1
|
Abstract
Metabolomics aims to profile the extensive array of metabolites that exists in different types of matrices using modern analytical techniques. These techniques help to separate, identify, and quantify the plethora of chemical compounds at various analytical platforms. Hence, ion mobility spectrometry (IMS) has emerged as an advanced analytical approach, exclusively owing to the 3D separation of metabolites and their isomers. Furthermore, separated metabolites are identified based on their mass fragmentation pattern and CCS (collision cross-section) values. The IMS provides an advanced alternative dimension to separate the isomeric metabolites with enhanced throughput with lesser chemical noise. Thus, the present review highlights the types, factors affecting the resolution, and applications of IMMS (Ion mobility mass spectrometry) for isomeric separations, and ionic contaminants in the plant samples. Furthermore, an overview of IMS-based applications for the identification of plant metabolites (volatile and non-volatile) over the last few decades has been discussed, followed by future assumptions for creating IM-based databases. Such approaches could be significant to accelerate and improve our knowledge of the vast chemical diversity found in plants.
Collapse
Affiliation(s)
- Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
| | - Shruti Sharma
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
2
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
3
|
Ayar-Sümer EN, Verheust Y, Özçelik B, Raes K. Impact of Lactic Acid Bacteria Fermentation Based on Biotransformation of Phenolic Compounds and Antioxidant Capacity of Mushrooms. Foods 2024; 13:1616. [PMID: 38890845 PMCID: PMC11172137 DOI: 10.3390/foods13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and enhance their bioactivity. Our research focused on the impact of fermentation on both free and bound phenolic fractions (FPs and BPs, respectively) in Lentinula edodes and Lactarius deliciosus, which were successively fermented with Lactiplantibacillus plantarum LMG 17673 for 72 h. We examined the total phenolic content (TPC), phenolic profile, and antioxidant activity of both FPs and BPs. Our results showed that the TPC of BPs was higher than that of FPs in both mushrooms, with strong antioxidant capabilities. Fermentation significantly increased the TPC of FPs in both mushrooms, particularly after 24 h of fermentation. The TPC of BPs in mushrooms decreased during fermentation, indicating their release from the matrix. Additionally, we identified 30 bioactive compounds using UPLC-Q-TOF-MS/MS. Our study demonstrates for the first time that lactic acid bacteria fermentation of mushrooms with high phenolic content leads to the liberation of bound phenolics, enhancing their bioactivity and bioaccessibility.
Collapse
Affiliation(s)
- Eda Nur Ayar-Sümer
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, St-Martem Latemlaan 2B, 8500 Kortrijk, Belgium; (E.N.A.-S.); (Y.V.)
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey;
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, St-Martem Latemlaan 2B, 8500 Kortrijk, Belgium; (E.N.A.-S.); (Y.V.)
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey;
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, St-Martem Latemlaan 2B, 8500 Kortrijk, Belgium; (E.N.A.-S.); (Y.V.)
| |
Collapse
|
4
|
Shinali TS, Zhang Y, Altaf M, Nsabiyeze A, Han Z, Shi S, Shang N. The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts. Foods 2024; 13:1163. [PMID: 38672834 PMCID: PMC11049176 DOI: 10.3390/foods13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries.
Collapse
Affiliation(s)
- Tharushi S. Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Yiying Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Moater Altaf
- College of Biological Sciences, China Agricultural University, Beijing 100083, China;
| | - Assa Nsabiyeze
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Shuyuan Shi
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Dou Y, Shu L, Jia X, Yao Y, Chen S, Xu Y, Li Y. Rapid classification and identification of chemical constituents in Leonurus japonicus Houtt based on UPLC-Q-Orbitrap-MS combined with data post-processing techniques. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4978. [PMID: 37946617 DOI: 10.1002/jms.4978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Leonurus japonicus Houtt (LJH) is a bulk medicinal material commonly used in clinical practice, but its complex constituents have not been completely understood, posing challenges to pharmacology, pharmacokinetic research, and scientific and rational drug use. As a result, it is critical to develop an efficient and accurate method for classifying and identifying the chemical composition of LJH. In this study, ultra-performance liquid chromatography-quadrupole electrostatic field-orbital trap high resolution mass spectrometry (UPLC-Q-Orbitrap-MS) was successfully established, along with two data post-processing techniques, characteristic fragmentations (CFs) and neutral losses (NLs), to quickly classify and identify the chemical constituents in LJH. As a result, 44 constituents of LJH were identified, including four alkaloids, 20 flavonoids, two phenylpropanoids, 17 organic acids, and one amino acid. The method in this paper enables classification and identification of chemical compositions rapidly, providing a scientific foundation for further research on the effective and toxic substances of LJH.
Collapse
Affiliation(s)
- Yajie Dou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuchen Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaqi Yao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyan Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Li T, Zhang K, Niu X, Chen W, Yang X, Gong X, Tu P, Wang Y, Liu W, Song Y. MS/MS fingerprint comparison between adjacent generations enables substructure identification: Flavonoid glycosides as cases. J Pharm Biomed Anal 2023; 234:115559. [PMID: 37393693 DOI: 10.1016/j.jpba.2023.115559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
MS/MS spectrum matching currently serves as a favored means to identify the concerned metabolites attributing to the accessibility of several famous databases. However, the rule that takes the entire structure into account frequently leads to "0 hit" when inquiring MS/MS (usually MS2) spectrum in the databases. Conjugation plays an important role for the high-level structural diversity of metabolites in all organisms, and a given conjugate usually consists of two or more substructures. If MS3 spectra participate in database retrieval, the structural annotation potential of those databases should be dramatically expanded via identifying substructures. Attributing to the ubiquitous distribution pattern, flavonoid glycosides were deployed as the representative family to justify whether the primary fragment ion termed as Y0+, resulted from neutral loss of glycosyl residue(s), generated identical MS3 spectrum with MS2 spectrum of the aglycone cation namely [A+H]+. Because of owning unique ability to measure MS/MS spectrum with the exactly desired exciting energy, linear ion trap chamber of Qtrap-MS was responsible for generating the desired MS3 and MS2 spectra. When taking both m/z and ion intensity features into consideration, the findings included: 1) glycosides sharing identical aglycones produced the same MS3 spectra for Y0+; 2) different MS3 spectra for Y0+ occurred amongst glycosides bearing distinct, even isomeric, aglycones; 3) isomeric aglycones generated different MS2 spectra; and 4) MS3 spectra for Y0+ agreed with MS2 spectra of [A+H]+ when comparing paired glycoside and aglycone. Together, fingerprint comparison between MS3 and MS2 spectra could structurally annotate the substructures and further advance MS/MS spectrum matching towards the identification of, but not limited to, aglycones for flavonoid glycosides.
Collapse
Affiliation(s)
- Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoya Niu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangfen Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road, Zhengdong New District, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
7
|
Khan ZS, Amir S, Sokač Cvetnić T, Jurinjak Tušek A, Benković M, Jurina T, Valinger D, Gajdoš Kljusurić J. Sustainable Isolation of Bioactive Compounds and Proteins from Plant-Based Food (and Byproducts). PLANTS (BASEL, SWITZERLAND) 2023; 12:2904. [PMID: 37631116 PMCID: PMC10458638 DOI: 10.3390/plants12162904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Plant-based food produces significantly less greenhouse gases, and due to its wealth of bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food system. However, the processing and production of products from plant sources creates byproducts, which can be waste or a source of useful substances that can be reused. The waste produced during the production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an excellent source of secondary raw materials that could be repurposed in the process of manufacturing and preparing food, or as feed for livestock. This review offers an overview of the sources and techniques of the sustainable isolation of bioactive substances and proteins from various sources that might represent waste in the preparation or production of food of plant origin. The aim is to uncover novel approaches to use waste and byproducts from the process of making food to provide this waste food an additional benefit, not forgetting the expectations of the end user, the consumer. For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while considering the economic aspects.
Collapse
Affiliation(s)
- Zakir Showkat Khan
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, India
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Saira Amir
- Department of Nutrition Sciences, School of Health Sciences, University of Management and Technology, C-II Johar Town, Lahore 54700, Pakistan
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Liu Z, Li X, Jin Y, Nan T, Zhao Y, Huang L, Yuan Y. New Evidence for Artemisia absinthium as an Alternative to Classical Antibiotics: Chemical Analysis of Phenolic Compounds, Screening for Antimicrobial Activity. Int J Mol Sci 2023; 24:12044. [PMID: 37569422 PMCID: PMC10418608 DOI: 10.3390/ijms241512044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Artemisia absinthium, an important herb of the Artemisia genus, was evaluated in this study for its potential as an alternative to classical antibiotics. The antimicrobial activity of methanol extracts of A. absinthium (MEAA) was evaluated using the broth microdilution method, revealing that A. absinthium exhibited broad-spectrum antibacterial and antifungal activity. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical profile of the MEAA, with a focus on flavonoids, quinic acids, and glucaric acids. A total of 90 compounds were identified, 69 of which were described for the first time in A. absinthium. Additionally, a new class of caffeoyl methyl glucaric acids was identified. The main active compounds were quantified and screened for antimicrobial activity. A. absinthium was found to be rich in quinic acids and flavonoids. The screening for antimicrobial activity also revealed that salicylic acid, caffeic acid, casticin, and 3,4-dicaffeoylquinic acid had varying degrees of antimicrobial activity. The acute toxicity of MEAA was examined following OECD guidelines. The administration of 5000 mg/kg bw of MEAA did not result in mortality in male and female mice. Furthermore, there were no observed effects on the visceral organs or general behavior of the mice, demonstrating the good safety of MEAA. This study provides new evidence for the use of A. absinthium as an alternative to classical antibiotics in addressing the problem of bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.)
| | | | | | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.)
| |
Collapse
|
9
|
Zhong X, Zhang S, Wang H, Yang J, Li L, Zhu J, Liu Y. Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus 'Foo-Lon') peel: Composition, antioxidant activities and enzyme inhibitory activity. ULTRASONICS SONOCHEMISTRY 2022; 90:106213. [PMID: 36327918 PMCID: PMC9636185 DOI: 10.1016/j.ultsonch.2022.106213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, ultrasound-assisted alkaline hydrolysis was used to extract polyphenols from pitahaya peel. The effects of sonication time, ultrasonic density, NaOH concentration and the liquid-material ratio on the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of the extracts were studied. The composition and content difference of the extracts were analyzed and the inhibitory effect of α-amylase and α-glucosidase was measured. The results of single-factor analysis showed that when the sonication time was 45 min, the ultrasonic density was 32 W/L, the NaOH solution concentration was 6 M and the liquid-material ratio was 30 mL/g, the release of phenolic compounds was the largest and the antioxidant activity was the strongest. An UPLC-QTOF-MS/MS method was used to analyze the components and contents of the extracts. We found that there was a great difference in the component content of the free polyphenol extract and the bound polyphenol extract. From the results, we concluded that there was a strong correlation between the type and content of phenolic compounds and antioxidant activities, indicating that phenolic compounds were the main compounds of these biological activities. Moreover, the bound polyphenol extracts showed a significant inhibitory effect on α-amylase and α-glucosidase was stronger than that of the free polyphenol extracts. In addition, scanning electron microscopy showed that ultrasound-assisted extraction is crucial to the destruction of the cell wall and the release of bound polyphenols. Therefore, the pitahaya peel has the potential for therapeutic, nutritional, and functional food applications, and ultrasound-assisted alkaline hydrolysis is an effective means to release phenolic compounds.
