1
|
Daher M, Khawaja F, Spallone A, Shigle TL, Bhatti M, Vuong NN, Ariza-Heredia EJ, Mulanovich V, Champlin RE, Chemaly RF. Real-World Experience With Maribavir for Treatment of Refractory or Resistant Cytomegalovirus Infection in Hematopoietic Cell Transplant Recipients and Hematologic Malignancy Patients. Transpl Infect Dis 2025:e14444. [PMID: 39826146 DOI: 10.1111/tid.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Refractory and/or resistant (R/R) cytomegalovirus (CMV) infection is a serious complication after allogeneic hematopoietic cell transplantation (HCT). Maribavir, an oral antiviral agent, was approved in November 2021 for the treatment of R/R CMV in transplant recipients. However, real-world data on the use of maribavir in HCT recipients and hematologic malignancy (HM) patients are limited. We described our early experience with the use of maribavir in the year after its Food and Drug Administration approval in HCT recipients and HM patients. METHODS We performed a retrospective study of all patients who received maribavir for treatment of CMV infection at our center from November 2021 to December 2022. Clinical characteristics and outcomes of CMV infection were collected for each case. Descriptive statistics were calculated. RESULTS Our study included 13 patients (11 of whom were HCT recipients and two with HM) who received a median of 58 days of maribavir therapy. While on maribavir, nine (69%) patients had a resolution of CMV infection. Treatment-emergent maribavir resistance was documented in one patient with a CMV UL97 C480F mutation. Patients with higher baseline viral loads were less likely to achieve CMV resolution compared to those with lower levels. Additionally, six patients received combination therapy with maribavir. Six patients developed dysgeusia, none requiring maribavir discontinuation. CONCLUSION Maribavir is an effective and safe option for the treatment of R/R CMV infections in HCT recipients and HM patients. Our study highlights the complexities of managing CMV infections in this patient population and some challenges associated with maribavir therapy.
Collapse
Affiliation(s)
- Marilyne Daher
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medicine, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy Spallone
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Terri L Shigle
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Micah Bhatti
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nancy N Vuong
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ella J Ariza-Heredia
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor Mulanovich
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Atanasoff KE, Ophir SI, Parsons AJ, Paredes Casado J, Lurain NS, Bowlin TL, Opperman TJ, Tortorella D. N-arylpyrimidinamine (NAPA) compounds are broadly acting inhibitors of human cytomegalovirus infection and spread. Antiviral Res 2025; 233:106044. [PMID: 39608645 DOI: 10.1016/j.antiviral.2024.106044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that contributes to the disease burden of immunocompromised and immunomodulated individuals, including transplant recipients and newborns. The FDA-approved HCMV drugs can exhibit drug resistance and severe side effects including bone marrow toxicity, gastrointestinal disruption, and nephrotoxicity. In a previous study, we identified the N-arylpyrimidinamine (NAPA) compound series as a new class of HCMV inhibitors that target early stages of infection. Here we describe the inhibitory activity of two potent NAPA analogs, MBXC-4336 and MBX-4992, that broadly block infection and spread. MBXC-4336 and MBX-4992 effectively inhibited infection by diverse HCMV strains and significantly prevented virus spread in fibroblast and epithelial cells as evaluated by quantifying infected cells and viral genome levels. Further, the NAPA compounds limited replication of clinical HCMV isolates, including a ganciclovir-resistant strain. Importantly, combination studies of NAPA compounds with ganciclovir demonstrated additive or synergistic inhibition of HCMV spread. Collectively, NAPA compounds have therapeutic potential for development as a novel class of anti-HCMV drugs.
Collapse
Affiliation(s)
- Kristina E Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jailene Paredes Casado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nell S Lurain
- Department of Immunology-Microbiology, Rush University, Chicago, IL, USA
| | | | | | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Ogawa L, Morinishi C, Multani A, Gaynor P, Beaird OE, Pham C, Schaenman JM. Real-World Comparison of Maribavir to Foscarnet for the Treatment of Cytomegalovirus in Solid Organ and Hematopoietic Stem Cell Transplant Recipients. Viruses 2024; 16:1889. [PMID: 39772196 PMCID: PMC11680184 DOI: 10.3390/v16121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Cytomegalovirus (CMV) infection in solid organ transplant (SOT) and hematopoietic cell transplant (HCT) recipients may increase the risk of rejection or allograft dysfunction, other infection(s), and morbidity and mortality. Treatment can be challenging due to medication-associated toxicities. Maribavir (MBV) is a promising option for the treatment of resistant or refractory (R/R) CMV infection in lieu of foscarnet (FOS), which has long been the recommended therapy for (val)ganciclovir-resistant infection. This was a single-center retrospective study of clinical outcomes of patients who received MBV compared to a control group who received FOS for an episode of CMV infection. Each cohort consisted of 27 episodes of CMV infection. Twenty patients in the MBV cohort and from the FOS cohort cleared the infection, with five and three patients developing MBV or FOS resistance, respectively. There were no statistically significant differences in failure of therapy as evidenced by persistent DNAemia (p = 0.56) or development of antiviral resistance (p = 0.24). In conclusion, MBV was as effective as FOS for the treatment of R/R CMV infection and was better tolerated without increased risk of antiviral resistance.
Collapse
Affiliation(s)
- Lauren Ogawa
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| | - Chelsea Morinishi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| | - Ashrit Multani
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| | - Pryce Gaynor
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| | - Omer E. Beaird
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| | - Christine Pham
- Department of Pharmacy, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Joanna M. Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (L.O.); (C.M.)
| |
Collapse
|
4
|
Wu J, He YC, Huang QS, He Y, Zhao P, Chen Q, Zhu XL, Fu HX, Kong J, Wang FR, Zhang YY, Mo XD, Yan CH, Lv M, Wang Y, Xu LP, Liu KY, Huang XJ, Zhang XH. Clinical features and prognostic model for viral encephalitis after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 205:1477-1488. [PMID: 39099079 DOI: 10.1111/bjh.19683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The objective of this study was to identify independent prognostic factors of viral encephalitis (VE) after allogeneic haematopoietic stem cell transplantation (allo-HSCT) and establish a prognostic model to identify post-transplant VE patients with a greater likelihood of mortality. Among 5380 patients in our centre from 2014 to 2022, 211 patients who developed VE after allo-HSCT were reviewed in this retrospective study. Prognostic factors were selected, and a prognostic model was constructed using Cox regression analysis. The model was subsequently validated and estimated using the area under the receiver operating characteristic curve (AUC), a calibration plot and decision curve analysis (DCA). Glasgow Coma Scale score <9, lesions >3 lobes on magnetic resonance imaging and severe thrombocytopenia were identified as independent prognostic risk factors for VE patients who underwent allo-HSCT. The prognostic model GTM (GTM is an abbreviation for a model composed of three risk factors: GCS score <9, severe thrombocytopenia [platelet count <20 000 per microliter], and lesions >3 lobes on MRI) was established according to the regression coefficients. The validated internal AUC was 0.862 (95% confidence interval [CI], 0.773-0.950), and the external AUC was 0.815 (95% CI, 0.708-0.922), indicating strong discriminatory ability. Furthermore, we constructed calibration plots that demonstrated good consistency between the predicted outcomes and the observed outcomes. DCA exhibited high accuracy in this system, leading to potential benefits for patients.
Collapse
Affiliation(s)
- Jin Wu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Yu-Chen He
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Qiu-Sha Huang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Peng Zhao
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Haematology, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Centre of Haematology, Peking University, Beijing, China
- National Clinical Research Centre for Hematologic Disease, Beijing, China
| |
Collapse
|
5
|
Taherian MR, Azarbar P, Barkhordar M, Toufani S, Aliabadi LS, Bahri T, Ahmadvand M, Yaghmaie M, Daneshvar A, Vaezi M. Efficacy and safety of adoptive T-cell therapy in treating cytomegalovirus infections post-haematopoietic stem cell transplantation: A systematic review and meta-analysis. Rev Med Virol 2024; 34:e2558. [PMID: 38878003 DOI: 10.1002/rmv.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Cytomegalovirus (CMV) infection poses significant risks in allogeneic haematopoietic stem cell transplant (allo-HSCT) recipients. Despite advances in antiviral therapies, issues such as drug resistance, side effects, and inadequate immune reconstitution remain. This systematic review and meta-analysis aim to evaluate the efficacy and safety of adoptive cell therapy (ATC) in managing CMV infections in allo-HSCT recipients. Adhering to preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive database search through July 2023. A systematic review and meta-analysis were conducted on studies involving HSCT patients with CMV infections treated with ATC. The primary outcome was the response rate to ATC, and secondary outcomes included adverse events associated with ATC. The Freeman-Tukey transformation was applied for analysis. In the meta-analysis of 40 studies involving 953 participants, ATC achieved an overall integrated response rate of 90.16%, with a complete response of 82.59% and a partial response of 22.95%. ATC source, HLA matching, steroid intake, and age group markedly influenced response rates. Donor-derived T-cell treatments exhibited a higher response rate (93.66%) compared to third-party sources (88.94%). HLA-matched patients demonstrated a response rate of 92.90%, while mismatched patients had a lower rate. Children showed a response rate of 83.40%, while adults had a notably higher rate of 98.46%. Adverse events were minimal, with graft-versus-host disease occurring in 24.32% of patients. ATC shows promising response rates in treating CMV infections post-HSCT, with an acceptable safety profile. However, to establish its efficacy conclusively and compare it with other antiviral treatments, randomised controlled trials are essential. Further research should prioritise such trials over observational and one-arm studies to provide robust evidence for clinical decision-making.
Collapse
Affiliation(s)
- Mohammad Reza Taherian
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Azarbar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Toufani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marjan Yaghmaie
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Daneshvar
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yan B, Sun G, Wu Y, Wu W, Song K, Cheng Y, Huang A, Pan T, Tang B, Zhu X. Letermovir prophylaxis reduced cytomegalovirus reactivation and resistance post umbilical cord blood transplantation. Br J Haematol 2024; 204:2378-2389. [PMID: 38581290 DOI: 10.1111/bjh.19451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
To explore the impact of letermovir (LET) prophylaxis on cytomegalovirus (CMV) reactivation and resistance in both adult and paediatric umbilical cord blood transplantation (UCBT) patients, we retrospectively compared 43 UCBT patients who received LET as CMV prophylaxis with a historical cohort of 207 UCBT patients without LET usage. LET was administered from Day +1 to Day +100. The 180-day cumulative incidence of CMV reactivation (47.3% vs. 74.4%, p < 0.001) and the proportion of refractory CMV reactivation (15.0% vs. 42.9%, p = 0.016) were significantly lower than those in the control group. However, more frequent late CMV infection (31.0% vs. 4.3%, p = 0.002) and the 180-day cumulative incidence of Epstein-Barr virus (EBV) reactivation (9.3% vs. 3.4%, p = 0.087) were observed in UCBT patients with LET prophylaxis. Meanwhile, older age (>15 years old) and the occurrence of pre-engraftment syndrome were identified as the significant risk factors for CMV reactivation, and in patients at high risk, the incidence of CMV reactivation in the LET group was lower than that in the control group (46.7% vs. 86.5%, p < 0.001), while this decline was less pronounced among patients at low risk (47.8% vs. 62.1%, p = 0.120).
