|
Rutan SC, Jeong LN, Carr PW, Stoll DR, Weber SG. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. J Chromatogr A 2021; 1653:462376. [PMID: 34293516 DOI: 10.1016/j.chroma.2021.462376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Closed form expressions for the prediction of retention times and peak widths for gradient liquid chromatography are particularly useful in understanding, rationalizing and optimizing separations. These expressions are obtained by integrating differential equations, in conjunction with a model of the variation of the retention factor as a function of mobile phase composition. Two of these models, the linear solvent strength (LSS) model and the Neue-Kuss (NK) model are explored in the present work. Here, we expand on these closed form expressions to account for effects of sample volume overload and a mismatch between the sample solvent and the initial mobile phase composition for the gradient. We show that there have been errors in expressions reported in the literature, and we have evaluated the accuracy of the predictions from the closed form expressions reported here using a recently developed liquid chromatography simulator. The expressions assume a constant plate height and consider elution across four zones of the gradient profile - elution in the sample solvent, elution in the initial (isocratic) mobile phase caused by the gradient delay volume, elution during a linear gradient, and elution post-gradient at the final (isocratic) mobile phase composition. The expressions generally give reasonably accurate predictions for retention times and peak widths, except for cases where the solute elutes during transitions between the different zones. The average magnitude of the prediction errors for retention time and peak width relative to simulation were 0.093% and 0.40% for the LSS expressions for ten amphetamine solutes at 36 different separation conditions, and 0.22% and 1.8% for the NK expressions for eight alkylbenzene solutes at 36 different separation conditions, respectively.
Collapse
Affiliation(s)
- Sarah C Rutan
- Department of Chemistry, Box 842006, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | - Lena N Jeong
- Department of Chemistry, Box 842006, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Peter W Carr
- Department of Chemistry, Smith and Kolthoff Halls, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, 800 West College Avenue, Saint Peter, MN 56082, USA
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
22
|
|
23
|
Pepermans V, Chapel S, Heinisch S, Desmet G. Detailed numerical study of the peak shapes of neutral analytes injected at high solvent strength in short reversed-phase liquid chromatography columns and comparison with experimental observations. J Chromatogr A 2021; 1643:462078. [PMID: 33780885 DOI: 10.1016/j.chroma.2021.462078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/27/2022]
Abstract
We report on a numerical investigation of the different steps in the development of the spatial concentration profiles developing along the axis of a liquid chromatography column when injecting large relative volumes (>10 to 20% of column volume) of analytes dissolved in a high solvent strength solvent band as can be encountered in the second dimension (2D) column of a two-dimensional liquid chromatography (2D-LC) system. More specifically, we made a detailed study of the different retention and the axial band broadening effects leading to the double-headed peak shapes or strongly fronting peaks that can be experimentally observed under certain conditions in 2D-LC. The establishment of these intricate peak profiles is discussed in all its fine, mechanistic details. The effect of the volume of the column, the volume and the shape of the sample band, the retention properties of the analyte and the band broadening experienced by the analytes and the sample solvent are investigated. A good agreement between the simulations and the experimental observations with caffeine and methylparaben injected in acetonitrile/water (ACN/H2O) mobile phase with different injection volumes is obtained. Save the difference in dwell volume, key features of experimental and simulated chromatograms agree within a few %. The simulations are also validated against a number of simple mathematical rules of thumb that can be established to predict the occurrence of a breakthrough fraction and estimate the amount of breakthrough.