Collapse
Affiliation(s)
- Xuanyu Zhong
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuyan Zhang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Hong Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinyi Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
10
|
Feng D, Li XR, Wang ZY, Gu NN, Zhang SX, Li CF, Chen Y, Ma ZQ, Lin RC, Zhang HG, Zhao C. Integrated UPLC-MS and Network Pharmacology Approach to Explore the Active Components and the Potential Mechanism of Yiqi Huoxue Decoction for Treating Nephrotic Syndrome. Front Pharmacol 2022; 12:775745. [PMID: 35295738 PMCID: PMC8919777 DOI: 10.3389/fphar.2021.775745] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Yiqi Huoxue Decoction (YQHXD) is a traditional Chinese medicine that promotes blood circulation, removes blood stasis, facilitates diuresis, and alleviates edema. It is composed of 10 herbal medicines and has extensive application in treating nephrotic syndrome (NS). However, the active components and the potential mechanism of YQHXD for treating NS remain unclear. Methods: We set up a sensitive and rapid method based on Ultra-High Performance Liquid Chromatograph-Mass (UPLC-MS) to identify the compounds in YQHXD and constituents absorbed into the blood. Disease genes were collected through GeneCards, DisGeNET, and OMIM database. Genes of compounds absorbed into blood were predicted by the TCMSP database. We constructed Disease-Drug-Ingredient-Gene (DDIG) network using Cytoscape, established a Protein-protein interaction (PPI) network using String, Gene biological process (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed using DAVID. Cellular experiments were performed to validate the results of network pharmacology. Result: A total of 233 compounds in YQHXD and 50 constituents absorbed into the blood of rats were identified. The 36 core targets in the PPI network were clustered in the phosphatidylinositol 3 kinase-RAC serine/threonine-protein kinase (PI3K-AKT) and nuclear factor kappa-B (NF-κB) signaling pathways. Luteolin, Wogonin, Formononetin, and Calycosin were top-ranking components as potentially active compounds. Conclusion: The results of our studies show that YQHXD is able to enhance renal function, alleviate podocyte injury, and improve adriamycin nephrotic syndrome.
Collapse
Affiliation(s)
- Dan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Ri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhao-Yi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Nian-Nian Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang-Xi Zhang
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chao-Feng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qiang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-Chao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Hong-Gui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| | - Chongjun Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Rui-Chao Lin, ; Hong-Gui Zhang, ; Chongjun Zhao,
| |
Collapse
|
11
|
Fingerprinting profile of flavonol glycosides from Bassia eriophora using negative electrospray ionization, computational studies and their antioxidant activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Kowalski A, Agati G, Grzegorzewska M, Kosson R, Kusznierewicz B, Chmiel T, Bartoszek A, Tuccio L, Grifoni D, Vågen IM, Kaniszewski S. Valorization of waste cabbage leaves by postharvest photochemical treatments monitored with a non-destructive fluorescence-based sensor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112263. [PMID: 34339994 DOI: 10.1016/j.jphotobiol.2021.112263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
The biosynthesis of polyphenolic compounds in cabbage waste, outer green leaves of white head cabbage (Brassica oleracea L. var. capitata subvar. alba), was stimulated by postharvest irradiation with UVB lamps or sunlight. Both treatments boosted the content of kaempferol and quercetin glycosides, especially in the basal leaf zone, as determined by the HPLC analysis of leaf extracts and by a non-destructive optical sensor. The destructive analysis of samples irradiated by the sun for 6 days at the end of October 2015 in Skierniewice (Poland) showed an increase of leaf flavonols by 82% with respect to controls. The treatment by a broadband UVB fluorescent lamp, with irradiance of 0.38 W m-2 in the 290-315 nm range (and 0.59 W m-2 in the UVA region) for 12 h per day at 17 °C along with a white light of about 20 μmol m-2 s-1, produced a flavonols increase of 58% with respect to controls. The kinetics of flavonols accumulation in response to the photochemical treatments was monitored with the FLAV non-destructive index. The initial FLAV rate under the sun was proportional to the daily radiation doses with a better correlation for the sun global irradiance (R2 = 0.973), followed by the UVA (R2 = 0.965) and UVB (R2 = 0.899) irradiance. The sunlight turned out to be more efficient than the UVB lamp in increasing the flavonols level of waste leaves, because of a significant role played by UVA and visible solar radiation in the regulation of the flavonoid accumulation in cabbage. The FLAV index increase induced on the adaxial leaf side was accompanied by a lower but still significant FLAV increase on the unirradiated abaxial side, likely due to a systemic signaling by mean of the long-distance movement of macromolecules. Our present investigation provides useful data for the optimization of postharvest photochemical protocols of cabbage waste valorization. It can represent a novel and alternative tool of vegetable waste management for the recovery of beneficial phytochemicals.
Collapse
Affiliation(s)
- Artur Kowalski
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, Skierniewice, Poland
| | - Giovanni Agati
- Istituto di Fisica Applicata 'N. Carrara' - CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino (Florence), Italy.
| | - Maria Grzegorzewska
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, Skierniewice, Poland
| | - Ryszard Kosson
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, Skierniewice, Poland
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Tomasz Chmiel
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Lorenza Tuccio
- Istituto di Fisica Applicata 'N. Carrara' - CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino (Florence), Italy
| | - Daniele Grifoni
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy; Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Ingunn M Vågen
- Norwegian Institute of Bioeconomy Research - NIBIO, NO-1431 Ås, Norway
| | | |
Collapse
|
13
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
14
|
Sepúlveda L, Contreras E, Cerro D, Quintulén L. Technical feasibility of natural antioxidant recovery from the mixture of the inedible fractions of vegetables produced in a wholesale market. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1915878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luisa Sepúlveda
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Elsa Contreras
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Daniela Cerro
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| | - Leonardo Quintulén
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
15
|
Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules 2020; 25:E5545. [PMID: 33256012 PMCID: PMC7731217 DOI: 10.3390/molecules25235545] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Phenolic compounds (quercetin, rutin, cyanidin, tangeretin, hesperetin, curcumin, resveratrol, etc.) are known to have health-promoting effects and they are accepted as one of the main proposed nutraceutical group. However, their application is limited owing to the problems related with their stability and water solubility as well as their low bioaccessibility and bioavailability. These limitations can be overcome by encapsulating phenolic compounds by physical, physicochemical and chemical encapsulation techniques. This review focuses on the effects of encapsulation, especially lipid-based techniques (emulsion/nanoemulsion, solid lipid nanoparticles, liposomes/nanoliposomes, etc.), on the digestibility characteristics of phenolic compounds in terms of bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| | - Tina Kostka
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (G.O.); (E.C.)
