1
|
Wang Q, Wang Y, Liu Y, Yuan K, Lin Y, Qian X, Pei H, Weng L, Fan K, Hu Y, Yang Y. A low-molecular-weight α-glucan from edible fungus Agaricus blazei Murrill activates macrophage TFEB-mediated antibacterial defense to combat implant-associated infection. Carbohydr Polym 2024; 346:122659. [PMID: 39245534 DOI: 10.1016/j.carbpol.2024.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Implant-associated infection (IAI) is a prevalent and potentially fatal complication of orthopaedic surgery. Boosting antibacterial immunity, particularly the macrophage-mediated response, presents a promising therapeutic approach for managing persistent infections. In this study, we successfully isolated and purified a homogeneous and neutral water-soluble polysaccharide, designated as AM-1, from the edible fungus Agaricus blazei Murrill. Structure analysis revealed that AM-1 (Mw = 3.87 kDa) was a low-molecular-weight glucan characterized by a primary chain of →4)-α-D-Glcp-(1 → and side chains that were linked at the O-6 and O-3 positions. In vivo assays showed that AM-1 effectively attenuated the progression of infection and mitigated infectious bone destruction in IAI mouse models. Mechanistically, AM-1 promotes intracellular autophagy-lysosomal biogenesis by inducing the nuclear translocation of transcription factor EB, finally enhancing the bactericidal capabilities and immune-modulatory functions of macrophages. These findings demonstrate that AM-1 significantly alleviates the progression of challenging IAIs as a presurgical immunoenhancer. Our research introduces a novel therapeutic strategy that employs natural polysaccharides to combat refractory infections.
Collapse
Affiliation(s)
- Qishan Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai 200127, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Xian Qian
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai 201908, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Liangliang Weng
- Department of Infectious Diseases, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| | - Kaijian Fan
- Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China.
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiqi Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Tan M, Zhong X, Xue H, Cao Y, Tan G, Li K. Polysaccharides from pineapple peel: Structural characterization, film-forming properties and its effect on strawberry preservation. Int J Biol Macromol 2024; 279:135192. [PMID: 39216587 DOI: 10.1016/j.ijbiomac.2024.135192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The growing demand for food safety has stimulated the development of new environmentally friendly food packaging. It is the development trend of food packaging in recent years by using natural polysaccharides as carriers and adding bioactive ingredients extracted from plants to prepare multifunctional films with antioxidant, antimicrobial and biodegradable properties. Herein, three polysaccharide components (PPE40, PPE60, and PPE80) from pineapple peel were extracted by ultrasound-assisted hot water extraction combined with gradient ethanol precipitation method, which all showed a certain scavenging activities against DPPH, ABTS, and hydroxyl radical. Then, the composite films were prepared by adding PPE40, PPE60 and PPE80 to chitosan. The results of SEM, FT-IR and XRD analysis showed that PPE40, PPE60 and PPE80 could interact with chitosan matrix. Furthermore, the addition of PPE40, PPE60, and PPE80 could improve the mechanical properties of the films, and promote the antibacterial activity of the films against B. subtilis, S. aureus and E. coli. Finally, the application of the composite films to strawberries showed that the addition of PPE40, PPE60 and PPE80 could delay the rapid decay of strawberries during storage. The results of this study showed that pineapple polysaccharides have a potential to be applied in the field of food packaging.
Collapse
Affiliation(s)
- Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xinping Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hongxin Xue
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yinyin Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Guangdong Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Ma C, Zhang S, Renaud SJ, Zhang Q, Qi H, Zhou H, Jin Y, Yu H, Xu Y, Huang H, Hong Y, Li H, Liao Q, Ding F, Qin M, Wang P, Xie Z. Structural elucidation of a capsular polysaccharide from Bacteroides uniformis and its ameliorative impact on DSS-induced colitis in mice. Int J Biol Macromol 2024; 279:135119. [PMID: 39208897 DOI: 10.1016/j.ijbiomac.2024.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Capsular polysaccharides derived from Bacteroides species have emerged as potential mitigators of intestinal inflammation in murine models. However, research on capsular polysaccharides from B. uniformis, a Bacteroides species with reduced abundance in colons of patients with ulcerative colitis, remains scarce. In this study, we extracted a neutral polysaccharide component from B. uniformis ATCC8492, termed BUCPS1B, using ultrasonic disruption, ethanol precipitation, and anion exchange chromatography. Structural characterization revealed BUCPS1B as a water-soluble polysaccharide with an α-1,4-glucan main chain adorned with minor substituent sugar residues. BUCPS1B alleviated intestinal inflammation in a mouse model of colitis and induced polarization of macrophages into M2-type. Furthermore, BUCPS1B modulated the gut microbiota composition, increased the abundance of the probiotic Akkermansia muciniphila and altered the gut metabolic profile to promote phenylalanine and short chain fatty acids metabolism. BUCPS1B is therefore a promising candidate to prevent inflammation and augment intestinal health.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaobao Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Huiyuan Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyun Zhou
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yibao Jin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Houshuang Huang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meirong Qin
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China
| | - Ping Wang
- National Medical Products Administration, Shenzhen Institute for Drug Control, Shenzhen, PR China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Tao L, Zhang J, Lan W, Liu H, Wu Q, Yang S, Song S, Yu L, Bi Y. Neutral oligosaccharides from ginseng (Panax ginseng) residues vs. neutral ginseng polysaccharides: A comparative study of structure elucidation and biological activity. Food Chem 2024; 464:141674. [PMID: 39426268 DOI: 10.1016/j.foodchem.2024.141674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This study aimed to compare the structural and biological activities of neutral ginseng residue oligosaccharides (GRO-N) and neutral ginseng polysaccharides (GP-N). Their structures of GRO-N and GP-N were established based on their molecular weight (Mw), monosaccharide composition, Fourier-transform infrared spectroscopy, methylation, and nuclear magnetic resonance analyses. The Mws of GRO-N and GP-N were 1121.0 Da and 12,791.0 Da, respectively. Both had major chain structures comprising α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →4)-α/β-D-Glcp, with branch points at →4,6)-α-D-Glcp-(1→. Moreover, the branched chain of GRO-N was α-D-Glcp-(1→ and →6)-α-D-Glcp-(1→. The branched chain of GP-N was α-D-Glcp-(1→ and →4)-α-D-Glcp-(1→. GRO-N, with a lower Mw and more diverse glycosidic bonds, exhibited higher antioxidant, hypoglycemic, and immune activities than GP-N. Cell viability peaked (202.81 ± 4.80 %) at a GRO-N concentration of 200 μg/mL. These findings provide a theoretical basis for further utilization of ginseng residual saccharides.
