1
|
Zimmermann M, Gerken LRH, Wee S, Kissling VM, Neuer AL, Tsolaki E, Gogos A, Lukatskaya MR, Herrmann IK. X-ray radio-enhancement by Ti 3C 2T x MXenes in soft tissue sarcoma. Biomater Sci 2023; 11:7826-7837. [PMID: 37878039 PMCID: PMC10697419 DOI: 10.1039/d3bm00607g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti3C2Tx MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti3C2Tx MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti3C2Tx MXenes, marking them as a promising candidate for enhancing radiotherapy.
Collapse
Affiliation(s)
- Monika Zimmermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Shianlin Wee
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Elena Tsolaki
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, Balgrist Campus, Forchstrasse 340, 8008 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Lin CH, Wu CH, Lai YC, Chuang HD, Hsiao CY, Wu NS, Tseng SC, Feng CJ, Hsu SM. Technical note: Evaluation of the dose enhancement effect for a novel transmission-type x-ray tube using the Monte Carlo method. Med Phys 2023; 50:8057-8062. [PMID: 37655886 DOI: 10.1002/mp.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
PURPOSE Transmission-target x-ray tubes generate more x-rays than reflection thick-target x-ray tubes. A transmission x-ray tube combined with radiosensitizers has a better radiation enhancement effect. This study investigated the feasibility of using a transmission x-ray tube with radiosensitizers in clinical radiotherapy and its effect on radiation dose enhancement. METHODS This study used MCNP6.2 to simulate the model of a transmission x-ray tube and Co-60 beam. The radiation enhancement effect of radiosensitizers was examined with iodine-127 (I-127), radioiodinated iododeoxyuridine (IUdR), and gold nanoparticles (GNPs). RESULTS The study results showed that the dose enhancement factor (DEF) of the transmission x-ray tube with GNPs was 10.27, which was higher than that of I-127 (6.46) and IUdR (3.08). The DEF of the Co-60 beam with GNPs, I-127, and IUdR was 1.23, 1.19, and 1.2, respectively. The Auger electron flux of the transmission x-ray tube with GNPs was 1.19E+05 particles/cm2 . CONCLUSIONS This study found that a transmission x-ray tube with appropriate radiosensitizers could produce a high rate of Auger electrons to fulfill the radiation enhancement effect, and this procedure has the potential to become a radiotherapy modality.
Collapse
Affiliation(s)
- Chin-Hsiung Lin
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Physics, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, ROC
| | - Chin-Hui Wu
- Department of Medical Imaging and Radiological Sciences, Tzu-Chi University of Science and Technology, Hualien, Taiwan, ROC
| | - Yuan-Chun Lai
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Ho-Da Chuang
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Physics, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, ROC
| | - Ching-Yu Hsiao
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ni-Shan Wu
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | | | - Chen-Ju Feng
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Ming Hsu
- Medical Physics and Radiation Measurements Laboratory, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
3
|
Alanazi N, Alanazi R, Algawati M, Alzahrani K, Alodhayb AN. Effect of Gold Nanoparticle Radiosensitization on DNA Damage Using a Quartz Tuning Fork Sensor. MICROMACHINES 2023; 14:1963. [PMID: 37893400 PMCID: PMC10609368 DOI: 10.3390/mi14101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The development of sensor technology enables the creation of DNA-based biosensors for biomedical applications. Herein, a quartz tuning fork (QTF) sensing system was employed as a transducer for biomedical applications to address indirect DNA damage associated with gold nanoparticles (GNPs) and enhance the effectiveness of low-dose gamma radiation in radiation therapy. The experiment included two stages, namely during and after irradiation exposure; shift frequencies (Δf) were measured for 20 min in each stage. During the irradiation stage, the QTF response to DNA damage was investigated in a deionized aqueous solution with and without 100 nm GNPs at different concentrations (5, 10, 15, and 20 µg/mL). Upon exposure to gamma radiation for 20 min at a dose rate of 2.4 µGy/min, the ratio of Δf/ΔT indicates increased fork displacement frequencies with or without GNPs. Additionally, DNA damage associated with high and low GNP concentrations was evaluated using the change in the resonance frequency of the QTF. The results indicate that GNPs at 15 and 10 µg/mL were associated with high damage-enhancement ratios, while saturation occurred at 20 µg/mL. At 15 µg/mL, significant radiotherapy enhancement occurred compared to that at 10 µg/mL at 10 min after exposure. In the post-irradiation stage, the frequency considerably differed between 15 and 10 µg/mL. Finally, these results significantly depart from the experimental predictions in the post-radiation stage. They exhibited no appreciable direct effect on DNA repair owing to the absence of an environment that promotes DNA repair following irradiation. However, these findings demonstrate the potential of enhancing damage by combining GNP-mediated radiation sensitization and biosensor technology. Thus, QTF is recommended as a reliable measure of DNA damage to investigate the dose enhancement effect at various GNP concentrations.
Collapse
Affiliation(s)
- Nadyah Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (R.A.); (M.A.)
| | - Reem Alanazi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (R.A.); (M.A.)
| | - Mahmoud Algawati
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (R.A.); (M.A.)
| | - Khaled Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.); (R.A.); (M.A.)
| |
Collapse
|
4
|
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. Int J Mol Sci 2023; 24:ijms24054697. [PMID: 36902132 PMCID: PMC10003700 DOI: 10.3390/ijms24054697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).
Collapse
|
5
|
Mansouri E, Mesbahi A, Hejazi MS, Montazersaheb S, Tarhriz V, Ghasemnejad T, Zarei M. Nanoscopic biodosimetry using plasmid DNA in radiotherapy with metallic nanoparticles. J Appl Clin Med Phys 2022; 24:e13879. [PMID: 36546569 PMCID: PMC9924121 DOI: 10.1002/acm2.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Nanoscopic lesions (complex damages), are the most lethal lesions for the cells. As nanoparticles have become increasingly popular in radiation therapy and the importance of analyzing nanoscopic dose enhancement has increased, a reliable tool for nanodosimetry has become indispensable. In this regard, the DNA plasmid is a widely used tool as a nanodosimetry probe in radiobiology and nano-radiosensitization studies. This approach is helpful for unraveling the radiosensitization role of nanoparticles in terms of physical and physicochemical effects and for quantifying radiation-induced biological damage. This review discusses the potential of using plasmid DNA assays for assessing the relative effects of nano-radiosensitizers, which can provide a theoretical basis for the development of nanoscopic biodosimetry and nanoparticle-based radiotherapy.
Collapse
Affiliation(s)
- Elham Mansouri
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asghar Mesbahi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran,Medical Physics DepartmentMedical SchoolTabriz University of Medical SciencesTabrizIran
| | - Mohammad Saied Hejazi
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Soheila Montazersaheb
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Vahideh Tarhriz
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Tohid Ghasemnejad
- Molecular Medicine Research CenterInstitute of BiomedicineTabriz University of Medical SciencesTabrizIran
| | - Mojtaba Zarei
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
6
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
7
|
Zhou R, Zhao D, Beeraka NM, Wang X, Lu P, Song R, Chen K, Liu J. Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites 2022; 12:943. [PMID: 36295845 PMCID: PMC9612299 DOI: 10.3390/metabo12100943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 10/29/2023] Open
Abstract
Radiotherapy and internal radioisotope therapy (brachytherapy) induce tumor cell death through different molecular signaling pathways. However, these therapies in cancer patients are constrained by dose-related adverse effects and local discomfort due to the prolonged exposure to the surrounding tissues. Technological advancements in nanotechnology have resulted in synthesis of high atomic elements such as nanomaterials, which can be used as radiosensitizers due to their photoelectric characteristics. The aim of this review is to elucidate the effects of novel nanomaterials in the field of radiation oncology to ameliorate dose-related toxicity through the application of ideal nanoparticle-based radiosensitizers such as Au (gold), Bi (bismuth), and Lu (Lutetium-177) for enhancing cytotoxic effects of radiotherapy via the high-Z effect. In addition, we discuss the role of nanoparticle-enhanced radiotherapy in alleviating tumor hypoxia through the nanodelivery of genes/drugs and other functional anticancer molecules. The implications of engineered nanoparticles in preclinical and clinical studies still need to be studied in order to explore potential mechanisms for radiosensitization by minimizing tumor hypoxia, operational/logistic complications and by overcoming tumor heterogeneity in radiotherapy/brachytherapy.