Collapse
Affiliation(s)
- Bingbing Yan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yue Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Wu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yaxin Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aijie Huang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianzhong Pan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Zhu J, Xu M, Ru Y, Gong H, Ding Y, Zhu Z, Xu Y, Fan Y, Zhang X, Tu Y, Sun A, Qiu H, Jin Z, Tang X, Han Y, Fu C, Chen S, Ma X, Chen F, Song T, Wu D, Chen J. Comparison of valganciclovir versus foscarnet for the treatment of cytomegalovirus viremia in adult acute leukemia patients after allogeneic hematopoietic cell transplantation. Leuk Lymphoma 2024; 65:816-824. [PMID: 38475670 DOI: 10.1080/10428194.2024.2321322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Cytomegalovirus (CMV) reactivation increases treatment-related mortality (TRM) after allogeneic hematopoietic cell transplantation (allo-HCT). We analyzed 141 adult acute leukemia (AL) patients suffered allo-HCT between 2017 and 2021, who developed CMV viremia post-HCT and treated with valganciclovir or foscarnet, to evaluate effectiveness and safety of both drugs. Viremia clearance rates (14 and 21 d post treatment) and toxicities were similar in two groups. However, valganciclovir was associated with a lower cumulative incidence of CMV recurrence within 180 days (16.7% vs. 35.7%, p=0.029) post CMV clearance. Finally, 2-year TRM was lower in valganciclovir group (9.7% ± 0.2% vs. 26.2% ± 0.3%, p = 0.026), result a superior 2-year overall survival (OS; 88.1% ± 5.2% vs. 64.4% ± 5.5%, p = 0.005) and leukemia-free survival (LFS; 82.0% ± 5.9% vs. 58.9% ± 5.6%, p = 0.009). Valganciclovir might decrease CMV viremia recurrence and led to better long-term outcome than foscarnet in adult AL patients developed CMV viremia post-HCT. Considering the inherent biases of retrospective study, well-designed trials are warranted to validate our conclusion.
Collapse
Affiliation(s)
- Jinjin Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Mimi Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yiyang Ding
- National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, PR China
| | - Ziling Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiang Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yuqing Tu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Tiemei Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, PR China
| |
Collapse
|
8
|
Song E. Case Report: Approaches for managing resistant cytomegalovirus in pediatric allogeneic hematopoietic cell transplantation recipients. Front Pediatr 2024; 12:1394006. [PMID: 38884102 PMCID: PMC11177687 DOI: 10.3389/fped.2024.1394006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 06/18/2024] Open
Abstract
The instructional case is a pediatric haploidentical TCRαβ+/CD19+ depleted allogeneic hematopoietic cell transplantation recipient who developed early onset CMV infection, which was complicated by resistant CMV (both UL97 and UL54) and successfully managed with maribavir and haploidentical CMV-specific T lymphocytes. Novel approaches to resistant CMV infection are reviewed and effective utilization of recent advances in diagnosis and management of resistant CMV in pediatric HCT are highlighted.
Collapse
Affiliation(s)
- Eunkyung Song
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Division of Infectious Diseases & Host Defense, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
9
|
Ahopelto K, Grasberger J, Ortiz F, Ekstrand A, Nordin A, Lempinen M, Helanterä I. High burden of CMV infections after simultaneous pancreas-kidney transplantation-a nationwide cohort study. FRONTIERS IN TRANSPLANTATION 2024; 3:1370945. [PMID: 38993783 PMCID: PMC11235250 DOI: 10.3389/frtra.2024.1370945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 07/13/2024]
Abstract
Cytomegalovirus (CMV) infections remain a common problem after solid-organ transplantation. We characterized the burden of CMV infections, and adverse events of CMV prophylaxis after simultaneous pancreas-kidney transplantation (SPK). We included all SPK patients (n = 236) since 2010 in our country. Immunosuppression was ATG, tacrolimus, mycophenolate, and steroids. Valganciclovir prophylaxis was given to all CMV D+/R- patients for six months, and to seropositive SPK patients for three months since February 2019. CMV DNAemia was monitored with quantitative PCR from plasma. Among D+/R- SPK recipients, post prophylaxis CMV infection was detected in 41/60 (68%) during follow-up. In seropositive SPK recipients with no prophylaxis, CMV infection was detected in 53/95 (56%), vs. 28/78 (36%) in those who received 3 months of prophylaxis (P = 0.01). CMV was symptomatic in 35 (15%) patients, of which 10 required hospitalization. Mean duration of viremia was 28 days (IQR 21-41). Leukopenia was detected in 63 (46%) of the 138 patients with valganciclovir prophylaxis. 7/122 (6%) of the CMV infections detected were defined as refractory to treatment, and three patients had confirmed ganciclovir resistance. SPK recipients experience a high burden of CMV infections despite CMV prophylaxis. Leukopenia is common during valganciclovir prophylaxis.
Collapse
Affiliation(s)
- Kaisa Ahopelto
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juulia Grasberger
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fernanda Ortiz
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Agneta Ekstrand
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arno Nordin
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko Lempinen
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Jiang Z, Fan Z, Zhang T, Lin R, Xu H, Xu N, Huang F, Chi P, Ou X, Wang Z, Liu H, Zhao K, Jiang L, Yu S, Sun J, Liu Q, Xuan L. Adoptive therapy with cytomegalovirus-specific cytotoxic T lymphocytes for refractory cytomegalovirus DNAemia and disease after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2024; 204:1393-1401. [PMID: 38168845 DOI: 10.1111/bjh.19282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Cytomegalovirus (CMV) DNAemia and disease are common complications in patients undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT). Few studies have compared the efficacy and safety of the HSCT donor and third-party CMV-specific cytotoxic T lymphocytes (CMV-CTLs) in the treatment of CMV DNAemia and disease. In this study, we retrospectively compared the efficacy and safety of HSCT donor and third-party CMV-CTLs in patients with refractory CMV DNAemia or disease after allo-HSCT at our centre from January 2017 to September 2021. Fifty-three patients who received CMV-CTL therapy were enrolled, including 40 in the donor group and 13 in the third-party group, and they were adults aged 18 years or older. Within 6 weeks of treatment, 26 (65.0%) and 9 (69.2%) patients achieved complete response in the donor and third-party groups (p = 1.000). The 2-year overall survival was 59.6% (95% CI 46.1%-77.1%) and 53.8% (32.6%-89.1%) in the donor and third-party groups (p = 0.860). Four (10.0%) patients in the donor group and two (15.4%) patients in the third-party group developed acute graft-versus-host disease within 3 months after CMV-CTL infusions. In conclusion, our data suggest that donor and third-party CMV-CTLs have comparable efficacy and safety for refractory CMV DNAemia and disease.
Collapse
Affiliation(s)
- Zhonghui Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Tian Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hui Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Peiru Chi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xueying Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Fan S, Mo X, Zhang X, Xu L, Wang Y, Yan C, Chen H, Zhang Y, Cheng Y, Sun Y, Chen Y, Chen Y, Han W, Wang J, Wang F, Xu Z, Huang X. Clinical characteristics and outcomes of allogeneic hematopoietic stem cell transplantation recipients with coronavirus disease 2019 caused by the Omicron variant: a prospective, observational cohort study. Ann Hematol 2024; 103:1333-1344. [PMID: 38381172 DOI: 10.1007/s00277-024-05653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We aimed to describe the clinical characteristics, particularly the occurrence and risk factors of severe/critical illness, in allogeneic hematopoietic stem cell (allo-HSCT) recipients infected with coronavirus disease 2019 (COVID-19) caused by Omicron variant in an observational prospective study (n = 311). The median time from allo-HSCT to COVID-19 diagnosis was 8.5 months (range 0.8-106.1) months. Four patients (1.3%) were reported to be asymptomatic during Omicron variant infection, and 135 (43.4%) patients showed lower respiratory tract disease. Thirty-four (10.9%) patients were categorized into serious infection (severe illness n = 25; critical illness n = 9) and the median duration from COVID-19 diagnosis to serious infections was 6 days (range, 0-29) days. Thirteen (4.2%) and 6 (1.9%) patients required intensive care unit care and invasive mechanical ventilation, respectively. Receiving more than 1 type of immunosuppressive therapies at COVID-19 diagnosis was associated with severity and persistence of infection. Six patients (1.9%) died after diagnosis of COVID-19 infection. The 4-week probability of overall survival after COVID-19 diagnosis was 98.7%, which was 100% and 88.2% for non-serious and serious infection group (P < 0.001), respectively. Thus, we observed a relatively low serious infection and mortality rate in allo-HSCT recipients infected with COVID-19 caused by Omicron variant.
Collapse
Affiliation(s)
- Shuang Fan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - LanPing Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yifei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jingzhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Fengrong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhengli Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
12
|
Liang H, Gong S, Gui G, Wang H, Jiang L, Li X, Fan J. Secretion of IFN-γ by specific T cells in HCMV infection. Heliyon 2024; 10:e28177. [PMID: 38533049 PMCID: PMC10963622 DOI: 10.1016/j.heliyon.2024.e28177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
One major risk for recipients undergoing allogeneic hematopoietic stem cell transplants (allo-HSCTs) is infection with the human cytomegalovirus (HCMV). For HCMV treatment, it is especially crucial to be able to differentiate between recipients who are at high risk of reactivation and those who are not. In this study, HCMV-DNA was collected from 60 HLA-A*02 allo-HSCT recipients before and after transplantation. After transplantation, the release of interferon (IFN)-γ by T cells specific to HCMV was assessed using the enzyme-linked immunospot assay (ELISPOT). The results show that the median viral load (VL) was significantly higher in the HCMV persistent-infection group compared to the non-persistent-infection group (p = 0.002), and that the late-infection rate was considerably higher in the high-VL group compared to the low-VL group (p = 0.014). The uninfected group had a considerably higher median IFN-γ spot-forming cell (SFC) count than the persistent-infection group (p = 0.001), and IFN-γ SFC counts correlated negatively and linearly with VLs (r = -0.397, p = 0.002). The immune-response groups showed significantly difference in median VL (p = 0.018), and the high immune response group had a reduced late-infection rate than the no/low immune response groups (p = 0.049). Our study showed that allo-HSCT recipients with a high VL at an early transplantation stage were at high risk for late HCMV infection. Further HCMV reactivation can be prevented by HCMV-specific T cells secreting enough IFN-γ.
Collapse
Affiliation(s)
- Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Lili Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| |
Collapse
|
13
|
Li WW, Zhang YM, Shen MZ, Mo XD. Efficacy and safety of letermovir prophylaxis for cytomegalovirus infection after hematopoietic stem cell transplantation. BLOOD SCIENCE 2024; 6:e00178. [PMID: 38213825 PMCID: PMC10781138 DOI: 10.1097/bs9.0000000000000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
Letermovir is a specific inhibitor of cytomegalovirus (CMV) terminase complex. Several studies have reported that letermovir can effectively prevent CMV activation after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aimed to identify the efficacy and safety of letermovir prophylaxis for CMV infection after allo-HSCT with a systemic review and meta-analysis. A literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. PubMed and Embase databases were searched. A total of 28 studies were included. The incidence of CMV activation at 14 weeks after HSCT was 0.10 (95% confidence interval [CI], 0.06-0.18), which was 0.10 (95% CI, 0.04-0.21) and 0% in adult and children (2 studies were included and both of them were 0%). In addition, the incidence of CMV activation at 14 weeks after allo-HSCT was 0.11 (95% CI, 0.06-0.21) and 0.07 (only 1 study included), respectively, in retrospective and prospective studies. The incidence of CMV activation at 100 and 200 days after HSCT was 0.23 (95% CI, 0.16-0.33) and 0.49 (95% CI, 0.32-0.67), respectively. The incidence of CMV disease at 14 weeks and at 6 months after HSCT was 0.01 (95% CI, 0.01-0.02) and 0.03 (95% CI, 0.01-0.09), respectively. Thus, our systemic review and meta-analysis suggested that letermovir prophylaxis was safe and effective for CMV activation after allo-HSCT.
Collapse
Affiliation(s)
- Wen-Wen Li
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Department of Hematology, Qingdao Women and Children’s Hospital, Qingdao, China
| | - Yong-Mei Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Department of Hematology, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Meng-Zhu Shen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies (2019RU029), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Yang D, Yao Y, Sun Y, Jiang E. Refractory cytomegalovirus infections in Chinese patients receiving allogeneic hematopoietic cell transplantation: a review of the literature. Front Immunol 2023; 14:1287456. [PMID: 38187387 PMCID: PMC10770847 DOI: 10.3389/fimmu.2023.1287456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
In the absence of prophylactic therapy, cytomegalovirus (CMV) viremia is a common complication following allogeneic hematopoietic cell transplantation (allo-HCT) and represents a significant cause of morbidity and mortality. Approximately 25% of allo-HCT happen in China, where the development and refinement of the 'Beijing protocol' has enabled frequent and increasing use of haploidentical donors. However, refractory CMV infection (an increase by >1 log10 in blood or serum CMV DNA levels after at least 2 weeks of an appropriately dosed anti-CMV medication) is more common among patients with haploidentical donors than with other donor types and has no established standard of care. Here, we review the literature regarding refractory CMV infection following allo-HCT in China.
Collapse
Affiliation(s)
- Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | | | - Yi Sun
- MRL Global Medical Affairs, Shanghai, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
15
|
Lin F, Dong X, Zhang Y, Cheng Y, Han T, Mo X, Fu H, Han W, Wang F, Tang F, Yan C, Sun Y, Xu Z, Wang Y, Zhang X, Huang X, Xu L. Time-dependent analysis of the impact on early cytomegalovirus reactivation of HLA mismatch and acute graft-versus-host disease after allogeneic hematopoietic cell transplantation from related donors in acquired aplastic anemia. Ann Hematol 2023; 102:2589-2598. [PMID: 37438489 DOI: 10.1007/s00277-023-05332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Cytomegalovirus (CMV) reactivation is an important issue in allogeneic hematopoietic cell transplantation (HCT). The incidence of early CMV reactivation is notably high in HLA-mismatched HCT. However, the interactions between HLA mismatch and acute graft-versus-host disease (aGvHD), a time-dependent event, make it methodologically challenging to evaluate the independent impact on CMV reactivation of the two variables. We retrospectively analyzed 355 patients with acquired aplastic anemia who received related donor transplants using a unified antithymocyte globulin-based platform. Patients were divided into group 1 (6/6 HLA match), group 2 (1-2/6 HLA allelic mismatch), and group 3 (3/6 HLA allelic mismatch). The impact of covariates was analyzed through two models: (1) time-dependent Cox and (2) dynamic landmarking analysis. The time-dependent Cox model showed that the HLA mismatch of 3/6 alleles (hazard ratio (HR) =1.852, P = .004) and aGvHD (HR = 1.009, P = .019) were independent risk factors for CMV reactivation. With the dynamic landmarking analysis, a higher HLA disparity correlated to increased early CMV reactivation (HR = 1.606, P = .001) at all time points. Developing aGvHD following HCT was generally associated with a higher incidence of CMV reactivation (HR = 1.623, P = .013), though its impact decreased with successive later landmark time points. In conclusion, our data suggest that the higher HLA disparity and aGvHD increases susceptibility to early CMV reactivation. In particular, the dynamic landmarking analysis demonstrated the time-varying effect of aGvHD on CMV reactivation, and HLA mismatch showed a profound impact over time following HCT.
Collapse
Affiliation(s)
- Fan Lin
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xinyu Dong
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuanyuan Zhang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yifei Cheng
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tingting Han
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaodong Mo
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Haixia Fu
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fengrong Wang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Feifei Tang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chenhua Yan
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuqian Sun
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Zhengli Xu
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yu Wang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaohui Zhang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaojun Huang
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Peking-Tsinghua Centre for Life Sciences, Beijing, China
| | - Lanping Xu
- National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplant, Peking University People's Hospital, Peking University Institute of Hematology, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
| |
Collapse
|
16
|
Cho SY, Ar MC, Machado CM, Wu D, Singh I, Sandhu A, Demuth D, Slavin M. Epidemiology, treatment patterns, and disease burden of cytomegalovirus in hematopoietic cell transplant recipients in selected countries outside of Europe and North America: A systematic review. Transpl Infect Dis 2023; 25:e14083. [PMID: 37287436 DOI: 10.1111/tid.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) disease impacts morbidity and mortality in hematopoietic cell transplant (HCT) recipients. This systematic review summarized data on the epidemiology, management, and burden of CMV post-HCT outside of Europe and North America. METHODS The MEDLINE, Embase, and Cochrane databases were searched for observational studies and treatment guidelines in HCT recipients across 15 selected countries from Asia-Pacific, Latin America, and Middle East (search period: 1 January 2011-17 September 2021). Outcomes included incidence of CMV infection/disease, recurrence, risk factors, CMV-related mortality, treatments, refractory, resistant CMV, and burden. RESULTS Of 2708 references identified, 68 were eligible (67 studies and one guideline; 45/67 studies specific to adult allogeneic HCT recipients). The rates of CMV infection and disease within 1 year of allogeneic HCT were 24.9%-61.2% (23 studies) and 2.9%-15.7% (10 studies), respectively. Recurrence occurred in 19.8%-37.9% of cases (11 studies). Up to 10% of HCT recipients died of CMV-related causes. In all countries, first-line treatment for CMV infection/disease involved intravenous ganciclovir or valganciclovir. Conventional treatments were associated with serious adverse events such as myelosuppression (10.0%) or neutropenia only (30.0%, 39.8%) and nephrotoxicity (11.0%) (three studies), frequently leading to treatment discontinuation (up to 13.6%). Refractory CMV was reported in 2.9%, 13.0%, and 28.9% of treated patients (three studies) with resistant CMV diagnosed in 0%-10% of recipients (five studies). Patient-reported outcomes and economic data were scarce. CONCLUSION The incidence of CMV infection and disease post-HCT is high outside of North America and Europe. CMV resistance and toxicity highlight a major unmet need with current conventional treatments.
Collapse
Affiliation(s)
- Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary's Hospital, Catholic Hematology Hospital, Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Muhlis Cem Ar
- Department of Haematology, Istanbul University-Cerrahpasa, Cerrahpassa Medical Faculty, Istanbul, Turkey
| | - Clarisse M Machado
- Virology Laboratory, Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo (LIM52-FMUSP), São Paulo, Brazil
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Inderjeet Singh
- Takeda Biopharmaceuticals India Pvt. Ltd., Gurugram, Haryana, India
| | - Anudeep Sandhu
- Takeda Pharmaceuticals International AG-Singapore Branch, Singapore
| | - Dirk Demuth
- Takeda Pharmaceuticals International AG-Singapore Branch, Singapore
| | - Monica Slavin
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Victoria, Australia
| |
Collapse
|
17
|
Shang QN, Yu XX, Xu ZL, Chen YH, Han TT, Zhang YY, Lv M, Sun YQ, Wang Y, Xu LP, Zhang XH, Zhao XY, Huang XJ. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell Mol Immunol 2023; 20:895-907. [PMID: 37291236 PMCID: PMC10387476 DOI: 10.1038/s41423-023-01046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32-0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18-0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.
Collapse
Affiliation(s)
- Qian-Nan Shang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
18
|
Sun YQ, Ma R, Huang XJ. Optimizing the treatment of cytomegalovirus infection in allo-HSCT recipients. Expert Rev Clin Immunol 2023; 19:227-235. [PMID: 36541485 DOI: 10.1080/1744666x.2023.2161510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection continues to negatively impact the prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT), even with active monitoring and preemptive strategies. Recent progress in pharmacology, immunotherapy, and vaccines has improved the strategy of CMV management. AREAS COVERED We summarized recent advances in managing CMV infection post allo-HSCT, including diagnosis, prophylaxis, and treatment. In this review, we mainly focused on approaches that have optimized or might optimize the management of CMV infection after allo-HSCT. EXPERT OPINION In our opinion, optimized management covers aspects including the serial monitoring of CMV-DNA and CMI, an accurate diagnosis, effective prophylaxis, and a rational preemptive therapy integrating antiviral drugs and cell therapies. Strategies based on the understanding of CMV pathogenesis and CMV-related immune reconstitution after allo-HSCT will be a direction in future studies.
Collapse
Affiliation(s)
- Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Rui Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
19
|
Duan Z, Zhang X, Liu Y, Li F, Shen H, Chen R, Zhu H, Qiu H, Miao K. Risk factors and survival of refractory cytomegalovirus reactivation after allogeneic peripheral blood stem cell transplantation. J Glob Antimicrob Resist 2022; 31:279-285. [PMID: 36265801 DOI: 10.1016/j.jgar.2022.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/22/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Refractory cytomegalovirus reactivation (RCR) after allo-hematopoietic stem cell transplantation (HSCT) is associated with poor outcomes. Current studies for the risk factors and survival of patients with post-transplantation RCR remain limited. METHODS 163 patients with Cytomegalovirus (CMV) reactivation undergoing allo-HSCT in Jiangsu Province hospital from Jan 2013 to Dec 2020 were analyzed retrospectively. RESULTS Multivariate analysis revealed that highest CMV viremia>1 × 104copies/mL (hazard ratio [HR] 16.895, 95% confidence interval [CI] 3.394-84.109, P = 0.001) and platelet count at Day 90 of more than 87.3 × 109/L (HR 0.381, 95% CI 0.154-0.945, P = 0.037) were independent risk factors affecting RCR. As for prognosis of patients with CMV reactivation, results showed that patients with RCR had higher risk of non-relapse mortality (NRM) (39.5% vs. 22.5%, P = 0.045), and RCR was an independent risk factor for NRM (HR 2.216, 95% CI 1.137-4.317, P = 0.019). There was no significance between patients with or without RCR in terms of overall survival (OS) (50.7% vs. 55.6%, P = 0.281) and relapse-free survival (RFS) (43.6% vs. 52.0%, P = 0.179). The landmark analysis showed that patients with RCR had higher NRM (P = 0.01), worse OS (P = 0.02), and RFS (P =0.01) within 100 days after transplantation. Patients with hemorrhagic cystitis (40.9% vs. 64.5%, P =0.028) and who developed viremia>1 × 105copies/mL (43.4% vs. 58.4%, P = 0.033) were associated with worse OS. CONCLUSION Factors such as higher viral load, thrombocytopenia, and ATG used in conditioning therapy increased the incidence of RCR. Patients with RCR had worse NRM, OS, and RFS within 100 days after transplantation.
Collapse
Affiliation(s)
- Ziwen Duan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Yanping Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Fang Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Haorui Shen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Ruize Chen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Han Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China
| | - Hairong Qiu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.
| | - Kourong Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People's Republic of China.
| |
Collapse
|
20
|
Zhang J, Cao J, Zheng R, Yu M, Lin Z, Wang C, McCluskey J, Yang J, Chen Z, Corbett AJ, Cao P, Mo W, Wang Z. The establishment of a cytomegalovirus -specific CD8+ T-cell threshold by kinetic modeling for the prediction of post-hemopoietic stem cell transplant reactivation. iScience 2022; 25:105340. [PMID: 36325063 PMCID: PMC9618782 DOI: 10.1016/j.isci.2022.105340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022] Open
Abstract
The dynamic interaction between the CMV virus and host immune response remains obscure, thus hindering the diagnosis and therapeutic management of patients with HSCT. The current diagnosis of CMV viremia depends on viral load estimation. Medical intervention based on viral load, can be unnecessary or poorly timed for many patients. Here we examined the clinical features and blood samples of patients with HSCT and assessed the CMV reactivation kinetics and corresponding CMV antigen-specific T-cell response in individual patients based on a peptide pool stimulation T-cell assay, which showed that CMV-specific CD8+ T cells were more suitable to be a diagnosis indicator for suppressing CMV reactivation. Using ROC analysis, we defined and verified a CMV-specific CD8+ T-cell counts threshold (925 cells/106 PBMCs) as an indicator of CMV reactivation post-HSCT, and suggested that use of this threshold would provide more accurate guidance for prompt medication and better management of CMV infection post-HSCT.
