• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643497)   Today's Articles (9)   Subscriber (50551)
For: Lorenz S, Groß A, Scheffler M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.07.076] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Martinka J, Pederzoli M, Barbatti M, Dral PO, Pittner J. A simple approach to rotationally invariant machine learning of a vector quantity. J Chem Phys 2024;161:174104. [PMID: 39484894 DOI: 10.1063/5.0230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]  Open
2
Tang Z, Li H, Lin P, Gong X, Jin G, He L, Jiang H, Ren X, Duan W, Xu Y. A deep equivariant neural network approach for efficient hybrid density functional calculations. Nat Commun 2024;15:8815. [PMID: 39394190 PMCID: PMC11470148 DOI: 10.1038/s41467-024-53028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]  Open
3
Zare M, Sahsah D, Saleheen M, Behler J, Heyden A. Hybrid Quantum Mechanical, Molecular Mechanical, and Machine Learning Potential for Computing Aqueous-Phase Adsorption Free Energies on Metal Surfaces. J Chem Theory Comput 2024. [PMID: 39254514 DOI: 10.1021/acs.jctc.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
4
Hou P, Tian Y, Meng X. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials. Chemistry 2024;30:e202401373. [PMID: 38877181 DOI: 10.1002/chem.202401373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
5
Murayama K. Statistical physical view of statistical inference in Bayesian linear regression model. Phys Rev E 2024;110:034118. [PMID: 39425417 DOI: 10.1103/physreve.110.034118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/16/2024] [Indexed: 10/21/2024]
6
Williams CD, Kalayan J, Burton NA, Bryce RA. Stable and accurate atomistic simulations of flexible molecules using conformationally generalisable machine learned potentials. Chem Sci 2024;15:12780-12795. [PMID: 39148799 PMCID: PMC11323334 DOI: 10.1039/d4sc01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]  Open
7
Weike N, Fritsch F, Eisfeld W. Compensation States Approach in the Hybrid Diabatization Scheme: Extension to Multidimensional Data and Properties. J Phys Chem A 2024;128:4353-4368. [PMID: 38748493 DOI: 10.1021/acs.jpca.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
8
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
9
Li H, Tang Z, Fu J, Dong WH, Zou N, Gong X, Duan W, Xu Y. Deep-Learning Density Functional Perturbation Theory. PHYSICAL REVIEW LETTERS 2024;132:096401. [PMID: 38489617 DOI: 10.1103/physrevlett.132.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
10
Weike N, Eisfeld W. The effective relativistic coupling by asymptotic representation approach for molecules with multiple relativistic atoms. J Chem Phys 2024;160:064104. [PMID: 38341788 DOI: 10.1063/5.0191529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024]  Open
11
Liebetrau M, Dorenkamp Y, Bünermann O, Behler J. Hydrogen atom scattering at the Al2O3(0001) surface: a combined experimental and theoretical study. Phys Chem Chem Phys 2024;26:1696-1708. [PMID: 38126723 DOI: 10.1039/d3cp04729f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
12
Vennelakanti V, Kilic IB, Terrones GG, Duan C, Kulik HJ. Machine Learning Prediction of the Experimental Transition Temperature of Fe(II) Spin-Crossover Complexes. J Phys Chem A 2024;128:204-216. [PMID: 38148525 DOI: 10.1021/acs.jpca.3c07104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
13
Xia J, Zhang Y, Jiang B. Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing. J Phys Chem A 2023;127:9874-9883. [PMID: 37943102 DOI: 10.1021/acs.jpca.3c06024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
14
Langer MF, Frank JT, Knoop F. Stress and heat flux via automatic differentiation. J Chem Phys 2023;159:174105. [PMID: 37921248 DOI: 10.1063/5.0155760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]  Open
15
Kwak B, Park J, Kang T, Jo J, Lee B, Yoon S. GeoT: A Geometry-Aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning. ACS OMEGA 2023;8:39759-39769. [PMID: 37901490 PMCID: PMC10601421 DOI: 10.1021/acsomega.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
16
Han Y, Xu H, Li Q, Du A, Yan X. DFT-assisted low-dimensional carbon-based electrocatalysts design and mechanism study: a review. Front Chem 2023;11:1286257. [PMID: 37920412 PMCID: PMC10619919 DOI: 10.3389/fchem.2023.1286257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]  Open
17
Kývala L, Dellago C. Optimizing the architecture of Behler-Parrinello neural network potentials. J Chem Phys 2023;159:094105. [PMID: 37655764 DOI: 10.1063/5.0167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]  Open
18
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023;159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]  Open
19
Zhou B, Zhou Y, Xie D. Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme. J Chem Theory Comput 2023;19:1157-1169. [PMID: 36724190 DOI: 10.1021/acs.jctc.2c01131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
20
Gomes-Filho MS, Torres A, Reily Rocha A, Pedroza LS. Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water. J Phys Chem B 2023;127:1422-1428. [PMID: 36730848 DOI: 10.1021/acs.jpcb.2c09059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
21
Deffner M, Weise MP, Zhang H, Mücke M, Proppe J, Franco I, Herrmann C. Learning Conductance: Gaussian Process Regression for Molecular Electronics. J Chem Theory Comput 2023;19:992-1002. [PMID: 36692968 DOI: 10.1021/acs.jctc.2c00648] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
22
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023;2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
23
Muther T, Dahaghi AK, Syed FI, Van Pham V. Physical laws meet machine intelligence: current developments and future directions. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
24
Zhang Y, Lin Q, Jiang B. Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
25
