1
|
Marasco M, Kirkpatrick J, Carlomagno T, Hub JS, Anselmi M. Phosphopeptide binding to the N-SH2 domain of tyrosine phosphatase SHP2 correlates with the unzipping of its central β-sheet. Comput Struct Biotechnol J 2024; 23:1169-1180. [PMID: 38510972 PMCID: PMC10951427 DOI: 10.1016/j.csbj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
SHP2 is a tyrosine phosphatase that plays a regulatory role in multiple intracellular signaling cascades and is known to be oncogenic in certain contexts. In the absence of effectors, SHP2 adopts an autoinhibited conformation with its N-SH2 domain blocking the active site. Given the key role of N-SH2 in regulating SHP2, this domain has been extensively studied, often by X-ray crystallography. Using a combination of structural analyses and molecular dynamics (MD) simulations we show that the crystallographic environment can significantly influence the structure of the isolated N-SH2 domain, resulting in misleading interpretations. As an orthogonal method to X-ray crystallography, we use a combination of NMR spectroscopy and MD simulations to accurately determine the conformation of apo N-SH2 in solution. In contrast to earlier reports based on crystallographic data, our results indicate that apo N-SH2 in solution primarily adopts a conformation with a fully zipped central β-sheet, and that partial unzipping of this β-sheet is promoted by binding of either phosphopeptides or even phosphate/sulfate ions.
Collapse
Affiliation(s)
- Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Kirkpatrick
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Teresa Carlomagno
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Massimiliano Anselmi
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Gao X, Shao S, Zhang X, Li C, Jiang Q, Li B. Interaction between CD244 and SHP2 regulates inflammation in chronic obstructive pulmonary disease via targeting the MAPK/NF-κB signaling pathway. PLoS One 2024; 19:e0312228. [PMID: 39423200 PMCID: PMC11488738 DOI: 10.1371/journal.pone.0312228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
This study delved into the interplay between CD244 and Src Homology 2 Domain Containing Phosphatase-2 (SHP2) in chronic obstructive pulmonary disease (COPD) pathogenesis, focusing on apoptosis and inflammation in cigarette smoke extract (CSE)-treated human bronchial epithelial (HBE) cells. Analysis of the GSE100153 dataset identified 290 up-regulated and 344 down-regulated differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) highlighted the turquoise module had the highest correlation with COPD samples. Functional enrichment analysis linked these DEGs to critical COPD processes and pathways like neutrophil degranulation, protein kinase B activity, and diabetic cardiomyopathy. Observations on CD244 expression revealed its upregulation with increasing CSE concentrations, suggesting a dose-dependent relationship with inflammatory cytokines (IL-6, IL-8, TNF-α). CD244 knockdown mitigated CSE-induced apoptosis and inflammation, while overexpression exacerbated these responses. Co-immunoprecipitation (Co-IP) confirmed the physical interaction between CD244 and SHP2, emphasizing their regulatory connection. Analysis of Concurrently, the Nuclear Factor-kappa B (NF-κB) and Mitogen-activated protein kinase (MAPK) signaling pathways showed that modulating CD244 expression impacted key pathway components (p-JNK, p-IKKβ, p-ERK, p-P38, p-lkBα, p-P65), an effect reversed upon SHP2 knockdown. These findings underscore the pivotal role of the CD244/SHP2 axis in regulating inflammatory and apoptotic responses in CSE-exposed HBE cells, suggesting its potential as a therapeutic target in COPD treatment strategies.
Collapse
Affiliation(s)
- Xiaobing Gao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Suhua Shao
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Xi Zhang
- Department of Outpatient, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Changjie Li
- Laboratory of Shanghai Yijian Medical Testing Institute, Shanghai, China
| | - Qianqian Jiang
- Health Management Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Li
- Department of Emergency Medicine, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Guo Z, Duan Y, Sun K, Zheng T, Liu J, Xu S, Xu J. Advances in SHP2 tunnel allosteric inhibitors and bifunctional molecules. Eur J Med Chem 2024; 275:116579. [PMID: 38889611 DOI: 10.1016/j.ejmech.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.
Collapse
Affiliation(s)
- Zhichao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yiping Duan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kai Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Tiandong Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Zhou B, Fan Z, He G, Zhang W, Yang G, Ye L, Xu J, Liu R. SHP2 mutations promote glycolysis and inhibit apoptosis via PKM2/hnRNPK signaling in colorectal cancer. iScience 2024; 27:110462. [PMID: 39104405 PMCID: PMC11298658 DOI: 10.1016/j.isci.2024.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal tumors. Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) mutations occur in human solid tumors, including CRC. However, the function and underlying mechanism in CRC have not been well characterized. We demonstrated that the SHP2D61Y and SHP2E76K mutations occurred in CRC tissues, and these mutations promoted CRC cell proliferation, migration/invasion, and reduced CDDP-induced cell apoptosis in vitro and in vivo. Mechanistically, SHP2D61Y and SHP2E76K promote glycolysis by accelerating pyruvate kinase M2 (PKM2) nuclear translocation through mechanism beyond ERK activation. PKM2-IN-1 attenuates PKM2-dependent glycolysis and reduce glucose uptake, lactate production, and ATP levels promoted by SHP2D61Y and SHP2E76K in CRC cells. Furthermore, PKM2 upregulates heterogeneous nuclear ribonucleoprotein K (hnRNPK) expression and increases CRC cell proliferation and migration/invasion via regulating hnRNPK ubiquitination. These findings provide evidence that SHP2D61Y and SHP2E76K regulate CDDP-induced apoptosis, glucose metabolism, and CRC migration/invasion through PKM2 nuclear translocation and PKM2/hnRNPK signaling.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guodong He
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Xu
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
5
|
Bhasin S, Das A. Marine alkaloid rigidin analogues as potential selective inhibitors of SHP1, a new strategy for cancer immunotherapeutics. J Biomol Struct Dyn 2024; 42:5590-5606. [PMID: 37349914 DOI: 10.1080/07391102.2023.2227708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
SHP1 is a protein tyrosine phosphatase playing a central role in immunity, cell growth, development, and survival. The inhibition of SHP1 can help in better prognosis in various disorders like breast and ovarian cancer, melanoma, atherosclerosis, hypoxia, hypoactive immune response, and familial dysautonomia. The currently available inhibitors of SHP1 have the side effect of inhibiting the activity of SHP2, which shares >60% sequence similarity with SHP1 but has distinct biological functions. Thus, there is a need to search for novel specific inhibitors of SHP1. The current study uses a combination of virtual screening and molecular dynamic simulations, followed by PCA and MM-GBSA analysis, to screen about 35000 compounds; to predict that two rigidin analogues can potentially selectively inhibit SHP1 but not SHP2. Our studies demonstrate that these rigidin analogues are more potent at inhibiting SHP1 than the commercially available inhibitor NSC-87877. Further, cross-binding studies with SHP2 exhibited poor binding efficiency and lower stability of the complex, thus indicating a specificity of the rigidin analogues for SHP1, which is crucial in preventing side effects due to the diverse physiological functions of SHP2 in cellular signaling, proliferation, and hematopoiesis. Additionally, SHP1 is essential in mediating the inhibitory signaling in antitumor immune cells like NK and T cells. Hence, the rigidin analogues that inhibit SHP1 will potentiate the anti-tumor immune response by the release of inhibitory function of NK cells, thus driving NK activating response, in addition to their intrinsic anti-tumor function. Thus, SHP1 inhibition is a novel double-blade approach towards anti-cancer immunotherapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sidharth Bhasin
