1
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
2
|
Shi Y, Yu Y, Li J, Sun S, Han L, Wang S, Guo K, Yang J, Qiu J, Wei W. Spatiotemporal cell landscape of human embryonic tooth development. Cell Prolif 2024; 57:e13653. [PMID: 38867378 PMCID: PMC11503248 DOI: 10.1111/cpr.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the cellular composition and trajectory of human tooth development is valuable for dentistry and stem cell engineering research. Previous single-cell studies have focused on mature human teeth and developing mouse teeth, but the cell landscape of human embryonic dental development is still unknown. In this study, tooth germ tissues were collected from aborted foetus (17-24 weeks) for single-cell RNA sequence and spatial transcriptome analysis. The cells were classified into seven subclusters of epithelium, and seven clusters of mesenchyme, as well as other cell types such as Schwann cell precursor and pericyte. For epithelium, the stratum intermedium branch and the ameloblast branch diverged from the same set of outer enamel-inner enamel-ALCAM+ epithelial cell lineage, but their spatial distribution of two branches was not clearly distinct. This trajectory received spatially adjacent regulation signals from mesenchyme and pericyte, including JAG1 and APP. The differentiation of pulp cell and pre-odontoblast showed four waves of temporally distinct gene expression, which involved regulation networks of LHX9, DLX5 and SP7, and these genes were regulated by upstream ligands such as the BMP family. This provides a reference landscape for the research on early human tooth development, covering different spatial structures and developmental periods.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yejia Yu
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jutang Li
- Hongqiao International Institute of MedicineTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shoufu Sun
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Han
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Guo
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingang Yang
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjia Wei
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
4
|
Zhang M, Guo T, Pei F, Feng J, Jing J, Xu J, Yamada T, Ho TV, Du J, Sehgal P, Chai Y. ARID1B maintains mesenchymal stem cell quiescence via inhibition of BCL11B-mediated non-canonical Activin signaling. Nat Commun 2024; 15:4614. [PMID: 38816354 PMCID: PMC11139927 DOI: 10.1038/s41467-024-48285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
ARID1B haploinsufficiency in humans causes Coffin-Siris syndrome, associated with developmental delay, facial dysmorphism, and intellectual disability. The role of ARID1B has been widely studied in neuronal development, but whether it also regulates stem cells remains unknown. Here, we employ scRNA-seq and scATAC-seq to dissect the regulatory functions and mechanisms of ARID1B within mesenchymal stem cells (MSCs) using the mouse incisor model. We reveal that loss of Arid1b in the GLI1+ MSC lineage disturbs MSCs' quiescence and leads to their proliferation due to the ectopic activation of non-canonical Activin signaling via p-ERK. Furthermore, loss of Arid1b upregulates Bcl11b, which encodes a BAF complex subunit that modulates non-canonical Activin signaling by directly regulating the expression of activin A subunit, Inhba. Reduction of Bcl11b or non-canonical Activin signaling restores the MSC population in Arid1b mutant mice. Notably, we have identified that ARID1B suppresses Bcl11b expression via specific binding to its third intron, unveiling the direct inter-regulatory interactions among BAF subunits in MSCs. Our results demonstrate the vital role of ARID1B as an epigenetic modifier in maintaining MSC homeostasis and reveal its intricate mechanistic regulatory network in vivo, providing novel insights into the linkage between chromatin remodeling and stem cell fate determination.
Collapse
Affiliation(s)
- Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Takahiko Yamada
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Zhu X, Li Y, Dong Q, Tian C, Gong J, Bai X, Ruan J, Gao J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:4138. [PMID: 38673725 PMCID: PMC11049943 DOI: 10.3390/ijms25084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.
Collapse
Affiliation(s)
- Ximei Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Qiannan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Chunli Tian
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jing Gong
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Xiaofan Bai
- Department of Pediatric Dentistry, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (J.G.); (X.B.)
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China; (X.Z.); (Y.L.); (Q.D.)
- Center of Oral Public Health, College of Stomatology, Xi’an Jiaotong University, Xi’an 710004, China;
| |
Collapse
|
6
|
Wang L, Li J. Morphogenesis of fungiform papillae in developing miniature pigs. Heliyon 2024; 10:e24953. [PMID: 38314265 PMCID: PMC10837543 DOI: 10.1016/j.heliyon.2024.e24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Fungiform papillae contain taste buds and play a critical role in mastication and the gustatory system. In this study, we report a series of sequential observations of organogenesis of fungiform papillae in miniature pigs, as well as changes in the expression of BMP2, BMP4, Wnt5a, Sox2, and Notch1 signaling pathway components. Design In this study, we investigated the spatiotemporal expression patterns of BMP, Wnt, Sox2 and Notch in the fungiform papillae of miniature pigs at the bud stage (E40), cap stage (E50) and bell stage (E60). Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Immunohistochemistry and real-time PCR were used to detect the mRNA and protein expression levels of BMP2, BMP4, Wnt5a, Sox2, and Notch1. Results At E40, fungiform papillae were present on the anterior two-thirds of the tongue in a specific array and pattern. The fungiform papillae were enlarged and basically developed at E50 and were largest at the earlier stage (E60). Most of the BMP2 was concentrated in the epithelial layer and the connective tissue core of the fungal papilloma and gradually accumulated from E40-E60. BMP-4 was weakly expressed in the fungiform papillae epithelia, but BMP-4-positive cells were also observed in the developing tongue muscle at E50 and E60. Wnt5a-positive cells were observed in the fungiform papillae epithelia and developing tongue muscle at all three time points. Sox2-positive cells were observed only in fungiform papillae epithelial cells, and Notch1-positive cells could not be detected. Conclusions This study provides primary data regarding the morphogenesis and expression of developmental signals in the fungiform papillae of miniature pigs, establishing a foundation for further research in both this model and humans.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| |
Collapse
|
7
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
9
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
11
|
Dilower I, Niloy AJ, Kumar V, Kothari A, Lee EB, Rumi MAK. Hedgehog Signaling in Gonadal Development and Function. Cells 2023; 12:cells12030358. [PMID: 36766700 PMCID: PMC9913308 DOI: 10.3390/cells12030358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Collapse
|
12
|