Collapse
Affiliation(s)
- Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jingwei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenfei Lan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shenglong Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
6
|
Ibrahim MIA, Ibrahim HAH, Haga T, Ishida A, Nehira T, Matsuo K, Gad AM. Potential Bioactivities, Chemical Composition, and Conformation Studies of Exopolysaccharide-Derived Aspergillus sp. Strain GAD7. J Fungi (Basel) 2024; 10:659. [PMID: 39330418 PMCID: PMC11432975 DOI: 10.3390/jof10090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
This research identified a marine fungal isolate, Aspergillus sp. strain GAD7, which produces an acidic and sulfated extracellular polysaccharide (EPS) with notable anticoagulant and antioxidant properties. Six fungal strains from the Egyptian Mediterranean Sea were screened for EPS production, with Aspergillus sp. strain GAD7 (EPS-AG7) being the most potent, yielding ~5.19 ± 0.017 g/L. EPS-AG7 was characterized using UV-Vis and FTIR analyses, revealing high carbohydrate (87.5%) and sulfate (24%) contents. HPLC and GC-MS analyses determined that EPS-AG7 is a heterogeneous acidic polysaccharide with an average molecular weight (Mw¯) of ~7.34 × 103 Da, composed of mannose, glucose, arabinose, galacturonic acid, galactose, and lyxose in a molar ratio of 6.6:3.9:1.8:1.3:1.1:1.0, linked through α- and β-glycosidic linkages as confirmed by NMR analysis. EPS-AG7 adopted a triple helix-like conformation, as evidenced by UV-Vis (Congo Red experiment) and circular dichroism (CD) studies. This helical arrangement demonstrated stability under various experimental conditions, including concentration, ionic strength, temperature, and lipid interactions. EPS-AG7 exhibited significant anticoagulant activity, doubling blood coagulation time at a concentration of 3.0 mg/mL, and showed significant antioxidant activity, with scavenging activities reaching up to 85.90% and 58.64% in DPPH and ABTS+ assays at 5.0 mg/mL, and EC50 values of 1.40 mg/mL and 3.80 mg/mL, respectively. These findings highlight the potential of EPS-AG7 for therapeutic applications due to its potent biological activities.
Collapse
Affiliation(s)
- Mohamed I A Ibrahim
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| | - Tatsuki Haga
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Tatsuo Nehira
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8521, Hiroshima, Japan
| | - Koichi Matsuo
- Research Institute for Synchrotron Radiation Science, HiSOR, Hiroshima University, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Research Institute for Semiconductor Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| | - Ahmed M Gad
- National Institute of Oceanography and Fisheries (NIOF), Cairo 4262110, Egypt
| |
Collapse
|
7
|
Luo L, Meng X, Wang S, Zhang R, Guo K, Zhao Z. Effects of dietary ginger (Zingiber officinale) polysaccharide on the growth, antioxidant, immunity response, intestinal microbiota, and disease resistance to Aeromonas hydrophila in crucian carp (Carassius auratus). Int J Biol Macromol 2024; 275:133711. [PMID: 38977043 DOI: 10.1016/j.ijbiomac.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Ginger polysaccharides (GP) promote growth and development in fish. However, the effects of GP on crucian carp remain unclear. The present study investigated the effects of GP on the growth performance, immunity, intestinal microbiota, and disease resistance in crucian carp. Four treatment groups were established with different concentrations of GP (0.1 %, 0.2 %, 0.4 %, and 0.8 %). GP was not added as the control group, and the feeding period lasted for 56 d, followed by a 96-h anti-infection treatment using Aeromonas hydrophila. The results showed that dietary GP significantly improved growth performance, especially in the 0.4 % GP group. Furthermore, GP administration notably increased serum lysozyme (LMZ) activity, digestive enzyme performance, and antioxidant capacity of crucian carp. Moreover, dietary inclusion of GP up-regulated the expression of tumour necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ), and nuclear factor kappa-B (NF-κB) genes while down-regulating IL-10 and transforming growth factor-β (TGF-β) gene expressions, thus promoting liver health in crucian carp. Additionally, incorporating GP into the diet regulated both the diversity and composition of the intestinal microbiota in crucian carp, explicitly enhancing the relative abundance of beneficial bacteria, such as Fusobacteriota and Firmicutes. Therefore, GP reduces the mortality of crucian carp infected with A. hydrophila. In conclusion, this study provides novel insights into the application of dietary GP in cultured fish and evaluates the value of traditional Chinese medicinal polysaccharides against pathogenic bacteria.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xianwei Meng
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China; Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Shihui Wang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Zhigang Zhao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
8
|
Zhang Q, Lin Y, Zhao R, Huang T, Tian Y, Zhu L, Qin J, Liu H. Structural characterization of extracellular polysaccharides from Phellinus igniarius SH-1 and their therapeutic effects on DSS induced colitis in mice. Int J Biol Macromol 2024; 275:133654. [PMID: 38972645 DOI: 10.1016/j.ijbiomac.2024.133654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Phellinus igniarius is a valuable medicinal and edible mushroom, and its polysaccharides exhibit excellent anti-inflammatory activity. During liquid fermentation to produce P. igniarius mycelia, the fermentation liquid is often discarded, but it contains extracellular polysaccharides. To better utilize these resources, P. igniarius SH-1 was fermented in a 100 L fermenter, and PIPS-2 was isolated and purified from the fermentation broth. The structural characteristics and anti-inflammatory activity of PIPS-2 were determined. PIPS-2 had a molecular weight of 22.855 kDa and was composed of galactose and mannose in a molar ratio of 0.38:0.62. Structural analysis revealed that the main chain of PIPS-2 involved →2)-α-D-Manp-(1 → 3)-β-D-Galf-(1→, and the side chains involved α-D-Manp-(1 → 6)-α-D-Manp-(1→, α-D-Manp-(1 → 3)-α-D-Manp-(1→, and α-D-Manp-(1. PIPS-2 alleviated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice, improved the imbalance of inflammatory factors and antioxidant enzymes, and increased short-chain fatty acid contents. Combining the intestinal flora and metabolite results, PIPS-2 was found to regulate the abundance of Firmicutes, Lachnospiraceae_NK4A136_group, Proteobacteria, Bacteroides, and many serum metabolites including hexadecenal, copalic acid, 8-hydroxyeicosatetraenoic acid, artepillin C, and uric acid, thereby ameliorating metabolite related disorders in mice with colitis. In summary, PIPS-2 may improve colitis in mice by regulating the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Qiaoyi Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | - Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ting Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha, China