Collapse
|
21
|
Abstract
Maribavir was approved by the U.S. Food and Drug Administration in November 2021 for the treatment of adult and pediatric patients with post-transplant cytomegalovirus (CMV) infection/disease that is refractory to treatment (with or without genotypic resistance) with ganciclovir, valganciclovir, cidofovir, or foscarnet. Maribavir is an oral benzimidazole riboside with potent and selective multimodal anti-CMV activity. It utilizes a novel mechanism of action which confers activity against CMV strains that are resistant to traditional anti-CMV agents, and also offers a more favorable safety profile relative to the dose-limiting side effects of previously available therapies. Maribavir was initially studied as an agent for CMV prophylaxis in solid organ and hematopoietic stem cell recipients, but initial phase III trials failed to meet clinical efficacy endpoints. It has been more recently studied as a therapeutic agent at higher doses for refractory-resistant (R-R) CMV infections with favorable outcomes. After an overview of maribavir's chemistry and clinical pharmacology, this review will summarize clinical efficacy, safety, tolerability, and resistance data associated with maribavir therapy.
Collapse
|
22
|
Zhang Y, Chen X, Yang D, Pang A, Zhang R, Ma Q, Zhai W, He Y, Wei J, Jiang E, Han M, Feng S. The prognostic impact of previously infectious complications on allogeneic hematopoietic stem cell transplantation for patients with severe aplastic anemia: A single-center, retrospective study. Front Immunol 2022; 13:1004787. [PMID: 36172387 PMCID: PMC9510614 DOI: 10.3389/fimmu.2022.1004787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Whether infections before transplantation impair the survival of patients with severe aplastic anemia (SAA) remains unclear. The aim of this retrospective cohort analysis was to compare survival between patients with SAA who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) with infection (n=66) and patients without infection (n=189) from one medical center. There were no differences in baseline characteristics, except that more patients in the infection group were diagnosed with VSAA (59.09% vs. 30.69%, P<0.001), and their grafts were more peripheral blood stem cells (89.39% vs. 76.72%, P=0.042). In addition, the percentage of patients with multidrug-resistant organism colonization or infection in the infection group was larger (16.7% vs. 0.5%, P<0.001). The median days of engraftment were similar between the two groups; however, the 28-day engraftment rates of neutrophils and platelets were lower in the infection group. No differences were observed in terms of grades II–IV acute graft-versus-host disease (aGVHD) (P=0.418), grades III–IV aGVHD (P=0.075), mild to severe chronic GVHD (cGVHD) (P=0.899), and moderate to severe cGVHD (P=0.342). Patients in the infection group had more bloodstream infections before engraftment (28.8% vs. 15.3%, P=0.016), and the primary cause of death was infection instead of aGVHD in contrast to patients without infection (16.7% vs. 4.2%, P=0.002). Finally, the estimated overall survival (OS), failure-free survival (FFS), and GVHD-free FFS at 5 years were 63% (95% CI, 51–78), 60% (95% CI, 47–74), and 55% (95% CI, 43–70) in patients with infection before transplantation versus 86% (95% CI, 81–92) (P<0.001), 82% (95% CI, 76–88) (P<0.001), and 75% (95% CI, 69–82) (P=0.003) in patients without infection before transplantation, respectively. Multivariate analysis identified haploidentical HSCT and pre-HSCT anti-infection response, defined as partial remission (PR) or stable disease (SD), as adverse factors of OS and FFS. In conclusion, our study demonstrated that SAA patients with infection defined as PR or SD but not complete remission before allo-HSCT showed inferior survival compared with patients without infection. Therefore, more attention should be paid to prophylaxis and complete control of infectious complications before transplantation among SAA patients.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- *Correspondence: Sizhou Feng, ;
| |
Collapse
|
23
|
Szmit Z, Frączkiewicz J, Salamonowicz-Bodzioch M, Król A, Ussowicz M, Mielcarek-Siedziuk M, Liszka K, Marschollek P, Gorczyńska E, Kałwak K. The Impact of High CMV Viral Load and Refractory CMV Infection on Pediatric HSCT Recipients with Underlying Non-Malignant Disorder. J Clin Med 2022; 11:jcm11175187. [PMID: 36079123 PMCID: PMC9456677 DOI: 10.3390/jcm11175187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative therapy for an increasing number of nonmalignant indications. Its use is restricted by severe transplant-related complications, including CMV infection; despite various prophylactic and therapeutic strategies, CMV reactivation has remarkable morbidity and mortality. The analysis included 94 children with nonmalignant disorder who underwent allogeneic HSCT in the Department of Pediatric Hematology, Oncology, and Bone Marrow Transplantation in Wrocław during years 2016–2020. Twenty-seven (29%) children presented with CMV infection, including ten (10/27; 37%) with high level CMV viremia (10,000 copies/mL). Six patients experienced subsequent CMV reactivation. The first-line ganciclovir-based (GCV) treatment was insufficient in 40% (11/27) of children. Overall survival (OS) was significantly lower in children with high CMV viremia compared to those with low levels/no CMV [1yrOS High CMV = 0.80 (95% CI 0.41–0.95) vs. 1yrOS others = 0.96 (95% CI 0.89–0.99)]. Similarly, patients with resistant and recurrent infections had greater risk of death. CMV reactivation at any level relevantly prolonged the hospital stay. CMV reactivation with high viremia load and resistant/recurrent CMV infections lead to a significant decrease in OS in children with nonmalignant disorders treated with HSCT. Our data proves there is an urgent need to introduce an effective anti-CMV prophylaxis in this cohort of patients.
Collapse
|
24
|
Liu R, Wu N, Gao H, Liang S, Yue K, -Dong T, Dong X, Xu LP, Wang Y, Zhang XH, Liu J, Huang XJ. Distinct activities of Vδ1 + T cells upon different cytomegalovirus reactivation status after hematopoietic transplantation. Immunology 2022; 167:368-383. [PMID: 35795896 DOI: 10.1111/imm.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation is the most frequent viral infectious complication correlating to non-relapse mortality after allogeneic hematopoietic cell transplantation (alloHCT). The intrinsic anti-CMV immunity has not been completely elucidated. γδ T cells have drawn increasing attentions due to their distinct biological features and potential ability against viral infections. Previous studies reported a general association of γδ T cells or Vδ2-negative γδ T cells with CMV reactivation. Whereas researches for the direct responses and specific functions of γδ T subsets remain limited, especially in the scenario of alloHCT. Herein, we initially demonstrated that Vδ1+ T cells directly and independently recognized cell-free CMV and CMV-infected target cells, and inhibited CMV replication in vitro. The anti-CMV effect of Vδ1+ T cells was partially through TCRγδ, TLR2, and NKG2D receptor pathways. Further investigation about the anti-CMV characteristics of Vδ1+ T cells was performed in a clinical cohort with different CMV reactivation status after alloHCT. We found that occasional CMV reactivation remarkably increased the recovery levels and stimulated the functional activity of Vδ1+ T cells. Whereas disability of Vδ1+ T cells was observed upon refractory CMV reactivation, indicating the differential responses of Vδ1+ T cells under different CMV reactivation status. CXCL10 and IFN-β that were dramatically induced by occasional CMV reactivation could re-activate the deficient Vδ1+ T cells from recipients with refractory CMV reactivation. These findings unveiled the distinct activities of Vδ1+ T cells in anti-CMV immunity after alloHCT and may help develop novel strategies for the treatment of CMV infectious diseases.
Collapse
Affiliation(s)
- Ruoyang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ning Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shuang Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Keli Yue
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Tianhui -Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xinyu Dong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jiangying Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
25
|
Pei X, Zhao X, Liu X, Mo X, Lv M, Xu L, Wang Y, Chang Y, Zhang X, Liu K, Huang X. Adoptive therapy with cytomegalovirus-specific T cells for cytomegalovirus infection after haploidentical stem cell transplantation and factors affecting efficacy. Am J Hematol 2022; 97:762-769. [PMID: 35293011 DOI: 10.1002/ajh.26535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 01/09/2023]
Abstract
Adoptive therapy with cytomegalovirus (CMV)-specific cytotoxic T lymphocytes (CMV-CTLs) has emerged as an effective method for CMV infection. However, the efficacy reportedly ranges from 50% to 90%, and factors affecting anti-CMV efficacy have not been established. We investigated the safety and efficacy of adoptive therapy with CMV-CTLs for CMV infection in 190 patients after haploidentical stem cell transplantation (haplo-SCT), and importantly, we analyzed the main factors affecting antiviral efficacy. The CMV peak titer decreased from 19 (range, 1.0-503.0) × 103 copies/mL to 3.9 (range, 0-112) × 103 copies/mL after CMV-CTL infusion. The cumulative complete response (CR) rates in the first, fourth, and sixth weeks after the first CMV-CTL infusion were 37.9% (95% CI 35.0-40.8), 76.8% (95% CI 70.7-82.9), and 89.5% (95% CI 85.2-93.8), respectively. In multivariate analysis, persistent CMV infection prior to CMV-CTL infusion (hazard ratio [HR] 2.29, 95% CI 1.29-4.06, p = .005) and basiliximab treatment within 2 weeks of CMV-CTL infusion (HR 1.87, 95% CI 1.06-3.81, p = .031) were independent predictors of poor antiviral efficacy of CMV-CTL therapy. Our data showed that adoptive therapy with CMV-CTLs is a safe and effective treatment for CMV infection after haplo-SCT. Persistent CMV infection and basiliximab treatment are correlated with poor anti-CMV efficacy of CMV-CTL therapy.
Collapse
Affiliation(s)
- Xu‐Ying Pei
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiang‐Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xue‐Fei Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Peking‐Tsinghua Center for Life Sciences Beijing China
| | - Xiao‐Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Lan‐Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Ying‐Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiao‐Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Kai‐Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
| | - Xiao‐Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- Peking‐Tsinghua Center for Life Sciences Beijing China
| |
Collapse
|
26
|
Zuo W, Yu XX, Liu XF, Chang YJ, Wang Y, Zhang XH, Xu LP, Liu KY, Zhao XS, Huang XJ, Zhao XY. The Interaction of HLA-C1/KIR2DL2/L3 Promoted KIR2DL2/L3 Single-Positive/NKG2C-Positive Natural Killer Cell Reconstitution, Raising the Incidence of aGVHD after Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:814334. [PMID: 35572602 PMCID: PMC9101514 DOI: 10.3389/fimmu.2022.814334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
NKG2C+ natural killer (NK) cell plays a vital role in CMV infection control after hematopoietic stem cell transplantation (HSCT). However, the modulation on NKG2C+ NK cell reconstitution is still unclear. NK cell education is affected by the interactions of HLA-I/killer immunoglobulin receptor (KIR). Our aim is to figure out which HLA-I/KIR interaction plays a dominant role in NKG2C+ NK education. Based on allogeneic haploidentical HSCT, we investigated the expansion and function of single KIR positive NKG2C+ NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after HSCT. KIR2DL2/L3 single-positive/NKG2C+ cells were significantly expanded compared with KIR2DL1 or KIR3DL1 single-positive/NKG2C+ cells when donors and recipients were both HLA-C1/C1 or HLA-C1C1BW4 (p < 0.05), with higher NKp30 expression (p < 0.05). Moreover, the proportion of single KIR positive NK cells increased in both NKG2C+/NKG2A- NK cells and conventional NKG2C-/NKG2A- NK cells over time. We also observed that increased proportion of KIR2DL2/L3 single-positive/NKG2C+ NK cells correlated with higher incidence of acute graft-versus-host disease (aGVHD). Our study allows a better understanding of HLA-I/KIR interaction in the NKG2C+ NK cell education after HSCT.