Collapse
Affiliation(s)
- Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Narasimha M. Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Pharmaceutical Chemistry, Jagadguru Sri Shivarathreeswara Academy of Higher Education and Research (JSS AHER), Jagadguru Sri Shivarathreeswara College of Pharmacy, Mysuru 570015, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruixia Song
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
8
|
Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. RADIATION 2022. [DOI: 10.3390/radiation2010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interest in combining metallic nanoparticles, such as iron (SPIONs), gold (AuNPs) and bismuth oxide (BiONPs), with radiotherapy has increased due to the promising therapeutic advantages. While the underlying physical mechanisms of NP-enhanced radiotherapy have been extensively explored, only a few research works were motivated to quantify its contribution in an experimental dosimetry setting. This work aims to explore the feasibility of radiochromic films to measure the physical dose enhancement (DE) caused by the release of secondary electrons and photons during NP–radiotherapy interactions. A 10 mM each of SPIONs, AuNPs or BiONPs was loaded into zipper bags packed with GAFCHROMIC™ EBT3 films. The samples were exposed to a single radiation dose of 4.0 Gy with clinically relevant beams. Scanning was conducted using a flatbed scanner in red-component analysis for optimum sensitivity. Experimental dose enhancement factors (DEFExperimental) were then calculated using the ratio of absorbed doses (with/without NPs) converted from the films’ calibration curves. DEFExperimental for all NPs showed no significant physical DE beyond the uncertainty limits (p > 0.05). These results suggest that SPIONs, AuNPs and BiONPs might potentially enhance the dose in these clinical beams. However, changes in NPs concentration, as well as dosimeter sensitivity, are important to produce observable impact.
Collapse
|
9
|
Radiosensitization Effect of Gold Nanoparticles on Plasmid DNA Damage Induced by Therapeutic MV X-rays. NANOMATERIALS 2022; 12:nano12050771. [PMID: 35269259 PMCID: PMC8911739 DOI: 10.3390/nano12050771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/30/2023]
Abstract
Gold nanoparticles (AuNPs) can be used with megavolt (MV) X-rays to exert radiosensitization effects, as demonstrated in cell survival assays and mouse experiments. However, the detailed mechanisms are not clear; besides physical dose enhancement, several chemical and biological processes have been proposed. Reducing the AuNP concentration while achieving sufficient enhancement is necessary for the clinical application of AuNPs. Here, we used positively charged (+) AuNPs to determine the radiosensitization effects of AuNPs combined with MV X-rays on DNA damage in vitro. We examined the effect of low concentrations of AuNPs on DNA damage and reactive oxygen species (ROS) generation. DNA damage was promoted by 1.4 nm +AuNP with dose enhancement factors of 1.4 ± 0.2 for single-strand breaks and 1.2 ± 0.1 for double-strand breaks. +AuNPs combined with MV X-rays induced radiosensitization at the DNA level, indicating that the effects were physical and/or chemical. Although −AuNPs induced similar ROS levels, they did not cause considerable DNA damage. Thus, dose enhancement by low concentrations of +AuNPs may have occurred with the increase in the local +AuNP concentration around DNA or via DNA binding. +AuNPs showed stronger radiosensitization effects than −AuNPs. Combining +AuNPs with MV X-rays in radiation therapy may improve clinical outcomes.
Collapse
|
10
|
Jamil A, Abidin SZ, Razak KA, Zin H, Yunus MA, Rahman WN. Radiosensitization effects by bismuth oxide nanorods of different sizes in megavoltage external beam radiotherapy. Rep Pract Oncol Radiother 2021; 26:773-784. [PMID: 34760312 DOI: 10.5603/rpor.a2021.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nanotechnology application has successfully reached numerous scientific breakthroughs including in radiotherapy. However, the clinical application of nanoparticles requires more diligent research primarily on the crucial parameters such as nanoparticle sizes. This study is aimed to investigate the influence of bismuth oxide nanorod (Bi2O3-NR) sizes on radiosensitization effects on MCF-7 and HeLa cell lines for megavoltage photon and electron beam radiotherapy. Materials and methods MCF-7 and HeLa cells were treated with and without 0.5 μMol/L of Bi2O3-NR of varying sizes (60, 70, 80, and 90 nm). The samples, including the control groups, were exposed to different radiation doses (0-10 Gy), using photon (6 MV and 10 MV), and electron beam (6 MeV and 12 MeV) radiotherapy. Clonogenic assay was performed, and sensitization enhancement ratio (SER) was determined from linear quadratic based cell survival curves. Results The results depicted that 60 nm Bi2O3-NR yields the most excellent SER followed by 70 nm Bi2O3-NR. Meanwhile, the 80 and 90 nm Bi2O3-NR showed an insignificant difference between treated and untreated cell groups. This study also found that MCF-7 was subjected to more cell death compared to HeLa. Conclusion 60 nm Bi2O3-NR was the optimal Bi2O3-NR size to induce radiosensitization effects for megavoltage external beam radiotherapy. The SER in photon beam radiotherapy marked the highest compared to electron beam radiotherapy due to decreased primary radiation energy from multiple radiation interaction and higher Compton scattering.
Collapse
Affiliation(s)
- Amirah Jamil
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Safri Zainal Abidin
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Hafiz Zin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Muhammad Amir Yunus
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang Malaysia
| | - Wan Nordiana Rahman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
11
|
Huwaidi A, Kumari B, Robert G, Guérin B, Sanche L, Wagner JR. Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles. J Phys Chem Lett 2021; 12:9947-9954. [PMID: 34617774 DOI: 10.1021/acs.jpclett.1c02598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of gold nanoparticles (AuNPs) greatly enhances the formation of DNA damage when exposed to therapeutic X-rays. Three types of DNA damage are assessed in irradiated DNA by enzymatic digestion coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The major type of damage is release of the four nonmodified nucleobases, with a bias toward the release of cytosine and thymine. The second most important pathway involves the formation of several common reduction and oxidation products of DNA. Lastly, eight unique modifications of the 2-deoxyribose moiety are formed, which includes the 2',3'- and 2',5'-dideoxynucleosides (ddNs) of the four canonical nucleosides. The yield of ddNs decreases in the following order: ddG > ddA > ddC > ddT. From the yield and distribution of products, most of the damage is considered to arise from the generation of Auger/low-energy electrons (LEEs) and their reaction with DNA.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| |
Collapse
|
12
|
Impact of the Spectral Composition of Kilovoltage X-rays on High-Z Nanoparticle-Assisted Dose Enhancement. Int J Mol Sci 2021; 22:ijms22116030. [PMID: 34199667 PMCID: PMC8199749 DOI: 10.3390/ijms22116030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Nanoparticles (NPs) with a high atomic number (Z) are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu (ZCu = 29) to Bi2O3 (ZBi = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30–300 kVp voltage using various filtration systems and anode materials. Among the studied high-Z NP materials, gold was the absolute leader by a dose enhancement factor (DEF; up to 2.51), while HfO2 and Ta2O5 were the most versatile because of the largest high-DEF region in coordinates U (voltage) and Eeff (effective energy). Several impacts of the X-ray spectral composition have been noted, as follows: (1) there are radiation sources that correspond to extremely low DEFs for all of the studied NPs, (2) NPs with a lower Z in some cases can equal or overcome by the DEF value the high-Z NPs, and (3) the change in the X-ray spectrum caused by a beam passing through the matter can significantly affect the DEF. All of these findings indicate the important role of carefully planning radiation exposure in the presence of high-Z NPs.
Collapse
|
13
|
Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani S, Bradley D. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Yogo K, Misawa M, Shimizu M, Shimizu H, Kitagawa T, Hirayama R, Ishiyama H, Furukawa T, Yasuda H. Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy. Int J Nanomedicine 2021; 16:359-370. [PMID: 33469290 PMCID: PMC7813456 DOI: 10.2147/ijn.s292105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/19/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Gold nanoparticles (AuNPs) are candidate radiosensitizers for medium-energy photon treatment, such as γ-ray radiation in high-dose-rate (HDR) brachytherapy. However, high AuNP concentrations are required for sufficient dose enhancement for clinical applications. Here, we investigated the effect of positively (+) charged AuNP radiosensitization of plasmid DNA damage induced by 192Ir γ-rays, and compared it with that of negatively (−) charged AuNPs. Methods We observed DNA breaks and reactive oxygen species (ROS) generation in the presence of AuNPs at low concentrations. pBR322 plasmid DNA exposed to 64 ng/mL AuNPs was irradiated with 192Ir γ-rays via HDR brachytherapy. DNA breaks were detected by observing the changes in the form of the plasmid and quantified by agarose gel electrophoresis. The ROS generated by the AuNPs were measured with the fluorescent probe sensitive to ROS. The effects of positively (+) and negatively (−) charged AuNPs were compared to study the effect of surface charge on dose enhancement. Results +AuNPs at lower concentrations promoted a comparable level of radiosensitization by producing both single-stranded breaks (SSBs) and double-stranded breaks (DSBs) than those used in cell assays and Monte Carlo simulation experiments. The dose enhancement factor (DEF) for +AuNPs was 1.3 ± 0.2 for SSBs and 1.5 ± 0.4 for DSBs. The ability of +AuNPs to augment plasmid DNA damage is due to enhanced ROS generation. While −AuNPs generated similar ROS levels, they did not cause significant DNA damage. Thus, dose enhancement using low concentrations of +AuNPs presumably occurred via DNA binding or increasing local +AuNP concentration around the DNA. Conclusion +AuNPs at low concentrations displayed stronger radiosensitization compared to −AuNPs. Combining +AuNPs with 192Ir γ-rays in HDR brachytherapy is a candidate method for improving clinical outcomes. Future development of cancer cell-specific +AuNPs would allow their wider application for HDR brachytherapy.