| | - Lin Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jing Qin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- Agricultural Bioengineering Institute, Changsha, China
| |
Collapse
|
9
|
Hu Z, Luo Y, Wu Y, Qin D, Yang F, Luo F, Lin Q. Extraction, structures, biological effects and potential mechanisms of Momordica charantia polysaccharides: A review. Int J Biol Macromol 2024; 268:131498. [PMID: 38614167 DOI: 10.1016/j.ijbiomac.2024.131498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Momordica charantia L. is a kind of vegetable with medicinal value. As the main component of the vegetable, Momordica charantia polysaccharides (MCPs) mainly consist of galactose, galacturonic acid, xylose, rhamnose, mannose and the molecular weight range is 4.33 × 103-1.16 × 106 Da. MCPs have been found to have various biological activities in recent years, such as anti-oxidation, anti-diabetes, anti-brain injury, anti-obesity, immunomodulatory and anti-inflammation. In this review, we systematically summarized the extraction methods, structural characteristics and physicochemical properties of MCPs. Especially MCPs modulate gut microbiota and cause the alterations of metabolic products, which can regulate different signaling pathways and target gene expressions to exert various functions. Meanwhile, the potential structure-activity relationships of MCPs were analyzed to provide a scientific basis for better development or modification of MCPs. Future researches on MCPs should focus on industrial extraction and molecular mechanisms. In East Asia, Momordica charantia L. is used as both food and medicine. It is not clear whether MCP has its unique biological effects. Further study on the difference between MCPs and other food-derived polysaccharides will be helpful to the development and potential application of Momordica charantia L.
Collapse
Affiliation(s)
- Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yidan Luo
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yuchi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| |
Collapse
|
10
|
Zhu Y, Wang H, Zhang T, Zhang X, Zhu C. Characterization, antioxidant activity and in vitro digestion of hawthorn pectin prepared by gradient ethanol precipitation. Int J Biol Macromol 2024; 267:131278. [PMID: 38582459 DOI: 10.1016/j.ijbiomac.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/18/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.
Collapse
Affiliation(s)
- Yiwei Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Haoyu Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Ting Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiaoyan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
11
|
Peng Y, Li Y, Pi Y, Yue X. Effects of almond (Armeniaca Sibirica L. Lam) polysaccharides on gut microbiota and anti-inflammatory effects on LPS-induced RAW264.7 cells. Int J Biol Macromol 2024; 263:130098. [PMID: 38342264 DOI: 10.1016/j.ijbiomac.2024.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
The aim of this study was to investigate the prebiotic properties of the almond polysaccharide AP-1 on intestinal microorganisms by using an in vitro fecal fermentation method and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW264.7 cells. The results showed that during the in vitro fermentation of AP-1, the pH value of the fermentation broth decreased obviously, while the concentration of short-chain fatty acids (SCFAs) increased significantly, especially acetic acid and butyric acid. In genus level, the number of Clostridium and Megamonas increased markedly in the AP-1 group after 24 h of fermentation. After 48 h of fermentation, there was a noticeable increase in the number of beneficial genera Lactobacillaceae and Bifidobacteriaceae, and a considerable decrease in the number of pro-inflammatory genera. In addition, we found that AP-1 had no toxic effect on RAW264.7 cells. In the LPS-induced inflammation model of RAW264.7 cells, AP-1 could effectively inhibit the release of NO, regulate the level of reactive oxides (ROS), and effectively down-regulate the mRNA expression of TNF-α, IL-1β, IL-6 and iNOS. In conclusion, the almond polysaccharide AP-1 may be a functional active substance aimed at promoting intestinal health and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
12
|
Cheng Z, Zheng Q, Duan Y, Cai M, Zhang H. Effect of subcritical water temperature on the structure, antioxidant activity and immune activity of polysaccharides from Glycyrrhiza inflata Batalin. Int J Biol Macromol 2024; 261:129591. [PMID: 38272429 DOI: 10.1016/j.ijbiomac.2024.129591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
In this study, the polysaccharide from Glycyrrhiza inflata Batalin extracted by hot water (HW-GP) was further physically modified with subcritical water to obtain novel polysaccharides (SW-GP). Comparative analysis was conducted to examine the disparities in conformation and bioactivity between HW-GP and SW-GP, aiming to precisely regulate the structure of the polysaccharides and enhance their bioactivity by controlling subcritical water temperature. The results showed that, compared with HW-GP, subcritical water modification (100-160 °C) not only significantly reduced the molecular weight of polysaccharides (from 5.586 × 105 g/mol to 1.484 × 105 g/mol), but also modulated the intermolecular interaction forces, which maintain the conformation of the polysaccharides, including electrostatic and hydrophobic interactions, thereby dynamically transforming the polysaccharide chain conformation from triple helix to random coil, and the strength of the chain conformation shifted from rigid to flexible. In addition, the modification of the SW-GP structure by subcritical water also enhanced its biological activity. SW-GP (140 °C) with low molecular weight and semi-rigid triple helix conformation showed the best scavenging effect on the DPPH, ABTS, and hydroxyl radicals, and exhibited excellent antioxidant activity. SW-GP (130 °C) with medium molecular weight and semi-rigid triple helix conformation significantly promoted the proliferation and phagocytosis of RAW264.7 cells, as well as increased the release levels of NO, TNF-α, IL-6, and IL-1β, and the immunomodulatory activity was much higher than that of other polysaccharides. These findings confirmed the feasibility of using subcritical water temperature as a regulatory feature for the structure and bioactivity of glycyrrhiza polysaccharides, which may have reference significance for the modification of polysaccharides with heightened bioactivity.