| |
Collapse
|
16
|
Kimura H, Tokuyama-Nakai S, Hirabayashi Y, Ishihara T, Jisaka M, Yokota K. Anti-inflammatory and bioavailability studies on dietary 3,5,4'-trihydroxy-6,7-methylenedioxyflavone-O-glycosides and their aglycone from indigo leaves in a murine model of inflammatory bowel disease. J Pharm Biomed Anal 2020; 193:113716. [PMID: 33152603 DOI: 10.1016/j.jpba.2020.113716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023]
Abstract
Persicaria tinctoria (Aiton) Spach, also called Polygonum tinctorium Lour., (family Polygonaceae) for indigo plant has been traditionally useful as a medicinal or edible plant with a variety of biological activities. Of these, much attention has been paid to their anti-inflammatory activities. We have recently demonstrated that indigo leaves contain high levels of flavonol O-glycosides with 3,5,4'-trihydroxy-6,7-methylenedioxyflavone (TMF) as an aglycone. In this study, we attempted to evaluate anti-inflammatory activities of TMF-O-glycosides and free TMF prepared from indigo leaves after extraction with hot water. Free TMF was found to appreciably down-regulate the gene expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, inducible nitric oxide, and tumor necrosis factor-α in cultured macrophage cells stimulated with lipopolysaccharide while up-regulating the expression of anti-inflammatory IL-10. However, no study has been conducted regarding in vivo anti-inflammatory activities of TMF-O-glycosides and free TMF until now. Here, we assessed in vivo anti-inflammatory effects of these dietary compounds on ulcerative colitis in a murine model of inflammatory bowel disease by the induction with dextran sulfate sodium (DSS). Histological evaluation revealed that both TMF-O-glycosides and free TMF effectively protected against DSS-induced ulcerative colitis. The analysis of digested products by liquid chromatography and mass spectrometry led us to detect free TMF as a predominant metabolite in the feces of mice fed with TMF-O-glycosides. Moreover, free TMF was later detected as glucuronyl conjugates of TMF in the liver of mice fed with both fractions. These results indicate the effective digestion of TMF-O-glycosides and the subsequent absorption of free TMF in the gut of mice for exerting anti-inflammatory effects. Taken together, our findings suggest that dietary TMF-O-glycosides could be promising natural sources for the utilization as herbal medicine and nutraceuticals to expect in vivo anti-inflammatory activities.
Collapse
Affiliation(s)
- Hideto Kimura
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Shota Tokuyama-Nakai
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Yu Hirabayashi
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Tomoe Ishihara
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan; The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan; The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan.
| |
Collapse
|
17
|
Zhang H, Liang Y, Li X, Kang H. Antioxidant extract from cauliflower leaves effectively improve the stability of pork patties during refrigerated storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Ying Liang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Xinling Li
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Huaibin Kang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| |
Collapse
|
18
|
Ben-Othman S, Jõudu I, Bhat R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020; 25:E510. [PMID: 31991658 PMCID: PMC7037811 DOI: 10.3390/molecules25030510] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sustainable utilization of agri-food wastes and by-products for producing value-added products (for cosmetic, pharmaceutical or food industrial applications) provides an opportunity for earning additional income for the dependent industrial sector. Besides, effective valorisation of wastes/by-products can efficiently help in reducing environmental stress by decreasing unwarranted pollution. The major focus of this review is to provide comprehensive information on valorisation of agri-food wastes and by-products with focus laid on bioactive compounds and bioactivity. The review covers the bioactives identified from wastes and by-products of plants (fruits, exotic fruits, vegetables and seeds), animals (dairy and meat) and marine (fish, shellfish seaweeds) resources. Further, insights on the present status and future challenges of sustainably utilizing agri-food wastes/by-products for value addition will be highlighted.
Collapse
Affiliation(s)
- Sana Ben-Othman
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| | - Ivi Jõudu
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
- Chair of Food Science and Technology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia
| | - Rajeev Bhat
- ERA Chair for Food (By-) Products Valorisation Technologies of the Estonian University of Life Sciences (VALORTECH), Estonian University of Life Sciences, Fr.R.Kreutzwaldi 56/5, 51006 Tartu, Estonia; (S.B.-O.); (I.J.)
| |
Collapse
|
19
|
Masike K, de Villiers A, Hoffman EW, Brand DJ, Causon T, Stander MA. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:485-502. [PMID: 31805232 DOI: 10.1021/acs.jafc.9b06361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study we report a detailed investigation of the polyphenol composition of Protea pure (P. cynaroides and P. neriifolia) and hybrid cultivars (Black beauty and Limelight). Aqueous methanol extracts of leaf and bract tissues were analyzed by ultrahigh pressure liquid chromatography hyphenated to photodiode array and ion mobility-high resolution mass spectrometric (UHPLC-PDA-IM-HR-MS) detection. A total of 67 metabolites were characterized based on their relative reversed phase (RP) retention, UV-vis spectra, low and high collision energy HR-MS data, and collisional cross section (CCS) values. These metabolites included 41 phenolic acid esters and 25 flavonoid derivatives, including 5 anthocyanins. In addition, an undescribed hydroxycinnamic acid-polygalatol ester, caffeoyl-O-polygalatol (1,5-anhydro-[6-O-caffeoyl]-sorbitol(glucitol)) was isolated and characterized by 1D and 2D NMR for the first time. This compound and its isomer are shown to be potential chemo-taxonomic markers.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - Eleanor W Hoffman
- Department of Horticultural Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - D Jacobus Brand
- Department of Chemistry, Central Analytical Facility (NMR Unit) , Stellenbosch University , Matieland, 7602 Stellenbosch , South Africa
| | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU) , Department of Chemistry, Institute of Analytical Chemistry , 1180 Vienna , Austria
| | - Maria A Stander
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
- Central Analytical Facility , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| |
Collapse
|
20
|
Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019; 9:biom9120783. [PMID: 31779186 PMCID: PMC6995608 DOI: 10.3390/biom9120783] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022] Open
Abstract
Information on compositional, nutritional and functional properties of bee-pollen, as a health-promoting food, is essential for defining its quality. Concerning the nutritional importance of phenolic compounds, the aim of this study was to determine the phenolic profile and antioxidant activity of twenty-four bee-pollen samples collected from different regions of Serbia. High-performance thin-layer chromatographic (HPTLC) fingerprinting was used for profiling of bee-pollen samples according to the botanical type. HPTLC hyphenated with image analysis and a pattern recognition technique confirmed the grouping of samples caused by the specific phenolic composition of pollens of different botanical origin. Flavonoid glycosides in bee-pollen samples were identified by applying ultra-high-performance liquid chromatography (UHPLC) coupled with linear ion trap-Orbitrap mass spectrometry (LTQ Orbitrap MS). Eight out of twenty-seven flavonol glycosides were identified in bee-pollen samples for the first time. All analyzed bee-pollen samples showed a high number of phenolic compounds which may have therapeutic potential.