Collapse
|
27
|
Outcomes of refractory cytomegalovirus (CMV) infection in the first year after allogeneic hematopoietic cell transplantation. Transplant Cell Ther 2022; 28:403.e1-403.e7. [DOI: 10.1016/j.jtct.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 12/18/2022]
|
28
|
Allogeneic hematopoietic stem cell transplantation for adult HLH: a retrospective study by the chronic malignancies and inborn errors working parties of EBMT. Bone Marrow Transplant 2022; 57:817-823. [PMID: 35332305 DOI: 10.1038/s41409-022-01634-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH; hemophagocytic syndrome) is a rare syndrome of potentially fatal, uncontrolled hyperinflammation. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is indicated in primary, recurrent or progressive HLH, but information about its outcomes in the adult population is limited. We obtained data about 87 adult (≥18 years of age) patients retrospectively reported to the EBMT. The median survival time was 13.9 months. The three and five-year overall survival (OS) was 44% (95% CI 33-54%). Among 39 patients with a follow-up longer than 15 months, only three died. Relapse rate was 21% (95% CI 13-30%), while NRM reached 36% (95% CI 25-46%). Younger patients (<30 years of age) had better prognosis, with an OS of 59% (95% CI 45-73%) at three and five years vs 23% (95% CI 8-37%) for older ones. No difference in survival between reduced and myeloablative conditioning was found. To our knowledge, this is the largest report of adult HLH patients who underwent allo-HSCT. Patients who survive the first period after this procedure can expect a long disease-free survival. Both reduced intensity and myeloablative conditioning have therapeutic potential in adult HLH.
Collapse
|
29
|
Shen MZ, Hong SD, Wang J, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Liu KY, Huang XJ, Mo XD. A Predicted Model for Refractory/Recurrent Cytomegalovirus Infection in Acute Leukemia Patients After Haploidentical Hematopoietic Stem Cell Transplantation. Front Cell Infect Microbiol 2022; 12:862526. [PMID: 35392613 PMCID: PMC8981086 DOI: 10.3389/fcimb.2022.862526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective We aimed to establish a model that can predict refractory/recurrent cytomegalovirus (CMV) infection after haploidentical donor (HID) hematopoietic stem cell transplantation (HSCT). Methods Consecutive acute leukemia patients receiving HID HSCT were enrolled (n = 289). We randomly selected 60% of the entire population (n = 170) as the training cohort, and the remaining 40% comprised the validation cohort (n = 119). Patients were treated according to the protocol registered at https://clinicaltrials.gov (NCT03756675). Results The model was as follows: Y = 0.0322 × (age) - 0.0696 × (gender) + 0.5492 × (underlying disease) + 0.0963 × (the cumulative dose of prednisone during pre-engraftment phase) - 0.0771 × (CD34+ cell counts in graft) - 1.2926. The threshold of probability was 0.5243, which helped to separate patients into high- and low-risk groups. In the low- and high-risk groups, the 100-day cumulative incidence of refractory/recurrent CMV was 42.0% [95% confidence interval (CI), 34.7%-49.4%] vs. 63.7% (95% CI, 54.8%-72.6%) (P < 0.001) for total patients and was 50.5% (95% confidence interval (CI), 40.9%-60.1%) vs. 71.0% (95% CI, 59.5%-82.4%) (P = 0.024) for those with acute graft-versus-host disease. It could also predict posttransplant mortality and survival. Conclusion We established a comprehensive model that could predict the refractory/recurrent CMV infection after HID HSCT. Clinical Trial Registration https://clinicaltrials.gov, identifier NCT03756675.
Collapse
Affiliation(s)
- Meng-Zhu Shen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Shen-Da Hong
- National Institute of Health Data Science at Peking University, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Xiao-Hui Zhang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Dong Mo
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Yu XX, Shang QN, Liu XF, He M, Pei XY, Mo XD, Lv M, Han TT, Huo MR, Zhao X, Chang YJ, Wang Y, Zhang XH, Xu LP, Liu KY, Zhao X, Huang X. Donor NKG2C homozygosity contributes to CMV clearance after haploidentical transplantation. JCI Insight 2022; 7:149120. [PMID: 34990406 PMCID: PMC8855817 DOI: 10.1172/jci.insight.149120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Several investigators have reported that adaptive NKG2C+ NK cells persistently expand during CMV reactivation. In our study, two cohorts were enrolled to explored the relationships among the NKG2C genotype, NKG2C+ NK cell reconstitution, and CMV infection. Multivariate analysis showed that donor NKG2C gene deletion was an independent prognostic factor for CMV reactivation and refractory CMV reactivation. Furthermore, the quantitative, qualitative reconstitution and anti-CMV function of adaptive NKG2C+ NK cells after transplantation was significantly lower in patients grafted with NKG2Cwt/del donor cells than in those grafted with NKG2Cwt/wt donor cells. The quantitative reconstitution of NKG2C+ NK cells at day 30 after transplantation was significantly lower in patients with treatment-refractory CMV reactivation than in those in the no-CMV-reactivation and CMV-reactivation groups. In humanized CMV-infected mice, we found that compared with those from NKG2Cwt/del donors, adaptive NKG2C+ NK cells from NKG2Cwt/wt donors induced earlier and stronger expansion of NKG2C+ NK cells and earlier and stronger CMV clearance in vivo. In conclusion, donor NKG2C homozygosity contributes to CMV clearance by promoting the quantitative and qualitative reconstruction of adaptive NKG2C+ NK cells after haploidentical allo-HSCT.
Collapse
Affiliation(s)
- Xing-Xing Yu
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Qian-Nan Shang
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xue-Fei Liu
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Mei He
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xu-Ying Pei
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Dong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Meng Lv
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Ting-Ting Han
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Ming-Rui Huo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiaosu Zhao
- Peking University Institute of Hematology, Peking Unversity People's Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking Unversity People's Hospital, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
31
|
Avery RK, Alain S, Alexander BD, Blumberg EA, Chemaly RF, Cordonnier C, Duarte RF, Florescu DF, Kamar N, Kumar D, Maertens J, Marty FM, Papanicolaou GA, Silveira FP, Witzke O, Wu J, Sundberg AK, Fournier M. Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results From a Phase 3 Randomized Clinical Trial. Clin Infect Dis 2021; 75:690-701. [PMID: 34864943 PMCID: PMC9464078 DOI: 10.1093/cid/ciab988] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Therapies for refractory cytomegalovirus infections (with or without resistance [R/R]) in transplant recipients are limited by toxicities. Maribavir has multimodal anti-cytomegalovirus activity through the inhibition of UL97 protein kinase. METHODS In this phase 3, open-label study, hematopoietic-cell and solid-organ transplant recipients with R/R cytomegalovirus were randomized 2:1 to maribavir 400 mg twice daily or investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for 8 weeks, with 12 weeks of follow-up. The primary endpoint was confirmed cytomegalovirus clearance at end of week 8. The key secondary endpoint was achievement of cytomegalovirus clearance and symptom control at end of week 8, maintained through week 16. RESULTS 352 patients were randomized (235 maribavir; 117 IAT). Significantly more patients in the maribavir versus IAT group achieved the primary endpoint (55.7% vs 23.9%; adjusted difference [95% confidence interval (CI)]: 32.8% [22.80-42.74]; P < .001) and key secondary endpoint (18.7% vs 10.3%; adjusted difference [95% CI]: 9.5% [2.02-16.88]; P = .01). Rates of treatment-emergent adverse events (TEAEs) were similar between groups (maribavir, 97.4%; IAT, 91.4%). Maribavir was associated with less acute kidney injury versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%). Fewer patients discontinued treatment due to TEAEs with maribavir (13.2%) than IAT (31.9%). One patient per group had fatal treatment-related TEAEs. CONCLUSIONS Maribavir was superior to IAT for cytomegalovirus viremia clearance and viremia clearance plus symptom control maintained post-therapy in transplant recipients with R/R cytomegalovirus. Maribavir had fewer treatment discontinuations due to TEAEs than IAT. Clinical Trials Registration. NCT02931539 (SOLSTICE).
Collapse
Affiliation(s)
- Robin K Avery
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sophie Alain
- Department of Virology and National Reference Center for Herpesviruses, Limoges University Hospital, UMR Inserm 1092, University of Limoges, Limoges, France
| | - Barbara D Alexander
- Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina, USA
| | - Emily A Blumberg
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Catherine Cordonnier
- Haematology Department, Henri Mondor Hospital and University Paris-Est-Créteil, Créteil, France
| | - Rafael F Duarte
- Department of Haematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Diana F Florescu
- Infectious Diseases Division, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Toulouse Rangueil University Hospital, INFINITY-Inserm U1291-CNRS U5051, University Paul Sabatier, Toulouse, France
| | - Deepali Kumar
- Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Johan Maertens
- Haematology Department, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | | - Genovefa A Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Fernanda P Silveira
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jingyang Wu
- Biostatistics, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Aimee K Sundberg
- Clinical Sciences, Takeda Development Center Americas, Inc, Lexington, Massachusetts, USA
| | - Martha Fournier
- Correspondence: M. Fournier, Takeda Development Center Americas, Inc, 300 Shire Way, Lexington, MA 02421 ()
| | | |
Collapse
|
32
|
Yong MK, Shigle TL, Kim YJ, Carpenter PA, Chemaly RF, Papanicolaou GA. American Society for Transplantation and Cellular Therapy Series: #4 - Cytomegalovirus treatment and management of resistant or refractory infections after hematopoietic cell transplantation. Transplant Cell Ther 2021; 27:957-967. [PMID: 34560310 DOI: 10.1016/j.jtct.2021.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
The Practice Guidelines Committee of the American Society of Transplantation and Cellular Therapy (ASTCT) partnered with its Transpl. Infect. Dis. Special Interest Group (TID-SIG) to update its 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A new approach was employed with the goal of better serving clinical providers by publishing each standalone topic in the infectious diseases series as a concise format of frequently asked questions (FAQ), tables, and figures. Adult and pediatric infectious diseases and HCT content experts developed and answered FAQs. Topics were finalized with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. The fourth topic in the series focuses on the management and treatment of cytomegalovirus (CMV) resistant and refractory infections. The diagnosis, definitions of resistant and refractory CMV, risk factors, virological genotypes and treatment algorithms are reviewed.