Seki Y, Takebe H, Mizoguchi T, Nakamura H, Iijima M, Irie K, Hosoya A. Differentiation ability of Gli1 + cells during orthodontic tooth movement. Bone 2023; 166:116609. [PMID: 36371039 DOI: 10.1016/j.bone.2022.116609] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Orthodontic tooth movement (OTM) induces bone formation on the alveolar bone of the tension side; however, the mechanism of osteoblast differentiation is not fully understood. Gli1 is an essential transcription factor for hedgehog signaling and functions in undifferentiated cells during embryogenesis. In this study, we examined the differentiation of Gli1+ cells in the periodontal ligament (PDL) during OTM using a lineage-tracing analysis. After the final administration of tamoxifen for 2 days to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice, Gli1/Tomato+ cells were rarely observed near endomucin+ blood vessels in the PDL. Osteoblasts lining the alveolar bone did not exhibit Gli1/Tomato fluorescence. To move the first molar of iGli1/Tomato mice medially, nickel-titanium closed-coil springs were attached between the upper anterior alveolar bone and the first molar. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased along with numerous PCNA+ cells in the PDL of the tension side. As some Gli1/Tomato+ cells exhibited positive expression of osterix, an osteoblast differentiation marker, Gli1+ cells probably differentiated into osteoblast progenitor cells. On day 10, the newly formed bone labeled by calcein administration during OTM was detected on the surface of the original alveolar bone of the tension side. Gli1/Tomato+ cells expressing osterix localized to the surface of the newly formed bone. In contrast, in the PDL of the compression side, Gli1/Tomato+ cells proliferated before day 10 and expressed type I collagen, suggesting that the Gli1+ cells also differentiated into fibroblasts. Collectively, these results demonstrate that Gli1+ cells in the PDL can differentiate into osteoblasts at the tension side and may function in bone remodeling as well as fibril formation in the PDL during OTM.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kazuharu Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
13
|
Zhang Y, Luo W, Zheng L, Hu J, Nie L, Zeng H, Tan X, Jiang Y, Li Y, Zhao T, Yang Z, He TC, Zhang H. Efficient bone regeneration of BMP9-stimulated human periodontal ligament stem cells (hPDLSCs) in decellularized bone matrix (DBM) constructs to model maxillofacial intrabony defect repair. Stem Cell Res Ther 2022; 13:535. [PMID: 36575551 PMCID: PMC9795631 DOI: 10.1186/s13287-022-03221-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND BMP9-stimulated DPSCs, SCAPs and PDLSCs are effective candidates for repairing maxillofacial bone defects in tissue engineering, while the most suitable seed cell source among these three hDMSCs and the optimal combination of most suitable type of hDMSCs and BMP9 have rarely been explored. Moreover, the orthotopic maxillofacial bone defect model should be valuable but laborious and time-consuming to evaluate various candidates for bone regeneration. Thus, inspired from the maxillofacial bone defects and the traditional in vivo ectopic systems, we developed an intrabony defect repair model to recapitulate the healing events of orthotopic maxillofacial bone defect repair and further explore the optimized combinations of most suitable hDMSCs and BMP9 for bone defect repair based on this modified ectopic system. METHODS Intrabony defect repair model was developed by using decellularized bone matrix (DBM) constructs prepared from the cancellous part of porcine lumbar vertebral body. We implanted DBM constructs subcutaneously on the flank of each male NU/NU athymic nude mouse, followed by directly injecting the cell suspension of different combinations of hDMSCs and BMP9 into the central hollow area of the constructs 7 days later. Then, the quality of the bony mass, including bone volume fraction (BV/TV), radiographic density (in Hounsfield units (HU)) and the height of newly formed bone, was measured by micro-CT. Furthermore, the H&E staining and immunohistochemical staining were performed to exam new bone and new blood vessel formation in DBM constructs. RESULTS BMP9-stimulated periodontal ligament stem cells (PDLSCs) exhibited the most effective bone regeneration among the three types of hDMSCs in DBM constructs. Furthermore, an optimal dose of PDLSCs with a specific extent of BMP9 stimulation was confirmed for efficacious new bone and new blood vessel formation in DBM constructs. CONCLUSIONS The reported intrabony defect repair model can be used to identify optimized combinations of suitable seed cells and biological factors for bone defect repair and subsequent development of efficacious bone tissue engineering therapies.
Collapse
Affiliation(s)
- Yuxin Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Wenping Luo
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen Zheng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jing Hu
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Li Nie
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huan Zeng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Xi Tan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yucan Jiang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yeming Li
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhuohui Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- grid.412578.d0000 0000 8736 9513Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637 USA
| | - Hongmei Zhang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology of Chongqing Medical University, 426 Songshibei Road, Chongqing, 401147 China ,grid.203458.80000 0000 8653 0555Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
15
|
Nuclear Factor I-C Regulates Stemness Genes and Proliferation of Stem Cells in Various Mineralized Tissue through Epithelial-Mesenchymal Interactions in Dental Epithelial Stem Cells. Stem Cells Int 2022; 2022:1092184. [PMID: 36213683 PMCID: PMC9533135 DOI: 10.1155/2022/1092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Tooth development includes numerous cell divisions and cell-cell interactions generating the stem cell niche. After an indefinite number of divisions, pluripotent cells differentiate into various types of cells. Nuclear factor I (NFI) transcription factors are known as crucial regulators in various organ development and stem cell biology. Among its members, nuclear factor I-C (NFI-C) has been reported to play an essential role in odontogenesis. Nfic knockout mice show malformation in all mineralized tissues, but it remains unclear which stage of development Nfic is involved in. We previously reported that Nfic induces the differentiation of ameloblast, odontoblast, and osteoblast. However, the question remains whether Nfic participates in the late stage of development, perpetuating the proliferation of stem cells. This study aimed to elucidate the underlying mechanism of NFI-C function in stem cells capable of forming hard tissues. Here, we demonstrate that Nfic regulates Sox2 and cell proliferation in diverse mineralized tissue stem cells such as dental epithelial stem cells (DESCs), dental pulp stem cells, and bone marrow stem cells, but not in fibroblasts. It was also involved in the expression of pluripotency genes Lin28 and NANOG. Especially in DESCs, Nfic regulates the proliferation of epithelial cells via epithelial-mesenchymal interactions, which are the Fgf8-Nfic-Sox2 pathway in epithelium and Nfic-Fgf10 in the mesenchyme. Moreover, Nfic slightly increased reprogramming efficiency in induced pluripotent stem cells of mineralized tissues, but not in soft tissues. In conclusion, these results suggest that Nfic is a crucial factor for maintaining the stem cell niche of mineralized tissues and provides a possibility for Nfic as an additional factor in improving reprogramming efficiency.
Collapse
|
16
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
17
|
Ye Y, Jiang Z, Pan Y, Yang G, Wang Y. Role and mechanism of BMP4 in bone, craniofacial, and tooth development. Arch Oral Biol 2022; 140:105465. [DOI: 10.1016/j.archoralbio.2022.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
18
|
Matsubara T, Iga T, Sugiura Y, Kusumoto D, Sanosaka T, Tai-Nagara I, Takeda N, Fong GH, Ito K, Ema M, Okano H, Kohyama J, Suematsu M, Kubota Y. Coupling of angiogenesis and odontogenesis orchestrates tooth mineralization in mice. J Exp Med 2022; 219:213091. [PMID: 35319724 PMCID: PMC8952600 DOI: 10.1084/jem.20211789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
The skeletal system consists of bones and teeth, both of which are hardened via mineralization to support daily physical activity and mastication. The precise mechanism for this process, especially how blood vessels contribute to tissue mineralization, remains incompletely understood. Here, we established an imaging technique to visualize the 3D structure of the tooth vasculature at a single-cell level. Using this technique combined with single-cell RNA sequencing, we identified a unique endothelial subtype specialized to dentinogenesis, a process of tooth mineralization, termed periodontal tip-like endothelial cells. These capillaries exhibit high angiogenic activity and plasticity under the control of odontoblasts; in turn, the capillaries trigger odontoblast maturation. Metabolomic analysis demonstrated that the capillaries perform the phosphate delivery required for dentinogenesis. Taken together, our data identified the fundamental cell-to-cell communications that orchestrate tooth formation, angiogenic–odontogenic coupling, a distinct mechanism compared to the angiogenic–osteogenic coupling in bones. This mechanism contributes to our understanding concerning the functional diversity of organotypic vasculature.
Collapse
Affiliation(s)
- Tomoko Matsubara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Takahito Iga
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT
| | - Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masatsugu Ema
- Depart of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Shi P, Zhou W, Dong J, Li S, Lv P, Liu C. Scaffolds of bioactive glass (Bioglass®) combined with recombinant human bone morphogenetic protein -9 (rhBMP-9) for tooth extraction site preservation. Heliyon 2022; 8:e08796. [PMID: 35097232 PMCID: PMC8783125 DOI: 10.1016/j.heliyon.2022.e08796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Objective The study aimed to investigate the osteogenic ability of bioactive glass (bioglass) combined with recombinant human bone morphogenetic protein-9 (rhBMP-9) on rat bone marrow mesenchymal stem cells (BMSCs) in vitro. The study also compares bone regeneration using rhBMP9 soaked with different carrier systems, including bioglass or collagen membranes (BioGide, BG) in a rat alveolar bone site preservation model in vivo. Methods Scanning electron microscopy was employed to analyze bioglass surface. The absorption and release potential of rhBMP9 from bioglass were researched by ELISA. The cell viability, adhesion, proliferation, and differentiation were assessed for rhBMP9 soaked on bioglass by cck-8 kit, alkaline phosphatase (ALP) activity assay, alizarin red staining, and real-time PCR. Furthermore, prepared grafts (bioglass + BG, bioglass/rhBMP9+BG, and bioglass + BG/rhBMP9) were implanted into the maxillary right first incisor sockets of Sprague Dawley rats for 8 weeks, and new bone formation was quantified by micro-CT and histological analysis. Results Bioglass absorbed rhBMP9 dramatically and released it with a slow and stable speed within ten days by ELISA. When used with cck-8 kit detection, cell viability at 24 h, cell adhesion rate at 8 h, and cell proliferation at 1, 3, and 5 days were decreased in the bioglass alone group versus the control group but slightly increased with the addition of rhBMP9. Similarly, the effect of osteogenic differentiation on bioglass increased significantly when combined with rhBMP9 by upregulating the expression of ALP, mineralized matrix, and osteogenic related genes. Furthermore, both bioglass/rhBMP9+BG samples and bioglass + BG/rhBMP9 samples significantly improved several bone formation parameters compared with bioglass + BG samples. Interestingly, bioglass + BG/rhBMP9 samples demonstrated more bone regeneration in rat site preservation models. Conclusions Both bioglass and BG can be applied in GBR surgery as effective carriers of rhBMP9. However, BG may be more suitable than bioglass for investigating site preservation effect after tooth extraction when associated with rhBMP9 and provides a practical clinical solution to the problem of bone deficiency caused by alveolar bone atrophy.
Collapse
|
20
|
Wang J, Ran S, Liu B, Gu S. Monitoring of canonical BMP and Wnt activities during postnatal stages of mouse first molar root formation. J Appl Oral Sci 2021; 29:e20210281. [PMID: 34910074 PMCID: PMC8687650 DOI: 10.1590/1678-7757-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective This study aimed to explore the precise temporospatial distributions of bone morphogenetic protein (BMP) and Wnt signaling pathways during postnatal development of mammalian tooth roots after the termination of crown morphogenesis. Methodology A total of two transgenic mouse lines, BRE-LacZ mice and BAT-gal mice, were undertaken. The mice were sacrificed on every postnatal (PN) day from PN 3d up to PN 21d. Then, the first lower molars were extracted, and the dissected mandibles were stained with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) and fixed. Serial sections at 10 µm were prepared after decalcification, dehydration, and embedding in paraffin. Results We observed BMP/Smads and Wnt/β-catenin signaling activities in the dental sac, dental pulp, and apical papilla with a certain degree of variation. The position of activation of the BMP/Smad signaling pathway was located more coronally in the early stage, which then gradually expanded as root elongation proceeded and was associated with blood vessels in the pulp and developing complex apical tissues in the later stage. However, Wnt/β-catenin signaling was highly concentrated in the mesenchyme below the cusps in the early stage, gradually expanded to regions around the root in the transition/root stage, and then disappeared entirely in the later stage. Conclusions These results further confirmed the participation of both BMP and Wnt canonical signaling pathways in tooth root development, as well as formed the basis for future studies on how precisely integrated signaling pathways regulate root morphogenesis and regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China.,Tulane University, Department of Cell and Molecular Biology, New Orleans, LA, USA
| | - Shujun Ran
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Bin Liu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Shensheng Gu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| |
Collapse
|
21
|
Gamart J, Barozzi I, Laurent F, Reinhardt R, Martins LR, Oberholzer T, Visel A, Zeller R, Zuniga A. SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning. Development 2021; 148:273522. [PMID: 34822715 PMCID: PMC8714076 DOI: 10.1242/dev.200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
SMAD4 regulates gene expression in response to BMP and TGFβ signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds. Summary: The transcriptional targets of SMAD4 in early limb buds are identified and the largely opposing impact of BMP and SHH signaling on early digit patterning and outgrowth is revealed.
Collapse
Affiliation(s)
- Julie Gamart
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frédéric Laurent
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Reinhardt
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Laurène Ramos Martins
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Thomas Oberholzer
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.,School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
22
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
23
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
24
|
Korolenkova MV, Rakhmanova MS. [Phantom root as dental trauma complication in immature teeth (systematic literature and clinical cases review)]. STOMATOLOGII︠A︡ 2021; 100:53-57. [PMID: 34752035 DOI: 10.17116/stomat202110005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents literature review and the analysis of three clinical cases of phantom root development. Phantom root is a rare complication occurring as a result of apical papilla detachment, usually after dental trauma. Some authors suggest regenerative endodontic procedure may contribute to phantom root development because of rude intervention in periapical tissues needed to induce apical bleeding required for intracanal blood clot formation. Phantom root is not an indication for endodontic treatment. The prognosis depends on initial root formation stage and root to crow length ratio at the time of trauma. In the majority of cases the teeth may be preserved, but continuous root development is not to be expected.
Collapse
Affiliation(s)
- M V Korolenkova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia.,Moscow Regional Research Institute named after M.F. Vladimirskiy, Moscow, Russia
| | - M S Rakhmanova
- Moscow Regional Research Institute named after M.F. Vladimirskiy, Moscow, Russia
| |
Collapse
|
25
|
Guo H, Li B, Wu M, Zhao W, He X, Sui B, Dong Z, Wang L, Shi S, Huang X, Liu X, Li Z, Guo X, Xuan K, Jin Y. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth. Biomaterials 2021; 279:121223. [PMID: 34736149 DOI: 10.1016/j.biomaterials.2021.121223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Harnessing developmental processes for tissue engineering represents a promising yet challenging approach to regenerative medicine. Tooth avulsion is among the most serious traumatic dental injuries, whereas functional tooth regeneration remains uncertain. Here, we established a strategy using decellularized tooth matrix (DTM) combined with human dental pulp stem cell (hDPSC) aggregates to simulate an odontogenesis-related developmental microenvironment. The bioengineered teeth reconstructed by this strategy regenerated three-dimensional pulp and periodontal tissues equipped with vasculature and innervation in a preclinical pig model after implantation into the alveolar bone. These results prompted us to enroll 15 patients with avulsed teeth after traumatic dental injuries in a pilot clinical trial. At 12 months after implantation, bioengineered teeth led to the regeneration of functional teeth, which supported continued root development, in humans. Mechanistically, exosomes derived from hDPSC aggregates mediated the tooth regeneration process by upregulating the odontogenic and angiogenic ability of hDPSCs. Our findings suggest that odontogenic microenvironment engineering by DTM and stem cell aggregates initiates functional tooth regeneration and serves as an effective treatment for tooth avulsion.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Meiling Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wanmin Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoning He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ling Wang
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zihan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaohe Guo
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
26
|
Chen Y, Wang Z, Lin C, Chen Y, Hu X, Zhang Y. Activated Epithelial FGF8 Signaling Induces Fused Supernumerary Incisors. J Dent Res 2021; 101:458-464. [PMID: 34706590 DOI: 10.1177/00220345211046590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
FGF8, which is specifically expressed in the dental epithelium prior to the E12.5 bud stage, is a key player during odontogenesis, being responsible for the initiation of tooth development. Here, to investigate the impact of persistent FGF8 signaling on tooth development, we forcibly activated FGF8 signaling in the dental epithelium after the bud stage by generating K14-Cre;R26R-Fg8 mice. We found that a unique type of fused supernumerary incisors is formed, although morphologically resembling the features of type II dens invaginatus in humans. Further analysis revealed that ectopically activated epithelial FGF8 alters the cell fate of the incisor lingual outer enamel epithelium, endowing it with odontogenic potential by the activation of several key tooth genes, including Pitx2, Sox2, Lef-1, p38, and Erk1/2, and induces de novo formation of an extra incisor crown lingually in parallel to the original one, leading to the formation of an extra incisor crown and fused with the original incisor eventually. Meanwhile, the overdosed epithelial FGF8 signaling dramatically downregulates the expression of mesenchymal Bmp4, leading to severely impaired enamel mineralization. Based on the location of the extra incisors, we propose that they are likely to be rescued replacement teeth. Our results further demonstrate the essential role of FGF8 signaling for tooth initiation and the establishment of progenitor cells of dental epithelial stem cells during development.
Collapse
Affiliation(s)
- Y Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China.,The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian, China
| | - Z Wang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - C Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Y Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - X Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Y Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
27
|
Li D, Wang X, Yao L, Jing H, Qin T, Li M, Zhang S, Chen Z, Zhang L. Sox2 controls asymmetric patterning of ameloblast lineage commitment by regulation of FGF signaling in the mouse incisor. J Mol Histol 2021; 52:1035-1042. [PMID: 34279757 DOI: 10.1007/s10735-021-10005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Mouse incisors are covered by enamel only on the labial side and the lingual side is covered by dentin without enamel. This asymmetric distribution of enamel makes it possible to be abrased on the lingual side, generating the sharp cutting edge of incisor on the labial side. The abrasion of mouse incisors is compensated by the continuous growth throughout life. Epithelium stem cells responsible for its continuous growth are reported to localize within the labial cervical loop. The transcription factor Sox2 plays important roles in the maintenance of stem cell pluripotency and organ formation. We previously found that Sox2 mainly expressed in the dental epithelium. Besides, Sox2 has been reported to be a dental epithelium stem cell marker in the incisor. However, the exact mechanism of Sox2 controlling amelogenesis is still not quite clearly elucidated. Here we report that conditional deletion of Sox2 in the dental epithelium using Shhcre caused impaired ameloblast differentiation in the labial side and induced ectopic ameloblast-like cell differentiation on the lingual side. Abnormal FGF gene expression was detected by RNAscope in situ hybridization in the mutant incisor. Collectively, we speculate that asymmetric ameloblast lineage commitment of mouse incisor might be regulated by Sox2 through FGF signaling.
Collapse
Affiliation(s)
- Dan Li
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Xiaofei Wang
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
- Department of Stomatology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Liping Yao
- Department of Cariology and Endodontology, Yantai Stomatological Hospital, Yantai, 264008, Shandong, China
| | - Huaixiang Jing
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
| | - Tiantian Qin
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
| | - Mingyue Li
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Shuyu Zhang
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Li Zhang
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China.
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.
| |
Collapse
|
28
|
Mu H, Liu X, Geng S, Su D, Chang H, Li L, Jin H, Wang X, Li Y, Zhang B, Xie X. Epithelial Bone Morphogenic Protein 2 and 4 Are Indispensable for Tooth Development. Front Physiol 2021; 12:660644. [PMID: 34483952 PMCID: PMC8415269 DOI: 10.3389/fphys.2021.660644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
The Bmp2 and Bmp4 expressed in root mesenchyme were essential for the patterning and cellular differentiation of tooth root. The role of the epithelium-derived Bmps in tooth root development, however, had not been reported. In this study, we found that the double abrogation of Bmp2 and Bmp4 from mouse epithelium caused short root anomaly (SRA). The K14-cre;Bmp2f/f;Bmp4f/f mice exhibited a persistent Hertwig’s Epithelial Root Sheath (HERS) with the reduced cell death, and the down-regulated BMP-Smad4 and Erk signaling pathways. Moreover, the Shh expression in the HERS, the Shh-Gli1 signaling, and Nfic expression in the root mesenchyme of the K14-cre;Bmp2f/f;Bmp4f/f mice were also decreased, indicating a disrupted epithelium- mesenchyme interaction between HERS and root mesenchyme. Such disruption suppressed the Osx and Dspp expression in the root mesenchyme, indicating an impairment on the differentiation and maturation of root odontoblasts. The impaired differentiation and maturation of root odontoblasts could be rescued partially by transgenic Dspp. Therefore, although required in a low dosage and with a functional redundancy, the epithelial Bmp2 and Bmp4 were indispensable for the HERS degeneration, as well as the differentiation and maturation of root mesenchyme.
Collapse
Affiliation(s)
- Haibin Mu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuoshuo Geng
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dian Su
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heran Chang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaohua Xie
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Chetty M, Roomaney IA, Beighton P. Taurodontism in dental genetics. BDJ Open 2021; 7:25. [PMID: 34244468 PMCID: PMC8270984 DOI: 10.1038/s41405-021-00081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Taurodontism is a dental anomaly defined by enlargement of the pulp chamber of multirooted teeth with apical displacement of the pulp floor and bifurcation of the roots. Taurodontism can be an isolated trait or part of a syndrome. A study was conducted to document the dental and craniofacial aspects of genetic thin bone disorders in South Africa. Sixty-four individuals with Osteogenesis imperfecta (OI), one individual with Pyle disease and one with Torg-Winchester syndrome respectively, were assessed clinically, radiographically and at a molecular level. Ten patients with OI XI and those with Pyle disease and Torg-Winchester syndrome had taurodontism. Taurodontism has been identified in several genetic disorders necessitating cognizance of the possible existence and implications of this characteristic when managing patients in the dental environment. Further studies should be directed toward identifying the incidence, etiology, and molecular pathways leading to taurodontism and its relationship to genetic syndromes.
Collapse
Affiliation(s)
- Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa.
| | - Imaan A Roomaney
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| | - Peter Beighton
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
30
|
Yang C, Qi Y, Sun Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Front Mol Biosci 2021; 8:711710. [PMID: 34307464 PMCID: PMC8295685 DOI: 10.3389/fmolb.2021.711710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Sonic hedgehog (SHH) pathway affects neurogenesis and neural patterning during the development of the central nervous system. Dysregulation of the SHH pathway in the brain contributes to aging-related neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. At present, the SHH signaling pathway can be divided into the canonical signaling pathway and non-canonical signaling pathway, which directly or indirectly mediates other related pathways involved in the development of neurodegenerative diseases. Hence, an in-depth knowledge of the SHH signaling pathway may open an avenue of possibilities for the treatment of neurodegenerative diseases. Here, we summarize the role and mechanism of the SHH signaling pathway in the development of the central nervous system and aging-related neurodegenerative diseases. In this review, we will also highlight the potential of the SHH pathway as a therapeutic target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Qi
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhitang Sun
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
Chen S, Jing J, Yuan Y, Feng J, Han X, Wen Q, Ho TV, Lee C, Chai Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep 2021; 32:108007. [PMID: 32783935 PMCID: PMC7461627 DOI: 10.1016/j.celrep.2020.108007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Stem cell niches provide a microenvironment to support the self-renewal and multi-lineage differentiation of stem cells. Cell-cell interactions within the niche are essential for maintaining tissue homeostasis. However, the niche cells supporting mesenchymal stem cells (MSCs) are largely unknown. Using single-cell RNA sequencing, we show heterogeneity among Gli1+ MSCs and identify a subpopulation of Runx2+/Gli1+ cells in the adult mouse incisor. These Runx2+/Gli1+ cells are strategically located between MSCs and transit-amplifying cells (TACs). They are not stem cells but help to maintain the MSC niche via IGF signaling to regulate TAC proliferation, differentiation, and incisor growth rate. ATAC-seq and chromatin immunoprecipitation reveal that Runx2 directly binds to Igfbp3 in niche cells. This Runx2-mediated IGF signaling is crucial for regulating the MSC niche and maintaining tissue homeostasis to support continuous growth of the adult mouse incisor, providing a model for analysis of the molecular regulation of the MSC niche.
Collapse
Affiliation(s)
- Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Chelsea Lee
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
32
|
Driesen RB, Gervois P, Vangansewinkel T, Lambrichts I. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol 2021; 9:665600. [PMID: 34026757 PMCID: PMC8134663 DOI: 10.3389/fcell.2021.665600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| |
Collapse
|
33
|
Du J, Jing J, Chen S, Yuan Y, Feng J, Ho TV, Sehgal P, Xu J, Jiang X, Chai Y. Arid1a regulates cell cycle exit of transit-amplifying cells by inhibiting the Aurka-Cdk1 axis in mouse incisor. Development 2021; 148:dev198838. [PMID: 33766930 PMCID: PMC8077510 DOI: 10.1242/dev.198838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
34
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
35
|
Berio F, Debiais-Thibaud M. Evolutionary developmental genetics of teeth and odontodes in jawed vertebrates: a perspective from the study of elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:906-918. [PMID: 31820456 DOI: 10.1111/jfb.14225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Most extant vertebrates display a high variety of tooth and tooth-like organs (odontodes) that vary in shape, position over the body and nature of composing tissues. The development of these structures is known to involve similar genetic cascades and teeth and odontodes are believed to share a common evolutionary history. Gene expression patterns have previously been compared between mammalian and teleost tooth development but we highlight how the comparative framework was not always properly defined to deal with different tooth types or tooth developmental stages. Larger-scale comparative analyses also included cartilaginous fishes: sharks display oral teeth and dermal scales for which the gene expression during development started to be investigated in the small-spotted catshark Scyliorhinus canicula during the past decade. We report several descriptive approaches to analyse the embryonic tooth and caudal scale gene expressions in S. canicula. We compare these expressions wih the ones reported in mouse molars and teleost oral and pharyngeal teeth and highlight contributions and biases that arise from these interspecific comparisons. We finally discuss the evolutionary processes that can explain the observed intra and interspecific similarities and divergences in the genetic cascades involved in tooth and odontode development in jawed vertebrates.
Collapse
Affiliation(s)
- Fidji Berio
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
- University of Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR5242, 46 Allée d'Italie, Lyon, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
36
|
Sweat M, Sweat Y, Yu W, Su D, Leonard RJ, Eliason SL, Amendt BA. The miR-200 family is required for ectodermal organ development through the regulation of the epithelial stem cell niche. STEM CELLS (DAYTON, OHIO) 2021; 39:761-775. [PMID: 33529466 PMCID: PMC8247948 DOI: 10.1002/stem.3342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The murine lower incisor ectodermal organ contains a single epithelial stem cell (SC) niche that provides epithelial progenitor cells to the continuously growing rodent incisor. The dental stem cell niche gives rise to several cell types and we demonstrate that the miR‐200 family regulates these cell fates. The miR‐200 family is highly enriched in the differentiated dental epithelium and absent in the stem cell niche. In this study, we inhibited the miR‐200 family in developing murine embryos using new technology, resulting in an expanded epithelial stem cell niche and lack of cell differentiation. Inhibition of individual miRs within the miR‐200 cluster resulted in differential developmental and cell morphology defects. miR‐200 inhibition increased the expression of dental epithelial stem cell markers, expanded the stem cell niche and decreased progenitor cell differentiation. RNA‐seq. identified miR‐200 regulatory pathways involved in cell differentiation and compartmentalization of the stem cell niche. The miR‐200 family regulates signaling pathways required for cell differentiation and cell cycle progression. The inhibition of miR‐200 decreased the size of the lower incisor due to increased autophagy and cell death. New miR‐200 targets demonstrate gene networks and pathways controlling cell differentiation and maintenance of the stem cell niche. This is the first report demonstrating how the miR‐200 family is required for in vivo progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Mason Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Dan Su
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Riley J Leonard
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steven L Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,The Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
37
|
He J, Jing J, Feng J, Han X, Yuan Y, Guo T, Pei F, Ma Y, Cho C, Ho TV, Chai Y. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 2021; 17:e1009320. [PMID: 33596195 PMCID: PMC7920342 DOI: 10.1371/journal.pgen.1009320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.
Collapse
Affiliation(s)
- Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan province, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Fei Pei
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Courtney Cho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
38
|
Yang S, Choi H, Kim TH, Jeong JK, Liu Y, Harada H, Cho ES. Cell dynamics in Hertwig's epithelial root sheath are regulated by β-catenin activity during tooth root development. J Cell Physiol 2020; 236:5387-5398. [PMID: 33377198 PMCID: PMC8048837 DOI: 10.1002/jcp.30243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022]
Abstract
β‐catenin, a key mediator of Wnt signaling, plays multiple roles in tooth development. However, the role of β‐catenin in Hertwig's epithelial root sheath (HERS) during root formation remains unclear. In this study, we generated inducible tissue‐specific β‐catenin conditional knockout mice (Ctnnb1i∆shh) to investigate how β‐catenin in HERS affects tooth root development. The inactivation of β‐catenin in HERS led to interrupted root elongation due to premature disruption of HERS. This phenotype was accompanied by reduced cell‐cell adhesion and decreased expression of junctional proteins, as well as increased epithelial‐to‐mesenchymal transition of HERS cells upon β‐catenin depletion. Accordingly, stabilization of β‐catenin in HERS (Catnbi∆shh) led to the formation of unfragmented HERS and resulted in the failure of HERS dissociation, with increased expression of junctional proteins. Our results suggest that fine control of β‐catenin is important for HERS to guide root formation through regulating its structural integrity.
Collapse
Affiliation(s)
- Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| |
Collapse
|
39
|
Gan L, Liu Y, Cui DX, Pan Y, Wan M. New insight into dental epithelial stem cells: Identification, regulation, and function in tooth homeostasis and repair. World J Stem Cells 2020; 12:1327-1340. [PMID: 33312401 PMCID: PMC7705464 DOI: 10.4252/wjsc.v12.i11.1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tooth enamel, a highly mineralized tissue covering the outermost area of teeth, is always damaged by dental caries or trauma. Tooth enamel rarely repairs or renews itself, due to the loss of ameloblasts and dental epithelial stem cells (DESCs) once the tooth erupts. Unlike human teeth, mouse incisors grow continuously due to the presence of DESCs that generate enamel-producing ameloblasts and other supporting dental epithelial lineages. The ready accessibility of mouse DESCs and wide availability of related transgenic mouse lines make mouse incisors an excellent model to examine the identity and heterogeneity of dental epithelial stem/progenitor cells; explore the regulatory mechanisms underlying enamel formation; and help answer the open question regarding the therapeutic development of enamel engineering. In the present review, we update the current understanding about the identification of DESCs in mouse incisors and summarize the regulatory mechanisms of enamel formation driven by DESCs. The roles of DESCs during homeostasis and repair are also discussed, which should improve our knowledge regarding enamel tissue engineering.
Collapse
Affiliation(s)
- Lu Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
40
|
Exploiting teeth as a model to study basic features of signaling pathways. Biochem Soc Trans 2020; 48:2729-2742. [DOI: 10.1042/bst20200514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Teeth constitute a classical model for the study of signaling pathways and their roles in mediating interactions between cells and tissues in organ development, homeostasis and regeneration. Rodent teeth are mostly used as experimental models. Rodent molars have proved fundamental in the study of epithelial–mesenchymal interactions and embryonic organ morphogenesis, as well as to faithfully model human diseases affecting dental tissues. The continuously growing rodent incisor is an excellent tool for the investigation of the mechanisms regulating stem cells dynamics in homeostasis and regeneration. In this review, we discuss the use of teeth as a model to investigate signaling pathways, providing an overview of the many unique experimental approaches offered by this organ. We discuss how complex networks of signaling pathways modulate the various aspects of tooth biology, and the models used to obtain this knowledge. Finally, we introduce new experimental approaches that allow the study of more complex interactions, such as the crosstalk between dental tissues, innervation and vascularization.
Collapse
|
41
|
Chiba Y, Saito K, Martin D, Boger ET, Rhodes C, Yoshizaki K, Nakamura T, Yamada A, Morell RJ, Yamada Y, Fukumoto S. Single-Cell RNA-Sequencing From Mouse Incisor Reveals Dental Epithelial Cell-Type Specific Genes. Front Cell Dev Biol 2020; 8:841. [PMID: 32984333 PMCID: PMC7490294 DOI: 10.3389/fcell.2020.00841] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.
Collapse
Affiliation(s)
- Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Craig Rhodes
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, Japan
| |
Collapse
|
42
|
Machiya A, Tsukamoto S, Ohte S, Kuratani M, Suda N, Katagiri T. Smad4-dependent transforming growth factor-β family signaling regulates the differentiation of dental epithelial cells in adult mouse incisors. Bone 2020; 137:115456. [PMID: 32473314 DOI: 10.1016/j.bone.2020.115456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
Teeth consist of two major tissues, enamel and dentin, which are formed during development by epithelial and mesenchymal cells, respectively. Rodent incisors are useful experimental models for studying the molecular mechanisms of tooth formation because they are simultaneously growing in not only embryos but also adults. Members of the transforming growth factor-β (TGF-β) family regulate epithelial-mesenchymal interactions through an essential coactivator, Smad4. In the present study, we established Smad4 conditional knockout (cKO) mice and examined phenotypes in adult incisors. Smad4 cKO mice died with severe anemia within one month. Phosphorylated Smad1/5/9 and Smad2/3 were detected in epithelial cells in both control and Smad4 cKO mice. Disorganized and hypoplastic epithelial cells, such as ameloblasts, were observed in Smad4 cKO mice. Moreover, alkaline phosphatase expression and iron accumulation were reduced in dental epithelial cells in Smad4 cKO mice. These findings suggest that TGF-β family signaling through Smad4 is required for the differentiation and functions of dental epithelial cells in adult mouse incisors.
Collapse
Affiliation(s)
- Aiko Machiya
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan; Division of Oral Rehabilitation of Sciences, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry, Saitama, Japan
| | - Sho Tsukamoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Satoshi Ohte
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Microbial Chemistry Laboratory, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Mai Kuratani
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Naoto Suda
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, Saitama, Japan
| | - Takenobu Katagiri
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
43
|
Sweat YY, Sweat M, Yu W, Sanz-Navarro M, Zhang L, Sun Z, Eliason S, Klein OD, Michon F, Chen Z, Amendt BA. Sox2 Controls Periderm and Rugae Development to Inhibit Oral Adhesions. J Dent Res 2020; 99:1397-1405. [PMID: 32674684 DOI: 10.1177/0022034520939013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In humans, ankyloglossia and cleft palate are common congenital craniofacial anomalies, and these are regulated by a complex gene regulatory network. Understanding the genetic underpinnings of ankyloglossia and cleft palate will be an important step toward rational treatment of these complex anomalies. We inactivated the Sry (sex-determining region Y)-box 2 (Sox2) gene in the developing oral epithelium, including the periderm, a transient structure that prevents abnormal oral adhesions during development. This resulted in ankyloglossia and cleft palate with 100% penetrance in embryos examined after embryonic day 14.5. In Sox2 conditional knockout embryos, the oral epithelium failed to differentiate, as demonstrated by the lack of keratin 6, a marker of the periderm. Further examination revealed that the adhesion of the tongue and mandible expressed the epithelial markers E-Cad and P63. The expanded epithelia are Sox9-, Pitx2-, and Tbx1-positive cells, which are markers of the dental epithelium; thus, the dental epithelium contributes to the development of oral adhesions. Furthermore, we found that Sox2 is required for palatal shelf extension, as well as for the formation of palatal rugae, which are signaling centers that regulate palatogenesis. In conclusion, the deletion of Sox2 in oral epithelium disrupts palatal shelf extension, palatal rugae formation, tooth development, and periderm formation. The periderm is required to inhibit oral adhesions and ankyloglossia, which is regulated by Sox2. In addition, oral adhesions occur through an expanded dental epithelial layer that inhibits epithelial invagination and incisor development. This process may contribute to dental anomalies due to ankyloglossia.