Collapse
|
21
|
Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC. Bioactive potential of fruit and vegetable wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:157-225. [PMID: 32035596 DOI: 10.1016/bs.afnr.2019.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
22
|
Garran TA, Ji R, Chen JL, Xie D, Guo L, Huang LQ, Lai CJS. Elucidation of metabolite isomers of Leonurus japonicus and Leonurus cardiaca using discriminating metabolite isomerism strategy based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry. J Chromatogr A 2019; 1598:141-153. [DOI: 10.1016/j.chroma.2019.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/18/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
|
23
|
Decroo C, Colson E, Lemaur V, Caulier G, De Winter J, Cabrera-Barjas G, Cornil J, Flammang P, Gerbaux P. Ion mobility mass spectrometry of saponin ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 2:22-33. [PMID: 29873851 DOI: 10.1002/rcm.8193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Corentin Decroo
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Emmanuel Colson
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Gustavo Cabrera-Barjas
- Unit for Technology Development (UDT), University of Concepción, Av. Cordillera 2634, Parque Industrial Coronel, P.O. Box 4051 mail 3, Coronel, Región del Bío Bío, Chile
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Lab, Interdisciplinary Center for Mass Spectrometry, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000, Mons, Belgium
| |
Collapse
|
24
|
Liu X, Fan X, Wang X, Liu R, Meng C, Wang C. Structural characterization and screening of chemical markers of flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2019; 171:52-64. [PMID: 30965221 DOI: 10.1016/j.jpba.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
Abstract
In traditional Chinese medicine, Lysimachiae Herba (LH) and Desmodii Styracifolii Herba (DSH) have been widely used for the treatment of calculi, but there is a certain focus in clinical application. Flavonoids as their pharmacologically active substances were focusly studied to make clear of their chemical compositions and reveal the similarities and differences between LH and DHS by analysis of characteristic marker components at the molecular level. An ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) approach based on metabolite profiling was established. The high-resolution data was acquired through data dependent acquisition (DDA) mode. Based on the targeted and untargeted analytical strategies, a total of 113 compounds were identified, of which 80 compounds existed in LH and 61 in DSH. Then multivariate statistical analysis was applied to further find the characteristic marker components, and a total number of 21 variables were screened as the valuable variables for discrimination. By matching with identified flavonoids, these 21 variables were corresponding to 15 flavonoids (including 6 from LH and 9 from DSH) which were firstly identified as the marker compounds. These results indicated that the UPLC-QTOF-MS/MS method with analysis strategy was a powerful tool for rapidly identification and screening of marker compounds of flavonoids between LH and DSH, and the 15 screened marker compounds provide a chemical basis for the further researches on the mechanisms of LH and DSH in the treatment of cholelithiasis and nephrolithiasis respectively.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xueyan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Xin Wang
- Pharmacy Department, Affiliated Hospital of Hebei University, 212 East Yuhua Road, Baoding, Hebei 071000, PR China
| | - Ruina Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Caifeng Meng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China
| | - Chunying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
25
|
Tokuyama-Nakai S, Kimura H, Hirabayashi Y, Ishihara T, Jisaka M, Yokota K. Constituents of flavonol O-glycosides and antioxidant activities of extracts from seeds, sprouts, and aerial parts of Polygonum tinctorium Lour. Heliyon 2019; 5:e01317. [PMID: 30906895 PMCID: PMC6411588 DOI: 10.1016/j.heliyon.2019.e01317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 01/02/2023] Open
Abstract
Polygonum tinctorium Lour. (family Polygonaceae), known as indigo plant, has been useful as a medicinal or edible plant abundant in polyphenolic compounds. We have recently shown that flavonol O-glycosides with 3,5,4′-trihydroxy-6,7-methylenedioxyflavone (TMF) are predominant flavonoids in indigo leaves. However, no study has been performed regarding changes in the levels of flavonoid species during the germination and growth of indigo plant. Here, we attempted to determine the individual constituents of flavonol O-glycosides and the changes in their contents of the seeds, sprouts, and aerial parts. These results revealed that only the seeds predominantly contained flavonol O-(acetyl)-rhamnosides with quercetin or kaempferol as an aglycone. During the development of the sprouts and aerial parts, flavonol O-glycosides with TMF as an aglycone became mainly detectable and accounted for 79.4% and 74.9% of total flavonol O-glycosides from the extracts of aerial parts harvested in 2016 and 2017, respectively. Of the plant organs tested, the aerial parts exhibited the highest antioxidant activities concomitant with greatly increased levels of total polyphenols. Thus, we were able to conduct the identification and quantification of flavonol O-glycosides from the seeds, sprouts, and aerial parts of indigo plant and to evaluate antioxidant activities of their extracts. Taken together, our findings clearly provide the evidence that the aerial parts of indigo plant are a rich source of flavonol O-glycosides with TMF and exhibit much higher antioxidant activities, indicating the usefulness for the application to food and nutraceutical purposes.