Collapse
Affiliation(s)
- Zirun Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiao Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Gong H, Gan X, Qin B, Chen J, Zhao Y, Qiu B, Chen W, Yu Y, Shi S, Li T, Liu D, Li B, Wang S, Wang H. Structural characteristics of steamed Polygonatum cyrtonema polysaccharide and its bioactivity on colitis via improving the intestinal barrier and modifying the gut microbiota. Carbohydr Polym 2024; 327:121669. [PMID: 38171660 DOI: 10.1016/j.carbpol.2023.121669] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Steamed Polygonatum cyrtonema has been commonly used clinically for its gaining effect, whose main active ingredient is a polysaccharide. A water-soluble polysaccharide named PSP-W-1 was isolated from steamed Polygonatum cyrtonema. PSP-W-1 was characterized as a galactan having a backbone consisting predominately of 1,4-β-linked Galp branched at the C-6 position by T-β-linked Galp with a molecular weight of 14.4 kDa. PSP-W-1 could inhibit the overproduction of inflammatory factors and inflammatory mediators (iNOS, IL-6, COX-2) in dextran sodium sulfate-induced colitis mice. Oral administration of PSP-W-1 dramatically alleviated colonic pathological damage, repaired the intestinal barrier (occludin and ZO-1) and regulated the intestinal microbiota by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and norank_f_norank_o_Clostridia UCG-014, while decreasing the abundance of Bacteroides and Escherichia-Shigella to alleviate colitis symptoms. Overall, our findings suggest that PSP-W-1 might be a therapeutic option for both the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Baoyi Qin
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China
| | - Dong Liu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China; Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, Anhui, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, China.
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Shang Z, Jiang Y, Yang F, Wu K, Zheng G, Lin Y, Wang C, Xin W, Zhao F. A homologous series of α-glucans from Hemicentrotus pulcherrimus and their immunomodulatory activity. Int J Biol Macromol 2024; 260:129657. [PMID: 38253154 DOI: 10.1016/j.ijbiomac.2024.129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Seven macromolecular polysaccharides (HPP-2S-HPP-8S) were purified from the gonads of sea urchin Hemicentrotus pulcherrimus. They were characterized as α-glucan homologues, sharing the same α-1,4-glucan backbone substituted at C-6 positions by glucose with HPP-1S that occurs as the major polysaccharide in H. pulcherrimus, while with higher degrees of branching, and additionally possessing minor amounts of mannose and ribose. The branching degree and amounts of non-glucose branches showed a generally increasing tendency across HPP-2S - HPP-8S. These polysaccharides exhibited significant macrophage-activating effects by augmenting the secretion of NO, TNF-α and IL-6, which probably involves the activation of NF-κB and MAPKs signaling pathways. Notably, the polysaccharides with a higher degree of branching exhibited markedly enhanced immunomodulatory capacity with a lowest effective concentration of 1.95 μg/mL. This work provides new cases of bioactive α-glucans and reveals their potential application as immunomodulating agents.
Collapse
Affiliation(s)
- Zhipeng Shang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yan Jiang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fuhao Yang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ke Wu
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gaoliang Zheng
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yexi Lin
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunhua Wang
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Wenyu Xin
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Feng Zhao
- The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Shandong Collaborative Innovation Center of Ocean Engineering Technology, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
15
|
Wu Y, Chen H, Wang B, Xu J, Li J, Ying G, Chen K. Extraction of Ampelopsis japonica polysaccharides using p-toluenesulfonic acid assisted n-butanol three-phase partitioning: Physicochemical, rheological characterization and antioxidant activity. Int J Biol Macromol 2024; 254:127699. [PMID: 37913878 DOI: 10.1016/j.ijbiomac.2023.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhang X, Hong L, Zhu BJ, Yuan Y, Li SP, Zhao J. Atomic force microscopy based conformation and immunological activity of Lentinan injections. Int J Biol Macromol 2023; 253:126901. [PMID: 37716659 DOI: 10.1016/j.ijbiomac.2023.126901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The purpose of this study was to investigate the morphological characteristics of different brands of lentinan injections produced in China using atomic force microscopy (AFM) and their relationship to immunological activity. Based on AFM imaging, chain height could be used as characterizing the conformation of lentinan, and the heights of 95 % confidence interval for triple, double and single helix were 1.746 ± 0.039 nm, 1.564 ± 0.037 nm and 1.243 ± 0.031 nm, respectively, which were calculated using self-developed MATLAB protocol. AFM characters and their immunological activity of different lentinan injection were compared. In detail, two parameters, triple helix ratio 51.3 % and adhesion force 800 pN, of Jinling (JL) lentinan injection are much higher than samples of other four manufacturers. In addition, immunological activity of JL lentinan injection is also significantly higher than Yineng's. High performance size exclusion chromatography (HPSEC) profiles of different lentinans were also compared, and the data were in accordance with those from AFM. Molecular weight accumulation curves could be used for evaluation of quality consistence of different batches of lentinan from same manufacturer and/or different manufacturers. The results showed that quality consistence of lentinan from different manufactures is poor, which should be greatly improved.
Collapse
Affiliation(s)
- Xuan Zhang
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, China; Macao Centre for Testing of Chinese Medicine, University of Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Liang Hong
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, China; Macao Centre for Testing of Chinese Medicine, University of Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Bao-Jie Zhu
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, China; Macao Centre for Testing of Chinese Medicine, University of Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China
| | - Yaozu Yuan
- Jiangsu Institute for Food and Drug Control, Nanjing, China.
| | - Shao-Ping Li
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, China; Macao Centre for Testing of Chinese Medicine, University of Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China.
| | - Jing Zhao
- Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau & National Glycoengineering Research Center, China; Macao Centre for Testing of Chinese Medicine, University of Macau, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, China.
| |
Collapse
|
17
|
Wu Y, Li BH, Chen MM, Liu B, Jiang LL. Research progress on ginger polysaccharides: extraction, purification and structure-bioactivity relationship. Food Funct 2023; 14:10651-10666. [PMID: 37975522 DOI: 10.1039/d3fo03552b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Ginger is a widespread source of herbal medicine and traditional spices. Among its various bioactive components, ginger polysaccharides (GPs) have attracted the attention of researchers worldwide because of their significant bioactivity. Recent studies have demonstrated the antioxidant, antitumour, anti-inflammatory, immunomodulatory, hypoglycaemic, cough suppressant and thrombotic anticoagulant effects of GPs. However, the structure-bioactivity relationship of GPs has yet to be comprehensively investigated. This review aims to explore all the current published studies on GPs. It further examines various aspects, including the extraction and purification methods, structure, bioactivity, application and structure-bioactivity relationship of GPs. Thus, this review intends to provide a reference for future GP-related research and development.
Collapse
Affiliation(s)
- Yuan Wu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing-Hang Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Miao-Miao Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Bing Liu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Liang-Liang Jiang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
18
|
Wang H, Yuan M, Li G, Tao Y, Wang X, Ke S, Zhuang M, Wang A, Zhou Z. Chemical characterization, antioxidant and immunomodulatory activities of acetylated polysaccharides from Cyperus esculentus. Food Chem 2023; 427:136734. [PMID: 37418805 DOI: 10.1016/j.foodchem.2023.136734] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
This research was designed to characterize the structure of Cyperus esculentus polysaccharide (CEP) and its acetylated one (ACEP), and then investigated the effects of acetylation on the changes in physicochemical properties, thermal stability, antioxidant and immunomodulatory activities. Results showed that CEP and ACEP were heteropolysaccharides consisting of glucose, mannose, arabinose and xylose. The main chain of CEP included α-1,4-Glcp residues with the branching points at the O-6 position of the α-1,6-Manp residues. Acetyl groups were substituted at the O-2 and O-6 positions of some glucose residues. Meanwhile, the acetylation remarkably improved the polysaccharides thermal stability, and the ACEP exhibited a greater antioxidant activity. Furthermore, CEP and ACEP were proved to protect RAW 264.7 cells against LPS-induced inflammation by improving cellular morphology and decreasing reactive oxygen species secretion. This study may highlight a new approach for developing a high value-added ingredient from C. esculentus for functional food industry.
Collapse
Affiliation(s)
- Huifang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meiyu Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxin Tao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; College of Food Science, Shihezi University, Shihezi 832003, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
19
|
Wang D, Dong Y, Xie Y, Xiao Y, Ke C, Shi K, Zhou Z, Tu J, Qu L, Liu Y. Atractylodes lancea Rhizome Polysaccharide Alleviates Immunosuppression and Intestinal Mucosal Injury in Mice Treated with Cyclophosphamide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37861444 DOI: 10.1021/acs.jafc.3c05173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Plant-derived polysaccharides, such as Atractylodes lancea rhizome polysaccharide (ALP), are good immune regulators. However, the immune regulatory mechanism of the ALP is unknown. This study aimed to evaluate the effects of ALP on the intestinal mucosal barrier and intestinal mucosal immunity of immunosuppressed mice. We also compared the activity of raw Atractylodes lancea rhizome polysaccharide (SALP) with wheat bran processed bran-fried Atractylodes lancea rhizome polysaccharide (FALP; both at 1.2 g/kg/d for mice). Our results showed that ALP effectively increased the immune organ index and blood cell count, stimulated the secretion of cytokines, and promoted the expression of occludin and zonula occludens-1 (ZO-1). ALP also promoted the expression of T cells and the secretion of sIgA. Furthermore, ALP alleviated the gut microbiota disorder in Cy-treated mice and increased the relative abundances of Lactobacillus and Faecalibaculum. ALP reversed the decrease in the level of SCFAs and promoted the expression of G protein-coupled receptor 43 (GPR43). To our knowledge, this study was the first to explore how the ALP protects the intestinal mucosal barrier and enhances intestinal mucosal immunity by alleviating the gut microbiota imbalance and metabolic disorders of SCFAs. FALP was more therapeutic than SALP, suggesting that FALP could be developed as a promising functional food component.