Collapse
Affiliation(s)
- Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3000, Australia; Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne Victoria, 3050, Australia.
| | - Terri Lynn Shigle
- Division of Pharmacy, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, & Employee Health, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Genovefa A Papanicolaou
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
33
|
Guo Y, Li H, Chen H, Li Z, Ding W, Wang J, Yin Y, Jin L, Sun S, Jing C, Wang H. Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue. EBioMedicine 2021; 73:103639. [PMID: 34700283 PMCID: PMC8554462 DOI: 10.1016/j.ebiom.2021.103639] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lung biopsy tissue samples can be used for infection detection and cancer diagnosis. Metagenomic next-generation sequencing (mNGS) has the potential to further improve diagnosis. METHODS From July 2018 to May 2020, lung biopsy samples of 133 patients with suspected pulmonary infection or abnormal imaging findings were collected and subjected to clinical microbiological testing, Illumina and Nanopore sequencing to identify pathogens. The neural networks were pretrained by extracting features of human reads from 2,095 metagenomic next-generation sequencing results, and the human reads of lung biopsy samples were entered into the validated pipeline to predict the risk of cancer. FINDINGS Based on the pathogen-cancer detection pipeline, the Illumina platform showed 77·6% sensitivity and 97·6% specificity compared to the composite reference standard for infection diagnosis. However, the Nanopore platform showed 34·7% sensitivity and 98·7% specificity. mNGS identified more fungi, which was confirmed by subsequent pathological examination. M. tuberculosis complex was weakly detected. For cancer detection, compared with histology, the Illumina platform showed 83·7% sensitivity and 97·6% specificity, diagnosing an additional 36 cancer patients, of whom half had abnormal imaging findings (pulmonary shadow, space-occupying lesions, or nodules). INTERPRETATION For the first time, we have established a pipeline to simultaneously detect pathogens and cancer based on Illumina sequencing of lung biopsy tissue. This pipeline efficiently diagnosed cancer in patients with abnormal imaging findings. FUNDING This work was supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Yifan Guo
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Zhenzhong Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing 210000, China
| | - Wenchao Ding
- MatriDx Biotechnology Co., Ltd., Hangzhou 310000, China
| | - Jun Wang
- MatriDx Biotechnology Co., Ltd., Hangzhou 310000, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Chendi Jing
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hui Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
34
|
In-depth summary over cytomegalovirus infection in allogeneic hematopoietic stem cell transplantation recipients. Virusdisease 2021; 32:422-434. [PMID: 34631973 DOI: 10.1007/s13337-021-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
In this study, we reviewed various aspects of cytomegalovirus infection, including pathophysiology, diagnosis methods, and antiviral treatments. Background: Infections continue to be a major reason of complications like high non-relapse morbidity and mortality rate after allogenic hematopoietic stem cell transplantation. Cytomegalovirus is the most common infection in immunocompromised patients or those with graft-versus-host disease. The Latent-cytomegalovirus disease could increase the risk of reactivation in allogenic hematopoietic stem cell transplantation patients and lead to profound adverse effects on transplantation outcomes. Cytomegalovirus-specific CD4 + and CD8 + T cells reconstitution is crucial for protection against the virus reactivation. Different prophylactic, pre-emptive, and therapeutic anti-viral drugs are available to prevent cytomegalovirus infection/reactivation and treat resistant infections. Conclusion: Although there has been introduced various CMV antiviral treatment strategies like antiviral drugs, Vaccination, passive immunotherapies and adoptive transfer of CMV-specific T cells, further clinical trials are required to approve current therapies.
Collapse
|
35
|
Siddiqui S, Hackl S, Ghoddusi H, McIntosh MR, Gomes AC, Ho J, Reeves MB, McLean GR. IgA binds to the AD-2 epitope of glycoprotein B and neutralizes human cytomegalovirus. Immunology 2021; 162:314-327. [PMID: 33283275 PMCID: PMC7884650 DOI: 10.1111/imm.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that is potentially pathogenic in immunosuppressed individuals and pregnant females during primary infection. The HCMV envelope glycoprotein B (gB) facilitates viral entry into all cell types and induces a potent immune response. AD-2 epitope is a highly conserved linear neutralizing epitope of gB and a critical target for antibodies; however, only 50% of sero-positive individuals make IgG antibodies to this site and IgA responses have not been fully investigated. This study aimed to compare IgG and IgA responses against gB and the AD-2 epitope in naturally exposed individuals and those receiving a recombinant gB/MF59 adjuvant vaccine. Thus, vaccination of sero-positive individuals improved pre-existing gB-specific IgA and IgG levels and induced de novo gB-specific IgA and IgG responses in sero-negative recipients. Pre-existing AD-2 IgG and IgA responses were boosted with vaccination, but de novo AD-2 responses were not detected. Naturally exposed individuals had dominant IgG responses towards gB and AD-2 compared with weaker and variable IgA responses, although a significant IgA binding response to AD-2 was observed within human breastmilk samples. All antibodies binding AD-2 contained kappa light chains, whereas balanced kappa/lambda light chain usage was found for those binding to gB. V region-matched AD-2-specific recombinant IgG and IgA bound both to gB and to AD-2 and neutralized HCMV infection in vitro. Overall, these results indicate that although human IgG responses dominate, IgA class antibodies against AD-2 are a significant component of human milk, which may function to protect neonates from HCMV.
Collapse
Affiliation(s)
- Saima Siddiqui
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Sarah Hackl
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Hamid Ghoddusi
- Microbiology Research UnitLondon Metropolitan UniversityLondonUK
| | - Megan R. McIntosh
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Ariane C. Gomes
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Joshua Ho
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Matthew B. Reeves
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Gary R. McLean
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK,National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
36
|
Zhou JR, Shi DY, Wei R, Wang Y, Yan CH, Zhang XH, Xu LP, Liu KY, Huang XJ, Sun YQ. Co-Reactivation of Cytomegalovirus and Epstein-Barr Virus Was Associated With Poor Prognosis After Allogeneic Stem Cell Transplantation. Front Immunol 2021; 11:620891. [PMID: 33664733 PMCID: PMC7921792 DOI: 10.3389/fimmu.2020.620891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022] Open
Abstract
Reactivation of cytomegalovirus (CMV) or Epstein-Barr virus (EBV) is common after hematopoietic stem cell transplantation (HSCT). Previous researches have demonstrated that either CMV or EBV reactivation is associated with poor outcomes of HSCT. However, few studies investigate the impact of CMV and EBV co-reactivation after HSCT. In this study, we described the clinical characteristics of HSCT recipients with CMV and EBV co-reactivation (defined as CMV and EBV viremia occur at the same period of time). We conducted a longitudinal study of 247 patients who underwent HSCT in our center. A total of 24 (9.7%) patients had CMV and EBV co-reactivation. These patients showed higher incidence of viral pneumonitis (P=0.005). Patients with CMV and EBV co-reactivation had significant lower 1-year overall survival (OS) (P=0.004) and lower 1-year leukemia free survival (LFS) (P=0.016). Our further analysis suggested that duration of CMV (P=0.014), EBV (P<0.001), and CD4+CD25+ T cell counts at day 30 post-transplantation (P=0.05) are independent risk factors of virus co-reactivation. In conclusion, patients who developed co-reactivation of CMV and EBV had poor prognosis in terms of lower 1-year OS and LFS, and the CMV and EBV co-reactivation was associated with prolonged CMV or EBV duration and poor CD4+CD25+ T cell reconstitution at day 30 post-transplantation.
Collapse
Affiliation(s)
- Jing-Rui Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
| | - Da-Yu Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
| | - Rong Wei
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Treatment of Hematological Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation for the Treatment of Hematological Diseases, Beijing, China
| |
Collapse
|
37
|
Chen DP, Wen YH, Wang PN, Hour AL, Lin WT, Hsu FP, Wang WT. The adverse events of haematopoietic stem cell transplantation are associated with gene polymorphism within human leukocyte antigen region. Sci Rep 2021; 11:1475. [PMID: 33446692 PMCID: PMC7809291 DOI: 10.1038/s41598-020-79369-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Adverse reactions may still occur in some patients after receiving haematopoietic stem cell transplantation (HSCT), even when choosing a human leukocyte antigen (HLA)-matched donor. The adverse reactions of transplantation include disease relapse, graft-versus-host disease (GVHD), mortality and CMV infection. However, only the relapse was discussed in our previous study. Therefore, in this study, we investigated the correlation between the gene polymorphisms within the HLA region and the adverse reactions of post-HSCT in patients with acute leukaemia (n = 176), where 72 patients were diagnosed with acute lymphocytic leukaemia (ALL) and 104 were acute myeloid leukaemia (AML). The candidate single nucleotide polymorphisms were divided into three models: donor, recipient, and donor-recipient pairs and the data of ALL and AML were analysed individually. Based on the results, we found 16 SNPs associated with the survival rates, the risk of CMV infection, or the grade of GVHD in either donor, recipient, or donor-recipient matching models. In the ALL group, the rs209132 of TRIM27 in the donor group was related to CMV infection (p = 0.021), the rs213210 of RING1 in the recipient group was associated with serious GVHD (p = 0.003), and the rs2227956 of HSPA1L in the recipient group correlated with CMV infection (p = 0.001). In the AML group, the rs3130048 of BAG6 in the donor-recipient pairs group was associated with serious GVHD (p = 0.048). Moreover, these SNPs were further associated with the duration time of survival after transplantation. These results could be applied to select the best donor in HSCT.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan County, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan County, Taiwan.
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| | - Wei-Ting Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, 333, Taiwan
| |
Collapse
|
38
|
Zhao XY, Pei XY, Chang YJ, Yu XX, Xu LP, Wang Y, Zhang XH, Liu KY, Huang XJ. First-line Therapy With Donor-derived Human Cytomegalovirus (HCMV)-specific T Cells Reduces Persistent HCMV Infection by Promoting Antiviral Immunity After Allogenic Stem Cell Transplantation. Clin Infect Dis 2021; 70:1429-1437. [PMID: 31067570 DOI: 10.1093/cid/ciz368] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) infection, especially persistent HCMV infection, is an important cause of morbidity and mortality after allogenic stem cell transplantation (allo-SCT). Antiviral agents remain the first-line therapy but are limited by side effects and acquired resistance. METHODS We evaluated the safety and efficacy of donor-derived HCMV-specific cytotoxic T cells (CTLs) as a first-line therapy for HCMV infection after allo-SCT and investigated the underlying mechanisms. RESULTS In humanized HCMV-infected mice, first-line therapy with CTLs effectively combated systemic HCMV infection by promoting the restoration of graft-derived endogenous HCMV-specific immunity in vivo. In a clinical trial, compared with the pair-matched, high-risk control cohort, first-line therapy with CTLs significantly reduced the rate of persistent (2.9% vs 20.0%, P = .018) and late (5.7% vs 20.0%, P = .01) HCMV infection and cumulative incidence of persistent HCMV infection (hazard ratio [HR], 0.13; 95% confidence interval [CI], 0.10-0.82; P = .02), lowered 1-year treatment-related mortality (HR, 0.15. 95% CI, 0.11-0.90. P = .03), and improved 1-year overall survival (HR, 6.35; 95% CI, 1.05-9.00; P = .04). Moreover, first-line therapy with CTLs promoted the quantitative and functional recovery of CTLs in patients, which was associated with HCMV clearance. CONCLUSIONS We provide robust support for the benefits of CTLs combined with antiviral drugs as a first-line therapy for treating HCMV infection and suggest that adoptively infused CTLs may stimulate the recovery of endogenous HCMV-specific immunity. CLINICAL TRIALS REGISTRATION NCT02985775.
Collapse
Affiliation(s)
- Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease.,Beijing Engineering Lab for Cell Therapy, Beijing, China
| | - Xu-Ying Pei
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease.,Beijing Engineering Lab for Cell Therapy, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
39
|
Solano C, Vázquez L, Giménez E, de la Cámara R, Albert E, Rovira M, Espigado I, Calvo CM, López-Jiménez J, Suárez-Lledó M, Chinea A, Esquirol A, Pérez A, Bermúdez A, Saldaña R, Heras I, González-Huerta AJ, Torrado T, Bautista G, Batlle M, Jiménez S, Vallejo C, Barba P, Cuesta MÁ, Piñana JL, Navarro D. Cytomegalovirus DNAemia and risk of mortality in allogeneic hematopoietic stem cell transplantation: Analysis from the Spanish Hematopoietic Transplantation and Cell Therapy Group. Am J Transplant 2021; 21:258-271. [PMID: 32812351 DOI: 10.1111/ajt.16147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023]
Abstract
The net impact of cytomegalovirus (CMV) DNAemia on overall mortality (OM) and nonrelapse mortality (NRM) following allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a matter of debate. This was a retrospective, multicenter, noninterventional study finally including 749 patients. CMV DNA monitoring was conducted by real-time polymerase chain reaction (PCR) assays. Clinical outcomes of interest were OM and NRM through day 365 after allo-HSCT. The cumulative incidence of CMV DNAemia in this cohort was 52.6%. A total of 306 out of 382 patients with CMV DNAemia received preemptive antiviral therapy (PET). PET use for CMV DNAemia, but not the occurrence of CMV DNAemia, taken as a qualitative variable, was associated with increased OM and NRM in univariate but not in adjusted models. A subcohort analysis including patients monitored by the COBAS Ampliprep/COBAS Taqman CMV Test showed that OM and NRM were comparable in patients in whom either low or high plasma CMV DNA threshold (<500 vs ≥500 IU/mL) was used for PET initiation. In conclusion, CMV DNAemia was not associated with increased OM and NRM in allo-HSCT recipients. The potential impact of PET use on mortality was not proven but merits further research.