Collapse
Affiliation(s)
- Katsunori Yogo
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masaki Misawa
- Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Morihito Shimizu
- Health and Medical Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Ryoichi Hirayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba-shi, Chiba, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takako Furukawa
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
16
|
Chen Y, Yang J, Fu S, Wu J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2020; 15:9407-9430. [PMID: 33262595 PMCID: PMC7699443 DOI: 10.2147/ijn.s272902] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
The rapid development of nanotechnology offers a variety of potential therapeutic strategies for cancer treatment. High atomic element nanomaterials are often utilized as radiosensitizers due to their unique photoelectric decay characteristics. Among them, gold nanoparticles (GNPs) are one of the most widely investigated and are considered to be an ideal radiosensitizers for radiotherapy due to their high X-ray absorption and unique physicochemical properties. Over the last few decades, multi-disciplinary studies have focused on the design and optimization of GNPs to achieve greater dosing capability and higher therapeutic effects and highlight potential mechanisms for radiosensitization of GNPs. Although the radiosensitizing potential of GNPs has been widely recognized, its clinical translation still faces many challenges. This review analyses the different roles of GNPs as radiosensitizers in cancer radiotherapy and summarizes recent advances. In addition, the underlying mechanisms of GNP radiosensitization, including physical, chemical and biological mechanisms are discussed, which may provide new directions for the optimization and clinical transformation of next-generation GNPs.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan Province, People's Republic of China
| |
Collapse
|
17
|
Srinivasan K, Samuel EJJ. Target biological tissue and energy influence on dose enhancement factor produced by gold nanoparticles and its relevant radiological properties. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Pandey A, Vighetto V, Di Marzio N, Ferraro F, Hirsch M, Ferrante N, Mitra S, Grattoni A, Filgueira CS. Gold Nanoparticles Radio-Sensitize and Reduce Cell Survival in Lewis Lung Carcinoma. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1717. [PMID: 32872626 PMCID: PMC7558645 DOI: 10.3390/nano10091717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
It has been suggested that particle size plays an important role in determining the genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm) fabricated and examined in vitro in Lewis lung carcinoma (LLC) as a model of non-small cell lung cancer through use of comet and clonogenic assays. After treatment with 2Gy X-ray irradiation, both particle sizes demonstrated increased DNA damage when compared to treatment with particles only and radiation alone. This radio-sensitization was further translated into a reduction in cell survival demonstrated by clonogenicity. This work indicates that GNPs of both sizes induce DNA damage in LLC cells at the tested concentrations, whereas the 37.4 nm particle size treatment group demonstrated greater significance in vitro. The presented data aids in the evaluation of the radiobiological response of Lewis lung carcinoma cells treated with gold nanoparticles.
Collapse
Affiliation(s)
- Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.P.); (S.M.); (A.G.)
| | - Veronica Vighetto
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Nicola Di Marzio
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Electronic and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
| | - Francesca Ferraro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matteo Hirsch
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Nicola Ferrante
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Biomedical Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.P.); (S.M.); (A.G.)
| | - Alessandro Grattoni
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.P.); (S.M.); (A.G.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.V.); (N.D.M.); (F.F.); (M.H.); (N.F.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
19
|
Penninckx S, Heuskin AC, Michiels C, Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers (Basel) 2020; 12:E2021. [PMID: 32718058 PMCID: PMC7464732 DOI: 10.3390/cancers12082021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, a growing interest in the improvement of radiation therapies has led to the development of gold-based nanomaterials as radiosensitizer. Although the radiosensitization effect was initially attributed to a dose enhancement mechanism, an increasing number of studies challenge this mechanistic hypothesis and evidence the importance of chemical and biological contributions. Despite extensive experimental validation, the debate regarding the mechanism(s) of gold nanoparticle radiosensitization is limiting its clinical translation. This article reviews the current state of knowledge by addressing how gold nanoparticles exert their radiosensitizing effects from a transdisciplinary perspective. We also discuss the current and future challenges to go towards a successful clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium; (S.P.); (A.-C.H.); (S.L.)
| |
Collapse
|
20
|
Babaye Abdollahi B, Malekzadeh R, Pournaghi Azar F, Salehnia F, Naseri AR, Ghorbani M, Hamishehkar H, Farajollahi AR. Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review. Adv Pharm Bull 2020; 11:212-223. [PMID: 33880343 PMCID: PMC8046397 DOI: 10.34172/apb.2021.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, high atomic number nanoparticles (NPs) have emerged as promising radio-enhancer agents for cancer radiation therapy due to their unique properties. Multi-disciplinary studies have demonstrated the potential of NPs-based radio-sensitizers to improve cancer therapy and tumor control at cellular and molecular levels. However, studies have shown that the dose enhancement effect of the NPs depends on the beam energy, NPs type, NPs size, NPs concentration, cell lines, and NPs delivery system. It has been believed that radiation dose enhancement of NPs is due to the three main mechanisms, but the results of some simulation studies failed to comply well with the experimental findings. Thus, this study aimed to quantitatively evaluate the physical, chemical, and biological factors of the NPs. An organized search of PubMed/Medline, Embase, ProQuest, Scopus, Cochrane and Google Scholar was performed. In total, 77 articles were thoroughly reviewed and analyzed. The studies investigated 44 different cell lines through 70 in-vitro and 4 in-vivo studies. A total of 32 different types of single or core-shell NPs in different sizes and concentrations have been used in the studies.
Collapse
Affiliation(s)
- Behnaz Babaye Abdollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Pournaghi Azar
- Department of Operative Density, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salehnia
- Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Naseri
- Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Reza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Charest G, Tippayamontri T, Shi M, Wehbe M, Anantha M, Bally M, Sanche L. Concomitant Chemoradiation Therapy with Gold Nanoparticles and Platinum Drugs Co-Encapsulated in Liposomes. Int J Mol Sci 2020; 21:E4848. [PMID: 32659905 PMCID: PMC7402338 DOI: 10.3390/ijms21144848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
A liposomal formulation of gold nanoparticles (GNPs) and carboplatin, named LipoGold, was produced with the staggered herringbone microfluidic method. The radiosensitizing potential of LipoGold and similar concentrations of non-liposomal GNPs, carboplatin and oxaliplatin was evaluated in vitro with the human colorectal cancer cell line HCT116 in a clonogenic assay. Progression of HCT116 tumor implanted subcutaneously in NU/NU mice was monitored after an irradiation of 10 Gy combined with either LipoGold, GNPs or carboplatin injected directly into the tumor by convection-enhanced delivery. Radiosensitization by GNPs alone or carboplatin alone was observed only at high concentrations of these compounds. Furthermore, low doses of carboplatin alone or a combination of carboplatin and GNPs did not engender radiosensitization. However, the same low doses of carboplatin and GNPs administered simultaneously by encapsulation in liposomal nanocarriers (LipoGold) led to radiosensitization and efficient control of cell proliferation. Our study shows that the radiosensitizing effect of a combination of carboplatin and GNPs is remarkably more efficient when both compounds are simultaneously delivered to the tumor cells using a liposomal carrier.
Collapse
Affiliation(s)
- Gabriel Charest
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| | - Thititip Tippayamontri
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
- Department of Radiological Technology and Medical Physics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Minghan Shi
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| | - Mohamed Wehbe
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Malathi Anantha
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Marcel Bally
- British Columbia Cancer Agency (BCCA), Vancouver, BC V6H 3Z6, Canada; (M.W.); (M.A.); (M.B.)
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Medical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (T.T.); (M.S.); (L.S.)
| |
Collapse
|
22
|
Poignant F, Charfi H, Chan CH, Dumont E, Loffreda D, Testa É, Gervais B, Beuve M. Monte Carlo simulation of free radical production under keV photon irradiation of gold nanoparticle aqueous solution. Part I: Global primary chemical boost. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Tabei M, Zeinizade E, Beik J, Kamrava SK, Nasiri Z, Ghaznavi H, Shakeri-Zadeh A. Insights into Nano-Photo-Thermal Therapy of Cancer: The Kinetics of Cell Death and Effect on Cell Cycle. Anticancer Agents Med Chem 2020; 20:612-621. [DOI: 10.2174/1871520620666200129111332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Background:
Despite considerable advances in nano-photo-thermal therapy (NPTT), there have been
a few studies reporting in-depth kinetics of cell death triggered by such a new modality of cancer treatment.