Collapse
Affiliation(s)
- Y Y Sweat
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - M Sweat
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - W Yu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - M Sanz-Navarro
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - L Zhang
- Binzhou Medical University, Yantai, China
| | - Z Sun
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| | - S Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - O D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California-San Francisco, San Francisco, CA, USA
| | - F Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, Montpellier, France
| | - Z Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.,College of Dentistry, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
44
|
Wu J, Tian Y, Han L, Liu C, Sun T, Li L, Yu Y, Lamichhane B, D'Souza RN, Millar SE, Krumlauf R, Ornitz DM, Feng JQ, Klein O, Zhao H, Zhang F, Linhardt RJ, Wang X. FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biol 2020; 18:87. [PMID: 32664967 PMCID: PMC7359594 DOI: 10.1186/s12915-020-00813-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The formation of supernumerary teeth is an excellent model for studying the molecular mechanisms that control stem/progenitor cell homeostasis needed to generate a renewable source of replacement cells and tissues. Although multiple growth factors and transcriptional factors have been associated with supernumerary tooth formation, the regulatory inputs of extracellular matrix in this regenerative process remains poorly understood. RESULTS In this study, we present evidence that disrupting glycosaminoglycans (GAGs) in the dental epithelium of mice by inactivating FAM20B, a xylose kinase essential for GAG assembly, leads to supernumerary tooth formation in a pattern reminiscent of replacement teeth. The dental epithelial GAGs confine murine tooth number by restricting the homeostasis of Sox2(+) dental epithelial stem/progenitor cells in a non-autonomous manner. FAM20B-catalyzed GAGs regulate the cell fate of dental lamina by restricting FGFR2b signaling at the initial stage of tooth development to maintain a subtle balance between the renewal and differentiation of Sox2(+) cells. At the later cap stage, WNT signaling functions as a relay cue to facilitate the supernumerary tooth formation. CONCLUSIONS The novel mechanism we have characterized through which GAGs control the tooth number in mice may also be more broadly relevant for potentiating signaling interactions in other tissues during development and tissue homeostasis.
Collapse
Affiliation(s)
- Jingyi Wu
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ye Tian
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Lu Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,West China Hospital of Stomatology, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Chao Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.,Department of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Tianyu Sun
- Southern Medical University Hospital of Stomatology, Guangzhou, 510280, Guangdong, China.,Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ling Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yanlei Yu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Bikash Lamichhane
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT, 84108, USA
| | - Sarah E Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
45
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
46
|
Saito K, Michon F, Yamada A, Inuzuka H, Yamaguchi S, Fukumoto E, Yoshizaki K, Nakamura T, Arakaki M, Chiba Y, Ishikawa M, Okano H, Thesleff I, Fukumoto S. Sox21 Regulates Anapc10 Expression and Determines the Fate of Ectodermal Organ. iScience 2020; 23:101329. [PMID: 32674056 PMCID: PMC7363706 DOI: 10.1016/j.isci.2020.101329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
The transcription factor Sox21 is expressed in the epithelium of developing teeth. The present study aimed to determine the role of Sox21 in tooth development. We found that disruption of Sox21 caused severe enamel hypoplasia, regional osteoporosis, and ectopic hair formation in the gingiva in Sox21 knockout incisors. Differentiation markers were lost in ameloblasts, which formed hair follicles expressing hair keratins. Molecular analysis and chromatin immunoprecipitation sequencing indicated that Sox21 regulated Anapc10, which recognizes substrates for ubiquitination-mediated degradation, and determined dental-epithelial versus hair follicle cell fate. Disruption of either Sox21 or Anapc10 induced Smad3 expression, accelerated TGF-β1-induced promotion of epithelial-to-mesenchymal transition (EMT), and resulted in E-cadherin degradation via Skp2. We conclude that Sox21 disruption in the dental epithelium leads to the formation of a unique microenvironment promoting hair formation and that Sox21 controls dental epithelial differentiation and enamel formation by inhibiting EMT via Anapc10. Sox21 was induced by Shh in dental epithelial cells Sox21 deficiency in dental epithelium caused differentiation into hair cells Sox21 deficiency did not cause differentiation into mature ameloblasts Anapc10 induced by Sox21 bound to Fzr1 and regulated EMT via Skp2
Collapse
Affiliation(s)
- Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Frederic Michon
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Institute for Neurosciences of Montpellier, Inserm U1051, University of Montpellier, 34295 Montpellier, France
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hiroyuki Inuzuka
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoko Yamaguchi
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Emiko Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Makiko Arakaki
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
47
|
Yu W, Sun Z, Sweat Y, Sweat M, Venugopalan SR, Eliason S, Cao H, Paine ML, Amendt BA. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development 2020; 147:dev186023. [PMID: 32439755 PMCID: PMC7286298 DOI: 10.1242/dev.186023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.
Collapse
Affiliation(s)
- Wenjie Yu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
48
|
Novel strategies for expansion of tooth epithelial stem cells and ameloblast generation. Sci Rep 2020; 10:4963. [PMID: 32188889 PMCID: PMC7080756 DOI: 10.1038/s41598-020-60708-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
Enamel is secreted by ameloblasts derived from tooth epithelial stem cells (SCs). Humans cannot repair or regenerate enamel, due to early loss of tooth epithelial SCs. Contrarily in the mouse incisors, epithelial SCs are maintained throughout life and endlessly generate ameloblasts, and thus enamel. Here we isolated Sox2-GFP+ tooth epithelial SCs which generated highly cellular spheres following a novel in vitro strategy. This system enabled analysis of SC regulation by various signaling molecules, and supported the stimulatory and inhibitory roles of Shh and Bmp, respectively; providing better insight into the heterogeneity of the SCs. Further, we generated a novel mouse reporter, Enamelin-tdTomato for identification of ameloblasts in live tissues and cells, and used it to demonstrate presence of ameloblasts in the new 3D co-culture system of dental SCs. Collectively, our results provide means of generating 3D tooth epithelium from adult SCs which can be utilized toward future generation of enamel.
Collapse
|
49
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
50
|
Tissue Engineering Approaches for Enamel, Dentin, and Pulp Regeneration: An Update. Stem Cells Int 2020; 2020:5734539. [PMID: 32184832 PMCID: PMC7060883 DOI: 10.1155/2020/5734539] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Stem/progenitor cells are undifferentiated cells characterized by their exclusive ability for self-renewal and multilineage differentiation potential. In recent years, researchers and investigations explored the prospect of employing stem/progenitor cell therapy in regenerative medicine, especially stem/progenitor cells originating from the oral tissues. In this context, the regeneration of the lost dental tissues including enamel, dentin, and the dental pulp are pivotal targets for stem/progenitor cell therapy. The present review elaborates on the different sources of stem/progenitor cells and their potential clinical applications to regenerate enamel, dentin, and the dental pulpal tissues.
Collapse
|