Collapse
Affiliation(s)
- Vincent Pepermans
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soraya Chapel
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Sabine Heinisch
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
24
|
Development of comprehensive two-dimensional low-flow liquid-chromatography setup coupled to high-resolution mass spectrometry for shotgun proteomics. Anal Chim Acta 2021; 1156:338349. [PMID: 33781465 DOI: 10.1016/j.aca.2021.338349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023]
Abstract
Bottom-up proteomics provides often small amounts of highly complex samples that cannot be analysed by direct mass spectrometry (MS). To gain a better insight in the sample composition, liquid chromatography (LC) and (comprehensive) two-dimensional liquid chromatography (2D-LC or LC × LC) can be coupled to the MS. Low-flow separations are attractive for HRMS analysis, but they tend to be lengthy. In this work, a low-flow, online, actively modulated LC × LC system, based on hydrophilic-interaction liquid chromatography (HILIC) in the first dimension and reversed-phase liquid chromatography (RPLC) in the second dimension, was developed to separate complex mixtures of peptides. Miniaturization permitted the analysis of small sample amounts (1-5 μg) and direct coupling with micro-ESI MS (1 μL min-1). All components were focused and automatically transferred from HILIC to RPLC using stationary-phase-assisted active modulation (C18 traps) to deal with solvent-incompatibility or dilution issues. Optimization of the setup was performed for the HILIC columns and the RPLC columns to provide a more efficient separation and higher identification rates than obtained using one-dimensional (1D) LC. A 60% increase in peak capacity was obtained with the 2D setup compared to a 1D-RPLC separation and a 17-34% increase in the number of proteins identified was achieved for the samples analysed (2D-yeast-8280 peptides and 2D-kidney tissue-8843 peptides), without increasing the analysis time (2 h).
Collapse
|
25
|
Hand RA, Bassindale T, Turner N, Morgan G. Application of comprehensive 2D chromatography in the anti-doping field: Sample identification and quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122584. [PMID: 34224963 DOI: 10.1016/j.jchromb.2021.122584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
Abstract
Anti-doping analysis requires an exceptional level of accuracy and precision given the stakes that are at play. Current methods rely on the application of chromatographic techniques linked with mass spectrometry to provide this. However, despite the effectiveness of these techniques in achieving good selectivity and specificity, some issues still exist. In order to reach the minimum required performance level as set by WADA, labs commonly use selective monitoring by quadrupole mass spectrometry. This can be potentially fooled through the use of masking agents or by moving the peaks, as often only a small portion of the spectrum is used for analysis. Further issues exist in the inability to detect new or modified compounds, or to reanalyse samples/spectra. One technique that could overcome these problems is that of comprehensive 2D chromatography. Here a second separation column is employed to generate greater separative power. Compared to conventional separation, GCxGC allows for a greater peak capacity (i.e., number of peaks that can be resolved within a given time) and greater separation of coeluting compounds, which makes the technique promising for the complex task required in anti-doping. When combined with Time of Flight Mass Spectrometry this technique demonstrates vast potential allowing for full mass range datasets to be obtained for retroactive analysis. Similarly, LCxLC provides improvements in resolving power compared to its 1D counterpart and can be used both online as part of the analysis or offline solely as a purification step. In this review we summarise the work in this field so far, how comprehensive chromatography has been applied to anti-doping studies, and discuss the future application for this technique.
Collapse
Affiliation(s)
- Rachel A Hand
- School of Pharmacy, De Montfort University, Leicester LE2 9BH, UK
| | - Thomas Bassindale
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Nicholas Turner
- School of Pharmacy, De Montfort University, Leicester LE2 9BH, UK
| | - Geraint Morgan
- School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK.