Collapse
Affiliation(s)
- Shota Tokuyama-Nakai
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan.,The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Hideto Kimura
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Yu Hirabayashi
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Tomoe Ishihara
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.,The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan.,The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| |
Collapse
|
26
|
Nguyen NMP, Le TT, Vissenaekens H, Gonzales GB, Van Camp J, Smagghe G, Raes K. In vitroantioxidant activity and phenolic profiles of tropical fruit by‐products. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nhat Minh Phuong Nguyen
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
- Department of Food Technology College of Agriculture Can Tho University Campus 2, 3/2 Street, Ward An Khanh, Ninh Kieu District Can Tho City Vietnam
| | - Thien Trung Le
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
| | - Hanne Vissenaekens
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
- Department of Plants and Crops Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Gerard Bryan Gonzales
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Guy Smagghe
- Department of Plants and Crops Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| |
Collapse
|
27
|
Abstract
Fermentation with filamentous fungi is known for the ability to convert bioactive compounds. The aim of this research was to investigate the metabolism of glycosidic derivatives of kaempferol and quercetin during fungal fermentation of extracts from cauliflower outer leaves and onion by Rhizopus oryzae and R. azygosporus. The highest release of kaempferol and quercetin was observed after 2 days and 1 day of fermentation with R. oryzae, respectively. It was proposed that glycosidic compounds were initially deglycosylated to form kaempferol-3-glucoside and quercetin-3-glucoside and then further metabolized into their aglycones. Clear differences in conversion efficiency towards the aglycones were observed between the two Rhizopus strains. Although both flavonoids only differ in one hydroxyl group, the metabolism of the glycosides towards their respective aglycones, kaempferol or quercetin, was different. It is concluded that the fermentation with R. oryzae and R. azygosporus could be considered as a way to produce kaempferol and quercetin aglycone from their glycosidic derivatives.
Collapse
|
28
|
Kumar S, Singh A, Singh B, Maurya R, Kumar B. Structural characterization and quantitative determination of bioactive compounds in ethanolic extracts of Boerhaavia diffusa
L. by liquid chromatography with tandem mass spectrometry. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sunil Kumar
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| | - Awantika Singh
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| | - Bikarma Singh
- Biodiversity and Applied Botany Division; CSIR-Indian Institute of Integrative Medicine; Jammu India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| |
Collapse
|
29
|
Singh J, Jayaprakasha GK, Patil BS. An optimized solvent extraction and characterization of unidentified flavonoid glucuronide derivatives from spinach by UHPLC-HR-QTOF-MS. Talanta 2018; 188:763-771. [PMID: 30029444 DOI: 10.1016/j.talanta.2018.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
A rapid, sensitive analytical method using ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-HR-QTOF-MS) was developed for the identification and quantification of flavonoids from spinach. The extraction efficiency of flavonoids was evaluated by different solvents such as acetone, ethanol, methanol, acetone: water (70:30), ethanol: water (70:30) and methanol: water (70:30). Flavonoid identification was achieved by UV spectra, high resolution accurate mass and their fragmentation pattern. The precursor and product ions were recorded by both broadband collision ion dissociation (bbCID) and multiple reaction monitoring (MRM) techniques. Different collision energies (5, 10, 15, 20, 40, and 70 eV) were optimized to obtain the mass spectra of flavonoids in positive and negative ionization modes. For the first time, five minor flavonoid glucuronide derivatives were identified in spinach. MRM and bbCID provided glucuronide fingerprint ions at m/z 175.0278 and m/z 113.0257 respectively in negative ionization mode. The quantification of identified flavonoids was achieved by 5,3',4'-trihydroxy-3-methoxy-6:7-methylen-dioxyflavone-4'-β-D-glucuronide which was purified by semi-preparatory HPLC. The purity of the isolated compound was confirmed by NMR analysis. The identified 5,3',4'-trihydroxy-3-methoxy-6:7-methylen-dioxyflavone-4'-β-D-(2'-O-feurloyl-glucuronide) was the prominent flavonoid and the level was significantly higher in the acetone fraction (2.95 ± 0.16 µg/g FW). This study demonstrates the systematic identification of potential bioactive compounds especially glucuronide derivatives from spinach.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA.
| |
Collapse
|
30
|
Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
31
|
La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int 2017; 100:28-52. [PMID: 28873689 DOI: 10.1016/j.foodres.2017.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 01/04/2023]
Abstract
The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Roberto Samperi
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Qin Y, Gao B, Shi H, Cao J, Yin C, Lu W, Yu L, Cheng Z. Characterization of flavonol mono-, di-, tri- and tetra- O -glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. J Pharm Biomed Anal 2017; 142:113-124. [DOI: 10.1016/j.jpba.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/26/2023]
|
33
|
Kimura H, Ogawa S, Ishihara T, Maruoka M, Tokuyama-Nakai S, Jisaka M, Yokota K. Antioxidant activities and structural characterization of flavonol O-glycosides from seeds of Japanese horse chestnut (Aesculus turbinata BLUME). Food Chem 2017; 228:348-355. [PMID: 28317733 DOI: 10.1016/j.foodchem.2017.01.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
We attempted to evaluate the contents and distribution of antioxidants in the whole seeds, seed shells, and peeled seeds of the Japanese horse chestnut. The seed shells exhibited the highest antioxidant activities due to the presence of highly polymeric proanthocyanidins as we have reported recently. On the other hand, the peeled seeds predominantly contained flavonols such as quercetin and kaempferol at a high level of 66.7% of total polyphenols, also contributing to the predominant antioxidant activities. The instrumental analysis of the extract from the whole seeds revealed the identification of eight flavonol O-glycosides, including six compounds with quercetin and two species with kaempferol as aglycones. The isolated species exhibited different antioxidant activities depending on the types of aglycones, glycosides, and acylated moieties. The results indicate that the peeled seeds are a good source of flavonol O-glycosides serving as antioxidants to be used for food additives and dietary supplements.