Objective:
In this study, we aimed to (1) investigate the cell death pathways regulating the apoptotic responses
to NPTT; and (2) ascertain the effect of NPTT on cell cycle progression.
Methods:
Folate conjugated gold nanoparticle (F-AuNP) was firstly synthesized, characterized and then assessed
to determine its potentials in targeted NPTT. The experiments were conducted on KB nasopharyngeal
cancer cells overexpressing folate receptors (FRs), as the model, and L929 normal fibroblast cells with a low
level of FRs, as the control. Cytotoxicity was evaluated by MTT assay and the cell death mode (i.e., necrosis or
apoptosis) was determined through AnnexinV/FITC-propidium iodide staining. Next, the gene expression profiles
of some key apoptotic factors involved in the mitochondrial signaling pathway were investigated using
RT-qPCR. Finally, cell cycle phase distribution was investigated at different time points post NPTT using flow
cytometric analysis.
Results:
The obtained results showed that KB cell death following targeted NPTT was greater than that observed
for L929 cells. The majority of KB cell death following NPTT was related to apoptosis. RT-qPCR analysis
indicated that the elevated expression of Bax along with the depressed expression of Bcl-xL, Survivin and
XIAP may involve in the regulation of apoptosis in response to NPTT. Flow cytometric analysis manifested that
16-24 hours after NPTT, the major proportion of KB cells was in the most radiosensitive phases of the cell cycle
(G2/M).
Conclusion:
This study extended the understanding of the signaling pathway involved in the apoptotic response
to NPTT. Moreover, the potential effect of NPTT on sensitizing cancer cells to subsequent radiation therapy was
highlighted.
Collapse
Affiliation(s)
- Mousa Tabei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Zeinizade
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - S. Kamran Kamrava
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Nasiri
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Department of Pharmaceutical Research Centre, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
24
|
Radiosensitization by Gold Nanoparticles: Impact of the Size, Dose Rate, and Photon Energy. NANOMATERIALS 2020; 10:nano10050952. [PMID: 32429500 PMCID: PMC7279506 DOI: 10.3390/nano10050952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023]
Abstract
Gold nanoparticles (GNPs) emerged as promising antitumor radiosensitizers. However, the complex dependence of GNPs radiosensitization on the irradiation conditions remains unclear. In the present study, we investigated the impacts of the dose rate and photon energy on damage of the pBR322 plasmid DNA exposed to X-rays in the presence of 12 nm, 15 nm, 21 nm, and 26 nm GNPs. The greatest radiosensitization was observed for 26 nm GNPs. The sensitizer enhancement ratio (SER) 2.74 ± 0.61 was observed at 200 kVp with 2.4 mg/mL GNPs. Reduction of X-ray tube voltage to 150 and 100 kVp led to a smaller effect. We demonstrate for the first time that the change of the dose rate differentially influences on radiosensitization by GNPs of various sizes. For 12 nm, an increase in the dose rate from 0.2 to 2.1 Gy/min led to a ~1.13-fold increase in radiosensitization. No differences in the effect of 15 nm GNPs was found within the 0.85–2.1 Gy/min range. For 21 nm and 26 nm GNPs, an enhanced radiosensitization was observed along with the decreased dose rate from 2.1 to 0.2 Gy/min. Thus, GNPs are an effective tool for increasing the efficacy of orthovoltage X-ray exposure. However, careful selection of irradiation conditions is a key prerequisite for optimal radiosensitization efficacy.
Collapse
|
25
|
The Basic Properties of Gold Nanoparticles and their Applications in Tumor Diagnosis and Treatment. Int J Mol Sci 2020; 21:ijms21072480. [PMID: 32260051 PMCID: PMC7178173 DOI: 10.3390/ijms21072480] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely studied and applied in the field of tumor diagnosis and treatment because of their special fundamental properties. In order to make AuNPs more suitable for tumor diagnosis and treatment, their natural properties and the interrelationships between these properties should be systematically and profoundly understood. The natural properties of AuNPs were discussed from two aspects: physical and chemical. Among the physical properties of AuNPs, localized surface plasmon resonance (LSPR), radioactivity and high X-ray absorption coefficient are widely used in the diagnosis and treatment of tumors. As an advantage over many other nanoparticles in chemicals, AuNPs can form stable chemical bonds with S-and N-containing groups. This allows AuNPs to attach to a wide variety of organic ligands or polymers with a specific function. These surface modifications endow AuNPs with outstanding biocompatibility, targeting and drug delivery capabilities. In this review, we systematically summarized the physicochemical properties of AuNPs and their intrinsic relationships. Then the latest research advancements and the developments of basic research and clinical trials using these properties are summarized. Further, the difficulties to be overcome and possible solutions in the process from basic laboratory research to clinical application are discussed. Finally, the possibility of applying the results to clinical trials was estimated. We hope to provide a reference for peer researchers to better utilize the excellent physicochemical properties of gold nanoparticles in oncotherapy.
Collapse
|
26
|
Keshavarz S, Sardari D. Different distributions of gold nanoparticles on the tumor and calculation of dose enhancement factor by Monte Carlo simulation. NUCLEAR ENERGY AND TECHNOLOGY 2019. [DOI: 10.3897/nucet.5.39096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gold nanoparticles can be used to increase the dose of the tumor due to its high atomic number as well as being free from apparent toxicity. The aim of this study is to evaluate the effect of distribution of gold nanoparticles models, as well as changes in nanoparticle sizes and spectrum of radiation energy along with the effects of nanoparticle penetration into surrounding tissues in dose enhancement factor DEF. Three mathematical models were considered for distribution of gold nanoparticles in the tumor, such as 1-uniform, 2- non-uniform distribution with no penetration margin and 3- non-uniform distribution with penetration margin of 2.7 mm of gold nanoparticles. For this purpose, a cube-shaped water phantom of 50 cm size in each side and a cube with 1 cm side placed at depth of 2 cm below the upper surface of the cubic phantom as the tumor was defined, and then 3 models of nanoparticle distribution were modeled. MCNPX code was used to simulate 3 distribution models. DEF was evaluated for sizes of 20, 25, 30, 50, 70, 90 and 100 nm of gold nanoparticles, and 50, 95, 250 keV and 4 MeV photon energies. In uniform distribution model the maximum DEF was observed at 100 nm and 50 keV being equal to 2.90, in non-uniform distribution with no penetration margin, the maximum DEF was measured at 100 nm and 50 keV being 1.69, and in non-uniform distribution with penetration margin of 2.7 mm, the maximum DEF was measured at 100 nm and 50 keV as 1.38, and the results have been showed that the dose was increased by injecting nanoparticles into the tumor. It is concluded that the highest DEF could be achieved in low energy photons and larger sizes of nanoparticles. Non-uniform distribution of gold nanoparticles can increase the dose and also decrease the DEF in comparison with the uniform distribution. The non-uniform distribution of nanoparticles with penetration margin showed a lower DEF than the non-uniform distribution without any margin and uniform distribution. Meanwhile, utilization of the real X-ray spectrum brought about a smaller DEF in comparison to mono-energetic X-ray photons.
Collapse
|
27
|
Loiseau A, Boudon J, Oudot A, Moreau M, Boidot R, Chassagnon R, Mohamed Saïd N, Roux S, Mirjolet C, Millot N. Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers (Basel) 2019; 11:cancers11121962. [PMID: 31817706 PMCID: PMC6966691 DOI: 10.3390/cancers11121962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Nanohybrids based on titanate nanotubes (TiONts) were developed to fight prostate cancer by intratumoral (IT) injection, and particular attention was paid to their step-by-step synthesis. TiONts were synthesized by a hydrothermal process. To develop the custom-engineered nanohybrids, the surface of TiONts was coated beforehand with a siloxane (APTES), and coupled with both dithiolated diethylenetriaminepentaacetic acid-modified gold nanoparticles (Au@DTDTPA NPs) and a heterobifunctional polymer (PEG3000) to significantly improve suspension stability and biocompatibility of TiONts for targeted biomedical applications. The pre-functionalized surface of this scaffold had reactive sites to graft therapeutic agents, such as docetaxel (DTX). This novel combination, aimed at retaining the AuNPs inside the tumor via TiONts, was able to enhance the radiation effect. Nanohybrids have been extensively characterized and were detectable by SPECT/CT imaging through grafted Au@DTDTPA NPs, radiolabeled with 111In. In vitro results showed that TiONts-AuNPs-PEG3000-DTX had a substantial cytotoxic activity on human PC-3 prostate adenocarcinoma cells, unlike initial nanohybrids without DTX (Au@DTDTPA NPs and TiONts-AuNPs-PEG3000). Biodistribution studies demonstrated that these novel nanocarriers, consisting of AuNP- and DTX-grafted TiONts, were retained within the tumor for at least 20 days on mice PC-3 xenografted tumors after IT injection, delaying tumor growth upon irradiation.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
- Correspondence: (J.B.); (C.M.); (N.M.)