| |
Collapse
|
26
|
Majuta SN, DeBastiani A, Li P, Valentine SJ. Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance 'Omics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:473-485. [PMID: 33417454 PMCID: PMC8132193 DOI: 10.1021/jasms.0c00376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Field-enabled capillary vibrating sharp-edge spray ionization (cVSSI) has been combined with high-flow liquid chromatography (LC) and mass spectrometry (MS) to establish current ionization capabilities for metabolomics and proteomics investigations. Comparisons are made between experiments employing cVSSI and a heated electrospray ionization probe representing the state-of-the-art in microflow LC-MS methods for 'omics studies. For metabolomics standards, cVSSI is shown to provide an ionization enhancement by factors of 4 ± 2 for both negative and positive ion mode analyses. For chymotryptic peptides, cVSSI is shown to provide an ionization enhancement by factors of 5 ± 2 and 2 ± 1 for negative and positive ion mode analyses, respectively. Slightly broader high-performance liquid chromatography peaks are observed in the cVSSI datasets, and several studies suggest that this results from a slightly decreased post-split flow rate. This may result from partial obstruction of the pulled-tip emitter over time. Such a challenge can be remedied with the use of LC pumps that operate in the 10 to 100 μL·min-1 flow regime. At this early stage, the proof-of-principle studies already show ion signal advantages over state-of-the-art electrospray ionization (ESI) for a wide variety of analytes in both positive and negative ion mode. Overall, this represents a ∼20-50-fold improvement over the first demonstration of LC-MS analyses by voltage-free cVSSI. Separate comparisons of the ion abundances of compounds eluting under identical solvent conditions reveal ionization efficiency differences between cVSSI and ESI and may suggest varied contributions to ionization from different physicochemical properties of the compounds. Future investigations of parameters that could further increase ionization gains in negative and positive ion mode analyses with the use of cVSSI are briefly presented.
Collapse
Affiliation(s)
- Sandra N. Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| |
Collapse
|
27
|
Biological Applications for LC-MS-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:17-29. [PMID: 34628625 DOI: 10.1007/978-3-030-77252-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Since its inception, liquid chromatography-mass spectrometry (LC-MS) has been continuously improved upon in many aspects, including instrument capabilities, sensitivity, and resolution. Moreover, the costs to purchase and operate mass spectrometers and liquid chromatography systems have decreased, thus increasing affordability and availability in sectors outside of academic and industrial research. Processing power has also grown immensely, cutting the time required to analyze samples, allowing more data to be feasibly processed, and allowing for standardized processing pipelines. As a result, proteomics via LC-MS has become popular in many areas of biological sciences, forging an important seat for itself in targeted and untargeted assays, pure and applied science, the laboratory, and the clinic. In this chapter, many of these applications of LC-MS-based proteomics and an outline of how they can be executed will be covered. Since the field of personalized medicine has matured alongside proteomics, it has also come to rely on various mass spectrometry methods and will be elaborated upon as well. As time goes on and mass spectrometry evolves, there is no doubt that its presence in these areas, and others, will only continue to grow.
Collapse
|
28
|
Acevedo MSM, Gama MR, Batista AD, Rocha FR. Two-dimensional separation by sequential injection chromatography. J Chromatogr A 2020; 1626:461365. [DOI: 10.1016/j.chroma.2020.461365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
|
29
|
Law HCH, Kong RPW, Li M, Szeto SSW, Chu IK. Implementation of a multiple-fraction concatenation strategy in an online two-dimensional high-/low-pH reversed-phase/reversed-phase liquid chromatography platform for qualitative and quantitative shotgun proteomic analyses. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4591. [PMID: 32633895 DOI: 10.1002/jms.4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Multidimensional liquid chromatography is the mainstay separation technique used for shotgun proteomic analyses. The application of a multiple-fraction concatenation (MFC) strategy can result in a more disperse and consistent peptide elution profile across different fractions, when compared with a conventional strategy. Herein, we present the first automated online RP-RP platform implementing an MFC strategy to facilitate robust, unattended, routine proteomic analyses. The improved duty cycle utilization of the MFC strategy led to an increase of 9% in the separation space occupancy and increases of approximately 10% in the identification of both proteins and peptides. The peptides uniquely identified by the MFC strategy were significantly biased toward those of acidic nature, with increased precursor signals leading to improved MS/MS spectral quality and enhanced acidic peptide identification. These improvements in qualitative analysis using the MFC strategy were also extended to quantitative analysis. When the acquired proteome was quantified with a normalized spectral abundance factor, the additionally acquired acidic peptides were a critical factor leading to enhanced reproducibility of quantitation using the MFC strategy. With merits of superior qualitative and quantitative characteristics over the conventional strategy, the MFC strategy appears to be a highly amenable technique for enhancing the separation capacity for routine proteomic analyses.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ricky P W Kong