Collapse
Affiliation(s)
- Hideto Kimura
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Satoshi Ogawa
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Tomoe Ishihara
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Mahoko Maruoka
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan
| | - Shota Tokuyama-Nakai
- Department of Research and Development, Kotobuki Seika Co., Ltd., 2028 Hatagasaki, Yonago, Tottori 683-0845, Japan; The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Mitsuo Jisaka
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan; The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan
| | - Kazushige Yokota
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504, Japan; The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan.
| |
Collapse
|
34
|
Tokuyama-Nakai S, Kimura H, Ishihara T, Jisaka M, Yokota K. In Vitro Anti-inflammatory and Antioxidant Activities of 3,5,4′-Trihydroxy-6,7-Methylenedioxyflavone-O-Glycosides and Their Aglycone from Leaves of Polygonum tinctorium Lour. Appl Biochem Biotechnol 2017; 184:414-431. [DOI: 10.1007/s12010-017-2555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/04/2017] [Indexed: 12/01/2022]
|
35
|
Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc 2017; 12:797-813. [PMID: 28301461 DOI: 10.1038/nprot.2017.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metabolomics and lipidomics aim to profile the wide range of metabolites and lipids that are present in biological samples. Recently, ion mobility spectrometry (IMS) has been used to support metabolomics and lipidomics applications to facilitate the separation and the identification of complex mixtures of analytes. IMS is a gas-phase electrophoretic technique that enables the separation of ions in the gas phase according to their charge, shape and size. Occurring within milliseconds, IMS separation is compatible with modern mass spectrometry (MS) operating with microsecond scan speeds. Thus, the time required for acquiring IMS data does not affect the overall run time of traditional liquid chromatography (LC)-MS-based metabolomics and lipidomics experiments. The addition of IMS to conventional LC-MS-based metabolomics and lipidomics workflows has been shown to enhance peak capacity, spectral clarity and fragmentation specificity. Moreover, by enabling determination of a collision cross-section (CCS) value-a parameter related to the shape of ions-IMS can improve the accuracy of metabolite identification. In this protocol, we describe how to integrate traveling-wave ion mobility spectrometry (TWIMS) into traditional LC-MS-based metabolomic and lipidomic workflows. In particular, we describe procedures for the following: tuning and calibrating a SYNAPT High-Definition MS (HDMS) System (Waters) specifically for metabolomics and lipidomics applications; extracting polar metabolites and lipids from brain samples; setting up appropriate chromatographic conditions; acquiring simultaneously m/z, retention time and CCS values for each analyte; processing and analyzing data using dedicated software solutions, such as Progenesis QI (Nonlinear Dynamics); and, finally, performing metabolite and lipid identification using CCS databases and TWIMS-derived fragmentation information.
Collapse
Affiliation(s)
- Giuseppe Paglia
- Center for Biomedicine, European Academy of Bolzano/Bozen, Bolzano, Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular &Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
36
|
|
37
|
Gonzales GB, Smagghe G, Wittevrongel J, Huynh NT, Van Camp J, Raes K. Metabolism of Quercetin and Naringenin by Food-Grade Fungal Inoculum, Rhizopus azygosporus Yuan et Jong (ATCC 48108). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9263-9267. [PMID: 27960283 DOI: 10.1021/acs.jafc.6b04124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rhizopus azygosporus Yuan et Jong (ATCC 48108), a starter culture for fermented soybean tempeh, produces β-glucosidases that cleave flavonoid glycosides into aglycones during fermentation. However, recent data suggest that fermentation of a flavonoid glycoside-rich extract with this strain did not result in the production of aglycones. Thus, in this paper, flavonoid metabolism of this strain was investigated. Incubation of flavonoid aglycones, naringenin and quercetin, with R. azygosporus resulted in the production of flavonoid glucosyl-, hydroxyl-, and sulfo-conjugated derivatives. Naringenin was completely metabolized within 96 h into eriodictyol sulfate and eriodictyol glucoside, whereas quercetin was partially metabolized into quercetin glucoside, diglucoside, sulfate, and glucosyl-sulfate. Most of these metabolites were found to be excreted by the fungi into the culture medium. Toxicity analysis revealed that incubation with both quercetin and naringenin did not exert inhibitory effects on fungal growth. This study presents an interesting mechanism of fungal detoxification of flavonoids in foods.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| | - Guy Smagghe
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| | - Jens Wittevrongel
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| | - Nguyen Thai Huynh
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| | - John Van Camp
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| | - Katleen Raes
- Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, ‡Laboratory of Agrozoology, Department of Crop Protection, and #Laboratory of Food Microbiology and Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University , Ghent, Belgium
| |
Collapse
|
38
|
Huynh NT, Smagghe G, Gonzales GB, Van Camp J, Raes K. Extraction and bioconversion of kaempferol metabolites from cauliflower outer leaves through fungal fermentation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Kachlicki P, Piasecka A, Stobiecki M, Marczak Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016; 21:E1494. [PMID: 27834838 PMCID: PMC6273528 DOI: 10.3390/molecules21111494] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/05/2022] Open
Abstract
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material including flavonoid glycoconjugates. Resolution of the applied mass spectrometers plays an important role in structural studies of mixtures of the target compounds isolated from biological material. High-resolution analyzers allow obtaining information about elemental composition of the analyzed compounds. Application of various mass spectrometric techniques, including different systems of ionization, analysis of both positive and negative ions of flavonoids, fragmentation of the protonated/deprotonated molecules and in some cases addition of metal ions to the studied compounds before ionization and fragmentation, may improve structural characterization of natural products. In our review we present different strategies allowing structural characterization of positional isomers and isobaric compounds existing in class of flavonoid glycoconjugates and their derivatives, which are synthetized in plants and are important components of the human food and drugs as well as animal feed.