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| |
Collapse
|
6
|
Wang P, Han Y, Pan W, Du J, Zuo D, Ba Y, Zhang H. Tyrosine phosphatase SHP2 aggravates tumor progression and glycolysis by dephosphorylating PKM2 in gastric cancer. MedComm (Beijing) 2024; 5:e527. [PMID: 38576457 PMCID: PMC10993348 DOI: 10.1002/mco2.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/26/2023] [Accepted: 12/22/2023] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is among the most lethal human malignancies, yet it remains hampered by challenges in fronter of molecular-guided targeted therapy to direct clinical treatment strategies. The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) is involved in the malignant progression of GC. However, the detailed mechanisms of the posttranslational modifications of SHP2 remain poorly understood. Herein, we demonstrated that an allosteric SHP2 inhibitor, SHP099, was able to block tumor proliferation and migration of GC by dephosphorylating the pyruvate kinase M2 type (PKM2) protein. Mechanistically, we found that PKM2 is a bona fide target of SHP2. The dephosphorylation and activation of PKM2 by SHP2 are necessary to exacerbate tumor progression and GC glycolysis. Moreover, we demonstrated a strong correlation between the phosphorylation level of PKM2 and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in GC cells. Notably, the low phosphorylation expression of AMPK was negatively correlated with activated SHP2. Besides, we proved that cisplatin could activate SHP2 and SHP099 increased sensitivity to cisplatin in GC. Taken together, our results provide evidence that the SHP2/PKM2/AMPK axis exerts a key role in GC progression and glycolysis and could be a viable therapeutic approach for the therapy of GC.
Collapse
Affiliation(s)
- Peiyun Wang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yueting Han
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Wen Pan
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Jian Du
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Duo Zuo
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Yi Ba
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical UniversityTianjinChina
- The Institute of Translational MedicineTianjin Union Medical Center of Nankai UniversityTianjinChina
| |
Collapse
|
7
|
Day JEH, Berdini V, Castro J, Chessari G, Davies TG, Day PJ, St Denis JD, Fujiwara H, Fukaya S, Hamlett CCF, Hearn K, Hiscock SD, Holvey RS, Ito S, Kandola N, Kodama Y, Liebeschuetz JW, Martins V, Matsuo K, Mortenson PN, Muench S, Nakatsuru Y, Ochiiwa H, Palmer N, Peakman T, Price A, Reader M, Rees DC, Rich SJ, Shah A, Shibata Y, Smyth T, Twigg DG, Wallis NG, Williams G, Wilsher NE, Woodhead A, Shimamura T, Johnson CN. Fragment-Based Discovery of Allosteric Inhibitors of SH2 Domain-Containing Protein Tyrosine Phosphatase-2 (SHP2). J Med Chem 2024. [PMID: 38462716 DOI: 10.1021/acs.jmedchem.3c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains.
Collapse
Affiliation(s)
- James E H Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Valerio Berdini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Thomas G Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Philip J Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Hideto Fujiwara
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoshi Fukaya
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | - Keisha Hearn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Steven D Hiscock
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Satoru Ito
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Navrohit Kandola
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yasuo Kodama
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Kenichi Matsuo
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sandra Muench
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoko Nakatsuru
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Hiroaki Ochiiwa
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Nicholas Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David C Rees
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Sharna J Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Alpesh Shah
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Yoshihiro Shibata
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Tomoko Smyth
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - David G Twigg
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Glyn Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Tadashi Shimamura
- Taiho Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
8
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Zhou P, Ouyang L, Jiang T, Tian Y, Deng W, Wang H, Kong S, Lu Z. Progesterone and cAMP synergistically induce SHP2 expression via PGR and CREB1 during uterine stromal decidualization. FEBS J 2024; 291:142-157. [PMID: 37786383 DOI: 10.1111/febs.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.
Collapse
Affiliation(s)
- Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Ting Jiang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| |
Collapse
|
10
|
Anselmi M, Hub JS. Atomistic ensemble of active SHP2 phosphatase. Commun Biol 2023; 6:1289. [PMID: 38129686 PMCID: PMC10739809 DOI: 10.1038/s42003-023-05682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
SHP2 phosphatase plays an important role in regulating several intracellular signaling pathways. Pathogenic mutations of SHP2 cause developmental disorders and are linked to hematological malignancies and cancer. SHP2 comprises two tandemly-arranged SH2 domains, a catalytic PTP domain, and a disordered C-terminal tail. Under physiological, non-stimulating conditions, the catalytic site of PTP is occluded by the N-SH2 domain, so that the basal activity of SHP2 is low. Whereas the autoinhibited structure of SHP2 has been known for two decades, its active, open structure still represents a conundrum. Since the oncogenic mutant SHP2E76K almost completely populates the active, open state, this mutant has been extensively studied as a model for activated SHP2. By molecular dynamics simulations and accurate explicit-solvent SAXS curve predictions, we present the heterogeneous atomistic ensemble of constitutively active SHP2E76K in solution, encompassing a set of conformational arrangements and radii of gyration in agreement with experimental SAXS data.
Collapse
Affiliation(s)
- Massimiliano Anselmi
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
11
|
Luo Y, Li J, Zong Y, Sun M, Zheng W, Zhu J, Liu L, Liu B. Discovery of the SHP2 allosteric inhibitor 2-((3R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4] triazin-4(3H)-one. J Enzyme Inhib Med Chem 2023; 38:398-404. [PMID: 36476046 PMCID: PMC9744210 DOI: 10.1080/14756366.2022.2151594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The non-receptor protein tyrosine phosphatase (PTP) SHP2 encoded by the PTPN11 gene is a critical regulator in a number of cellular signalling processes and pathways, including the MAPK and the immune-inhibitory programmed cell death PD-L1/PD-1 pathway. Hyperactivation and inactivation of SHP2 is of great therapeutic interest for its association with multiple developmental disorders and cancer-related diseases. In this work, we characterised a potent SHP2 allosteric inhibitor 2-((3 R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4]triazin-4(3H)-one (PB17-026-01) by using structure-based design. To study the structure-activity relationship, we compared co-crystal structures of SHP2 bound with PB17-026-01 and its analogue compound PB17-036-01, which is ∼20-fold less active than PB17-026-01, revealing that both of the compounds are bound to SHP2 in the allosteric binding pocket and PB17-026-01 forms more polar contacts with its terminal group. Overall, our results provide new insights into the modes of action of allosteric SHP2 inhibitor and a guide for the design of SHP2 allosteric inhibitor.
Collapse
Affiliation(s)
- Yanmei Luo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Li
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Yuliang Zong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxin Sun
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wan Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu Liu
- Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China,Liu Liu Division of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China,CONTACT Bing Liu School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Tojjari A, Saeed A, Sadeghipour A, Kurzrock R, Cavalcante L. Overcoming Immune Checkpoint Therapy Resistance with SHP2 Inhibition in Cancer and Immune Cells: A Review of the Literature and Novel Combinatorial Approaches. Cancers (Basel) 2023; 15:5384. [PMID: 38001644 PMCID: PMC10670368 DOI: 10.3390/cancers15225384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
SHP2 (Src Homology 2 Domain-Containing Phosphatase 2) is a protein tyrosine phosphatase widely expressed in various cell types. SHP2 plays a crucial role in different cellular processes, such as cell proliferation, differentiation, and survival. Aberrant activation of SHP2 has been implicated in multiple human cancers and is considered a promising therapeutic target for treating these malignancies. The PTPN11 gene and functions encode SHP2 as a critical signal transduction regulator that interacts with key signaling molecules in both the RAS/ERK and PD-1/PD-L1 pathways; SHP2 is also implicated in T-cell signaling. SHP2 may be inhibited by molecules that cause allosteric (bind to sites other than the active site and attenuate activation) or orthosteric (bind to the active site and stop activation) inhibition or via potent SHP2 degraders. These inhibitors have anti-proliferative effects in cancer cells and suppress tumor growth in preclinical models. In addition, several SHP2 inhibitors are currently in clinical trials for cancer treatment. This review aims to provide an overview of the current research on SHP2 inhibitors, including their mechanism of action, structure-activity relationships, and clinical development, focusing on immune modulation effects and novel therapeutic strategies in the immune-oncology field.
Collapse
Affiliation(s)
- Alireza Tojjari
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran P.O. Box 14115-175, Iran
| | - Razelle Kurzrock
- Department of Medicine, Genome Sciences and Precision Medicine Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | | |
Collapse
|
13
|
Huang R, Zhang YT, Lin Y, Pang RL, Yang Z, Zhao WH. Clinical Characteristics and Prognosis of Acute Myeloid Leukemia Patients with Protein Tyrosine Phosphatase Non-Receptor Type 11 Gene Mutation. Pharmgenomics Pers Med 2023; 16:1011-1026. [PMID: 38023823 PMCID: PMC10648958 DOI: 10.2147/pgpm.s420254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The purpose of our study was to investigate the clinical characteristics, molecular biological characteristics and prognosis of acute myeloid leukemia (AML) patients with protein tyrosine phosphatase non-receptor type 11 (PTPN11) gene mutation. Methods The clinical data of 30 newly diagnosed adult AML patients with PTPN11 gene mutation were analyzed retrospectively. Kaplan-Meier and Cox proportional risk regression model were examined for prognostic analysis and prognostic factor screening. Results High-frequency mutation sites of PTPN11 gene are located in exon 3 of chromosome 12, which are D61 and A72 (16.7%), followed by E76 (13.3%). The median variant allele frequency (VAF) of PTPN11 mutant gene is 18.4%. The patients were divided into two groups according to PTPN11 VAF 35.3% (upper quartile). We observed that the peripheral blood leukocyte count in patients with VAF ≥35.3% was significantly higher than patients with VAF < 35.3% (p = 0.019) and also closely related to M5 (p = 0.016) and internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) (FLT3-ITD) mutation (p = 0.048). Taking PTPN11 VAF 20% and 35.3% as the cutoff value, the patients were divided into two groups, and the overall survival and event-free survival (EFS) of the two groups were not significant. Multivariate analysis of Cox risk ratio model showed that white blood cell count and Eastern Cooperative Oncology Group (ECOG) physical status score were independent risk factors affecting the EFS. Conclusion Our study observed that PTPN11 VAF may not be a prognostic factor in patients with PTPN11mut AML. Newly diagnosed high white blood cell count and poor performance status were independent risk factors for EFS in PTPN11mut AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Yi-Ting Zhang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Yu Lin
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Ru-Li Pang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zhi Yang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Wei-Hua Zhao
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
14
|
Taylor AM, Williams BR, Giordanetto F, Kelley EH, Lescarbeau A, Shortsleeves K, Tang Y, Walters WP, Arrazate A, Bowman C, Brophy E, Chan EW, Deshmukh G, Greisman JB, Hunsaker TL, Kipp DR, Saenz Lopez-Larrocha P, Maddalo D, Martin IJ, Maragakis P, Merchant M, Murcko M, Nisonoff H, Nguyen V, Nguyen V, Orozco O, Owen C, Pierce L, Schmidt M, Shaw DE, Smith S, Therrien E, Tran JC, Watters J, Waters NJ, Wilbur J, Willmore L. Identification of GDC-1971 (RLY-1971), a SHP2 Inhibitor Designed for the Treatment of Solid Tumors. J Med Chem 2023; 66:13384-13399. [PMID: 37774359 DOI: 10.1021/acs.jmedchem.3c00483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Protein tyrosine phosphatase SHP2 mediates RAS-driven MAPK signaling and has emerged in recent years as a target of interest in oncology, both for treating with a single agent and in combination with a KRAS inhibitor. We were drawn to the pharmacological potential of SHP2 inhibition, especially following the initial observation that drug-like compounds could bind an allosteric site and enforce a closed, inactive state of the enzyme. Here, we describe the identification and characterization of GDC-1971 (formerly RLY-1971), a SHP2 inhibitor currently in clinical trials in combination with KRAS G12C inhibitor divarasib (GDC-6036) for the treatment of solid tumors driven by a KRAS G12C mutation.
Collapse
Affiliation(s)
- Alexander M Taylor
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Bret R Williams
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Fabrizio Giordanetto
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
| | - Elizabeth H Kelley
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - André Lescarbeau
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Kelley Shortsleeves
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Yong Tang
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - W Patrick Walters
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Alfonso Arrazate
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Christine Bowman
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Erin Brophy
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Emily W Chan
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Gauri Deshmukh
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Jack B Greisman
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
| | - Thomas L Hunsaker
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - D Randal Kipp
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | | | - Danilo Maddalo
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Iain J Martin
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Paul Maragakis
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
| | - Mark Merchant
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Mark Murcko
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Hunter Nisonoff
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
| | - Vi Nguyen
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Vy Nguyen
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Olivia Orozco
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Christopher Owen
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Levi Pierce
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Molly Schmidt
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - David E Shaw
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th St., New York, New York 10032, United States
| | - Sherri Smith
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Eric Therrien
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - John C Tran
- Genentech, Inc., 1 DNA Way Mailstop 258A, South San Francisco, California 94080-4990, United States
| | - Jim Watters
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Nigel J Waters
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Jeremy Wilbur
- Relay Therapeutics, Inc., 399 Binney St., Cambridge,, Massachusetts 02139, United States
| | - Lindsay Willmore
- D. E. Shaw Research, 120 W. 45th St., 39th Fl., New York, New York 10036, United States
| |
Collapse
|
15
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Fernández DI, Diender M, Hermida-Nogueira L, Huang J, Veiras S, Henskens YMC, Te Loo MWM, Heemskerk JWM, Kuijpers MJE, García Á. Role of SHP2 (PTPN11) in glycoprotein VI-dependent thrombus formation: Improved platelet responsiveness by the allosteric drug SHP099 in Noonan syndrome patients. Thromb Res 2023; 228:105-116. [PMID: 37302266 DOI: 10.1016/j.thromres.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbβ3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.
Collapse
Affiliation(s)
- Delia I Fernández
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| | - Marije Diender
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Jingnan Huang
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; ISAS Leibniz-Institut fur Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Sonia Veiras
- Department of Anesthesiology and Intensive Care Medicine, Clinical University Hospital of Santiago, Santiago de Compostela, Spain
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre(+), Maastricht, the Netherlands
| | - Maroeska W M Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud UMC, Nijmegen, the Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands; Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre(+), Maastricht, the Netherlands.
| | - Ángel García
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
17
|
Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res 2023; 160:17-60. [PMID: 37704288 PMCID: PMC10500121 DOI: 10.1016/bs.acr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.
Collapse
Affiliation(s)
- Colin L Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah Allen
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, United States
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
18
|
Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 2023; 112:403-421. [PMID: 36422682 DOI: 10.1007/s00223-022-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.
Collapse
Affiliation(s)
- Nathaniel R Jensen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan R Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten D Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Stephanie K Khoo
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Sara J Sidles
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Luo R, Fu W, Shao J, Ma L, Shuai S, Xu Y, Jiang Z, Ye Z, Zheng L, Zheng L, Yu J, Zhang Y, Yin L, Tu L, Lv X, Li J, Liang G, Chen L. Discovery of a potent and selective allosteric inhibitor targeting the SHP2 tunnel site for RTK-driven cancer treatment. Eur J Med Chem 2023; 253:115305. [PMID: 37023678 DOI: 10.1016/j.ejmech.2023.115305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Src homology 2 domain-containing phosphatase 2 (SHP2) is a cytoplasmic protein tyrosine phosphatase (PTP) that regulates signal transduction of receptor tyrosine kinases (RTKs). Abnormal SHP2 activity is associated with tumorigenesis and metastasis. Because SHP2 contains multiple allosteric sites, identifying inhibitors at specific allosteric binding sites remains challenging. Here, we used structure-based virtual screening to directly search for the SHP2 "tunnel site" allosteric inhibitor. A novel hit (70) was identified as the SHP2 allosteric inhibitor with an IC50 of 10.2 μM against full-length SHP2. Derivatization of hit compound 70 using molecular modeling-guided structure-based modification allowed the discovery of an effective and selective SHP2 inhibitor, compound 129, with 122-fold improved potency compared to the hit. Further studies revealed that 129 effectively inhibited signaling in multiple RTK-driven cancers and RTK inhibitor-resistant cancer cells. Remarkably, 129 was orally bioavailable (F = 55%) and significantly inhibited tumor growth in haematological malignancy. Taken together, compound 129 developed in this study may serve as a promising lead or candidate for cancers bearing RTK oncogenic drivers and SHP2-related diseases.
Collapse
Affiliation(s)
- Ruixiang Luo
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Weitao Fu
- Department of Computer-Aided Drug Design, Jiangsu Vcare PharmaTech Co. Ltd., Nanjing, 211800, China
| | - Jingjing Shao
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lin Ma
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Sujuan Shuai
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Ying Xu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Zheng Jiang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Zenghui Ye
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Lei Zheng
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jie Yu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yawen Zhang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Lina Yin
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Linglan Tu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Xinting Lv
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jie Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Lingfeng Chen
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
20
|
Zhang Y, Cai B, Li Y, Xu Y, Wang Y, Zheng L, Zheng X, Yin L, Chen G, Wang Y, Liang G, Chen L. Identification of linderalactone as a natural inhibitor of SHP2 to ameliorate CCl 4-induced liver fibrosis. Front Pharmacol 2023; 14:1098463. [PMID: 36843936 PMCID: PMC9946977 DOI: 10.3389/fphar.2023.1098463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Liver fibrosis is characterised by the activation of hepatic stellate cells (HSCs) and matrix deposition. Accumulating evidence has revealed that the oncogenic protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP2) acts as a therapeutic target of fibrosis. Although several SHP2 inhibitors have reached early clinical trials, there are currently no FDA-approved drugs that target SHP2. In this study, we aimed to identify novel SHP2 inhibitors from an in-house natural product library to treat liver fibrosis. Out of the screened 800 compounds, a furanogermacrane sesquiterpene, linderalactone (LIN), significantly inhibited SHP2 dephosphorylation activity in vitro. Cross-validated enzymatic assays, bio-layer interferometry (BLI) assays, and site-directed mutagenesis were used to confirm that LIN directly binds to the catalytic PTP domain of SHP2. In vivo administration of LIN significantly ameliorated carbon tetrachloride (CCl4)-induced HSC activation and liver fibrosis by inhibiting the TGFβ/Smad3 pathway. Thus, LIN or its derivatives could be considered potential therapeutic agents against SHP2-related diseases, such as liver fibrosis or NASH.
Collapse
Affiliation(s)
- Yi Zhang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Li
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Xu
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhan Wang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lulu Zheng
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaochun Zheng
- Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lina Yin
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunxiang Wang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| | - Guang Liang
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| | - Lingfeng Chen
- Affiliated Yongkang First People’s Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Lingfeng Chen, ; Guang Liang, ; Yunxiang Wang,
| |
Collapse
|
21
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
23
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
24
|
The Tyrosine Phosphatase SHP2: A New Target for Insulin Resistance? Biomedicines 2022; 10:biomedicines10092139. [PMID: 36140242 PMCID: PMC9495760 DOI: 10.3390/biomedicines10092139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The SH2 containing protein tyrosine phosphatase 2(SHP2) plays essential roles in fundamental signaling pathways, conferring on it versatile physiological functions during development and in homeostasis maintenance, and leading to major pathological outcomes when dysregulated. Many studies have documented that SHP2 modulation disrupted glucose homeostasis, pointing out a relationship between its dysfunction and insulin resistance, and the therapeutic potential of its targeting. While studies from cellular or tissue-specific models concluded on both pros-and-cons effects of SHP2 on insulin resistance, recent data from integrated systems argued for an insulin resistance promoting role for SHP2, and therefore a therapeutic benefit of its inhibition. In this review, we will summarize the general knowledge of SHP2’s molecular, cellular, and physiological functions, explaining the pathophysiological impact of its dysfunctions, then discuss its protective or promoting roles in insulin resistance as well as the potency and limitations of its pharmacological modulation.
Collapse
|
25
|
The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer's disease. Biomed Pharmacother 2022; 151:113188. [PMID: 35676788 DOI: 10.1016/j.biopha.2022.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are important regulator of neuronal signal transduction and a growing number of PTPs have been implicated in Alzheimer's disease (AD). In the brains of patients with AD, there are a variety of abnormally phosphorylated proteins, which are closely related to the abnormal expression and activity of PTPs. β-Amyloid plaques (Aβ) and hyperphosphorylated tau protein are two pathological hallmarks of AD, and their accumulation ultimately leads to neurodegeneration. Studies have shown that protein phosphorylation signaling pathways mediates intracellular accumulation of Aβ and tau during AD development and are involved in synaptic plasticity and other stress responses. Here, we summarized the roles of PTPs related to the pathogenesis of AD and analyzed their therapeutic potential in AD.
Collapse
|
26
|
Buck SJ, Plaman BA, Bishop AC. Inhibition of SHP2 and SHP1 Protein Tyrosine Phosphatase Activity by Chemically Induced Dimerization. ACS OMEGA 2022; 7:14180-14188. [PMID: 35559188 PMCID: PMC9089384 DOI: 10.1021/acsomega.2c00780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Protein tyrosine phosphatases (PTPs), the enzymes that catalyze the dephosphorylation of phosphotyrosine residues, are important regulators of mammalian cell signaling, whose activity is misregulated in numerous human diseases. PTPs are also notoriously difficult to selectively modulate with small molecules, and relatively few small-molecule tools for controlling their activities in the context of complex signaling pathways have been developed. Here, we show that a chemical inducer of dimerization (CID) can be used to selectively and potently inhibit constructs of Src-homology-2-containing PTP 2 (SHP2) that have been engineered to contain dimerization domains. Our strategy was inspired by the naturally occurring mechanism of SHP2 regulation, in which the PTP activity of SHP2's catalytic domain is autoinhibited through an intramolecular interaction with the protein's N-terminal SH2 (N-SH2) domain. We have re-engineered this inhibitory interaction to function intermolecularly by independently fusing the SHP2 catalytic and N-SH2 domains to protein domains that heterodimerize upon the introduction of the CID rapamycin. We show that rapamycin-induced protein dimerization leads to potent inhibition of SHP2's catalytic activity, which is driven by increased proximity of the SHP2 catalytic and N-SH2 domains. We also demonstrate that CID-based inhibition of PTP activity can be applied to an oncogenic gain-of-function SHP2 mutant (E76K SHP2) and to the catalytic domain of the SHP2's closest homologue, SHP1. In sum, CID-driven inhibition of PTP activity provides a broadly applicable tool for inhibiting dimerizable forms of the SHP PTPs and represents a novel paradigm for selective PTP inhibition through inducible protein-protein interactions.
Collapse
|
27
|
Kanumuri R, Pasupuleti SK, Burns SS, Ramdas B, Kapur R. Targeting SHP2 phosphatase in hematological malignancies. Expert Opin Ther Targets 2022; 26:319-332. [PMID: 35503226 PMCID: PMC9239432 DOI: 10.1080/14728222.2022.2066518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously expressed, non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene. Gain-of-function (GOF) mutations in PTPN11 are associated with the development of various hematological malignancies and Noonan syndrome with multiple lentigines (NS-ML). Preclinical studies performed with allosteric SHP2 inhibitors and combination treatments of SHP2 inhibitors with inhibitors of downstream regulators (such as MEK, ERK, and PD-1/PD-L1) demonstrate improved antitumor benefits. However, the development of novel SHP2 inhibitors is necessary to improve the therapeutic strategies for hematological malignancies and tackle drug resistance and disease relapse. AREAS COVERED This review examines the structure of SHP2, its function in various signaling cascades, the consequences of constitutive activation of SHP2 and potential therapeutic strategies to treat SHP2-driven hematological malignancies. EXPERT OPINION While SHP2 inhibitors have exhibited promise in preclinical trials, numerous challenges remain in translation to the clinic, including drug resistance. Although PROTAC-based SHP2 degraders show better efficacy than SHP2 inhibitors, novel strategies need to be designed to improve SHP2-specific therapies in hematologic malignancies. Genome-wide CRISPR screening should also be used to identify molecules that confer resistance to SHP2 inhibitors. Targeting these molecules together with SHP2 can increase the target specificity and reduce drug resistance.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Santhosh Kumar Pasupuleti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah S Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Dai J, Zhang Y, Gao Y, Bai X, Liu F, Li S, Yu Y, Hu W, Shi T, Shi D, Li X. Toward a Treatment of Cancer: Design and In Vitro/In Vivo Evaluation of Uncharged Pyrazoline Derivatives as a Series of Novel SHP2 Inhibitors. Int J Mol Sci 2022; 23:ijms23073497. [PMID: 35408869 PMCID: PMC8998978 DOI: 10.3390/ijms23073497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene, which is involved in the RAS/MAPK cell signaling transduction process. SHP2 has been shown to contribute to the progression of various cancers and is emerging as an important target for anti-tumor drug research. However, past efforts to develop SHP2 inhibitors into drugs have been unsuccessful owing to the positively charged nature of the active site pocket tending to bind negatively charged groups that are usually non-drug-like. Here, a series of uncharged pyrazoline derivatives were designed and developed as new SHP2 inhibitors using a structure-based strategy. Compound 4o, which exhibited the strongest SHP2 inhibitory activity, bound directly to the catalytic domain of SHP2 in a competitive manner through multiple hydrogen bonds. Compound 4o affected the RAS/MAPK signaling pathway by inhibiting SHP2, and subsequently induced apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. Notably, the oral administration of compound 4o in large doses showed no obvious toxicity. In summary, our findings provide a basis for the further development of compound 4o as a safe, effective and anti-tumor SHP2 inhibitor.
Collapse
Affiliation(s)
- Jiajia Dai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Yiting Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Yanan Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Fang Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Shuo Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Yanyan Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Wenpeng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
| | - Ting Shi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (D.S.); (X.L.)
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200, China; (J.D.); (Y.Z.); (Y.G.); (X.B.); (F.L.); (S.L.); (Y.Y.); (W.H.)
- Correspondence: (D.S.); (X.L.)
| |
Collapse
|
29
|
Friend or foe? Unraveling the complex roles of protein tyrosine phosphatases in cardiac disease and development. Cell Signal 2022; 93:110297. [PMID: 35259455 PMCID: PMC9038168 DOI: 10.1016/j.cellsig.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
Regulation of protein tyrosine phosphorylation is critical for most, if not all, fundamental cellular processes. However, we still do not fully understand the complex and tissue-specific roles of protein tyrosine phosphatases in the normal heart or in cardiac pathology. This review compares and contrasts the various roles of protein tyrosine phosphatases known to date in the context of cardiac disease and development. In particular, it will be considered how specific protein tyrosine phosphatases control cardiac hypertrophy and cardiomyocyte contractility, how protein tyrosine phosphatases contribute to or ameliorate injury induced by ischaemia / reperfusion or hypoxia / reoxygenation, and how protein tyrosine phosphatases are involved in normal heart development and congenital heart disease. This review delves into the newest developments and current challenges in the field, and highlights knowledge gaps and emerging opportunities for future research.
Collapse
|
30
|
Tang K, Zhao M, Wu YH, Wu Q, Wang S, Dong Y, Yu B, Song Y, Liu HM. Structure-based design, synthesis and biological evaluation of aminopyrazines as highly potent, selective, and cellularly active allosteric SHP2 inhibitors. Eur J Med Chem 2022; 230:114106. [PMID: 35063735 DOI: 10.1016/j.ejmech.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by the proto-oncogene PTPN11 is the first identified non-receptor protein tyrosine phosphatase. SHP2 dysregulation contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer therapy. In this article, we report the structure-guided design based on the well-characterized SHP2 inhibitor SHP099, extensive structure-activity relationship studies (SARs) of aminopyrazines, biochemical characterization and cellular potency. These medicinal chemistry efforts lead to the discovery of the lead compound TK-453, which potently inhibits SHP2 (SHP2WT IC50 = 0.023 μM, ΔTm = 7.01 °C) in a reversible and noncompetitive manner. TK-453 exhibits high selectivity over SHP2PTP, SHP1 and PTP1B, and may bind at the "tunnel" allosteric site of SHP2 as SHP099. As the key pharmacophore, the aminopyrazine scaffold not only reorganizes the cationic-π stacking interaction with R111 via the novel hydrogen bond interaction between the S atom of thioether linker and T219, but also mediates a hydrogen bond with E250. In vitro studies indicate that TK-453 inhibits proliferation of HeLa, KYSE-70 and THP-1 cells moderately and induces apoptosis of Hela cells. Further mechanistic studies suggest that TK-453 can decrease the phosphorylation levels of AKT and Erk1/2 in HeLa and KYSE-70 cells. Collectively, TK-453 is a highly potent, selective, and cellularly active allosteric SHP2 inhibitor that modulates the phosphorylation of SHP2-mediated AKT and Erk cell signaling pathways by inhibiting the phosphatase activity of SHP2.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Hong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiong Wu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Cheng J, Liang J, Li Y, Gao X, Ji M, Liu M, Tian Y, Feng G, Deng W, Wang H, Kong S, Lu Z. Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy. PLoS Genet 2022; 18:e1010018. [PMID: 35025868 PMCID: PMC8791483 DOI: 10.1371/journal.pgen.1010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. Embryo implantation includes the establishment of uterine receptivity, blastocyst attachment, and endometrial decidualization. Disorders of this process usually induce pregnancy failure, resulting in women infertility. But the signaling mechanisms governing this process remain unclear. Here, using gene knockout mouse model and human endometrial stromal cells (hESCs), we identified a novel key regulator of embryo implantation, Shp2, which plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Shp2 deficiency in mouse uterine stromal cells inhibited the uterine stromal decidualization, disturbing embryo implantation and embryonic development, ultimately reducing female fertility. The absence of Shp2 in hESCs also blocked the decidual differentiation. Our findings not only promote the understanding of peri-implantation biology, but may also provide a critical target for more effectively diagnose and/or treat women with recurrent implantation failure or early pregnancy loss.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jia Liang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xia Gao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| |
Collapse
|
32
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
33
|
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11:3908-3924. [PMID: 35024315 PMCID: PMC8727779 DOI: 10.1016/j.apsb.2021.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Xuben Hou
- Corresponding author. Tel./fax: +86 531 88381168.
| | - Hao Fang
- Corresponding author. Tel./fax: +86 531 88381168.
| |
Collapse
|
34
|
Design, synthesis, anticancer activity and molecular docking analysis of novel dinitrophenylpyrazole bearing 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Chang CJ, Lin CF, Chen BC, Lin PY, Chen CL. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 2021; 74:131-142. [PMID: 34590785 DOI: 10.1002/iub.2559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases (CRDs), including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), lung cancer, and asthma, are significant global health problems due to their prevalence and rising incidence. The roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in controlling tyrosine phosphorylation of targeting proteins modulate multiple physiological cellular responses and contribute to the pathogenesis of CRDs. Src homology-2 domain-containing PTP2 (SHP2) plays a pivotal role in modulating downstream growth factor receptor signaling and cytoplasmic PTKs, including MAPK/ERK, PI3K/AKT, and JAK/STAT pathways, to regulate cell survival and proliferation. In addition, SHP2 mutation and activation are commonly implicated in tumorigenesis. However, little is known about SHP2 in chronic pulmonary inflammation and fibrosis. This review discusses the potential involvement of SHP2 deregulation in chronic pulmonary inflammation and fibrosis, as well as the therapeutic effects of targeting SHP2 in CRDs.
Collapse
Affiliation(s)
- Chun-Jung Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yun Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Hao F, Wang C, Sholy C, Cao M, Kang X. Strategy for Leukemia Treatment Targeting SHP-1,2 and SHIP. Front Cell Dev Biol 2021; 9:730400. [PMID: 34490276 PMCID: PMC8417302 DOI: 10.3389/fcell.2021.730400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are modulators of cellular functions such as differentiation, metabolism, migration, and survival. PTPs antagonize tyrosine kinases by removing phosphate moieties from molecular signaling residues, thus inhibiting signal transduction. Two PTPs, SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2, respectively) and another inhibitory phosphatase, SH2 domain-containing inositol phosphatase (SHIP), are essential for cell function, which is reflected in the defective phenotype of mutant mice. Interestingly, SHP-1, SHP-2, and SHIP mutations are identified in many cases of human leukemia. However, the impact of these phosphatases and their mutations regarding the onset and progression of leukemia is controversial. The ambiguity of the role of these phosphatases imposes challenges on the development of targeting therapies for leukemia. This fundamental problem, confronted by the expanding investigational field of leukemia, will be addressed in this review, which will include a discussion of the molecular mechanisms of SHP-1, SHP-2, and SHIP in normal hematopoiesis and their role in leukemia. Clinical development of leukemic therapies achieved by targeting these phosphatases will be addressed as well.