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Mengzhu Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A 2020; 1620:460954. [DOI: 10.1016/j.chroma.2020.460954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
31
|
Wu C, Wang N, Xu P, Wang X, Shou D, Zhu Y. Preparation and application of polyvinyl alcohol‐decorated cell membrane chromatography for screening anti‐osteoporosis components from Liuwei Dihuang decoction‐containing serum. J Sep Sci 2020; 43:2105-2114. [DOI: 10.1002/jssc.201901203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Can Wu
- Department of ChemistryZhejiang University Hangzhou Zhejiang P. R. China
| | - Nani Wang
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Pingcui Xu
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Xuping Wang
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Dan Shou
- Department of MedicineZhejiang Academy of Traditional Chinese Medicine Hangzhou Zhejiang P. R. China
| | - Yan Zhu
- Department of ChemistryZhejiang University Hangzhou Zhejiang P. R. China
| |
Collapse
|
32
|
Zhu K, Pursch M, Eeltink S, Desmet G. Maximizing two-dimensional liquid chromatography peak capacity for the separation of complex industrial samples. J Chromatogr A 2020; 1609:460457. [DOI: 10.1016/j.chroma.2019.460457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022]
|
33
|
Schroeder M, Meyer SW, Heyman HM, Barsch A, Sumner LW. Generation of a Collision Cross Section Library for Multi-Dimensional Plant Metabolomics Using UHPLC-Trapped Ion Mobility-MS/MS. Metabolites 2019; 10:metabo10010013. [PMID: 31878231 PMCID: PMC7023306 DOI: 10.3390/metabo10010013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
The utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS). TIMS offers additional depth-of-coverage through increased peak capacities realized with the multi-dimensional UHPLC-TIMS separations. Metabolite identification confidence is simultaneously enhanced by incorporating orthogonal collision cross section (CCS) data matching. To facilitate metabolite identifications, we created a CCS library of 146 plant natural products. This library was generated using TIMS with N2 drift gas to record the TIMSCCSN2 of plant natural products with a high degree of reproducibility; i.e., average RSD = 0.10%. The robustness of TIMSCCSN2 data matching was tested using authentic standards spiked into complex plant extracts, and the precision of CCS measurements were determined to be independent of matrix affects. The utility of the UHPLC-TIMS-TOF-MS/MS in metabolomics was then demonstrated using extracts from the model legume Medicago truncatula and metabolites were confidently identified based on retention time, accurate mass, molecular formula, and CCS.
Collapse
Affiliation(s)
- Mark Schroeder
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Sven W. Meyer
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Heino M. Heyman
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Aiko Barsch
- Solutions Development, Bruker Daltonics, 28359 Bremen, Germany; (S.W.M.); (H.M.H.); (A.B.)
| | - Lloyd W. Sumner
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
- Correspondence: ; Tel.: +1-573-882-5486
| |
Collapse
|
34
|
|
35
|
Ma S, Li Y, Ma C, Wang Y, Ou J, Ye M. Challenges and Advances in the Fabrication of Monolithic Bioseparation Materials and their Applications in Proteomics Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902023. [PMID: 31502719 DOI: 10.1002/adma.201902023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
High-performance liquid chromatography integrated with tandem mass spectrometry (HPLC-MS/MS) has become a powerful technique for proteomics research. Its performance heavily depends on the separation efficiency of HPLC, which in turn depends on the chromatographic material. As the "heart" of the HPLC system, the chromatographic material is required to achieve excellent column efficiency and fast analysis. Monolithic materials, fabricated as continuous supports with interconnected skeletal structure and flow-through pores, are regarded as an alternative to particle-packed columns. Such materials are featured with easy preparation, fast mass transfer, high porosity, low back pressure, and miniaturization, and are next-generation separation materials for high-throughput proteins and peptides analysis. Herein, the recent progress regarding the fabrication of various monolithic materials is reviewed. Special emphasis is placed on studies of the fabrication of monolithic capillary columns and their applications in separation of biomolecules by capillary liquid chromatography (cLC). The applications of monolithic materials in the digestion, enrichment, and separation of phosphopeptides and glycopeptides from biological samples are also considered. Finally, advances in comprehensive 2D HPLC separations using monolithic columns are also shown.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Chen Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Lv W, Shi X, Wang S, Xu G. Multidimensional liquid chromatography-mass spectrometry for metabolomic and lipidomic analyses. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Seidl C, Bell DS, Stoll DR. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. J Chromatogr A 2019; 1604:460484. [DOI: 10.1016/j.chroma.2019.460484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