| | - Alexandra Oudot
- Preclinical Imaging Platform, Nuclear Medicine Department, Georges-Francois Leclerc Cancer Center, 21079 Dijon Cedex, France;
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l’Université Bourgogne, UMR 6302, CNRS-Université Bourgogne Franche Comté, 21078 Dijon Cedex, France;
| | - Romain Boidot
- Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center–UNICANCER, 21079 Dijon Cedex, France;
| | - Rémi Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
| | - Nasser Mohamed Saïd
- Institut UTINAM, UMR 6213, CNRS-Université Bourgogne Franche-Comté, 25030 Besançon Cedex, France; (N.M.S.); (S.R.)
| | - Stéphane Roux
- Institut UTINAM, UMR 6213, CNRS-Université Bourgogne Franche-Comté, 25030 Besançon Cedex, France; (N.M.S.); (S.R.)
| | - Céline Mirjolet
- INSERM LNC UMR 1231, 21078 Dijon Cedex, France
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, 21079 Dijon Cedex, France
- Correspondence: (J.B.); (C.M.); (N.M.)
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
- Correspondence: (J.B.); (C.M.); (N.M.)
| |
Collapse
|
28
|
Cheng X, Sun R, Xia H, Ding J, Yin L, Chai Z, Shi H, Gao M. Light-triggered crosslinking of gold nanoparticles for remarkably improved radiation therapy and computed tomography imaging of tumors. Nanomedicine (Lond) 2019; 14:2941-2955. [PMID: 31755353 DOI: 10.2217/nnm-2019-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We aimed to characterize the tumor-targeting and radiosensitization properties of the photo-responsive gold nanoparticles (AuNPs) decorated photolabile diazirine group and folic acid for improved radiotherapy and computed tomography imaging of tumors. Methods: Folic acid and photolabile diazirine group were covalently conjugated on the surface of AuNPs to afford the desired photo-responsive dAuNP-FA (AuNPs capped with poly(ethylene) glycol ligands bearing photolabile diazirine group and folic acid). The probes were intravenously injected into tumor-bearing mice followed by photocrosslinking upon 405 nm laser irradiation for radiotherapy and computed tomography imaging of tumors in vivo. Results: Light-triggered crosslinking of AuNPs in vivo remarkably enhanced the accumulation and retention of AuNPs within tumors. Conclusion: We have successfully developed a novel photo-responsive Au particle-based tumor theranostic probe showing remarkably improved tumor targeting ability and radiosensitization effect.
Collapse
Affiliation(s)
- Xiaju Cheng
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.,Jiangsu Key Laboratory of Infection & Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Sun
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Huawei Xia
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jianan Ding
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering & Materials Science & Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, PR China.,Department of Chemistry & Chemical Engineering, Jining University, Qufu 273155, PR China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine & Protection, School for Radiological & Interdisciplinary Sciences (RAD-X) & Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.,Institute of Chemistry, Chinese Academy of Sciences, School of Chemistry & Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
29
|
Measuring radioenhancement by gold nanofilms: Comparison with analytical calculations. Phys Med 2019; 68:1-9. [PMID: 31715285 DOI: 10.1016/j.ejmp.2019.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To measure radioenhancement by gold nanoparticles (GNPs) using gold nanofilms (GNFs). METHODS GNFs of 20-100 nm thicknesses were prepared. The GNF attached to radiochromic film (RCF) was irradiated using 50, 220 kVp, and 6 MV X-rays. The radiation doses to the active layer of RCF with and without GNF were measured using an optical flatbed scanner and Raman spectrometer to estimate the dose enhancement factor (DEF). For verification, analytical calculations of DEF within the thickness of active layer and the ranges of secondary electrons were carried out. RESULTS The DEFs for GNFs of 20 to 100 nm thicknesses measured by an optical scanner ranged from 2.1 to 6.1 at 50 kVp and 1.6 to 4.9 at 220 kVp. Similarly, the DEFs measured by Raman spectroscopy ranged from 2.6 to 4.6 at 50 kVp and 2.2 to 4.8 at 220 kVp. The calculated DEFs ranged from 1.5 to 3.6 at 50 kVp and from 1.7 to 4.7 at 220 kVp. Almost no dose enhancement was observed in 6 MV X-ray. The analytical DEFs seemed to be underestimated by averaging local enhancement over the entire active layer. However, analytical DEFs within the ranges of secondary electrons was much higher than the measured macroscopic DEFs. CONCLUSIONS The experimental and analytical approaches developed in this study could quantitatively estimate radioenhancement by GNPs. Due to a short range of low-energy electrons emitted from gold, the microscopic radioenhancement within the ranges of low-energy electrons would be particularly important in a cell.
Collapse
|
30
|
Laser-triggered aggregated cubic α-Fe2O3@Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy. Biomaterials 2019; 219:119369. [DOI: 10.1016/j.biomaterials.2019.119369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
|
31
|
Shanei A, Akbari-Zadeh H. Investigating the Sonodynamic-Radiosensitivity Effect of Gold Nanoparticles on HeLa Cervical Cancer Cells. J Korean Med Sci 2019; 34:e243. [PMID: 31559711 PMCID: PMC6763396 DOI: 10.3346/jkms.2019.34.e243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In this article, we estimated the combined effect of radiotherapy (RT) with ultrasound (US) wave and the ability of gold nanoparticles (GNPs) to improve their combined therapeutic effects. METHODS At first, HeLa cells received the various treatment modalities: RT (6 MV; 0.5, 1, and 2 Gy), US irradiation (1 MHz; 0.5, 1, and 1.5 W/cm², 1 minute), and RT+US. Afterwards, the enhanced effect of US on RT was evaluated. Then, the effect of the synthesized GNPs at different concentrations (0.2, 1, and 5 μg/mL, 24 hours) was evaluated to assess the effect on HeLa cells combined with RT+US. Cell survival rates in the different treatment groups at 24, 48, and 72 hours post-treatment were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan blue assays. RESULTS Our results show US irradiation could enhance the effect of RT at the same radiation dose and could be utilized as a sensitizer agent for RT. Moreover, our findings indicate RT+US in combination with different nanoparticle concentrations could enhance the effect of RT+US so that they can improve the treatment results up to 9.93 times and act as sonodynamic-radiosensitivity. These results also indicate that the combination of RT with US along with GNPs has synergistic effects compared to RT or US alone. Cell survival results show that combining the low US waves (1.5 W/cm²), GNPs (5 μ/mL), and X-rays (2 Gy) increase the cytotoxicity on HeLa cell up to 95.8%. CONCLUSION We concluded that GNPs could act as a good sensitizing agent in RT+US irradiation and could result in the synergistic effects.
Collapse
Affiliation(s)
- Ahmad Shanei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Akbari-Zadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Liu R, Zhao T, Zhao X, Reynoso FJ. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double‐strand breaks with mixed‐physics Monte Carlo simulation. Med Phys 2019; 46:5314-5325. [DOI: 10.1002/mp.13813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ruirui Liu
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Tianyu Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Xiandong Zhao
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| | - Francisco J. Reynoso
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110USA
| |
Collapse
|
33
|
Hafsi M, Preveral S, Hoog C, Hérault J, Perrier GA, Lefèvre CT, Michel H, Pignol D, Doyen J, Pourcher T, Humbert O, Thariat J, Cambien B. RGD-functionalized magnetosomes are efficient tumor radioenhancers for X-rays and protons. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102084. [PMID: 31454552 DOI: 10.1016/j.nano.2019.102084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 02/03/2023]
Abstract
Although chemically synthesized ferro/ferrimagnetic nanoparticles have attracted great attention in cancer theranostics, they lack radio-enhancement efficacy due to low targeting and internalization ability. Herein, we investigated the potential of RGD-tagged magnetosomes, bacterial biogenic magnetic nanoparticles naturally coated with a biological membrane and genetically engineered to express an RGD peptide, as tumor radioenhancers for conventional radiotherapy and proton therapy. Although native and RGD-magnetosomes similarly enhanced radiation-induced damage to plasmid DNA, RGD-magnetoprobes were able to boost the efficacy of radiotherapy to a much larger extent than native magnetosomes both on cancer cells and in tumors. Combined to magnetosomes@RGD, proton therapy exceeded the efficacy of X-rays at equivalent doses. Also, increased secondary emissions were measured after irradiation of magnetosomes with protons versus photons. Our results indicate the therapeutic advantage of using functionalized magnetoparticles to sensitize tumors to both X-rays and protons and strengthen the case for developing biogenic magnetoparticles for multimodal nanomedicine in cancer therapy.