Collapse
Affiliation(s)
- Fang Hao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Christine Sholy
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
37
|
Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 2021; 230:107966. [PMID: 34403682 DOI: 10.1016/j.pharmthera.2021.107966] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Phosphorylation is a reversible post-translational modification regulated by phosphorylase and dephosphorylase to mediate important cellular events. Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) encoded by PTPN11 is the first identified oncogenic protein in protein tyrosine phosphatases family. Serving as a convergent node, SHP2 is involved in multiple cascade signaling pathways including Ras-Raf-MEK-ERK, PI3K-AKT, JAK-STAT and PD-1/PD-L1 pathways. Especially, the double-edged roles of SHP2 based on the substrate specificity in various biological contexts dramatically increase the effect complexity in different SHP2-associated diseases. Evidences suggest that by collaborating with other mutations in associated pathways, dysregulation of SHP2 contributes to the pathogenesis of different cancers, making SHP2 a promising therapeutic target for cancer treatment. SHP2 can either act as oncogenic factor or tumor suppressor in different diseases, and both the conserved catalytic dephosphorylation mechanism and the unique allosteric regulation mechanism of SHP2 provide opportunities for the development of SHP2 inhibitors and activators. To date, several small-molecule SHP2 inhibitors have advanced into clinical trials for mono- or combined therapy of cancers. Moreover, SHP2 activators and proteolysis-targeting chimera (PROTAC)-based degraders also display therapeutic promise. In this review, we comprehensively summarize the overall structures, regulation mechanisms, double-edged roles of SHP2 in both physiological and carcinogenic pathways, and SHP2 inhibitors in clinical trials. SHP2 activators and degraders are also briefly discussed. This review aims to provide in-depth understanding of the biological roles of SHP2 and highlight therapeutic potential of targeting SHP2.
Collapse
|
38
|
Liu Y, Fu H, Zuo L. Synergistic Cytotoxicity Effect of 5-fluorouracil and SHP2 Inhibitor Demethylincisterol A3 on Cervical Cancer Cell. Anticancer Agents Med Chem 2021; 22:1313-1319. [PMID: 34238199 DOI: 10.2174/1871520621666210708130703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/08/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Demethylincisterol A3 (DTA3) has been identified as an SHP2 inhibitor and suppresses the growth of many cancer cells. 5-Fluorouracil (5-FU) is widely used for the clinical treatment of various cancers. However, the combined effects of 5-FU and DTA3 on cervical cancer cells remain unknown. OBJECTIVE This study evaluates the mechanism of the combined effects of 5-FU and DTA3 in cervical cancer cells. METHODS The synergistic cytotoxic effects of 5-FU and DTA3 in cervical cancer cells were calculated. Apoptosis was analysed by flow cytometry. Western blot analyses were used to examine the related signalling pathways. RESULTS DTA3 and 5-FU synergized to induce apoptosis and repress proliferation of cervical cancer cells by downregulating the activation of PI3K/AKT and NF-κB signalling pathway. We provided evidence that the upregulation of SHP2 expression by transfection significantly inhibited the cytotoxicity of 5-FU and DTA3. SHP2 knockdown enhanced the antiproliferation activity of 5-FU, indicating targeting SHP2 sensitized cervical cancer cells to 5-FU. CONCLUSION Our study demonstrates that SHP2 inhibitor DTA3 and 5-FU have a synergistic cytotoxic effect on cervical cancer cells. The synergistic combination of SHP2 inhibitor and 5-FU may present a promising strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou, CN 550004, China
| | - Hua Fu
- Department of Gastroenterology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, CN 550004, China
| | - Li Zuo
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou, CN 550004, China
| |
Collapse
|
39
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Guo Y, Xu Y, Dong X, Zhang J. Cross the Undruggable Barrier, the Development of SHP2 Inhibitors: From Catalytic Site Inhibitors to Allosteric Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Jianjun Zhang
- Department of Pharmacy Institution The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Hangzhou 310006 P.R. China
| |
Collapse
|
41
|
Sabnis RW. Novel Pyrazolo[3,4- b]pyrazines as SHP2 Inhibitors for Treating Cancer. ACS Med Chem Lett 2021; 12:683-684. [PMID: 34055208 DOI: 10.1021/acsmedchemlett.1c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
42
|
The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Proc Natl Acad Sci U S A 2021; 118:2025107118. [PMID: 33888588 DOI: 10.1073/pnas.2025107118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Src-homology-2 domain-containing phosphatase SHP2 is a critical regulator of signal transduction, being implicated in cell growth and differentiation. Activating mutations cause developmental disorders and act as oncogenic drivers in hematologic cancers. SHP2 is activated by phosphopeptide binding to the N-SH2 domain, triggering the release of N-SH2 from the catalytic PTP domain. Based on early crystallographic data, it has been widely accepted that opening of the binding cleft of N-SH2 serves as the key "allosteric switch" driving SHP2 activation. To test the putative coupling between binding cleft opening and SHP2 activation as assumed by the allosteric switch model, we critically reviewed structural data of SHP2, and we used extensive molecular dynamics (MD) simulation and free energy calculations of isolated N-SH2 in solution, SHP2 in solution, and SHP2 in a crystal environment. Our results demonstrate that the binding cleft in N-SH2 is constitutively flexible and open in solution and that a closed cleft found in certain structures is a consequence of crystal contacts. The degree of opening of the binding cleft has only a negligible effect on the free energy of SHP2 activation. Instead, SHP2 activation is greatly favored by the opening of the central β-sheet of N-SH2. We conclude that opening of the N-SH2 binding cleft is not the key allosteric switch triggering SHP2 activation.
Collapse
|
43
|
Omrani VF, Koochaki A, Behzad S, Kia V, Ghasemi P, Razaviyan J, Moosavian HR, Rezapour M, Vasei M, Asouri M, Mohammadi-Yeganeh S. Effects of Sambucus Ebulus Extract on Cell Proliferation and Viability of Triple-Negative Breast Cancer: An In Vitro and In Vivo Study. Anticancer Agents Med Chem 2021; 22:1386-1396. [PMID: 33845752 DOI: 10.2174/1871520621666210412113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancer (BC) cases and is a severe type of BC. Since medicinal herbs containing biocompatible substances that are accepted by patient more than chemical therapeutics, they can be considered a safe option for treating BC. OBJECTIVE This study evaluated the effect of Sambucus Ebulus (S. ebulus) extract on a model of TNBC. METHODS S. ebulus extract was prepared using petroleum ether, ethyl acetate, and methanol. The petroleum ether extract was fractionated and analyzed using vacuum liquid chromatography and GC-MS, respectively. MDA-MB-231 and MCF-10A were used as TNBC and normal breast cells, respectively. Flowcytometry and MTT assays were performed to evaluate cell cycle, apoptosis, and viability of the cells. Gene expression analysis was performed using RT-qPCR. Nude mouse allograft tumor models were used, and pathological sections were evaluated. RESULTS The findings indicated that S. ebulus extract remarkably decreased cell proliferation and viability. The extract had no toxicity to the normal breast cells but efficiently killed the cancer cells. Cell cycle- and apoptosis-related gene expression showed that fraction 4 of S. ebulus extract significantly increased the expression of Bax, Bak, P53, and c-MYC. CONCLUSION This study showed satisfactory results of the effect of S. ebulus extract on clearing BC cells both in vitro and in vivo. Thus, S. ebulus extract may be a safe herbal compound for eliminating BC cells without toxicity to host cells.