39
|
Desmet G, Broeckhoven K. Extra-column band broadening effects in contemporary liquid chromatography: Causes and solutions. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115619] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Baghdady YZ, Schug KA. Online Comprehensive High pH Reversed Phase × Low pH Reversed Phase Approach for Two-Dimensional Separations of Intact Proteins in Top-Down Proteomics. Anal Chem 2019; 91:11085-11091. [PMID: 31366196 DOI: 10.1021/acs.analchem.9b01665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A proof-of-concept study is presented on the use of comprehensive two-dimensional liquid chromatography mass spectrometry (LC × LC-MS) for the separation of intact protein mixtures using a different mobile phase pH in each dimension. This system utilizes mass spectrometry (MS) friendly pH modifiers for the online coupling of high pH reversed phase liquid chromatography (HPH-RPLC) in the first dimension (1D) followed by low pH reversed phase liquid chromatography (LPH-RPLC) in the second dimension (2D). Owing to the ionic nature of proteins, the use of a different mobile phase pH was successful to provide altered selectivity between the two dimensions, even for closely related protein variants, such as bovine cytochrome c and equine cytochrome c, which differ by only three amino acids. Subminute gradient separation of proteins in the second dimension was successful to minimize analysis time, while maintaining high peak capacity. Unlike peptides, the elution order of studied proteins did not follow their isoelectric points, where acidic proteins would be expected to be more retained at low pH (and basic proteins at high pH). The steep elution isotherms (on-off retention mechanism) of proteins and the very steep gradients utilized in the second-dimension column succeeded in overcoming pH and organic solvent content mismatch. The utility of the system was demonstrated with a mixture of protein standards and an Escherichia coli protein mixture.
Collapse
Affiliation(s)
- Yehia Z Baghdady
- Department of Chemistry & Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| | - Kevin A Schug
- Department of Chemistry & Biochemistry , The University of Texas Arlington , Arlington , Texas 76019-0065 , United States
| |
Collapse
|
41
|
Liu X, Jiang W, Su M, Sun Y, Liu H, Nie L, Zang H. Quality evaluation of traditional Chinese medicines based on fingerprinting. J Sep Sci 2019; 43:6-17. [DOI: 10.1002/jssc.201900365] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyan Liu
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
| | - Wenwen Jiang
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
| | - Mei Su
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
| | - Yue Sun
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
| | - Hongming Liu
- Zibo Institute for Food and Drug Control Zibo P. R. China
| | - Lei Nie
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
| | - Hengchang Zang
- School of Pharmaceutical SciencesShandong University Jinan P. R. China
- National Glycoengineering Research Center Jinan P. R. China
| |
Collapse
|
42
|
Prodhan MAI, Shi B, Song M, He L, Yuan F, Yin X, Bohman P, McClain CJ, Zhang X. Integrating comprehensive two-dimensional gas chromatography mass spectrometry and parallel two-dimensional liquid chromatography mass spectrometry for untargeted metabolomics. Analyst 2019; 144:4331-4341. [PMID: 31192319 PMCID: PMC6677244 DOI: 10.1039/c9an00560a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The diverse characteristics and large number of entities make metabolite separation challenging in metabolomics. To date, there is not a singular instrument capable of analyzing all types of metabolites. In order to achieve a better separation for higher peak capacity and accurate metabolite identification and quantification, we integrated GC × GC-MS and parallel 2DLC-MS for analysis of polar metabolites. To test the performance of the developed system, 13 rats were fed different diets to form two animal groups. Polar metabolites extracted from rat livers were analyzed by GC × GC-MS, parallel 2DLC-MS (-) and parallel 2DLC-MS (+), respectively. By integrating all data together, 58 metabolites were detected with significant change in their abundance levels between groups (p≤ 0.05). Of the 58 metabolites, three metabolites were detected in two platforms and two in all three platforms. Manual examination showed that discrepancy of metabolite regulation measured by different platforms was mainly caused by the poor shape of chromatographic peaks resulting from low instrument response. Pathway analysis demonstrated that integrating the results from multiple platforms increased the confidence of metabolic pathway assignment.