Collapse
Affiliation(s)
- Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
40
|
Resveratrol improves TNF-α-induced endothelial dysfunction in a coculture model of a Caco-2 with an endothelial cell line. J Nutr Biochem 2016; 36:21-30. [DOI: 10.1016/j.jnutbio.2016.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
|
41
|
Lv C, He B, Sui Z, Li Q, Bi K. Identification and determination of the major constituents in Kai-Xin-San by UPLC-Q/TOF MS and UFLC-MS/MS method. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:479-490. [PMID: 27434806 DOI: 10.1002/jms.3773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
In order to have overall chemical material information of Kai-Xin-San (KXS), the reliable ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometer (UHPLC-Q-TOF-MS) and ultra-fast liquid chromatography mass spectrometer (UFLC-MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC-Q-TOF-MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC-Q-TOF-MS method was achieved on Agilent 6520 Q-TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple-reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chunxiao Lv
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300150, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bosai He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhenyu Sui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
42
|
Liu M, Dong J, Lin Z, Niu Y, Zhang X, Jiang H, Guo N, Li W, Wang H, Chen S. Rapid screening of transferrin-binders in the flowers of Bauhinia blakeana Dunn by on-line high-performance liquid chromatography–diode-array detector–electrospray ionization–ion-trap–time-of-flight–mass spectrometry–transferrin–fluorescence detection system. J Chromatogr A 2016; 1450:17-28. [DOI: 10.1016/j.chroma.2016.04.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
43
|
Gonzales GB, Smagghe G, Coelus S, Adriaenssens D, De Winter K, Desmet T, Raes K, Van Camp J. Collision cross section prediction of deprotonated phenolics in a travelling-wave ion mobility spectrometer using molecular descriptors and chemometrics. Anal Chim Acta 2016; 924:68-76. [DOI: 10.1016/j.aca.2016.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/29/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
|
44
|
Gonzales GB, Smagghe G, Vissenaekens H, Grootaert C, Rajkovic A, Van de Wiele T, Raes K, Van Camp J. Quercetin mitigates valinomycin-induced cellular stress via stress-induced metabolism and cell uptake. Mol Nutr Food Res 2016; 60:972-80. [DOI: 10.1002/mnfr.201500999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Gerard Bryan Gonzales
- Food Chemistry and Human Nutrition (NutriFOODChem); Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Belgium
- Laboratory of Agrozoology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Belgium
- Department of Applied Biological Science; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Hanne Vissenaekens
- Food Chemistry and Human Nutrition (NutriFOODChem); Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Belgium
- Laboratory of Agrozoology; Department of Crop Protection; Faculty of Bioscience Engineering; Ghent University; Belgium
- Department of Applied Biological Science; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Charlotte Grootaert
- Food Chemistry and Human Nutrition (NutriFOODChem); Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Andreja Rajkovic
- Food Microbiology and Food Preservation; Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - Katleen Raes
- Laboratory of Microbial Ecology and Technology; Faculty of Bioscience Engineering; Ghent University; Belgium
| | - John Van Camp
- Food Chemistry and Human Nutrition (NutriFOODChem); Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Belgium
| |
Collapse
|
45
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|
46
|
Maldini M, Natella F, Baima S, Morelli G, Scaccini C, Langridge J, Astarita G. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts. Int J Mol Sci 2015; 16:13678-91. [PMID: 26084047 PMCID: PMC4490517 DOI: 10.3390/ijms160613678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023] Open
Abstract
The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an unbiased omics approach for the comprehensive study of the metabolism.
Collapse
Affiliation(s)
- Mariateresa Maldini
- Food and Nutrition Research Centre, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), 00184 Roma, Italy.
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy.
| | - Fausta Natella
- Food and Nutrition Research Centre, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), 00184 Roma, Italy.
| | - Simona Baima
- Food and Nutrition Research Centre, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), 00184 Roma, Italy.
| | - Giorgio Morelli
- Food and Nutrition Research Centre, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), 00184 Roma, Italy.
| | - Cristina Scaccini
- Food and Nutrition Research Centre, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), 00184 Roma, Italy.
| | - James Langridge
- Waters Corporation, Health Sciences, Milford, MA 01757, USA.
| | - Giuseppe Astarita
- Waters Corporation, Health Sciences, Milford, MA 01757, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
47
|
Gonzales GB, Smagghe G, Mackie A, Grootaert C, Bajka B, Rigby N, Raes K, Van Camp J. Use of metabolomics and fluorescence recovery after photobleaching to study the bioavailability and intestinal mucus diffusion of polyphenols from cauliflower waste. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
48
|
Gonzales GB, Raes K, Vanhoutte H, Coelus S, Smagghe G, Van Camp J. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. J Chromatogr A 2015; 1402:60-70. [PMID: 26008597 DOI: 10.1016/j.chroma.2015.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
Abstract
Nonextractable polyphenol (NEP) fractions are usually ignored because conventional extraction methods do not release them from the plant matrix. In this study, we optimized the conditions for sonicated alkaline hydrolysis to the residues left after conventional polyphenol extraction of Brussels sprouts top (80°C, 4M NaOH, 30min) and stalks (60°C, 4M NaOH, 30min), and red cabbage waste streams (80°C, 4M NaOH, 45min) to release and characterize the NEP fraction. The NEP fractions of Brussels sprouts top (4.8±1.2mg gallic acid equivalents [GAE]/g dry waste) and stalks (3.3±0.2mg GAE/g dry waste), and red cabbage (11.5mg GAE/g dry waste) waste have significantly higher total polyphenol contents compared to their respective extractable polyphenol (EP) fractions (1.5±0.0, 2.0±0.0 and 3.7±0.0mg GAE/g dry waste, respectively). An LC-MS method combined with principal components analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to tentatively identify and discriminate the polyphenol and glucosinolate composition of the EP and NEP fractions. Results revealed that phenolic profiles of the EP and NEP fractions are different and some compounds are only found in either fraction in all of the plant matrices. This suggests the need to account both fractions when analyzing the polyphenol and glucosinolate profiles of plant matrices to attain a global view of their composition. This is the first report on the discrimination of the phenolic and glucosinolate profiles of the EP and NEP fractions using metabolomics techniques.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Industrial Biological Science, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Science, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Hanne Vanhoutte
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Coelus
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
49
|
Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 2015; 407:4995-5007. [PMID: 25893801 DOI: 10.1007/s00216-015-8664-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
Abstract
The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS-MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS-MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS-MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative applications. Here we review the current approaches for lipidomics research based on IMS-MS, including liquid chromatography-MS and direct-MS analyses of "shotgun" lipidomics and MS imaging.
Collapse
|
50
|
Kimura H, Tokuyama S, Ishihara T, Ogawa S, Yokota K. Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase. J Pharm Biomed Anal 2015; 108:102-12. [DOI: 10.1016/j.jpba.2015.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
|