Collapse
Affiliation(s)
- Carlos Solano
- Hematology Department, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Lourdes Vázquez
- Hematology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | | | - Eliseo Albert
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Montserrat Rovira
- Hematology Department, Hospital Clinic Institute of Hematology & Oncology, Barcelona, Spain
| | | | - Carmen M Calvo
- Hematology Department, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - María Suárez-Lledó
- Hematology Department, Hospital Clinic Institute of Hematology & Oncology, Barcelona, Spain
| | - Anabella Chinea
- Hematology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Albert Esquirol
- Hematology Department, Hospital Sant Creu i Sant Pau, Barcelona, Spain
| | - Ariadna Pérez
- Hematology Department, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Aránzazu Bermúdez
- Department of Hematology, Hospital Marques de Valdecilla, Santander, Spain
| | - Raquel Saldaña
- Hematology Department, Hospital Universitario de Jerez, Jerez de la Frontera, Cádiz, Spain
| | - Inmaculada Heras
- Hematology Department, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, IMIB, Universidad de Murcia, Murcia, Spain
| | - Ana J González-Huerta
- Hematology-Stem cell Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo IISPA. IUOPA, Oviedo, Spain
| | - Tamara Torrado
- Hematology Department, Complejo Hospitalario Universitario, Vigo, Spain
| | - Guiomar Bautista
- Hematology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Montserrat Batlle
- Hematology Department, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Santiago Jiménez
- Hematology Department, Hospital Universitario Doctor Negrín de Gran Canaria, Las Palmas, Spain
| | - Carlos Vallejo
- Hematology Department Hospital Universitario Donostia-Aránzazu, San Sebastián, Spain
| | - Pere Barba
- Hematology Department Hospital, Universitario Vall de Hebrón, Barcelona, Spain
| | - María Á Cuesta
- Hematology Department, Hospital Regional Universitario, Málaga, Spain
| | - José L Piñana
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
40
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is widely prevalent but mostly harmless in immunocompetent individuals. In the post hematopoietic stem cell transplant (HSCT) setting unrestricted viral replication can cause end-organ damage (CMV disease) and, in a small proportion, mortality. Current management strategies are based on sensitive surveillance programmes, with the more recent introduction of an effective prophylactic antiviral drug, letermovir, but all aim to bridge patients until reconstitution of endogenous immunity is sufficient to constrain viral replication. AREAS COVERED Over the past 25 years, the adoptive transfer of CMV-specific T-cells has developed from the first proof of concept transfer of CD 8 + T-cell clones, to the development of 'off the shelf' third party derived Viral-Specific T-cells (VSTs). In this review, we cover the current management of CMV, and discuss the developments in CMV adoptive cellular therapy. EXPERT OPINION Due to the adoption of letermovir as a prophylaxis in standard therapy, the incidence of CMV reactivation is likely to decrease, and any widely adopted cellular therapy needs to be economically competitive. Current clinical trials will help to identify the patients most likely to gain the maximum benefit from any form of cell therapy.
Collapse
Affiliation(s)
- Lorna Neill
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
41
|
Zhang C, Wang YE, Miao H, Hou J. Efficacy and Safety of Aqueous Interleukin-8-Guided Treatment in Cytomegalovirus Retinitis after Bone Marrow Hematopoietic Stem Cell Transplantation. Ocul Immunol Inflamm 2020; 30:758-765. [PMID: 33064057 DOI: 10.1080/09273948.2020.1823422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To explore the optimal treatment for cytomegalovirus retinitis (CMVR) in patients status-post Allogeneic bone marrow hematopoietic stem cell transplantation (Allo-HSCT), based on aqueous humor indicators. METHODS A randomized controlled study with 35 eyes. Eyes were randomized with a 1:1 ratio to standard treatment group (Group 1, with treatment endpoint as aqueous CMV-DNA load<103 copy/ml), and interleukin (IL)-8 group (Group 2, with treatment endpoint as aqueous IL-8 level <30 pg/ml or CMV-DNA load<103 copy/ml) to receive antiviral intravitreal injections. Number of injections, CMVR recurrence rate, complication rate, and vision changes were analyzed and compared. RESULTS The mean number of injections in group 2 was less than in group 1 (6 vs 8 respectively, p<0.05). There were no significant differences in CMVR recurrence, complication and vision recovery rate. CONCLUSION Incorporating aqueous humor IL-8 level into the criteria of CMVR treatment decision can safely and effectively reduce the number of intravitreal injections needed and can be used as important indicators to assess treatment endpoint.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroidal Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ye Elaine Wang
- Harvard Eye Associates, Private Practice, Laguna Hills, CA, USA.,Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Heng Miao
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroidal Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jing Hou
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroidal Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
42
|
Roex MCJ, Wijnands C, Veld SAJ, van Egmond E, Bogers L, Zwaginga JJ, Netelenbos T, von dem Borne PA, Veelken H, Halkes CJM, Falkenburg JHF, Jedema I. Effect of alemtuzumab-based T-cell depletion on graft compositional change in vitro and immune reconstitution early after allogeneic stem cell transplantation. Cytotherapy 2020; 23:46-56. [PMID: 32948458 DOI: 10.1016/j.jcyt.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS To reduce the risk of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT), T-cell depletion (TCD) of grafts can be performed by the addition of alemtuzumab (ALT) "to the bag" (in vitro) before transplantation. In this prospective study, the authors analyzed the effect of in vitro incubation with 20 mg ALT on the composition of grafts prior to graft infusion. Furthermore, the authors assessed whether graft composition at the moment of infusion was predictive for T-cell reconstitution and development of GVHD early after TCD alloSCT. METHODS Sixty granulocyte colony-stimulating factor-mobilized stem cell grafts were obtained from ≥9/10 HLA-matched related and unrelated donors. The composition of the grafts was analyzed by flow cytometry before and after in vitro incubation with ALT. T-cell reconstitution and incidence of severe GVHD were monitored until 12 weeks after transplantation. RESULTS In vitro incubation of grafts with 20 mg ALT resulted in an initial median depletion efficiency of T-cell receptor (TCR) α/β T cells of 96.7% (range, 63.5-99.8%), followed by subsequent depletion in vivo. Graft volumes and absolute leukocyte counts of grafts before the addition of ALT were not predictive for the efficiency of TCR α/β T-cell depletion. CD4pos T cells were depleted more efficiently than CD8pos T cells, and naive and regulatory T cells were depleted more efficiently than memory and effector T cells. This differential depletion of T-cell subsets was in line with their reported differential CD52 expression. In vitro depletion efficiencies and absolute numbers of (naive) TCR α/β T cells in the grafts after ALT incubation were not predictive for T-cell reconstitution or development of GVHD post- alloSCT. CONCLUSIONS The addition of ALT to the bag is an easy, fast and generally applicable strategy to prevent GVHD in patients receiving alloSCT after myeloablative or non-myeloablative conditioning because of the efficient differential depletion of donor-derived lymphocytes and T cells.
Collapse
Affiliation(s)
- Marthe C J Roex
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Charissa Wijnands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther van Egmond
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisette Bogers
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J Zwaginga
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - Tanja Netelenbos
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Hematology, HagaZiekenhuis, The Hague, The Netherlands
| | | | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Meng XY, Fu HX, Zhu XL, Wang JZ, Liu X, Yan CH, Zhang YY, Mo XD, Wang Y, Han W, Chen YH, Chen DB, Liu HX, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. Comparison of different cytomegalovirus diseases following haploidentical hematopoietic stem cell transplantation. Ann Hematol 2020; 99:2659-2670. [PMID: 32734550 DOI: 10.1007/s00277-020-04201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Cytomegalovirus (CMV) can cause end-organ diseases including pneumonia, gastroenteritis, retinitis, and encephalitis in hematopoietic stem cell transplantation recipients. Potential differences among different CMV diseases remain uncertain. This study aimed to compare the clinical characteristics, risk factors, and mortality among different CMV diseases. A retrospective nested case-control study was performed based on a cohort of 3862 patients who underwent haploidentical hematopoietic stem cell transplantation at a single-center. CMV diseases occurred in 113 (2.92%) of 3862 haplo-HSCT recipients, including probable CMV pneumonia (CMVP, n = 34), proven CMV gastroenteritis (CMVG, n = 34), CMV retinitis (CMVR, n = 31), probable CMV encephalitis (CMVE, n = 7), and disseminated CMV disease (Di-CMVD, n = 7). Most (91.2%) cases of CMVG developed within 100 days, while most (90.3%) cases of CMVR were late onset. Refractory CMV infection and CMV viral load at different levels were associated with an increased risk of CMVP, CMVG, and CMVR. Compared with patients without CMV diseases, significantly higher non-relapse mortality at 1 year after transplantation was observed in patients with CMVP and CMVR, rather than CMVG. Patients with CMVP, Di-CMVD, and CMVE had higher overall mortality after diagnosis than that of patients with CMVG and CMVR (61.7%, 57.1%, 40.0% vs 27.7%, 18.6%, P = 0.001). In conclusion, the onset time, viral dynamics, and mortality differ among different CMV diseases. The mortality of CMV diseases remains high, especially for CMVP, Di-CMVD, and CMVE.
Collapse
Affiliation(s)
- Xing-Ye Meng
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Hai-Xia Fu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Lu Zhu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Jing-Zhi Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Chen-Hua Yan
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Dong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Wei Han
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu-Hong Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ding-Bao Chen
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hui-Xin Liu
- Department of Clinical Epidemiology and Biostatistics, Peking University People's Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Xicheng District Xizhimen South Street No. 11, Beijing, 100044, China. .,Collaborative Innovation Center of Hematology, Peking University, Beijing, China. .,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China. .,National Clinical Research Center for Hematologic Disease, Beijing, China.
| |
Collapse
|
44
|
Zhao C, Huang XJ, Sun YQ, Xu LP, Zhang XH, Liu KY, Yan CH, Wang Y. [Impact of poor graft function on cytomegalovirus pneumonia in patients who have undergone haploidentical stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:552-556. [PMID: 32810961 PMCID: PMC7449765 DOI: 10.3760/cma.j.issn.0253-2727.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/05/2022]
Abstract
Objective: To retrospectively analyze the impact of primary PGF on CMV pneumonia in patients who have undergone haplo-HSCT. Methods: The clinical data of 122 patients who underwent haplo-HSCT at the Peking University Institute of Hematology from 2011-2012 were retrospectively reviewed. The incidence rate of CMV pneumonia between PGF and good graft function (GGF) was compared, and the factors were analyzed. In addition, outcomes in PGF patients with CMV pneumonia have been described. Results: Total 122 patients were retrospectively reviewed, and of these, 26 (21.3% ) had PGF, while 96 (78.7% ) had GGF. In addition, 15 patients had CMV pneumonia, and the median time to the development of CMV pneumonia was 103 (31-262) days; the 1-year cumulative incidence of CMV pneumonia was 12.3% (95% CI 6.2% -18.4% ) . In patients with primary PGF and GGF after Haplo-HSCT, the incidence of CMV pneumonia was 30.8% (8/26) and 7.3% (7/96) , respectively (P=0.002) . Moreover, 24 patients had CMV viremia (92.3% ) , while of the 96 GGF patients, 79 (82.3% ) had CMV viremia (P=0.212) . In multivariate analysis, the results showed that primary PGF had a significant influence on CMV pneumonia (P=0.005) . Compared with those without CMV pneumonia, patients with CMV pneumonia had poorer overall survival 37.3% (95% CI 11.2% -63.4% ) vs. 78.9% (95% CI 72.0% -87.6% ) (χ(2)=16.361, P<0.001) . The 1-year overall survival (OS) was 25.0% (95% CI 0% -55.0% ) and 50.0% (95% CI 26.9% -73.1% ) (χ(2)=4.656, P=0.031) in PGF patients with (8/26) and without (18/26) CMV pneumonia. Conclusion: The incidence of cytomegalovirus pneumonia in patients with primary poor graft function increases and the survival rate decreases.