Collapse
Affiliation(s)
- Maha Hafsi
- Laboratoire TIRO, UMRE 4320, BIAM, DRT, CEA, Nice Côte d'Azur University, France
| | - Sandra Preveral
- Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), Saint-Paul-lez-Durance, France
| | - Christopher Hoog
- Department of Radiology, Centre Antoine Lacassagne, Nice Côte d'Azur University, France; Federation Claude Lalanne, Nice Côte d'Azur University, France
| | - Joel Hérault
- Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice Côte d'Azur University, France; Federation Claude Lalanne, Nice Côte d'Azur University, France
| | - Géraldine Adryanczyk Perrier
- Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), Saint-Paul-lez-Durance, France
| | - Christopher T Lefèvre
- Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), Saint-Paul-lez-Durance, France
| | - Hervé Michel
- Institut de Chimie de Nice, UMR7272, Nice Côte d'Azur University, France
| | - David Pignol
- Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), Saint-Paul-lez-Durance, France
| | - Jérôme Doyen
- Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice Côte d'Azur University, France; Federation Claude Lalanne, Nice Côte d'Azur University, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, BIAM, DRT, CEA, Nice Côte d'Azur University, France; Federation Claude Lalanne, Nice Côte d'Azur University, France
| | - Olivier Humbert
- Laboratoire TIRO, UMRE 4320, BIAM, DRT, CEA, Nice Côte d'Azur University, France; Department of Nuclear Medicine, Centre Antoine Lacassagne, Nice Côte d'Azur University, France
| | - Juliette Thariat
- Department of Radiology, Centre Antoine Lacassagne, Nice Côte d'Azur University, France; Department of Radiation Therapy, Proton Therapy Center, Centre Antoine Lacassagne, Nice Côte d'Azur University, France; Department of Radiation Oncology, Centre François Baclesse, Université de Normandie, France
| | - Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, BIAM, DRT, CEA, Nice Côte d'Azur University, France; Federation Claude Lalanne, Nice Côte d'Azur University, France.
| |
Collapse
|
34
|
Kochebina O, Halty A, Taleb J, Kryza D, Janier M, Sadr AB, Baudier T, Rit S, Sarrut D. In vivo gadolinium nanoparticle quantification with SPECT/CT. EJNMMI Phys 2019; 6:9. [PMID: 31214809 PMCID: PMC6582109 DOI: 10.1186/s40658-019-0246-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Gadolinium nanoparticles (Gd-NP) combined with radiotherapy are investigated for radiation dose enhancement in radiotherapy treatment. Indeed, NPs concentrated in a tumor could enhance its radiosensitization. The noninvasive quantification of the NP concentration is a crucial task for radiotherapy treatment planning and post-treatment monitoring as it will determine the absorbed dose. In this work, we evaluate the achievable accuracy of in vivo SPECT-based Gd-NP organ concentration on rats. Methods Gd-NPs were labeled with 111In radionuclide. SPECT images have been acquired on phantom and rats, with various Gd-NP injections. Images have been calibrated and corrected for attenuation, scatter, and partial volume effect. Image-based estimations were compared to both inductively coupled plasma mass spectrometer (ICP-MS) for Gd concentration and ex vivo organ activity measured by gamma counter. Results The accuracy for the Gd mass measurements in organ was within 10% for activity above 2 MBq or concentrations above ∼ 3–4 MBq/mL. The Gd mass calculation is based on In-Gd coefficient which defines the Gd detection limit. It was found to be in a range from 2 mg/MBq to 2 µg/MBq depending on the proportions of initial injection preparations. Measurement was also impaired by free Gd and 111In formed during metabolic processes. Conclusions Even if SPECT image quantification remains challenging mostly due to partial volume effect, this study shows that it has potential for the Gd mass measurements in organ. The main limitation of the method is its indirectness, and a special care should be taken if the organ of interest could be influenced by different clearance rate of free Gd and 111In formed by metabolic processes. We also discuss the practical aspects, potential, and limitations of Gd-NP in vivo image quantification with a SPECT.
Collapse
Affiliation(s)
- Olga Kochebina
- CREATIS-CNRS UMR 5220 - INSERM U1206 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Etienne, Lyon, 69373, France. .,Centre Léon Bérard, Lyon, 69008, France.
| | - Adrien Halty
- CREATIS-CNRS UMR 5220 - INSERM U1206 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Etienne, Lyon, 69373, France.,Centre Léon Bérard, Lyon, 69008, France
| | - Jacqueline Taleb
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, 69437, France
| | - David Kryza
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, 69437, France
| | - Marc Janier
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, 69437, France
| | - Alexandre Bani Sadr
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Villeurbanne, France.,Hospices Civils de Lyon, Lyon, 69437, France
| | - Thomas Baudier
- CREATIS-CNRS UMR 5220 - INSERM U1206 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Etienne, Lyon, 69373, France.,Centre Léon Bérard, Lyon, 69008, France
| | - Simon Rit
- CREATIS-CNRS UMR 5220 - INSERM U1206 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Etienne, Lyon, 69373, France
| | - David Sarrut
- CREATIS-CNRS UMR 5220 - INSERM U1206 - Université Lyon 1 - INSA Lyon - Université Jean Monnet Saint-Etienne, Lyon, 69373, France.,Centre Léon Bérard, Lyon, 69008, France
| |
Collapse
|
35
|
A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
103Pd seed is being used for prostate brachytherapy. Additionally, the dose enhancement effect of gold nanoparticles (GNP) has been reported in previous studies. The aim of this study was to characterize the dosimetric effect of gold nanoparticles in brachytherapy with a 103Pd source. Two brachytherapy seeds including 103 Pd source was simulated using MCNPX Monte Carlo code. The seeds’ models were validated by comparing the MC with reported results. Then, GNPs (10 nm in diameter) with a concentration of 7mg Au/g were simulated uniformly inside the prostate of a humanoid computational phantom. Additionally, the dose enhancement factor (DEF) of nanoparticles was calculated for both modeled brachytherapy seeds. A good agreement was found between the MC calculated and the reported dosimetric parameters. For both seeds, an average DEF of 23% was obtained in tumor volume for prostate brachytherapy. The application of GNPs in conjunction with 103Pd seed in brachytherapy can enhance the delivered dose to the tumor and consequently leads to better treatment outcome.
Collapse
|
36
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019; 58:4112-4128. [PMID: 30182529 PMCID: PMC6943938 DOI: 10.1002/anie.201807847] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/14/2022]
Abstract
With more and more engineered nanoparticles (NPs) being translated to the clinic, the United States Food and Drug Administration (FDA) has recently issued the latest draft guidance on nanomaterial-containing drug products with an emphasis on understanding their in vivo transport and nano-bio interactions. Following these guidelines, NPs can be designed to target and treat diseases more efficiently than small molecules, have minimum accumulation in normal tissues, and induce minimum toxicity. In this Minireview, we integrate this guidance with our ten-year studies on developing renal clearable luminescent gold NPs. These gold NPs resist serum protein adsorption, escape liver uptake, target cancerous tissues, and report kidney dysfunction at early stages. At the same time, off-target gold NPs can be eliminated by the kidneys with minimum accumulation in the body. Additionally, we identify challenges to the translation of renal clearable gold NPs from the bench to the clinic.
Collapse
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| | - Jing Xu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX 75080 (USA)
- ClearNano, Inc., Venture Development Center, The University of Texas at Dallas, 17217 Waterview Parkway, Suite 1.202, Dallas, TX 75252 (USA)
| |
Collapse
|
37
|
van Ballegooie C, Man A, Win M, Yapp DT. Spatially Specific Liposomal Cancer Therapy Triggered by Clinical External Sources of Energy. Pharmaceutics 2019; 11:E125. [PMID: 30884786 PMCID: PMC6470770 DOI: 10.3390/pharmaceutics11030125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
This review explores the use of energy sources, including ultrasound, magnetic fields, and external beam radiation, to trigger the delivery of drugs from liposomes in a tumor in a spatially-specific manner. Each section explores the mechanism(s) of drug release that can be achieved using liposomes in conjunction with the external trigger. Subsequently, the treatment's formulation factors are discussed, highlighting the parameters of both the therapy and the medical device. Additionally, the pre-clinical and clinical trials of each triggered release method are explored. Lastly, the advantages and disadvantages, as well as the feasibility and future outlook of each triggered release method, are discussed.
Collapse
Affiliation(s)
- Courtney van Ballegooie
- Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Alice Man
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Mi Win
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Donald T Yapp
- Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
38
|
Yu M, Xu J, Zheng J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mengxiao Yu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| | - Jing Xu
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
| | - Jie Zheng
- Department of Chemistry and BiochemistryThe University of Texas at Dallas 800 W. Campbell Rd. Richardson TX 75080 USA
- ClearNano, Inc., Venture Development CenterThe University of Texas at Dallas 17217 Waterview Parkway, Suite 1.202 Dallas TX 75252 USA
| |
Collapse
|
39
|
Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S, Renault JP, Carrot G. Irradiation Effects on Polymer-Grafted Gold Nanoparticles for Cancer Therapy. ACS APPLIED BIO MATERIALS 2018; 2:144-154. [DOI: 10.1021/acsabm.8b00484] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Caroline Aymes-Chodur
- Laboratoire Matériaux et Santé EA 401, Université Paris Sud, UFR de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay, France
| | - Emile Jubeli
- Laboratoire Matériaux et Santé EA 401, Université Paris Sud, UFR de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, Université de Nice-Sophia Antipolis, CEA, 06107 Nice, France
| | - Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, Université de Nice-Sophia Antipolis, CEA, 06107 Nice, France
| | | | | | | |
Collapse
|
40
|
Pogue BW, Wilson BC. Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-17. [PMID: 30350489 PMCID: PMC6197862 DOI: 10.1117/1.jbo.23.12.121610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
X-ray and optical technologies are the two central pillars for human imaging and therapy. The strengths of x-rays are deep tissue penetration, effective cytotoxicity, and the ability to image with robust projection and computed-tomography methods. The major limitations of x-ray use are the lack of molecular specificity and the carcinogenic risk. In comparison, optical interactions with tissue are strongly scatter dominated, leading to limited tissue penetration, making imaging and therapy largely restricted to superficial or endoscopically directed tissues. However, optical photon energies are comparable with molecular energy levels, thereby providing the strength of intrinsic molecular specificity. Additionally, optical technologies are highly advanced and diversified, being ubiquitously used throughout medicine as the single largest technology sector. Both have dominant spatial localization value, achieved with optical surface scanning or x-ray internal visualization, where one often is used with the other. Therapeutic delivery can also be enhanced by their synergy, where radio-optical and optical-radio interactions can inform about dose or amplify the clinical therapeutic value. An emerging trend is the integration of nanoparticles to serve as molecular intermediates or energy transducers for imaging and therapy, requiring careful design for the interaction either by scintillation or Cherenkov light, and the nanoscale design is impacted by the choices of optical interaction mechanism. The enhancement of optical molecular sensing or sensitization of tissue using x-rays as the energy source is an important emerging field combining x-ray tissue penetration in radiation oncology with the molecular specificity and packaging of optical probes or molecular localization. The ways in which x-rays can enable optical procedures, or optics can enable x-ray procedures, provide a range of new opportunities in both diagnostic and therapeutic medicine. Taken together, these two technologies form the basis for the vast majority of diagnostics and therapeutics in use in clinical medicine.
Collapse
Affiliation(s)
- Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Gilles M, Brun E, Sicard-Roselli C. Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water. J Colloid Interface Sci 2018; 525:31-38. [DOI: 10.1016/j.jcis.2018.04.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
|
42
|
Ghaffari H, Beik J, Talebi A, Mahdavi SR, Abdollahi H. New physical approaches to treat cancer stem cells: a review. Clin Transl Oncol 2018; 20:1502-1521. [PMID: 29869042 DOI: 10.1007/s12094-018-1896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) have been identified as the main center of tumor therapeutic resistance. They are highly resistant against current cancer therapy approaches particularly radiation therapy (RT). Recently, a wide spectrum of physical methods has been proposed to treat CSCs, including high energetic particles, hyperthermia (HT), nanoparticles (NPs) and combination of these approaches. In this review article, the importance and benefits of the physical CSCs therapy methods such as nanomaterial-based heat treatments and particle therapy will be highlighted.
Collapse
Affiliation(s)
- H Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - J Beik
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - A Talebi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran
| | - S R Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
- Department of Medical Physics and Radiation Biology Research Center, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| | - H Abdollahi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Junction of Shahid Hemmat and Chamran Expressway, Tehran, Iran.
| |
Collapse
|
43
|
Sharabiani M, Asadi S, Barghi AR, Vaezzadeh M. Comparison of parameters affecting GNP-loaded choroidal melanoma dosimetry; Monte Carlo study. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Optimal method of gold nanoparticle administration in melanoma-bearing mice. Exp Ther Med 2018; 15:2994-2999. [PMID: 29456704 DOI: 10.3892/etm.2018.5746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
The present study assessed different methods of administering gold nanoparticles (GNPs) using different formulations to determine which of the methods achieved optimal radiosensitization. Cells from the B16F10 mouse melanoma cell line were implanted in the femoral area of mice, assigned to one of the eight following groups: i) Control; ii) intravenous (IV) injection of polyethylene glycol (PEG)-binding GNPs (Peg-GNPs) alone; iii) direct intratumoral (IT) injection of Peg-GNPs alone; iv) radiotherapy (RT)-alone; v) Peg-GNP IV + RT; vi) Peg-GNP IT + RT; vii) naked GNP (N-GNPs) IV + RT; and viii) N-GNP IT + RT. Injection volumes of the Peg-GNPs (particle size, 15 nm; dose, 2.8 mg/ml) and N-GNPs (particle size, 15 nm; dose, 200 mg Au/cc) were 0.3 and 0.2 ml per mouse, respectively, for IV and IT. The femoral area was irradiated with a single dose of 10 Gy. To evaluate the effects of GNPs, the current study measured the changes in the tumor volume ratio to the initial tumor volume over time and observed the survival rate. Administration of GNPs with RT did not improve the suppression of tumor growth or survival to a statistically significant extent. The administration of Peg-GNPs alone indicated a slight tumor suppressing effect at the early stage. The current study was not able to confirm the radiosensitization effect of GNPs in melanoma-bearing mice with tumors that were large in comparison to previous studies. Further research is required to validate the radiosensitizing effect on large tumors.
Collapse
|
45
|
Casals E, Gusta MF, Cobaleda-Siles M, Garcia-Sanz A, Puntes VF. Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles. Cancer Nanotechnol 2017; 8:7. [PMID: 29104700 PMCID: PMC5658477 DOI: 10.1186/s12645-017-0030-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 01/17/2023] Open
Abstract
Chemotherapeutic agents have limited efficacy and resistance to them limits today and will limit tomorrow our capabilities of cure. Resistance to treatment with anticancer drugs results from a variety of factors including individual variations in patients and somatic cell genetic differences in tumours. In front of this, multimodality has appeared as a promising strategy to overcome resistance. In this context, the use of nanoparticle-based platforms enables many possibilities to address cancer resistance mechanisms. Nanoparticles can act as carriers and substrates for different ligands and biologically active molecules, antennas for imaging, thermal and radiotherapy and, at the same time, they can be effectors by themselves. This enables their use in multimodal therapies to overcome the wall of resistance where conventional medicine crash as ageing of the population advance. In this work, we review the cancer resistance mechanisms and the advantages of inorganic nanomaterials to enable multimodality against them. In addition, we comment on the need of a profound understanding of what happens to the nanoparticle-based platforms in the biological environment for those possibilities to become a reality.
Collapse
Affiliation(s)
- Eudald Casals
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Muriel F Gusta
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Macarena Cobaleda-Siles
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ana Garcia-Sanz
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Victor F Puntes
- Vall d'Hebron Research Institute (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
46
|
Lechtman E, Pignol JP. Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization. Sci Rep 2017; 7:13268. [PMID: 29038517 PMCID: PMC5643548 DOI: 10.1038/s41598-017-13736-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 11/09/2022] Open
Abstract
There are large variations in the reported efficiency of gold nanoparticle (GNP) radiosensitization. We have previously reported on a predictive model, which accounts for the detailed Auger and photoelectron tracks to calculate the cell survival probability. After validating our model using PC-3 cells incubated with 2 mg/ml of 30 nm GNPs and irradiated with 100 kVp or 300 kVp beams, we evaluated the interplay between photon energy, GNP size (1.9 and 100 nm) and sub-cellular localization. Experiments were in excellent agreement with the model. In predictive modeling, using a 100 kVp source and 1.9 nm nanoparticles, GNP localization had a significant impact on cell survival. A sensitizer enhancement ratio of 1.34 was achieved when GNPs were localized outside the cells, increasing to 2.56 when GNPs were also distributed in the cytoplasm and nucleus. Using a 300 kVp source, which emits photons mainly above the gold K-edge, the dependence on GNP localization and size was barely detectable, since long ranged electrons dominate the energy deposition. In summary, achieving intracellular uptake with targeted-GNPs can significantly enhance radiosensitization for photon energies below the gold K-edge, where Auger electrons contribute significantly to the local energy deposition. For higher energies, this is much less important.
Collapse
Affiliation(s)
- Eli Lechtman
- Department of Medical Biophysics, University of Toronto at Sunnybrook Health Sciences Centre, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Ontario, Canada
| | - Jean-Philippe Pignol
- Department of Radiation Oncology, Erasmus MC Cancer Centre, Rotterdam, The Netherlands. .,Department of Radiation, Science & Technology, TU Delft, Delft, The Netherlands.
| |
Collapse
|
47
|
Delorme R, Taupin F, Flaender M, Ravanat JL, Champion C, Agelou M, Elleaume H. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med Phys 2017; 44:5949-5960. [PMID: 28886212 DOI: 10.1002/mp.12570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Nanoparticles appear as a novel tool to enhance the effectiveness of radiotherapy in cancer treatments. Many parameters influence their efficacy, such as their size, concentration, composition, their cellular localization, as well as the photon source energy. The current Monte Carlo study aims at comparing the dose-enhancement in presence of gadolinium (Gd), either as isolated atoms or atoms clustered in nanoparticles (NPs), by investigating the role played by these physical parameters at the cellular and the nanometer scale. In parallel, in vitro assays were performed in presence of either the gadolinium contrast agent (GdCA) Magnevist® or ultrasmall gadolinium NPs (GdNPs, 3 nm) for comparison with the simulations. METHODS PENELOPE Monte Carlo Code was used for in silico dose calculations. Monochromatic photon beams were used to calculate dose enhancements in different cell compartments and low-energy secondary electron spectra dependence with energy. Particular attention has been placed on the interplay between the X-ray beam energy, the Gd localization and its distance from cellular targets. Clonogenic assays were used to quantify F98 rat glioma cell survival after irradiation in the presence of GdNPs or GdCA, using monochromatic X-rays with energies in the 30 keV-80 keV range from a synchrotron and 1.25 MeV gamma photons from a cobalt-60 source. The simulations that correspond to the experimental conditions were compared with the experimental results. RESULTS In silico, a highly heterogeneous and clustered Gd-atom distribution, a massive production of low energy electrons around GdNPs and an optimal X-ray beam energy, above the Gd K-edge, were key factors found to increase microscopic doses, which could potentially induce cell death. The different Gd localizations studied all resulted in a lower dose enhancement for the nucleus component than for cytoplasm or membrane compartments, with a maximum dose-enhancement factor (DEF) found at 65 keV and 58 keV, respectively. In vitro, radiosensitization was observed with GdNPs incubated 5 h with the cells (2.1 mg Gd/mL) at all energies. Experimental DEFs were found to be greater than computational DEFs but follow a similar trend with irradiation energy. However, an important radiosensitivity was observed experimentally with GdNPs at high energy (1.25 MeV), whereas no effect was expected from modeling. This effect was correlated with GdNPs incubation time. In vitro, GdCA provided no dose enhancement at 1.25 MeV energies, in agreement with computed data. CONCLUSIONS These results provide a foundation on which to base optimizations of the physical parameters in Gd radiation-enhanced therapy. Strong evidence was provided that GdCA or GdNPs could both be used for radiation dose-enhancement therapy. There in vivo biological distribution, in the tumor volume and at the cellular scale, will be the key factor for providing large dose enhancements and determine their therapeutic efficacy.
Collapse
Affiliation(s)
- Rachel Delorme
- CEA, LIST, F-91191, Gif-sur-Yvette, France.,IMNC Laboratory, UMR 8165-CNRS/IN2P3, Paris-Saclay University, 91405, Orsay, France
| | - Florence Taupin
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Mélanie Flaender
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000, Grenoble, France
| | - Christophe Champion
- Centre d'Études Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Université de Bordeaux, Bordeaux, France
| | | | - Hélène Elleaume
- EA-7442 Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, F-38058, Grenoble Cedex 9, France.,European Synchrotron Radiation Facility, F-38000, Grenoble, France
| |
Collapse
|
48
|
Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother Oncol 2017; 124:344-356. [PMID: 28784439 DOI: 10.1016/j.radonc.2017.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The utilization of gold nanoparticles (AuNPs) as radiosensitizers has shown great promise in pre-clinical research. In the current review, the physical, chemical, and biological pathways via which AuNPs enhance the effects of radiation are presented and discussed. In particular, the impact of AuNPs on the 5 Rs in radiobiology, namely repair, reoxygenation, redistribution, repopulation, and intrinsic radiosensitivity, which determine the extent of radiation enhancement effects are elucidated. Key findings from previous studies are outlined. In addition, crucial parameters including the physicochemical properties of AuNPs, route of administration, dosing schedule of AuNPs and irradiation, as well as type of radiation therapy, are highlighted; the optimal selection and combination of these parameters enable the achievement of a greater therapeutic window for AuNP sensitized radiotherapy. Future directions are put forward as a means to provide guidelines for successful translation of AuNPs to clinical applications as radiosensitizers.
Collapse
Affiliation(s)
- Lei Cui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Sohyoung Her
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Gerben R Borst
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert G Bristow
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A Jaffray
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; TECHNA Institute and Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Techna Institute, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
49
|
Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. JOURNAL OF RADIATION RESEARCH 2017; 58:405-411. [PMID: 28419319 PMCID: PMC5569704 DOI: 10.1093/jrr/rrx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/06/2017] [Indexed: 05/21/2023]
Abstract
The purpose of this study was to analyse the effects of the type, concentration, and nanoparticle diameter of dose enhancement materials on the dose enhancement of low- and high-energy megavoltage (MV) X-rays acquired from a medical linear accelerator using Monte Carlo simulation. Monte Carlo simulation was performed with the Monte Carlo N-Particle Transport (MCNPX) code, using the energy spectrum of the linear accelerator and a mathematical Snyder head phantom. A 5-cm-diameter virtual tumour was defined in the centre of the phantom. Gold, gadolinium, iodine and iron oxide were used as dose enhancement materials. Varying concentrations (7, 18 and 30 mg/g) of nanoparticles of different diameters (25, 50, 75, 100 and 125 nm) were applied, and the dose enhancement was comparatively evaluated for 4, 6, 10 and 15 MV X-rays, and a 60Co source. Higher dose enhancement factors (DEFs) were observed when the incident energy was low. Moreover, the dose enhancement effects were greatest with gold nanoparticles, followed by gadolinium, iodine, and iron oxide nanoparticles; the DEFs were 1.011-1.047 (gold), 1.005-1.030 (gadolinium), 1.002-1.028 (iodine) and 1.002-1.014 (iron oxide). The dose enhancement effects increased with increasing nanoparticle diameter and concentration. However, the concentration of the material had a greater impact than the diameter of the nanoparticles. As the concentration and diameter of nanoparticles increased, the DEF also increased. The 4 and 6 MV X-rays demonstrated higher dose enhancement compared with the 10 and 15 MV X-rays.
Collapse
Affiliation(s)
- Chulhwan Hwang
- Department of Radiation Oncology, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, Republic of Korea
| | - Ja Mee Kim
- Computer Science Education, Graduate School of Education, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
| | - JungHoon Kim
- Department of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan, Republic of Korea, 57 Oryundae-ro, Geumjeong-gu, Busan, Republic of Korea
- Corresponding author. Department of Radiological Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan, Republic of Korea. Tel: +82(0)10 9142 1171;
| |
Collapse
|
50
|
Ferrero V, Visonà G, Dalmasso F, Gobbato A, Cerello P, Strigari L, Visentin S, Attili A. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study. Med Phys 2017; 44:1983-1992. [DOI: 10.1002/mp.12180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/15/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Veronica Ferrero
- Physics Department; Università degli Studi di Torino; Torino Italy
- Istituto Nazionale di Fisica Nucleare (INFN); Torino Italy
| | - Giovanni Visonà
- Physics Department; Università degli Studi di Torino; Torino Italy
| | - Federico Dalmasso
- Physics Department; Università degli Studi di Torino; Torino Italy
- Istituto Nazionale di Fisica Nucleare (INFN); Torino Italy
| | - Andrea Gobbato
- Physics Department; Università degli Studi di Torino; Torino Italy
- Istituto Nazionale di Fisica Nucleare (INFN); Torino Italy
| | | | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems; National Cancer Institute Regina Elena; Roma Italy
| | - Sonja Visentin
- Istituto Nazionale di Fisica Nucleare (INFN); Torino Italy
- Molecular Biotechnology and Health Sciences Department; Università degli Studi di Torino; Torino Italy
| | - Andrea Attili
- Istituto Nazionale di Fisica Nucleare (INFN); Torino Italy
| |
Collapse
|