Collapse
Affiliation(s)
- Md Aminul Islam Prodhan
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Biyun Shi
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Ming Song
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Department of Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Fang Yuan
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA
| | - Patrick Bohman
- Thermo Fisher Scientific International Inc., 3000 Lakeside Dr., Bannockburn, IL 60015, USA
| | - Craig J McClain
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Department of Medicine, University of Louisville, Louisville, KY 40208, USA and Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40208, USA and Robley Rex Louisville VAMC, Louisville, Kentucky 40292, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA. and University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40208, USA and University of Louisville Hepatobiology & Toxicology Program, University of Louisville, Louisville, KY 40208, USA and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40208, USA and Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
43
|
Chen Y, Li J, Schmitz OJ. Development of an At-Column Dilution Modulator for Flexible and Precise Control of Dilution Factors to Overcome Mobile Phase Incompatibility in Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 2019; 91:10251-10257. [DOI: 10.1021/acs.analchem.9b02391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China
| | | | | |
Collapse
|
44
|
Rajan M, Ferreira Barbosa P, Carvalho Gualberto N, de Oliveira CS, Santos Leite Neta MT, Narain N. Optimization and method validation of determining polyphenolic compounds by UFLC-DAD system using two biphenyl and pentafluorophenylpropyl columns. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1598429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Murugan Rajan
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Paula Ferreira Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| | | | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão Sergipe, Brazil
| |
Collapse
|
45
|
Column selection for comprehensive two-dimensional liquid chromatography using the hydrophobic subtraction model. J Chromatogr A 2019; 1589:47-55. [DOI: 10.1016/j.chroma.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022]
|
46
|
|
47
|
Lin H, Wang Y, Wang T, Wu D, Li G, Deng C. Combined analysis of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and cotinine in urine by heart cutting two-dimensional LC-MS/MS. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Huaqing Lin
- Technology Center of Shanghai Tobacco Group; Shanghai P. R. China
- Department of Chemistry; Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| | - Yangzhong Wang
- Technology Center of Shanghai Tobacco Group; Shanghai P. R. China
| | - Tiannan Wang
- Technology Center of Shanghai Tobacco Group; Shanghai P. R. China
| | - Da Wu
- Technology Center of Shanghai Tobacco Group; Shanghai P. R. China
| | - Gang Li
- Technology Center of Shanghai Tobacco Group; Shanghai P. R. China
| | - Chunhui Deng
- Department of Chemistry; Institutes of Biomedical Sciences; Fudan University; Shanghai P. R. China
| |
Collapse
|
48
|
Marlot L, Batteau M, De Beer D, Faure K. In Silico Screening of Comprehensive Two-Dimensional Centrifugal Partition Chromatography × Liquid Chromatography for Multiple Compound Isolation. Anal Chem 2018; 90:14279-14286. [DOI: 10.1021/acs.analchem.8b03440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Léa Marlot
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Magali Batteau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Dalene De Beer
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa
- Department of Food Science, University of Stellenbosch, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa
| | - Karine Faure
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
49
|
Gradual Gradient Two-Dimensional Preparative Liquid Chromatography System for Preparative Separation of Complex Natural Products. Chromatographia 2018. [DOI: 10.1007/s10337-018-3652-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Estimation of peak capacity based on peak simulation. J Chromatogr A 2018; 1574:101-113. [DOI: 10.1016/j.chroma.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
|