Hofstetter A, Böselt L, Riniker S. Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations. Phys Chem Chem Phys 2022;24:22497-22512. [PMID: 36106790 DOI: 10.1039/d2cp02931f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Avery C, Patterson J, Grear T, Frater T, Jacobs DJ. Protein Function Analysis through Machine Learning. Biomolecules 2022;12:1246. [PMID: 36139085 PMCID: PMC9496392 DOI: 10.3390/biom12091246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]  Open
27
Zhang F, Zhang J, Nan H, Fang D, Zhang GX, Zhang Y, Liu L, Wang D. Magnetic phase transition of monolayer chromium trihalides investigated with machine learning: toward a universal magnetic Hamiltonian. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022;34:395901. [PMID: 35817029 DOI: 10.1088/1361-648x/ac8037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
28
Kolluru A, Shuaibi M, Palizhati A, Shoghi N, Das A, Wood B, Zitnick CL, Kitchin JR, Ulissi ZW. Open Challenges in Developing Generalizable Large-Scale Machine-Learning Models for Catalyst Discovery. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
29
Lewis‐Atwell T, Townsend PA, Grayson MN. Machine learning activation energies of chemical reactions. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
30
Díaz C, Gravielle MS. Grazing incidence fast atom and molecule diffraction: theoretical challenges. Phys Chem Chem Phys 2022;24:15628-15656. [PMID: 35730987 DOI: 10.1039/d2cp01246d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Mirzoev AA, Gelchinski BR, Rempel AA. Neural Network Prediction of Interatomic Interaction in Multielement Substances and High-Entropy Alloys: A Review. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622700026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
32
Zaverkin V, Holzmüller D, Schuldt R, Kästner J. Predicting properties of periodic systems from cluster data: A case study of liquid water. J Chem Phys 2022;156:114103. [DOI: 10.1063/5.0078983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Mattsson S, Paulus B. First principle calculations including ab initio molecular dynamics studies for the activation of hydrogen fluoride on Ni(111). Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
34
Kocer E, Ko TW, Behler J. Neural Network Potentials: A Concise Overview of Methods. Annu Rev Phys Chem 2022;73:163-186. [DOI: 10.1146/annurev-physchem-082720-034254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
35
Piccini G, Lee MS, Yuk SF, Zhang D, Collinge G, Kollias L, Nguyen MT, Glezakou VA, Rousseau R. Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01329g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
36
Meng F, Li Y, Wang D. Predicting atomic-level reaction mechanisms for SN2 reactions via machine learning. J Chem Phys 2021;155:224111. [PMID: 34911303 DOI: 10.1063/5.0074422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
37
Zaverkin V, Netz J, Zills F, Köhn A, Kästner J. Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments. J Chem Theory Comput 2021;18:1-12. [PMID: 34882425 DOI: 10.1021/acs.jctc.1c00853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
38
Christensen AS, Sirumalla SK, Qiao Z, O'Connor MB, Smith DGA, Ding F, Bygrave PJ, Anandkumar A, Welborn M, Manby FR, Miller TF. OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy. J Chem Phys 2021;155:204103. [PMID: 34852495 DOI: 10.1063/5.0061990] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]  Open
39
Zaverkin V, Holzmüller D, Steinwart I, Kästner J. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J Chem Theory Comput 2021;17:6658-6670. [PMID: 34585927 DOI: 10.1021/acs.jctc.1c00527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
40
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021;155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
Morrow Z, Kwon HY, Kelley CT, Jakubikova E. Efficient Approximation of Potential Energy Surfaces with Mixed-Basis Interpolation. J Chem Theory Comput 2021;17:5673-5683. [PMID: 34351740 DOI: 10.1021/acs.jctc.1c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
42
Zhou X, Zhang Y, Yin R, Hu C, Jiang B. Neural Network Representations for Studying Gas‐Surface Reaction Dynamics: Beyond the Born‐Oppenheimer Static Surface Approximation †. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
43
Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian Process Regression for Materials and Molecules. Chem Rev 2021;121:10073-10141. [PMID: 34398616 PMCID: PMC8391963 DOI: 10.1021/acs.chemrev.1c00022] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/18/2022]
44
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021;121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
45
Huang B, von Lilienfeld OA. Ab Initio Machine Learning in Chemical Compound Space. Chem Rev 2021;121:10001-10036. [PMID: 34387476 PMCID: PMC8391942 DOI: 10.1021/acs.chemrev.0c01303] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/11/2022]
46
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021. [PMID: 33211478 DOI: 10.1021/acs.chemrev.1020c00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
47
Miksch AM, Morawietz T, Kästner J, Urban A, Artrith N. Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abfd96] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
48
Zubatiuk T, Nebgen B, Lubbers N, Smith JS, Zubatyuk R, Zhou G, Koh C, Barros K, Isayev O, Tretiak S. Machine learned Hückel theory: Interfacing physics and deep neural networks. J Chem Phys 2021;154:244108. [PMID: 34241371 DOI: 10.1063/5.0052857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Kulichenko M, Smith JS, Nebgen B, Li YW, Fedik N, Boldyrev AI, Lubbers N, Barros K, Tretiak S. The Rise of Neural Networks for Materials and Chemical Dynamics. J Phys Chem Lett 2021;12:6227-6243. [PMID: 34196559 DOI: 10.1021/acs.jpclett.1c01357] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
50
Friederich P, Häse F, Proppe J, Aspuru-Guzik A. Machine-learned potentials for next-generation matter simulations. NATURE MATERIALS 2021;20:750-761. [PMID: 34045696 DOI: 10.1038/s41563-020-0777-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
PrevPage 1 of 4 1234Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA