1
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. PLoS Biol 2024; 22:e3002840. [PMID: 39401257 PMCID: PMC11501031 DOI: 10.1371/journal.pbio.3002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/24/2024] [Accepted: 09/14/2024] [Indexed: 10/23/2024] Open
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited to sites in the 3' UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via 2 approaches. First, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes approximately 2,600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1,185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Previous work has shown that 60% of the maternal transcriptome is degraded in early embryos. We find that maternal mRNAs targeted by Upf1-Nos are hypoadenylated and inefficiently translated at the ovary-embryo transition; they are subsequently degraded in the early embryo, accounting for 59% of all destabilized maternal mRNAs. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors in the embryo.
Collapse
Affiliation(s)
- Mohammad Marhabaie
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Tammy H. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Sung Yun Kim
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Robin P. Wharton
- Department of Molecular Genetics, Department of Cancer Biology and Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Liu W, Chen C, Gao Y, Cui X, Zhang Y, Gu L, He Y, Li J, Gao S, Gao R, Jiang C. Transcriptome Dynamics and Cell Dialogs Between Oocytes and Granulosa Cells in Mouse Follicle Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad001. [PMID: 38955498 PMCID: PMC11423849 DOI: 10.1093/gpbjnl/qzad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 07/04/2024]
Abstract
The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-β signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Chuan Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuhan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuanlin He
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Brantley S, Di Talia S. The maternal-to-zygotic transition. Curr Biol 2024; 34:R519-R523. [PMID: 38834020 DOI: 10.1016/j.cub.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Rapid cleavage divisions and the transition from maternal to zygotic control of gene expression are the hallmarks of early embryonic development in most species. Early development in insects, fish and amphibians is characterized by several short cell cycles with no gap phases, necessary for the rapid production of cells prior to patterning and morphogenesis. Maternal mRNAs and proteins loaded into the egg during oogenesis are essential to drive these rapid early divisions. Once the function of these maternal inputs is complete, the maternal-to-zygotic transition (MZT) marks the handover of developmental control to the gene products synthesized from the zygotic genome. The MZT requires three major events: the removal of a subset of maternal mRNAs, the initiation of zygotic transcription, and the remodeling of the cell cycle. In each species, the MZT occurs at a highly reproducible time during development due to a series of feedback mechanisms that tightly couple these three processes. Dissecting these feedback mechanisms and their spatiotemporal control will be essential to understanding the control of the MZT. In this primer, we outline the mechanisms that govern the major events of the MZT across species and highlight the role of feedback mechanisms that ensure the MZT is precisely timed and orchestrated.
Collapse
Affiliation(s)
- Susanna Brantley
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
6
|
Rangone H, Bond L, Weil TT, Glover DM. Greatwall-Endos-PP2A/B55 Twins network regulates translation and stability of maternal transcripts in the Drosophila oocyte-to-embryo transition. Open Biol 2024; 14:240065. [PMID: 38896085 DOI: 10.1098/rsob.240065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The transition from oocyte to embryo requires translation of maternally provided transcripts that in Drosophila is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive greatwallScant can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits. Conversely, mutants in me31B or trailer hitch, which encode a complex that represses hundreds of maternal mRNAs, enhance greatwallScant . Me31B and Trailer Hitch proteins, known substrates of Pan Gu kinase, copurify with Endos. This echoes findings that budding yeast Dhh1, orthologue of Me31B, associates with Igo1/2, orthologues of Endos and substrates of the Rim15, orthologue of Greatwall. endos-derived mutant embryos show reduced Me31B and elevated transcripts for the mitotic activators Cyclin B, Polo and Twine/Cdc25. Together, our findings demonstrate a previously unappreciated conservation of the Greatwall-Endosulfine pathway in regulating translational repressors and its interactions with the Pan Gu kinase pathway to regulate translation and/or stability of maternal mRNAs upon egg activation.
Collapse
Affiliation(s)
- Hélène Rangone
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
| | - Laura Bond
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street , Cambridge, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street , Cambridge, UK
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd , Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WVI, Low TCH, Luo H, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm assembly and primordial germ cell number in Drosophila embryos. SCIENCE ADVANCES 2024; 10:eadg7894. [PMID: 38608012 PMCID: PMC11014450 DOI: 10.1126/sciadv.adg7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Whitby V. I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy C. H. Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
8
|
Samuels TJ, Gui J, Gebert D, Karam Teixeira F. Two distinct waves of transcriptome and translatome changes drive Drosophila germline stem cell differentiation. EMBO J 2024; 43:1591-1617. [PMID: 38480936 PMCID: PMC11021484 DOI: 10.1038/s44318-024-00070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
The tight control of fate transitions during stem cell differentiation is essential for proper tissue development and maintenance. However, the challenges in studying sparsely distributed adult stem cells in a systematic manner have hindered efforts to identify how the multilayered regulation of gene expression programs orchestrates stem cell differentiation in vivo. Here, we synchronised Drosophila female germline stem cell (GSC) differentiation in vivo to perform in-depth transcriptome and translatome analyses at high temporal resolution. This characterisation revealed widespread and dynamic changes in mRNA level, promoter usage, exon inclusion, and translation efficiency. Transient expression of the master regulator, Bam, drives a first wave of expression changes, primarily modifying the cell cycle program. Surprisingly, as Bam levels recede, differentiating cells return to a remarkably stem cell-like transcription and translation program, with a few crucial changes feeding into a second phase driving terminal differentiation to form the oocyte. Altogether, these findings reveal that rather than a unidirectional accumulation of changes, the in vivo differentiation of stem cells relies on distinctly regulated and developmentally sequential waves.
Collapse
Affiliation(s)
- Tamsin J Samuels
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Jinghua Gui
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| |
Collapse
|
9
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
10
|
Reisbitzer A, Krauß S. The dynamic world of RNA: beyond translation to subcellular localization and function. Front Genet 2024; 15:1373899. [PMID: 38533205 PMCID: PMC10963542 DOI: 10.3389/fgene.2024.1373899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
| | - Sybille Krauß
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| |
Collapse
|
11
|
Poidevin M, Mazuras N, Bontonou G, Delamotte P, Denis B, Devilliers M, Akiki P, Petit D, de Luca L, Soulie P, Gillet C, Wicker-Thomas C, Montagne J. A fatty acid anabolic pathway in specialized-cells sustains a remote signal that controls egg activation in Drosophila. PLoS Genet 2024; 20:e1011186. [PMID: 38483976 DOI: 10.1371/journal.pgen.1011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Egg activation, representing the critical oocyte-to-embryo transition, provokes meiosis completion, modification of the vitelline membrane to prevent polyspermy, and translation of maternally provided mRNAs. This transition is triggered by a calcium signal induced by spermatozoon fertilization in most animal species, but not in insects. In Drosophila melanogaster, mature oocytes remain arrested at metaphase-I of meiosis and the calcium-dependent activation occurs while the oocyte moves through the genital tract. Here, we discovered that the oenocytes of fruitfly females are required for egg activation. Oenocytes, cells specialized in lipid-metabolism, are located beneath the abdominal cuticle. In adult flies, they synthesize the fatty acids (FAs) that are the precursors of cuticular hydrocarbons (CHCs), including pheromones. The oenocyte-targeted knockdown of a set of FA-anabolic enzymes, involved in very-long-chain fatty acid (VLCFA) synthesis, leads to a defect in egg activation. Given that some but not all of the identified enzymes are required for CHC/pheromone biogenesis, this putative VLCFA-dependent remote control may rely on an as-yet unidentified CHC or may function in parallel to CHC biogenesis. Additionally, we discovered that the most posterior ventral oenocyte cluster is in close proximity to the uterus. Since oocytes dissected from females deficient in this FA-anabolic pathway can be activated in vitro, this regulatory loop likely operates upstream of the calcium trigger. To our knowledge, our findings provide the first evidence that a physiological extra-genital signal remotely controls egg activation. Moreover, our study highlights a potential metabolic link between pheromone-mediated partner recognition and egg activation.
Collapse
Affiliation(s)
- Mickael Poidevin
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Nicolas Mazuras
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gwénaëlle Bontonou
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maëlle Devilliers
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Perla Akiki
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Delphine Petit
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Laura de Luca
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Priscilla Soulie
- Centre Médical Universitaire, Department of Cell Physiology and Metabolism, Geneva, Switzerland
| | - Cynthia Gillet
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| | - Claude Wicker-Thomas
- Laboratoire Evolution, Génomes, Comportements, Ecologie (EGCE), CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jacques Montagne
- Institut for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Peng F, Nordgren CE, Murray JI. A spatiotemporally resolved atlas of mRNA decay in the C. elegans embryo reveals differential regulation of mRNA stability across stages and cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575757. [PMID: 38293118 PMCID: PMC10827189 DOI: 10.1101/2024.01.15.575757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
During embryonic development, cells undergo dynamic changes in gene expression that are required for appropriate cell fate specification. Although both transcription and mRNA degradation contribute to gene expression dynamics, patterns of mRNA decay are less well-understood. Here we directly measured spatiotemporally resolved mRNA decay rates transcriptome-wide throughout C. elegans embryogenesis by transcription inhibition followed by bulk and single-cell RNA-sequencing. This allowed us to calculate mRNA half-lives within specific cell types and developmental stages and identify differentially regulated mRNA decay throughout embryonic development. We identified transcript features that are correlated with mRNA stability and found that mRNA decay rates are associated with distinct peaks in gene expression over time. Moreover, we provide evidence that, on average, mRNA is more stable in the germline compared to in the soma and in later embryonic stages compared to in earlier stages. This work suggests that differential mRNA decay across cell states and time helps to shape developmental gene expression, and it provides a valuable resource for studies of mRNA turnover regulatory mechanisms.
Collapse
Affiliation(s)
- Felicia Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
14
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
15
|
Marhabaie M, Wharton TH, Kim SY, Wharton RP. Widespread regulation of the maternal transcriptome by Nanos in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555109. [PMID: 37693559 PMCID: PMC10491125 DOI: 10.1101/2023.08.28.555109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The translational repressor Nanos (Nos) regulates a single target, maternal hunchback (hb) mRNA, to govern abdominal segmentation in the early Drosophila embryo. Nos is recruited specifically to sites in the 3'-UTR of hb mRNA in collaboration with the sequence-specific RNA-binding protein Pumilio (Pum); on its own, Nos has no binding specificity. Nos is expressed at other stages of development, but very few mRNA targets that might mediate its action at these stages have been described. Nor has it been clear whether Nos is targeted to other mRNAs in concert with Pum or via other mechanisms. In this report, we identify mRNAs targeted by Nos via two approaches. In the first method, we identify mRNAs depleted upon expression of a chimera bearing Nos fused to the nonsense mediated decay (NMD) factor Upf1. We find that, in addition to hb, Upf1-Nos depletes ~2600 mRNAs from the maternal transcriptome in early embryos. Virtually all of these appear to be targeted in a canonical, hb-like manner in concert with Pum. In a second, more conventional approach, we identify mRNAs that are stabilized during the maternal zygotic transition (MZT) in embryos from nos- females. Most (86%) of the 1185 mRNAs regulated by Nos are also targeted by Upf1-Nos, validating use of the chimera. Approximately 60% of mRNAs targeted by Upf1-Nos are not stabilized in the absence of Nos. However, Upf1-Nos mRNA targets are hypo-adenylated and inefficiently translated at the ovary-embryo transition, whether or not they suffer Nos-dependent degradation in the embryo. We suggest that the late ovarian burst of Nos represses a large fraction of the maternal transcriptome, priming it for later degradation by other factors during the MZT in the embryo.
Collapse
|
16
|
Westbrook ER, Ford HZ, Antolović V, Chubb JR. Clearing the slate: RNA turnover to enable cell state switching? Development 2023; 150:dev202084. [PMID: 37831057 PMCID: PMC10617622 DOI: 10.1242/dev.202084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The distribution of mRNA in tissue is determined by the balance between transcription and decay. Understanding the control of RNA decay during development has been somewhat neglected compared with transcriptional control. Here, we explore the potential for mRNA decay to trigger rapid cell state transitions during development, comparing a bistable switch model of cell state conversion with experimental evidence from different developmental systems. We also consider another potential role for large-scale RNA decay that has emerged from studies of stress-induced cell state transitions, in which removal of mRNA unblocks the translation machinery to prioritise the synthesis of proteins that establish the new cell state.
Collapse
Affiliation(s)
- Elizabeth R. Westbrook
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Hugh Z. Ford
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Vlatka Antolović
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R. Chubb
- UCL Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. PLoS Genet 2023; 19:e1010845. [PMID: 37440598 PMCID: PMC10368294 DOI: 10.1371/journal.pgen.1010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus. Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities similar to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far particular to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh Pennsylvania, United States of America
| |
Collapse
|
18
|
Ayers TN, Nicotra ML, Lee MT. Parallels and contrasts between the cnidarian and bilaterian maternal-to-zygotic transition are revealed in Hydractinia embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540083. [PMID: 37214839 PMCID: PMC10197650 DOI: 10.1101/2023.05.09.540083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Embryogenesis requires coordinated gene regulatory activities early on that establish the trajectory of subsequent development, during a period called the maternal-to-zygotic transition (MZT). The MZT comprises transcriptional activation of the embryonic genome and post-transcriptional regulation of egg-inherited maternal mRNA. Investigation into the MZT in animals has focused almost exclusively on bilaterians, which include all classical models such as flies, worms, sea urchin, and vertebrates, thus limiting our capacity to understand the gene regulatory paradigms uniting the MZT across all animals. Here, we elucidate the MZT of a non-bilaterian, the cnidarian Hydractinia symbiolongicarpus . Using parallel poly(A)-selected and non poly(A)-dependent RNA-seq approaches, we find that the Hydractinia MZT is composed of regulatory activities analogous to many bilaterians, including cytoplasmic readenylation of maternally contributed mRNA, delayed genome activation, and separate phases of maternal mRNA deadenylation and degradation that likely depend on both maternally and zygotically encoded clearance factors, including microRNAs. But we also observe massive upregulation of histone genes and an expanded repertoire of predicted H4K20 methyltransferases, aspects thus far unique to the Hydractinia MZT and potentially underlying a novel mode of early embryonic chromatin regulation. Thus, similar regulatory strategies with taxon-specific elaboration underlie the MZT in both bilaterian and non-bilaterian embryos, providing insight into how an essential developmental transition may have arisen in ancestral animals.
Collapse
Affiliation(s)
- Taylor N. Ayers
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 U.S.A
| | - Miler T. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15213 U.S.A
| |
Collapse
|
19
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
20
|
Riemondy K, Henriksen JC, Rissland OS. Intron dynamics reveal principles of gene regulation during the maternal-to-zygotic transition. RNA (NEW YORK, N.Y.) 2023; 29:596-608. [PMID: 36764816 PMCID: PMC10158999 DOI: 10.1261/rna.079168.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/29/2023] [Indexed: 05/06/2023]
Abstract
The maternal-to-zygotic transition (MZT) is a conserved embryonic process in animals where developmental control shifts from the maternal to zygotic genome. A key step in this transition is zygotic transcription, and deciphering the MZT requires classifying newly transcribed genes. However, due to current technological limitations, this starting point remains a challenge for studying many species. Here, we present an alternative approach that characterizes transcriptome changes based solely on RNA-seq data. By combining intron-mapping reads and transcript-level quantification, we characterized transcriptome dynamics during the Drosophila melanogaster MZT. Our approach provides an accessible platform to investigate transcriptome dynamics that can be applied to the MZT in nonmodel organisms. In addition to classifying zygotically transcribed genes, our analysis revealed that over 300 genes express different maternal and zygotic transcript isoforms due to alternative splicing, polyadenylation, and promoter usage. The vast majority of these zygotic isoforms have the potential to be subject to different regulatory control, and over two-thirds encode different proteins. Thus, our analysis reveals an additional layer of regulation during the MZT, where new zygotic transcripts can generate additional proteome diversity.
Collapse
Affiliation(s)
- Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jesslyn C Henriksen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Olivia S Rissland
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
21
|
Song CR, Zhang RJ, Xue FR, Zhang XJ, Wang XY, Sun D, Ding K, Yang Q, Wang XY, Liang CG. mRNA 3' -UTR-mediate translational control through PAS and CPE in sheep oocyte. Theriogenology 2023; 201:30-40. [PMID: 36827867 DOI: 10.1016/j.theriogenology.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
In oocytes, the cytoplasmic polyadenylation and maternal mRNAs translation is regulated by cis-elements, including polyadenylation signal (PAS) and cytoplasmic polyadenylation element (CPE) in 3'-UTR. Recent studies illustrate non-canonical polyadenylation mechanisms of translational regulation in mouse oocytes, which is different from that in Xenopus oocytes. However, it is still unclear if this regulation in rodent oocytes functions in the domestic animal oocyte. Here, by using sheep as an animal model, we cloned the 3'-UTRs of Cpeb1 or Btg4 and ligated it into the pRK5-Flag-Gfp vector. Variant numbers and positions of PASs and CPEs within the 3'-UTRs were constructed to detect their effects on translational control. After in vitro-transcription and microinjection into sheep fully grown germinal vesicle stage oocytes, the expression efficiency of mRNAs was detected by the GFP and flag expression. Our results show that: (i) PAS located at the proximal end of 3'-UTR can mediate the translation of the maternal mRNAs, as long as they locate far from CPEs; (ii) The proximal PAS has higher efficiency in regulating transcription than the distal one; (iii) increase of PAS number can promote the translational activity more efficiently; (iv) a single CPE located close to PAS (<50 bp) in 3'-UTRs of Cpeb1 or Btg4 could partially repress translation. In 3'-UTRs of Btg4, two CPEs have a higher inhibitory effect, and three CPEs can completely inhibit mRNA translation. These results confirm the existence of the non-canonical mechanism in domestic animal oocytes.
Collapse
Affiliation(s)
- Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Ru-Jing Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Fang-Rui Xue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Kang Ding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xin-Yu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China.
| |
Collapse
|
22
|
Hakes AC, Gavis ER. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol 2023; 21:e3002069. [PMID: 37053289 PMCID: PMC10128949 DOI: 10.1371/journal.pbio.3002069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.
Collapse
Affiliation(s)
- Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
23
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
24
|
Wang XY, Zhang LN. RNA binding protein SAMD4: current knowledge and future perspectives. Cell Biosci 2023; 13:21. [PMID: 36732864 PMCID: PMC9893680 DOI: 10.1186/s13578-023-00968-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
SAMD4 protein family is a class of novel RNA-binding proteins that can mediate post-transcriptional regulation and translation repression in eukaryotes, which are highly conserved from yeast to humans during evolution. In mammalian cells, SAMD4 protein family consists of two members including SAMD4A/Smaug1 and SAMD4B/Smaug2, both of which contain common SAM domain that can specifically bind to different target mRNAs through stem-loop structures, also known as Smaug recognition elements (SREs), and regulate the mRNA stability, degradation and translation. In addition, SAMD4 can form the cytoplasmic mRNA silencing foci and regulate the translation of SRE-containing mRNAs in neurons. SAMD4 also can form the cytosolic membrane-less organelles (MLOs), termed as Smaug1 bodies, and regulate mitochondrial function. Importantly, many studies have identified that SAMD4 family members are involved in various pathological processes including myopathy, bone development, neural development, and cancer occurrence and progression. In this review, we mainly summarize the structural characteristics, biological functions and molecular regulatory mechanisms of SAMD4 protein family members, which will provide a basis for further research and clinical application of SAMD4 protein family.
Collapse
Affiliation(s)
- Xin-Ya Wang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| | - Li-Na Zhang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| |
Collapse
|
25
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
27
|
Shen W, Gong B, Xing C, Zhang L, Sun J, Chen Y, Yang C, Yan L, Chen L, Yao L, Li G, Deng H, Wu X, Meng A. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 2022; 185:4954-4970.e20. [PMID: 36493774 DOI: 10.1016/j.cell.2022.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are channels for nucleocytoplasmic transport of proteins and RNAs. However, it remains unclear whether composition, structure, and permeability of NPCs dynamically change during the cleavage period of vertebrate embryos and affect embryonic development. Here, we report that the comprehensive NPC maturity (CNM) controls the onset of zygotic genome activation (ZGA) during zebrafish early embryogenesis. We show that more nucleoporin proteins are recruited to and assembled into NPCs with development, resulting in progressive increase of NPCs in size and complexity. Maternal transcription factors (TFs) transport into nuclei more efficiently with increasing CNM. Deficiency or dysfunction of Nup133 or Ahctf1/Elys impairs NPC assembly, maternal TFs nuclear transport, and ZGA onset, while nup133 overexpression promotes these processes. Therefore, CNM may act as a molecular timer for ZGA by controlling nuclear transport of maternal TFs that reach nuclear concentration thresholds at a given time to initiate ZGA.
Collapse
Affiliation(s)
- Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Likun Yao
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Developmental Diseases and Cancer Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Laboratory of Stem Cell Regulation, Guangzhou Laboratory, Guangzhou 510320, China.
| |
Collapse
|
28
|
He M, Jiao S, Zhang R, Ye D, Wang H, Sun Y. Translational control by maternal Nanog promotes oogenesis and early embryonic development. Development 2022; 149:286111. [PMID: 36533583 DOI: 10.1242/dev.201213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Many maternal mRNAs are translationally repressed during oocyte development and spatio-temporally activated during early embryogenesis, which is crucial for oocyte and early embryo development. By analyzing maternal mutants of nanog (Mnanog) in zebrafish, we demonstrated that Nanog tightly controls translation of maternal mRNA during oogenesis via transcriptional repression of eukaryotic translation elongation factor 1 alpha 1, like 2 (eef1a1l2). Loss of maternal Nanog led to defects of egg maturation, increased endoplasmic reticulum stress, and an activated unfold protein response, which was caused by elevated translational activity. We further demonstrated that Nanog, as a transcriptional repressor, represses the transcription of eefl1a1l2 by directly binding to the eef1a1l2 promoter in oocytes. More importantly, depletion of eef1a1l2 in nanog mutant females effectively rescued the elevated translational activity in oocytes, oogenesis defects and embryonic defects of Mnanog embryos. Thus, our study demonstrates that maternal Nanog regulates oogenesis and early embryogenesis through translational control of maternal mRNA via a mechanism whereby Nanog acts as a transcriptional repressor to suppress transcription of eef1a1l2.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
29
|
Yamakawa T, Yuslimatin Mujizah E, Matsuno K. Notch Signalling Under Maternal-to-Zygotic Transition. Fly (Austin) 2022; 16:347-359. [PMID: 36346359 PMCID: PMC9645253 DOI: 10.1080/19336934.2022.2139981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The development of all animal embryos is initially directed by the gene products supplied by their mothers. With the progression of embryogenesis, the embryo's genome is activated to command subsequent developments. This transition, which has been studied in many model animals, is referred to as the Maternal-to-Zygotic Transition (MZT). In many organisms, including flies, nematodes, and sea urchins, genes involved in Notch signaling are extensively influenced by the MZT. This signaling pathway is highly conserved across metazoans; moreover, it regulates various developmental processes. Notch signaling defects are commonly associated with various human diseases. The maternal contribution of its factors was first discovered in flies. Subsequently, several genes were identified from mutant embryos with a phenotype similar to Notch mutants only upon the removal of the maternal contributions. Studies on these maternal genes have revealed various novel steps in the cascade of Notch signal transduction. Among these genes, pecanex and almondex have been functionally characterized in recent studies. Therefore, in this review, we will focus on the roles of these two maternal genes in Notch signaling and discuss future research directions on its maternal function.
Collapse
Affiliation(s)
- Tomoko Yamakawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan,CONTACT Tomoko Yamakawa Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Larson ED, Komori H, Fitzpatrick ZA, Krabbenhoft SD, Lee CY, Harrison M. Premature translation of the Drosophila zygotic genome activator Zelda is not sufficient to precociously activate gene expression. G3 (BETHESDA, MD.) 2022; 12:6649735. [PMID: 35876878 PMCID: PMC9434156 DOI: 10.1093/g3journal/jkac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/15/2022] [Indexed: 05/22/2023]
Abstract
Following fertilization, the unified germ cells rapidly transition to a totipotent embryo. Maternally deposited mRNAs encode the proteins necessary for this reprogramming as the zygotic genome remains transcriptionally quiescent during the initial stages of development. The transcription factors required to activate the zygotic genome are among these maternally deposited mRNAs and are robustly translated following fertilization. In Drosophila, the mRNA encoding Zelda, the major activator of the zygotic genome, is not translated until 1 h after fertilization. Here we demonstrate that zelda translation is repressed in the early embryo by the TRIM-NHL protein Brain tumor (BRAT). BRAT also regulates Zelda levels in the larval neuroblast lineage. In the embryo, BRAT-mediated translational repression is regulated by the Pan Gu kinase, which is triggered by egg activation. The Pan Gu kinase phosphorylates translational regulators, suggesting that Pan Gu kinase activity alleviates translational repression of zelda by BRAT and coupling translation of zelda with that of other regulators of early embryonic development. Using the premature translation of zelda in embryos lacking BRAT activity, we showed that early translation of a zygotic genome activator is not sufficient to drive precocious gene expression. Instead, Zelda-target genes showed increased expression at the time they are normally activated. We propose that transition through early development requires the integration of multiple processes, including the slowing of the nuclear division cycle and activation of the zygotic genome. These processes are coordinately controlled by Pan Gu kinase-mediated regulation of translation.
Collapse
Affiliation(s)
- Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hideyuki Komori
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zoe A Fitzpatrick
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Department of Cell and Developmental Biology and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa Harrison
- Corresponding author: Department of Biomolecular Chemistry, University of Wisconsin-Madison, 440 Henry Mall, 6204B Biochemical Sciences Building, Madison, WI 53706, USA.
| |
Collapse
|
31
|
Arsala D, Wu X, Yi SV, Lynch JA. Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genet 2022; 18:e1010181. [PMID: 35522715 PMCID: PMC9075658 DOI: 10.1371/journal.pgen.1010181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Gene body methylation (GBM) is an ancestral mode of DNA methylation whose role in development has been obscured by the more prominent roles of promoter and CpG island methylation. The wasp Nasonia vitripennis has little promoter and CpG island methylation, yet retains strong GBM, making it an excellent model for elucidating the roles of GBM. Here we show that N. vitripennis DNA methyltransferase 1a (Nv-Dnmt1a) knockdown leads to failures in cellularization and gastrulation of the embryo. Both of these disrupted events are hallmarks of the maternal-zygotic transition (MZT) in insects. Analysis of the embryonic transcriptome and methylome revealed strong reduction of GBM and widespread disruption of gene expression during embryogenesis after Nv-Dnmt1a knockdown. Strikingly, there was a strong correlation between loss of GBM and reduced gene expression in thousands of methylated loci, consistent with the hypothesis that GBM directly facilitates high levels of transcription. We propose that lower expression levels of methylated genes due to reduced GBM is the crucial direct effect of Nv-Dnmt1 knockdown. Subsequently, the disruption of methylated genes leads to downstream dysregulation of the MZT, culminating in developmental failure at gastrulation.
Collapse
Affiliation(s)
- Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Xin Wu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Soojin V. Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
32
|
Yaish O, Orenstein Y. Computational modeling of mRNA degradation dynamics using deep neural networks. Bioinformatics 2022; 38:1087-1101. [PMID: 34849591 DOI: 10.1093/bioinformatics/btab800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION messenger RNA (mRNA) degradation plays critical roles in post-transcriptional gene regulation. A major component of mRNA degradation is determined by 3'-UTR elements. Hence, researchers are interested in studying mRNA dynamics as a function of 3'-UTR elements. A recent study measured the mRNA degradation dynamics of tens of thousands of 3'-UTR sequences using a massively parallel reporter assay. However, the computational approach used to model mRNA degradation was based on a simplifying assumption of a linear degradation rate. Consequently, the underlying mechanism of 3'-UTR elements is still not fully understood. RESULTS Here, we developed deep neural networks to predict mRNA degradation dynamics and interpreted the networks to identify regulatory elements in the 3'-UTR and their positional effect. Given an input of a 110 nt-long 3'-UTR sequence and an initial mRNA level, the model predicts mRNA levels of eight consecutive time points. Our deep neural networks significantly improved prediction performance of mRNA degradation dynamics compared with extant methods for the task. Moreover, we demonstrated that models predicting the dynamics of two identical 3'-UTR sequences, differing by their poly(A) tail, performed better than single-task models. On the interpretability front, by using Integrated Gradients, our convolutional neural networks (CNNs) models identified known and novel cis-regulatory sequence elements of mRNA degradation. By applying a novel systematic evaluation of model interpretability, we demonstrated that the recurrent neural network models are inferior to the CNN models in terms of interpretability and that random initialization ensemble improves both prediction and interoperability performance. Moreover, using a mutagenesis analysis, we newly discovered the positional effect of various 3'-UTR elements. AVAILABILITY AND IMPLEMENTATION All the code developed through this study is available at github.com/OrensteinLab/DeepUTR/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ofir Yaish
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
33
|
Cao WX, Karaiskakis A, Lin S, Angers S, Lipshitz HD. The F-box protein Bard (CG14317) targets the Smaug RNA-binding protein for destruction during the Drosophila maternal-to-zygotic transition. Genetics 2022; 220:iyab177. [PMID: 34757425 PMCID: PMC8733446 DOI: 10.1093/genetics/iyab177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023] Open
Abstract
During the maternal-to-zygotic transition (MZT), which encompasses the earliest stages of animal embryogenesis, a subset of maternally supplied gene products is cleared, thus permitting activation of zygotic gene expression. In the Drosophila melanogaster embryo, the RNA-binding protein Smaug (SMG) plays an essential role in progression through the MZT by translationally repressing and destabilizing a large number of maternal mRNAs. The SMG protein itself is rapidly cleared at the end of the MZT by a Skp/Cullin/F-box (SCF) E3-ligase complex. Clearance of SMG requires zygotic transcription and is required for an orderly MZT. Here, we show that an F-box protein, which we name Bard (encoded by CG14317), is required for degradation of SMG. Bard is expressed zygotically and physically interacts with SMG at the end of the MZT, coincident with binding of the maternal SCF proteins, SkpA and Cullin1, and with degradation of SMG. shRNA-mediated knock-down of Bard or deletion of the bard gene in the early embryo results in stabilization of SMG protein, a phenotype that is rescued by transgenes expressing Bard. Bard thus times the clearance of SMG at the end of the MZT.
Collapse
Affiliation(s)
- Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences & Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences & Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
34
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
35
|
Fernández-Alvarez AJ, Thomas MG, Pascual ML, Habif M, Pimentel J, Corbat AA, Pessoa JP, La Spina PE, Boscaglia L, Plessis A, Carmo-Fonseca M, Grecco HE, Casado M, Boccaccio GL. Smaug1 membrane-less organelles respond to AMPK/mTOR and affect mitochondrial function‡. J Cell Sci 2021; 135:273619. [PMID: 34859817 DOI: 10.1242/jcs.253591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone -but not strong mitochondrial uncoupling by CCCP- rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.
Collapse
Affiliation(s)
- Ana J Fernández-Alvarez
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - María Gabriela Thomas
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Malena L Pascual
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Martín Habif
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Jerónimo Pimentel
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | - Agustín A Corbat
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - João P Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Pablo E La Spina
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina
| | | | - Anne Plessis
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hernán E Grecco
- Department of Physics, Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, and IFIBA, CONICET, C1428EHA Buenos Aires, Argentina
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia 46010, Spain, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Graciela L Boccaccio
- Fundación Instituto Leloir (FIL).,Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), C1405BWE Buenos Aires, Argentina.,Department of Molecular and Cellular Biology and Physiology (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), University of Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
36
|
Chille E, Strand E, Neder M, Schmidt V, Sherman M, Mass T, Putnam H. Developmental series of gene expression clarifies maternal mRNA provisioning and maternal-to-zygotic transition in a reef-building coral. BMC Genomics 2021; 22:815. [PMID: 34763678 PMCID: PMC8588723 DOI: 10.1186/s12864-021-08114-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies. RESULTS Weighted Gene Coexpression Network Analysis revealed four expression peaks, identifying the maternal complement, two waves of the MZT, and adult expression. Gene ontology enrichment revealed maternal mRNAs are dominated by cell division, methylation, biosynthesis, metabolism, and protein/RNA processing and transport functions. The first MZT wave occurs from ~4-14 hpf and is enriched in terms related to biosynthesis, methylation, cell division, and transcription. In contrast, functional enrichment in the second MZT wave, or ZGA, from 22 hpf-9dpf, includes ion/peptide transport and cell signaling. Finally, adult expression is enriched for functions related to signaling, metabolism, and ion/peptide transport. Our proposed MZT timing is further supported by expression of enzymes involved in zygotic transcriptional repression (Kaiso) and activation (Sox2), which peak at 14 hpf and 22 hpf, respectively. Further, DNA methylation writing (DNMT3a) and removing (TET1) enzymes peak and remain stable past ~4 hpf, suggesting that methylome programming occurs before 4 hpf. CONCLUSIONS Our high-resolution insight into the coral maternal mRNA and MZT provides essential baseline information to understand parental carryover effects and the sensitivity of developmental success under increasing environmental stress.
Collapse
Affiliation(s)
- Erin Chille
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA.
| | - Emma Strand
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| | - Mayaan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- The Interuniversity Institute of Marine Science, 88103, Eilat, Israel
| | | | - Madeleine Sherman
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, Rhode Island, USA
| |
Collapse
|
37
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
38
|
Avilés-Pagán EE, Hara M, Orr-Weaver TL. The GNU subunit of PNG kinase, the developmental regulator of mRNA translation, binds BIC-C to localize to RNP granules. eLife 2021; 10:67294. [PMID: 34250903 PMCID: PMC8313231 DOI: 10.7554/elife.67294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Control of mRNA translation is a key mechanism by which the differentiated oocyte transitions to a totipotent embryo. In Drosophila, the PNG kinase complex regulates maternal mRNA translation at the oocyte-to-embryo transition. We previously showed that the GNU activating subunit is crucial in regulating PNG and timing its activity to the window between egg activation and early embryogenesis (Hara et al., 2017). In this study, we find associations between GNU and proteins of RNP granules and demonstrate that GNU localizes to cytoplasmic RNP granules in the mature oocyte, identifying GNU as a new component of a subset of RNP granules. Furthermore, we define roles for the domains of GNU. Interactions between GNU and the granule component BIC-C reveal potential conserved functions for translational regulation in metazoan development. We propose that by binding to BIC-C, upon egg activation GNU brings PNG to its initial targets, translational repressors in RNP granules.
Collapse
Affiliation(s)
- Emir E Avilés-Pagán
- Department of Biology, MIT, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Masatoshi Hara
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Terry L Orr-Weaver
- Department of Biology, MIT, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
39
|
RNA transport and local translation in neurodevelopmental and neurodegenerative disease. Nat Neurosci 2021; 24:622-632. [PMID: 33510479 PMCID: PMC8860725 DOI: 10.1038/s41593-020-00785-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Neurons decentralize protein synthesis from the cell body to support the active metabolism of remote dendritic and axonal compartments. The neuronal RNA transport apparatus, composed of cis-acting RNA regulatory elements, neuronal transport granule proteins, and motor adaptor complexes, drives the long-distance RNA trafficking required for local protein synthesis. Over the past decade, advances in human genetics, subcellular biochemistry, and high-resolution imaging have implicated each member of the apparatus in several neurodegenerative diseases, establishing failed RNA transport and associated processes as a unifying pathomechanism. In this review, we deconstruct the RNA transport apparatus, exploring each constituent's role in RNA localization and illuminating their unique contributions to neurodegeneration.
Collapse
|
40
|
Cao WX, Kabelitz S, Gupta M, Yeung E, Lin S, Rammelt C, Ihling C, Pekovic F, Low TCH, Siddiqui NU, Cheng MHK, Angers S, Smibert CA, Wühr M, Wahle E, Lipshitz HD. Precise Temporal Regulation of Post-transcriptional Repressors Is Required for an Orderly Drosophila Maternal-to-Zygotic Transition. Cell Rep 2021; 31:107783. [PMID: 32579915 PMCID: PMC7372737 DOI: 10.1016/j.celrep.2020.107783] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
In animal embryos, the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents more than half of the protein-coding capacity of Drosophila melanogaster’s genome, and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). Although the ubiquitin-proteasome system is necessary for clearance of these repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL, and ME31B for degradation early in the MZT and the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG abrogates F-box protein interaction and confers immunity to degradation. Persistent SMG downregulates zygotic re-expression of mRNAs whose maternal contribution is degraded by SMG. Thus, clearance of SMG permits an orderly MZT. Cao et al. show that 2% of the proteome is degraded in early Drosophila embryos, including a repressive ribonucleoprotein complex. Two E3 ubiquitin ligases separately act on distinct components of this complex to phase their clearance. Failure to degrade a key component, the Smaug RNA-binding protein, disrupts an orderly maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Sarah Kabelitz
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Meera Gupta
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Eyan Yeung
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Sichun Lin
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Christian Ihling
- Institute of Pharmacy and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany
| | - Timothy C H Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Najeeb U Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Matthew H K Cheng
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Martin Wühr
- Department of Molecular Biology and the Lewis-Sigler Institute, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06099 Halle, Germany.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
41
|
Grützner J, Billenkamp F, Spanka DT, Rick T, Monzon V, Förstner KU, Klug G. The small DUF1127 protein CcaF1 from Rhodobacter sphaeroides is an RNA-binding protein involved in sRNA maturation and RNA turnover. Nucleic Acids Res 2021; 49:3003-3019. [PMID: 33706375 PMCID: PMC8034643 DOI: 10.1093/nar/gkab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.
Collapse
Affiliation(s)
- Julian Grützner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | - Fabian Billenkamp
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
- Institute of Animal Nutrition, Friedrich Loeffler Institute, Bundesalle 37, D-38116 Braunschweig, Germany
| | - Daniel-Timon Spanka
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | - Tim Rick
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| | | | - Konrad U Förstner
- ZB MED-Information Center of Life Science, Germany
- Institute of Information Science, TH Köln, University of Applied Science, Gustav-Heinemann-Ufer 54, D-50968 Köln, Cologne, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Heinrich-Buff-Ring 26–32, D-35292 Giessen, Germany
| |
Collapse
|
42
|
Abstract
The stability of RNA transcripts is regulated by signals within their sequences, but the identity of those signals still remain elusive in many biological systems. Recently introduced massively parallel tools for the analysis of regulatory RNA sequences provide the ability to detect functional cis-regulatory sequences of post-transcriptional RNA regulation at a much larger scale and resolution than before. Their application formulates the underlying sequence-based rules and predicts the impact of genetic variations. Here, we describe the application of UTR-Seq, as a strategy to uncover cis-regulatory signals of RNA stability during early zebrafish embryogenesis. The method combines massively parallel reporter assays (MPRA) with computational regression models. It surveys the effect of tens of thousands of regulatory sequences on RNA stability and analyzes the results via regression models to identify sequence signals that impact RNA stability and to predict the in vivo effect of sequence variations.
Collapse
|
43
|
Kontur C, Jeong M, Cifuentes D, Giraldez AJ. Ythdf m 6A Readers Function Redundantly during Zebrafish Development. Cell Rep 2020; 33:108598. [PMID: 33378672 PMCID: PMC11407899 DOI: 10.1016/j.celrep.2020.108598] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
During the maternal-to-zygotic transition (MZT), multiple mechanisms precisely control massive decay of maternal mRNAs. N6-methyladenosine (m6A) is known to regulate mRNA decay, yet how this modification promotes maternal transcript degradation remains unclear. Here, we find that m6A promotes maternal mRNA deadenylation. Yet, genetic loss of m6A readers Ythdf2 and Ythdf3 did not impact global maternal mRNA clearance, zygotic genome activation, or the onset of gastrulation, challenging the view that Ythdf2 alone is critical to developmental timing. We reveal that Ythdf proteins function redundantly during zebrafish oogenesis and development, as double Ythdf2 and Ythdf3 deletion prevented female gonad formation and triple Ythdf mutants were lethal. Finally, we show that the microRNA miR-430 functions additively with methylation to promote degradation of common transcript targets. Together these findings reveal that m6A facilitates maternal mRNA deadenylation and that multiple pathways and readers act in concert to mediate these effects of methylation on RNA stability.
Collapse
Affiliation(s)
- Cassandra Kontur
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Minsun Jeong
- Chey Institute for Advanced Studies, Seoul 06141, Republic of Korea
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
44
|
Cartwright EL, Lott SE. Evolved Differences in cis and trans Regulation Between the Maternal and Zygotic mRNA Complements in the Drosophila Embryo. Genetics 2020; 216:805-821. [PMID: 32928902 PMCID: PMC7648588 DOI: 10.1534/genetics.120.303626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
How gene expression can evolve depends on the mechanisms driving gene expression. Gene expression is controlled in different ways in different developmental stages; here we ask whether different developmental stages show different patterns of regulatory evolution. To explore the mode of regulatory evolution, we used the early stages of embryonic development controlled by two different genomes, that of the mother and that of the zygote. During embryogenesis in all animals, initial developmental processes are driven entirely by maternally provided gene products deposited into the oocyte. The zygotic genome is activated later, when developmental control is handed off from maternal gene products to the zygote during the maternal-to-zygotic transition. Using hybrid crosses between sister species of Drosophila (Dsimulans, D. sechellia, and D. mauritiana) and transcriptomics, we find that the regulation of maternal transcript deposition and zygotic transcription evolve through different mechanisms. We find that patterns of transcript level inheritance in hybrids, relative to parental species, differ between maternal and zygotic transcripts, and maternal transcript levels are more likely to be conserved. Changes in transcript levels occur predominantly through differences in trans regulation for maternal genes, while changes in zygotic transcription occur through a combination of both cis and trans regulatory changes. Differences in the underlying regulatory landscape in the mother and the zygote are likely the primary determinants for how maternal and zygotic transcripts evolve.
Collapse
Affiliation(s)
- Emily L Cartwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
45
|
Strong IJT, Lei X, Chen F, Yuan K, O’Farrell PH. Interphase-arrested Drosophila embryos activate zygotic gene expression and initiate mid-blastula transition events at a low nuclear-cytoplasmic ratio. PLoS Biol 2020; 18:e3000891. [PMID: 33090988 PMCID: PMC7608951 DOI: 10.1371/journal.pbio.3000891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/03/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
Externally deposited eggs begin development with an immense cytoplasm and a single overwhelmed nucleus. Rapid mitotic cycles restore normality as the ratio of nuclei to cytoplasm (N/C) increases. A threshold N/C has been widely proposed to activate zygotic genome transcription and onset of morphogenesis at the mid-blastula transition (MBT). To test whether a threshold N/C is required for these events, we blocked N/C increase by down-regulating cyclin/Cdk1 to arrest early cell cycles in Drosophila. Embryos that were arrested two cell cycles prior to the normal MBT activated widespread transcription of the zygotic genome including genes previously described as N/C dependent. Zygotic transcription of these genes largely retained features of their regulation in space and time. Furthermore, zygotically regulated post-MBT events such as cellularization and gastrulation movements occurred in these cell cycle-arrested embryos. These results are not compatible with models suggesting that these MBT events are directly coupled to N/C. Cyclin/Cdk1 activity normally declines in tight association with increasing N/C and is regulated by N/C. By experimentally promoting the decrease in cyclin/Cdk1, we uncoupled MBT from N/C increase, arguing that N/C-guided down-regulation of cyclin/Cdk1 is sufficient for genome activation and MBT.
Collapse
Affiliation(s)
- Isaac J. T. Strong
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Zavortink M, Rutt LN, Dzitoyeva S, Henriksen JC, Barrington C, Bilodeau DY, Wang M, Chen XXL, Rissland OS. The E2 Marie Kondo and the CTLH E3 ligase clear deposited RNA binding proteins during the maternal-to-zygotic transition. eLife 2020; 9:53889. [PMID: 32573431 PMCID: PMC7384856 DOI: 10.7554/elife.53889] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA-binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kdo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT. Bestselling author and organizing consultant Marie Kondo has helped people around the world declutter their homes by getting rid of physical items that do not bring them joy. Keeping the crowded environment inside a living cell organized also requires work and involves removing molecules that are no longer needed. A fertilized egg cell, for example, contains molecules from the mother that regulate the initial stages as it develops into an embryo. Later on, the embryo takes control of its own development by destroying these inherited molecules and switches to making its own instead. This process is called the maternal-to-zygotic transition. The molecules passed from the mother to the egg cell include proteins and messenger RNAs (molecules that include the coded instructions to make new proteins). Previous research has begun to reveal how the embryo destroys the mRNAs it inherits from its mother and how it starts to make its own. Yet almost nothing is known about how an embryo gets rid of its mother’s proteins. To address this question, Zavortink, Rutt, Dzitoyeva et al. used an approach known as an RNA interference screen to identify factors required to destroy three maternal proteins in fruit fly embryos. The experiments helped identify one enzyme that worked together with another larger enzyme complex to destroy the maternal proteins. This enzyme belongs to a class of enzymes known as ubiquitin-conjugating enzymes (or E2 enzymes) and it was given the name “Kdo”, short for “Marie Kondo”. Further experiments showed that the mRNAs that code for the Kdo enzyme were present in unfertilized eggs, but in a repressed state that prevented the eggs from making the enzyme. Once an egg started to develop into an embryo, these mRNAs became active and the embryo started to make Kdo enzymes. This led to the three maternal proteins being destroyed during the maternal-to-zygotic transition. These findings reveal a new pathway that regulates the destruction of maternal proteins as the embryo develops. The next challenge will be identifying other maternal proteins that do not “spark joy” and understanding the role their destruction plays in the earliest events of embryonic development.
Collapse
Affiliation(s)
| | - Lauren N Rutt
- University of Colorado School of Medicine, Aurora, United States
| | | | | | - Chloe Barrington
- University of Colorado School of Medicine, Aurora, United States
| | | | | | | | | |
Collapse
|
47
|
Peng W, Yu S, Handler AM, Zhang H. Transcriptome Analysis of the Oriental Fruit Fly Bactrocera dorsalis Early Embryos. INSECTS 2020; 11:insects11050323. [PMID: 32456171 PMCID: PMC7290859 DOI: 10.3390/insects11050323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/01/2022]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most devastating and highly invasive agricultural pests world-wide, resulting in severe economic loss. Thus, it is of great interest to understand the transcriptional changes that occur during the activation of its zygotic genome at the early stages of embryonic development, especially the expression of genes involved in sex determination and the cellularization processes. In this study, we applied Illumina sequencing to identify B. dorsalis sex determination genes and early zygotic genes by analyzing transcripts from three early embryonic stages at 0–1, 2–4, and 5–8 h post-oviposition, which include the initiation of sex determination and cellularization. These tests generated 13,489 unigenes with an average length of 2185 bp. In total, 1683, 3201 and 3134 unigenes had significant changes in expression levels at times after oviposition including at 2–4 h versus 0–1 h, 5–8 h versus 0–1 h, and 5–8 h versus 2–4 h, respectively. Clusters of gene orthology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed throughout embryonic development to better understand the functions of differentially expressed unigenes. We observed that the RNA binding and spliceosome pathways were highly enriched and overrepresented during the early stage of embryogenesis. Additionally, transcripts for 21 sex-determination and three cellularization genes were identified, and expression pattern analysis revealed that the majority of these genes were highly expressed during embryogenesis. This study is the first assembly performed for B. dorsalis based on Illumina next-generation sequencing technology during embryogenesis. Our data should contribute significantly to the fundamental understanding of sex determination and early embryogenesis in tephritid fruit flies, and provide gene promoter and effector gene candidates for transgenic pest-management strategies for these economically important species.
Collapse
Affiliation(s)
- Wei Peng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shuning Yu
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
| | - Alfred M. Handler
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA;
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.P.); (S.Y.)
- Correspondence:
| |
Collapse
|
48
|
Bruzzone L, Argüelles C, Sanial M, Miled S, Alvisi G, Gonçalves-Antunes M, Qasrawi F, Holmgren RA, Smibert CA, Lipshitz HD, Boccaccio GL, Plessis A, Bécam I. Regulation of the RNA-binding protein Smaug by the GPCR Smoothened via the kinase Fused. EMBO Rep 2020; 21:e48425. [PMID: 32383557 DOI: 10.15252/embr.201948425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
From fly to mammals, the Smaug/Samd4 family of prion-like RNA-binding proteins control gene expression by destabilizing and/or repressing the translation of numerous target transcripts. However, the regulation of its activity remains poorly understood. We show that Smaug's protein levels and mRNA repressive activity are downregulated by Hedgehog signaling in tissue culture cells. These effects rely on the interaction of Smaug with the G-protein coupled receptor Smoothened, which promotes the phosphorylation of Smaug by recruiting the kinase Fused. The activation of Fused and its binding to Smaug are sufficient to suppress its ability to form cytosolic bodies and to antagonize its negative effects on endogenous targets. Importantly, we demonstrate in vivo that HH reduces the levels of smaug mRNA and increases the level of several mRNAs downregulated by Smaug. Finally, we show that Smaug acts as a positive regulator of Hedgehog signaling during wing morphogenesis. These data constitute the first evidence for a post-translational regulation of Smaug and reveal that the fate of several mRNAs bound to Smaug is modulated by a major signaling pathway.
Collapse
Affiliation(s)
- Lucia Bruzzone
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Matthieu Sanial
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Samia Miled
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Giorgia Alvisi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Fairouz Qasrawi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Robert A Holmgren
- Department of Mol. Biosci., Northwestern University, Evanston, IL, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Graciela L Boccaccio
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne Plessis
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Isabelle Bécam
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
49
|
Ramat A, Garcia-Silva MR, Jahan C, Naït-Saïdi R, Dufourt J, Garret C, Chartier A, Cremaschi J, Patel V, Decourcelle M, Bastide A, Juge F, Simonelig M. The PIWI protein Aubergine recruits eIF3 to activate translation in the germ plasm. Cell Res 2020; 30:421-435. [PMID: 32132673 PMCID: PMC7196074 DOI: 10.1038/s41422-020-0294-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) and PIWI proteins are essential in germ cells to repress transposons and regulate mRNAs. In Drosophila, piRNAs bound to the PIWI protein Aubergine (Aub) are transferred maternally to the embryo and regulate maternal mRNA stability through two opposite roles. They target mRNAs by incomplete base pairing, leading to their destabilization in the soma and stabilization in the germ plasm. Here, we report a function of Aub in translation. Aub is required for translational activation of nanos mRNA, a key determinant of the germ plasm. Aub physically interacts with the poly(A)-binding protein (PABP) and the translation initiation factor eIF3. Polysome gradient profiling reveals the role of Aub at the initiation step of translation. In the germ plasm, PABP and eIF3d assemble in foci that surround Aub-containing germ granules, and Aub acts with eIF3d to promote nanos translation. These results identify translational activation as a new mode of mRNA regulation by Aub, highlighting the versatility of PIWI proteins in mRNA regulation.
Collapse
Affiliation(s)
- Anne Ramat
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Maria-Rosa Garcia-Silva
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Camille Jahan
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Jérémy Dufourt
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Julie Cremaschi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Vipul Patel
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | | - François Juge
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, 141 rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
50
|
The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes. PLoS Genet 2020; 16:e1008645. [PMID: 32226006 PMCID: PMC7145188 DOI: 10.1371/journal.pgen.1008645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/09/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
The gene products that drive early development are critical for setting up developmental trajectories in all animals. The earliest stages of development are fueled by maternally provided mRNAs until the zygote can take over transcription of its own genome. In early development, both maternally deposited and zygotically transcribed gene products have been well characterized in model systems. Previously, we demonstrated that across the genus Drosophila, maternal and zygotic mRNAs are largely conserved but also showed a surprising amount of change across species, with more differences evolving at the zygotic stage than the maternal stage. In this study, we use comparative methods to elucidate the regulatory mechanisms underlying maternal deposition and zygotic transcription across species. Through motif analysis, we discovered considerable conservation of regulatory mechanisms associated with maternal transcription, as compared to zygotic transcription. We also found that the regulatory mechanisms active in the maternal and zygotic genomes are quite different. For maternally deposited genes, we uncovered many signals that are consistent with transcriptional regulation at the level of chromatin state through factors enriched in the ovary, rather than precisely controlled gene-specific factors. For genes expressed only by the zygotic genome, we found evidence for previously identified regulators such as Zelda and GAGA-factor, with multiple analyses pointing toward gene-specific regulation. The observed mechanisms of regulation are consistent with what is known about regulation in these two genomes: during oogenesis, the maternal genome is optimized to quickly produce a large volume of transcripts to provide to the oocyte; after zygotic genome activation, mechanisms are employed to activate transcription of specific genes in a spatiotemporally precise manner. Thus the genetic architecture of the maternal and zygotic genomes, and the specific requirements for the transcripts present at each stage of embryogenesis, determine the regulatory mechanisms responsible for transcripts present at these stages.
Collapse
|