Collapse
Affiliation(s)
- Vahid F Omrani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Ameneh Koochaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Sahar Behzad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Vahid Kia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud. Iran
| | - Peyman Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Javad Razaviyan
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Behehshti University of Medical Sciences. Iran
| | - Hamid Reza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Maysam Rezapour
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman. Iran
| | - Mohammad Vasei
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran. Iran
| | - Mohsen Asouri
- North Research Center Pasteur Institute of Iran, Amol. Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
44
|
Dong L, Han D, Meng X, Xu M, Zheng C, Xia Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021; 9:630712. [PMID: 33777940 PMCID: PMC7991796 DOI: 10.3389/fcell.2021.630712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Gain-of-function mutation of SHP2 is a central regulator in tumorigenesis and cancer progression through cell-autonomous mechanisms. Activating mutation of SHP2 in microenvironment was identified to promote cancerous transformation of hematopoietic stem cell in non-autonomous mechanisms. It is interesting to see whether therapies directed against SHP2 in tumor or microenvironmental cells augment antitumor efficacy. In this review, we summarized different types of gain-of-function SHP2 mutations from a human disease. In general, gain-of-function mutations destroy the auto-inhibition state from wild-type SHP2, leading to consistency activation of SHP2. We illustrated how somatic or germline mutation of SHP2 plays an oncogenic role in tumorigenesis, stemness maintenance, invasion, etc. Moreover, the small-molecule SHP2 inhibitors are considered as a potential strategy for enhancing the efficacy of antitumor immunotherapy and chemotherapy. We also discussed the interconnection between phase separation and activating mutation of SHP2 in drug resistance of antitumor therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chuwen Zheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
46
|
Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021; 214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
With the change of lifestyle and the acceleration of aging process, inflammatory diseases have increasingly become one of the most vital threats to global human health. SHP2 protein is a non-receptor tyrosine phosphatase encoded by PTPN11 gene, and it is widely expressed in various tissues and cells. Numerous studies have shown that SHP2 plays important roles in the regulation of inflammatory diseases, including cancer-related inflammation, neurodegenerative diseases and metabolic diseases. In this paper, the roles of SHP2 in inflammatory diseases of various physiological systems were reviewed. At the same time, the latest SHP2 inhibitors were summarized, which will hold a promise for the therapeutic potential in future.
Collapse
|
47
|
Wang Q, Zhao WC, Fu XQ, Zheng QC. Exploring the Distinct Binding and Activation Mechanisms for Different CagA Oncoproteins and SHP2 by Molecular Dynamics Simulations. Molecules 2021; 26:molecules26040837. [PMID: 33562680 PMCID: PMC7916045 DOI: 10.3390/molecules26040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/25/2023] Open
Abstract
CagA is a major virulence factor of Helicobacter pylori. H. pylori CagA is geographically subclassified into East Asian CagA and Western CagA, which are characterized by the presence of a EPIYA-D or EPIYA-C segment. The East Asian CagA is more closely associated with gastric cancer than the Western CagA. In this study, molecular dynamic (MD) simulations were performed to investigate the binding details of SHP2 and EPIYA segments, and to explore the allosteric regulation mechanism of SHP2. Our results show that the EPIYA-D has a stronger binding affinity to the N-SH2 domain of SHP2 than EPIYA-C. In addition, a single EPIYA-D binding to N-SH2 domain of SHP2 can cause a deflection of the key helix B, and the deflected helix B could squeeze the N-SH2 and PTP domains to break the autoinhibition pocket of SHP2. However, a single EPIYA-C binding to the N-SH2 domain of SHP2 cannot break the autoinhibition of SHP2 because the secondary structure of the key helix B is destroyed. However, the tandem EPIYA-C not only increases its binding affinity to SHP2, but also does not significantly break the secondary structure of the key helix B. Our study can help us better understand the mechanism of gastric cancer caused by Helicobacter pylori infection.
Collapse
Affiliation(s)
- Quan Wang
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun 130023, China; (Q.W.); (W.-C.Z.)
| | - Wen-Cheng Zhao
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun 130023, China; (Q.W.); (W.-C.Z.)
| | - Xue-Qi Fu
- Edmond H. Fischer Signal Transduction Laboratory, College of Life Sciences, Jilin University, Changchun 130023, China; (Q.W.); (W.-C.Z.)
- Correspondence: (X.-Q.F.); (Q.-C.Z.)
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun 130023, China
- Correspondence: (X.-Q.F.); (Q.-C.Z.)
| |
Collapse
|
48
|
Sabnis RW. Novel Pyrimidinones as SHP2 Antagonists for Treating Cancer. ACS Med Chem Lett 2021; 12:3-4. [PMID: 33488954 DOI: 10.1021/acsmedchemlett.0c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|
49
|
Pudelko L, Jaehrling F, Reusch C, Vitri S, Stroh C, Linde N, Sanderson MP, Musch D, Lebrun CJ, Keil M, Esdar C, Blaukat A, Rosell R, Schumacher KM, Karachaliou N. SHP2 Inhibition Influences Therapeutic Response to Tepotinib in Tumors with MET Alterations. iScience 2020; 23:101832. [PMID: 33305187 PMCID: PMC7718487 DOI: 10.1016/j.isci.2020.101832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tepotinib is an oral MET inhibitor approved for metastatic non-small cell lung cancer (NSCLC) harboring MET exon 14 (METex14) skipping mutations. Examining treatment-naive or tepotinib-resistant cells with MET amplification or METex14 skipping mutations identifies other receptor tyrosine kinases (RTKs) that co-exist in cells prior to tepotinib exposure and become more prominent upon tepotinib resistance. In a small cohort of patients with lung cancer with MET genetic alterations treated with tepotinib, gene copy number gains of other RTKs were found at baseline and affected treatment outcome. An Src homology 2 domain-containing phosphatase 2 (SHP2) inhibitor delayed the emergence of tepotinib resistance and synergized with tepotinib in treatment-naive and tepotinib-resistant cells as well as in xenograft models. Alternative signaling pathways potentially diminish the effect of tepotinib monotherapy, and the combination of tepotinib with an SHP2 inhibitor enables the control of tumor growth in cells with MET genetic alterations.
Collapse
Affiliation(s)
- Linda Pudelko
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Frank Jaehrling
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christof Reusch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Sanziago Vitri
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
| | - Christopher Stroh
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Nina Linde
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Michael P. Sanderson
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Doreen Musch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Marina Keil
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christina Esdar
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Rafael Rosell
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
- Germans Trias i Pujol Research Institute and Hospital (IGTP), Molecular and Cellular Oncology Laboratory, Badalona 08916, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, 08028 Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | | | - Niki Karachaliou
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
- Global Clinical Development, Merck KGaA, Darmstadt 64293, Germany
| |
Collapse
|
50
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|