Collapse
Affiliation(s)
- C Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; Hematology Collaborative Innovation Center, Peking University, Beijing 100871, China
| | - Y Q Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China; Hematology Collaborative Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
46
|
Papanicolaou GA, Silveira FP, Langston AA, Pereira MR, Avery RK, Uknis M, Wijatyk A, Wu J, Boeckh M, Marty FM, Villano S. Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant Recipients: A Randomized, Dose-ranging, Double-blind, Phase 2 Study. Clin Infect Dis 2020; 68:1255-1264. [PMID: 30329038 PMCID: PMC6451997 DOI: 10.1093/cid/ciy706] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Background Cytomegalovirus (CMV) infections that are refractory or resistant (RR) to available antivirals ([val]ganciclovir, foscarnet, cidofovir) are associated with higher mortality in transplant patients. Maribavir is active against RR CMV strains. Methods Hematopoietic-cell or solid-organ transplant recipients ≥12 years old with RR CMV infections and plasma CMV deoxyribonucleic acid (DNA) ≥1000 copies/mL were randomized (1:1:1) to twice-daily dose-blinded maribavir 400, 800, or 1200 mg for up to 24 weeks. The primary efficacy endpoint was the proportion of patients with confirmed undetectable plasma CMV DNA within 6 weeks of treatment. Safety analyses included the frequency and severity of treatment-emergent adverse events (TEAEs). Results From July 2012 to December 2014, 120 patients were randomized and treated (40 per dose group): 80/120 (67%) patients achieved undetectable CMV DNA within 6 weeks of treatment (95% confidence interval, 57–75%), with rates of 70%, 63%, and 68%, respectively, for maribavir 400, 800, and 1200 mg twice daily. Recurrent on-treatment CMV infections occurred in 25 patients; 13 developed mutations conferring maribavir resistance. Maribavir was discontinued due to adverse events in 41/120 (34%) patients, and 17/41 discontinued due to CMV infections. During the study, 32 (27%) patients died, 4 due to CMV disease. Dysgeusia was the most common TEAE (78/120; 65%) and led to maribavir discontinuation in 1 patient. Absolute neutrophil counts <1000/µL were noted in 12/106 (11%) evaluable patients, with rates similar across doses. Conclusions Maribavir ≥400 mg twice daily was active against RR CMV infections in transplant recipients; no new safety signals were identified. Clinical Trials Registration NCT01611974.
Collapse
Affiliation(s)
| | - Fernanda P Silveira
- The Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Marcus R Pereira
- Department of Medicine, Columbia University Medical Center, New York, New York
| | | | - Marc Uknis
- Shire Pharmaceuticals, Wayne, Pennsylvania
| | | | - Jingyang Wu
- Shire Pharmaceuticals, Lexington, Massachusetts
| | - Michael Boeckh
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | |
Collapse
|
47
|
Chemaly RF, Chou S, Einsele H, Griffiths P, Avery R, Razonable RR, Mullane KM, Kotton C, Lundgren J, Komatsu TE, Lischka P, Josephson F, Douglas CM, Umeh O, Miller V, Ljungman P. Definitions of Resistant and Refractory Cytomegalovirus Infection and Disease in Transplant Recipients for Use in Clinical Trials. Clin Infect Dis 2020; 68:1420-1426. [PMID: 30137245 DOI: 10.1093/cid/ciy696] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
Despite advances in preventive strategies, cytomegalovirus (CMV) infection remains a major complication in solid organ and hematopoietic cell transplant recipients. CMV infection may fail to respond to commercially available antiviral therapies, with or without demonstrating genotypic mutation(s) known to be associated with resistance to these therapies. This lack of response has been termed "resistant/refractory CMV" and is a key focus of clinical trials of some investigational antiviral agents. To provide consistent criteria for future clinical trials and outcomes research, the CMV Resistance Working Group of the CMV Drug Development Forum (consisting of scientists, clinicians, regulatory officials, and industry representatives from the United States, Canada, and Europe) has undertaken establishing standardized consensus definitions of "resistant" and "refractory" CMV. These definitions have emerged from the Working Group's review of the available virologic and clinical literature and will be subject to reassessment and modification based on results of future studies.
Collapse
Affiliation(s)
- Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston
| | - Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, and Research and Development Service, Veterans Affairs Portland Health Care System
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Wuerzburg, Germany
| | - Paul Griffiths
- Institute for Immunity and Transplantation, University College London Medical School, United Kingdom
| | - Robin Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Kathleen M Mullane
- Section of Infectious Diseases and Global Health, Department of Medicine, University of Chicago, Illinois
| | - Camille Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jens Lundgren
- Centre for Health and Infectious Disease Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Takashi E Komatsu
- Division of Antiviral Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter Lischka
- AiCuris Anti-infective Cures GmbH, Wuppertal, Germany
| | | | | | - Obi Umeh
- Shire Global Clinical Development (Immunology Therapeutic Area), Lexington, Massachusetts
| | - Veronica Miller
- Forum for Collaborative Research, University of California, Berkeley
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital.,Division of Hematology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
48
|
Heinemann NC, Tischer-Zimmermann S, Wittke TC, Eigendorf J, Kerling A, Framke T, Melk A, Heuft HG, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. High-intensity interval training in allogeneic adoptive T-cell immunotherapy - a big HIT? J Transl Med 2020; 18:148. [PMID: 32238166 PMCID: PMC7114817 DOI: 10.1186/s12967-020-02301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor’s peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach. Methods This pilot study was designed as a cross-over trial and compared the effect of a single bout (30 min) of high-intensity interval training (HIT) with that of 30 min of continuous exercise (CONT) on the frequency and function of circulating donor VSTs. To this end, we used established immunoassays to examine the donors’ cellular immune status, in particular, with respect to the frequency and specific characteristics of VSTs restricted against Cytomegalovirus (CMV)-, Epstein–Barr-Virus (EBV)- and Adenovirus (AdV)-derived antigens. T-cell function, phenotype, activation and proliferation were examined at different time points before and after exercise to identify the most suitable time for T-cell donation. The clinical applicability was determined by small-scale T-cell enrichment using interferon- (IFN-) γ cytokine secretion assay and virus-derived overlapping peptide pools. Results HIT proved to be the most effective exercise program with up to fivefold higher VST response. In general, donors with a moderate fitness level had higher starting and post-exercise frequencies of VSTs than highly fit donors, who showed significantly lower post-exercise increases in VST frequencies. Both exercise programs boosted the number of VSTs against less immunodominant antigens, specifically CMV (IE-1), EBV (EBNA-1) and AdV (Hexon, Penton), compared to VSTs against immunodominant antigens with higher memory T-cell frequencies. Conclusion This study demonstrates that exercise before T-cell donation has a beneficial effect on the donor’s cellular immunity with respect to the proportion of circulating functionally active VSTs. We conclude that a single bout of HIT exercise 24 h before T-cell donation can significantly improve manufacturing of clinically applicable VSTs. This simple and economical adjuvant treatment proved to be especially efficient in enhancing virus-specific memory T cells with low precursor frequencies.
Collapse
Affiliation(s)
- Nele Carolin Heinemann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | - Julian Eigendorf
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Arno Kerling
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Theodor Framke
- Department of Biometry, Hannover Medical School, Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Hans-Gert Heuft
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
49
|
Yan CH, Wang Y, Mo XD, Sun YQ, Wang FR, Fu HX, Chen Y, Han TT, Kong J, Cheng YF, Zhang XH, Xu LP, Liu KY, Huang XJ. Incidence, risk factors, and outcomes of cytomegalovirus retinitis after haploidentical hematopoietic stem cell transplantation. Bone Marrow Transplant 2020; 55:1147-1160. [PMID: 31992849 DOI: 10.1038/s41409-020-0790-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
This study investigated the epidemiological characteristics of cytomegalovirus retinitis (CMVR) after haploidentical hematopoietic stem cell transplantation (HSCT). We studied a cohort of 1466 consecutive patients who had undergone haploidentical HSCT between 2013 and 2017. We documented 34 episodes of CMVR in 31 patients, with a median onset of 167 days after the transplant. The cumulative incidence of CMVR was 2.3% 1 year after the transplant. Multivariate analysis suggested that platelet engraft failure at 100 days, EBV DNAemia, refractory or recurrent CMV DNAemia, and acute graft-versus-host disease were related to the development of CMVR in patients with CMV DNAemia. Patients with ≥3 risk factors (high risk) had a higher 1-year incidence of CMVR than patients with ≤2 risk factors (low risk) (26.2% vs. 0.6%, P < 0.001). In patients with CMVR, visual acuity (VA) improved in 16 episodes, remained stable in 10 episodes, and worsened in 8 episodes. The variable related to the improvement of VA was VA ≥ 0.1 at time of CMVR diagnosis. Our study showed that CMVR was a rare complication after haploidentical HSCT but that the risk was greater in patients with multiple risk factors.
Collapse
Affiliation(s)
- Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Xiao-Dong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yao Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Yi-Fei Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.,Collaborative Innovation Center of Hematology, Suzhou, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Xi Zhimen South Street No. 11, Beijing, 100044, China.
| |
Collapse
|
50
|
Yoo SG, Han KD, Lee KH, La Y, Kwon DE, Han SH. Impact of Cytomegalovirus Disease on New-Onset Type 2 Diabetes Mellitus: Population-Based Matched Case-Control Cohort Study. Diabetes Metab J 2019; 43:815-829. [PMID: 30688050 PMCID: PMC6943276 DOI: 10.4093/dmj.2018.0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A latent cytomegalovirus (CMV) cause chronic inflammation through undesirable inflation of cell-mediated immune response. CMV immunoglobulin G has been associated with cardiovascular disease and type 1 diabetes mellitus. We evaluated impact of CMV diseases on new-onset type 2 diabetes mellitus (T2DM). METHODS From the Korean Health Insurance Review and Assessment Service claim database of entire population with 50 million, we retrieved 576 adult case group with CMV diseases diagnosed with International Statistical Classification of Diseases and Related-Health Problems 10th Revision (ICD-10) B25 code between 2010 and 2014 after exclusion of patients with T2DM to 2006. The 2,880 control patients without T2DM from 2006 to cohort entry point were selected between 2010 and 2014 by age, sex matching with case group. The subjects without new-onset T2DM were followed until 2015. T2DM, hypertension (HTN), dyslipidemia (DYS), and end-stage renal disease (ESRD) were coded as ICD-10. RESULTS The frequency of new-onset T2DM in case group was significantly higher than that in control (5.6% vs. 2.2%, P<0.001). The group with T2DM (n=95) had higher incidence of CMV diseases than the group without T2DM (n=3,361) (33.7% vs. 16.2%, P<0.001). In multivariate regression model adjusted by age, sex, lower income, HTN, and DYS, the incidence rate (IR) of T2DM in case group was significantly higher than that in the control group (IR per 1,000, 19.0 vs. 7.3; odds ratio, 2.1; 95% confidence interval, 1.3 to 3.2). The co-existence of HTN, DYS, and ESRD with CMV diseases did not influence the IR of T2DM. CONCLUSION CMV diseases increase the patients' risk of developing T2DM.
Collapse
Affiliation(s)
- Seul Gi Yoo
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoung Hwa Lee
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yeonju La
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Da Eun Kwon
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Han
- Divison of Infectious Disease, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|