Collapse
Affiliation(s)
- Dongpeng Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ying Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Linghang Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
20
|
Yun L, Han C, He X, Li Q, Fersht V, Zhang M. Structure Characterization and Immunomodulatory Activity of Misgurnus anguillicaudatus Carbohydrates. Molecules 2023; 28:5771. [PMID: 37570747 PMCID: PMC10421513 DOI: 10.3390/molecules28155771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Misgurnus anguillicaudatus, also known as oriental weather loach, is widely consumed and favored in East Asia due to its superior nutritional values and excellent flavor. In this study, a crude Misgurnus anguillicaudatus carbohydrates (MAC) was isolated from Misgurnus anguillicaudatus. Subsequently, two parts, which were named MAO and MAP, respectively, were separated from MAC, and their primary structures and immunomodulatory activity were investigated. The results showed that MAO had a molecular weight of 2854 Da, and principally consisted of arabinose (77.11%) and rhamnose (21.97%), together with minor levels of fucose (0.92%); MAP, with a molecular weight of 3873 Da, was mainly composed of fucose (87.55%) and a small amount of rhamnose (8.86%) and galactose (3.59%). The in vitro assay showed that MAC could significantly enhance the proliferation of macrophages without cytotoxicity and increase the production of immune substances (TNF-α, IL-6). Together with Western blot results, we speculated that MAC could stimulate RAW264.7 murine macrophage cells to secrete TNF-α and IL-6 through up-regulating TLR4-MAPK-p38 signaling pathways. The results indicated that MAC could be a potential immune agent and might provide meaningful information for further chain conformation and immune mechanism research.
Collapse
Affiliation(s)
- Liyuan Yun
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin 300392, China; (L.Y.); (Q.L.)
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
| | - Conglin Han
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
| | - Xiaoqing He
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
| | - Qian Li
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin 300392, China; (L.Y.); (Q.L.)
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
| | - Viktor Fersht
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
| | - Min Zhang
- Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin 300392, China; (L.Y.); (Q.L.)
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, China; (C.H.); (X.H.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Hu W, Yu A, Wang S, Bai Q, Tang H, Yang B, Wang M, Kuang H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules 2023; 28:3855. [PMID: 37175266 PMCID: PMC10179780 DOI: 10.3390/molecules28093855] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Zingiber officinale Roscoe. (ginger) is a widely distributed plant with a long history of cultivation and consumption. Ginger can be used as a spice, condiment, food, nutrition, and as an herb. Significantly, the polysaccharides extracted from ginger show surprising and satisfactory biological activity, which explains the various benefits of ginger on human health, including anti-influenza, anti-colitis, anti-tussive, anti-oxidant, anti-tumor effects. Here, we systematically review the major studies on the extraction and purification of polysaccharides from ginger in recent years, the characterization of their chemical structure, biological activity, and structure-activity relationships, and the applications of ginger polysaccharides in different fields. This article will update and deepen the understanding of ginger polysaccharide and provide a theoretical basis for its further research and application in human health and product development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
22
|
Peng Y, Zhang Z, Chen W, Zhao S, Pi Y, Yue X. Structural characterization, α-glucosidase inhibitory activity and antioxidant activity of neutral polysaccharide from apricot (Armeniaca Sibirica L. Lam) kernels. Int J Biol Macromol 2023; 238:124109. [PMID: 36958449 DOI: 10.1016/j.ijbiomac.2023.124109] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Screening for α-glucosidase inhibitors and antioxidants from natural sources that could reduce postprandial glucose in diabetic patients and reduce oxidative stress had attracted considerable interest. In this study, a neutral polysaccharide (AP-1) with a triple helix structure was isolated and purified from the residue of apricot (Armeniaca sibirica L. Lam.) kernels by using DEAE-52 and Sephadex G-100 columns. The molecular weight of AP-1 was 23.408 kDa and consisted mainly of glucose with trace amounts of arabinose, galactose, and mannose, which had molar percentages of 98.48, 0.63, 0.62 and 0.27 %, respectively. The main chain of AP-1 was composed of →4)-α-D-Glcp-(1 → interlinked, and α-D-Glcp-(1 → was attached as a branched chain at the O-6 position of →4,6)-α-D-Glcp-(1→. In addition, AP-1 exhibited stronger α-glucosidase inhibition and free radical scavenging ability compared to crude polysaccharides. Therefore, AP-1 could be used as a potential natural hypoglycemic agent and antioxidant in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yanqi Peng
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Weiyan Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 11086, China.
| |
Collapse
|
23
|
Jing Y, Cheng W, Li M, Zhang Y, Pang X, Qiu X, Zheng Y, Zhang D, Wu L. Structural Characterization, Rheological Properties, Antioxidant and Anti-Inflammatory Activities of Polysaccharides from Zingiber officinale. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:160-165. [PMID: 36437417 DOI: 10.1007/s11130-022-01033-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The structural characteristics, rheological properties, antioxidant and anti-inflammatory activities of Zingiber officinale polysaccharides (ZOP) and ZOP-1 were studied. The total soluble sugar contents of ZOP and ZOP-1 were 78.6 ± 0.6 and 79.4 ± 0.4%, respectively. Compared with ZOP, ZOP-1 had a larger molecular weight and a more uniform distribution. There were also some differences in the monosaccharide composition between ZOP and ZOP-1. The main monosaccharide of ZOP and ZOP-1 was glucose (Glc) and galactose (Gal), respectively. Ultraviolet visible spectroscopy (UV-Vis) and fourier transform infrared spectra (FT-IR) results showed that the two polysaccharides had the characteristic absorption peaks of polysaccharides and did not contain nucleic acid and protein. They had good thermal stability, trihelix structure and amorphous sheet structure. ZOP and ZOP-1 had obvious differences in microstructure. The surface of ZOP was smooth and the broken structure was compact and stable with angular shape, while the surface of ZOP-1 was uneven with spiral accumulation and not closely arranged. Moreover, ZOP and ZOP-1 were polysaccharides molecular polymers which were entangled by van der waals' force (VDW) between polysaccharides molecules and hydrogen bond association between sugar chains, and both contain α pyranose. At different concentrations, temperature, pH and salt ion concentrations, both ZOP and ZOP-1 had the properties of non-Newtonian fluids, showed shear dilution phenomenon, which had the potential as a texture modifier or thickener in food or biomedicine. Compared with ZOP, ZOP-1 showed superior antioxidant and anti-inflammatory activities in vitro.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Wenjing Cheng
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xinyue Pang
- College of Pharmacy, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, China
- College of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, 88 Fangxing Road, Shijiazhuang, 050026, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Shijiazhuang, 050200, China.
| |
Collapse
|
24
|
Huang H, Yang X, Li W, Han Q, Xu Z, Xia W, Wu M, Zhang W. Structural characterization and immunomodulatory activity of an arabinogalactan from Jasminum sambac (L.) Aiton tea processing waste. Int J Biol Macromol 2023; 235:123816. [PMID: 36841385 DOI: 10.1016/j.ijbiomac.2023.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
An arabinogalactan named JSP-1a was isolated from Jasmine tea processing waste by DEAE Sepharose FF and Sephacryl S-200 HR chromatography. Polysaccharide JSP-1a, with an average molecular weight of 87.5 kDa, was composed of galactose (59.60 %), arabinose (33.89 %), mannose (4.81 %), and rhamnose (1.70 %). JSP-1a was found to be a type II arabinogalactan comprising the main backbone of 1, 6-linked Galp residues, and the side chain containing α-T-Araf, α-1,5-Araf, β-T-Galp, β-1,3-Galp, and β-1,4-Manp residues was attached to the O-3 position of β-1,3,6-Galp residues. Evidence from bioactivity assays indicated that JSP-1a possessed potent immunomodulatory effects on RAW264.7 macrophages: treatment with JSP-1a increased phagocytosis, activated NF-κB p65 translocation, and promoted the production of NO, reactive oxygen species (ROS), the tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Furthermore, inhibition of Toll-like receptor 4 caused the suppression of NO release and cytokines secretion, which indicated that TLR-4/NF-κB pathway might play a significant role in JSP-1a-induced macrophages' immune response. The results of this study could provide a theoretical basis of JSP-1a as a safe immunostimulatory functional foods or a treatment for immunological diseases.
Collapse
Affiliation(s)
- Hai Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Qifeng Han
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhizhen Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Mengqi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Wenqing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
25
|
Structural elucidation and immunoregulatory activity of a new polysaccharide obtained from the edible part of Scapharca subcrenata. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
26
|
Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int J Biol Macromol 2023; 225:241-254. [PMID: 36332822 DOI: 10.1016/j.ijbiomac.2022.10.257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
Two neutral polysaccharides (PPP1-1 and PPP1-2) were purified from persimmon peel. PPP1-1 (21.84 kDa) was mainly composed of arabinose (22.92 %), galactose (21.09 %), glucose (35.13 %), and xylose (19.09 %), while PPP1-2 (10.42 kDa) mainly contained arabinose (32.98 %), galactose (20.81 %), glucose (26.86 %), xylose (10.46 %), and mannose (7.63 %). Methylation and NMR spectra analysis demonstrated that the backbone of PPP1-1 appeared to be →6)-α-D-Glcp-(1→, →2,6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Manp-(1→, and α-L-Araf-(1 → residues. The main chain of PPP1-2 was composed of →6)-α-D-Glcp-(1→, →5)-α-L-Araf-(1→, and →3,5)-α-L-Araf-(1 → residues with branches consisting of →3)-α-L-Araf-(1→, →1,2)-α-D-Glcp-(6→, →4)-α-D-Glcp-(1→, →3)-β-D-Galp-(1→, →4)-β-D-Galp-(1→, →6)-β-D-Galp-(1→, →4)-β-D-Xylp-(1→, →4,6)-α-D-Glcp-(1→, and →4)-β-D-Manp-(1 → residues and terminal of α-L-Araf-(1 → residue. PPP1-2 exhibited stronger antioxidant activities and better thermal stability than PPP1-1. Our results provided the foundation for further investigating the structure and biological activities of persimmon peel polysaccharides and highlighted their potential to become potential antioxidants in functional food.
Collapse
|
27
|
Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. Int J Biol Macromol 2022; 223:663-672. [PMID: 36368360 DOI: 10.1016/j.ijbiomac.2022.11.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Zizyphus jujube polysaccharide was extracted with hot water, ultrahigh pressure, deep eutectic solvent (DES) and ultrahigh pressure-assisted DES. Comparative analyses were conducted on the yield, physicochemical properties and prebiotic activity of four polysaccharides (JP-H, JP-U, JP-D and JP-UD). The yield of JP-UD (10.42 %) was 3.3 times that of JP-H (3.12 %), and its sugar content was the highest. JP-UD possessed the lowest Mw, while JP-H possessed the highest. Four JPs were acidic pyranose and mainly composed of galacturonic acid, arabinose and galactose. NMR results demonstrated that they contained not only similar glycosidic linkage but also the specific glycosidic linkage of →4)-α-D-Glcp-(l→ appeared in JP-U and JP-UD, the esterified units of GalA and CONH2 group appeared in JP-D and JP-UD, and the Terminal β-D-Galp and →4)-α-GalpA-(1→ appeared in JP-UD. JPs showed different proliferation effects on four lactobacillus strains, among which JP-UD exhibited the strongest prebiotic activity. Zizyphus jujube polysaccharides have great potential for application in the functional food and medical industry.
Collapse
|
28
|
Yuan Q, Liu W, Huang L, Wang L, Yu J, Wang Y, Wu D, Wang S. Quality evaluation of immunomodulatory polysaccharides from
Agaricus bisporus
by an integrated fingerprint technique. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ling Huang
- Institute of Food Processing and Safety College of Food Science Sichuan Agricultural University Ya'an China
| | - Liju Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development Zhangzhou Pien Tze Huang Pharmaceutical Co. Ltd Zhangzhou China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
| | - Ding‐Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering Chengdu University Chengdu China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Macao China
- Macau Centre for Research and Development in Chinese Medicine University of Macau Macao China
| |
Collapse
|
29
|
Li W, Qiu Z, Ma Y, Zhang B, Li L, Li Q, He Q, Zheng Z. Preparation and Characterization of Ginger Peel Polysaccharide-Zn (II) Complexes and Evaluation of Anti-Inflammatory Activity. Antioxidants (Basel) 2022; 11:antiox11122331. [PMID: 36552539 PMCID: PMC9774354 DOI: 10.3390/antiox11122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to explore the improvement of the bioactivity of ginger peel polysaccharides (GPs) by the modification of zinc after structural characterization. The obtained GP-Zn (II) complexes consisted dominantly of glucose and galactose in a mass proportion of 95.10:2.10, with a molecular weight of 4.90 × 105 Da and a Zn content of 21.17 mg/g. The chelation of GPs and Zn (II) was mainly involved in the O-H of hydroxyl groups, and this interaction reduced the crystallinity and decreased the asymmetry of GPs, with a slight effect on the thermal stability. The administration of GPs and their Zn (II) complexes effectively alleviated CuSO4-induced inflammatory response in zebrafish (Tg: zlyz-EGFP) via down-regulating the mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12 and TNF-α) and upregulating the expression of anti-inflammatory cytokine (IL-10). Furthermore, the modification of Zn (II) enhanced the inflammation-inhibiting effect of polysaccharides. Therefore, GP-Zn (II) complexes could be applied as a candidate anti-inflammatory agent for the treatment of chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Wenwen Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yue Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Qiulin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Qiuxia He
- Science and Technology Service Platform of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Correspondence: (Q.H.); (Z.Z.)
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (Q.H.); (Z.Z.)
| |
Collapse
|
30
|
Physicochemical properties, structure and biological activities of a novel low-molecular-weight hawthorn pectin. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Jiang W, Ren K, Yang Z, Fang Z, Li Y, Xiang X, Song Y. Purification, Identification and Molecular Docking of Immunomodulatory Peptides from the Heads of Litopenaeus vannamei. Foods 2022; 11:3309. [PMID: 37431056 PMCID: PMC9602407 DOI: 10.3390/foods11203309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
In order to realize the high-value utilization of Litopenaeus vannamei (L. vannamei) heads, immunomodulatory peptides were prepared from the enzymatic hydrolysate of L. vannamei heads, and the action mechanism of immunomodulatory peptides was determined by molecular docking. The results showed that six proteases were used to hydrolyze L. vannamei head proteins, with the animal protease hydrolysate exhibiting the highest macrophage relative proliferation rate (MRPR). The enzymatic products were then sequentially purified by ultrafiltration, Sephadex G-15 gel chromatography, identified by liquid chromatography-mass spectrometry (LC-MS/MS), and finally selected for six immunomodulatory peptides (PSPFPYFT, SAGFPEGF, GPQGPPGH, QGF, PGMR, and WQR). These peptides maintained good immune activity under heat treatment, pH treatment, and in vitro gastrointestinal digestion. Molecular docking analysis indicated that these peptides showed great binding to both toll-like receptor 2 and 4 (TLR2 and TLR4/MD-2), leading to immunomodulation. The discarded L. vannamei heads in this article are considered to be promising food-borne immunomodulators that contribute to enhancing the immune function of the body.
Collapse
Affiliation(s)
- Weiwei Jiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keyu Ren
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyan Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xi Xiang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China
| |
Collapse
|
32
|
Odebunmi CA, Adetunji TL, Adetunji AE, Olatunde A, Oluwole OE, Adewale IA, Ejiwumi AO, Iheme CE, Aremu TO. Ethnobotanical Survey of Medicinal Plants Used in the Treatment of COVID-19 and Related Respiratory Infections in Ogbomosho South and North Local Government Areas, Oyo State, Nigeria. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192667. [PMID: 36235532 PMCID: PMC9573491 DOI: 10.3390/plants11192667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 05/14/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has extensively spread worldwide with high mortality. Besides vaccination, the United States Food and Drug Administration approved only one oral medication as a treatment. Medicinal plants with antiviral and immunomodulatory properties could be explored as complementary treatments for COVID-19. Ogbomosho is home to such plants traditionally used to treat infectious diseases in Nigeria, making it relevant in complementary medicine. An ethnobotanical survey of medicinal plants used to treat COVID-19 and related ailments, including cough and flu in Ogbomosho South and North Local Government Areas, Nigeria, was conducted using a semi-structured questionnaire. Information was obtained from 56 participants, consisting of different groups of individuals with native knowledge of medicinal plants, and ethnobotanical indices, including the frequency of citation (FC), relative frequency of citation (RFC), and fidelity level (FL) were computed. Twenty-six medicinal plants (17 families) were used to treat COVID-19, 31 (20 families) for cough, and 29 (19 families) for flu. The most cited plant was Zingiber officinale (FC = 10; RFC = 0.18; FL = 18%) for treating COVID-19, Citrus limon (FC = 13; RFC = 0.23; FL = 23%) for cough, and Zingiber officinale (FC = 9; RFC = 0.16; FL = 16%) for flu. Leaves were the most used plant part for treating COVID-19 and flu, while the bark was the most used for cough. Trees and herbs were the most cited plant growth forms. The herbal remedies were mostly prepared by decoction and infusion and were mainly administered orally. Further research should be conducted on the identified species for the scientific validation of their antiviral and immunomodulatory efficacies and safety for use.
Collapse
Affiliation(s)
- Christiana Adeyinka Odebunmi
- Derived Guinea Savannah Research Station, Forestry Research Institute of Nigeria, Oke-Aduin, Ogbomosho P.O. Box 164, Nigeria
| | - Tomi Lois Adetunji
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
- Correspondence:
| | | | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Oluwatosin Esther Oluwole
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, 1300 S. 2nd Street, Minneapolis, MN 55455, USA
| | - Idowu Ayodeji Adewale
- Department of Medical Microbiology, University of Ilorin Teaching Hospital, Old Jebba Road, Oke Ose, Ilorin 240001, Nigeria
| | - Abdulrasak Opeyemi Ejiwumi
- Department of Health Services Management and Policy, College of Public Health, East Tennessee State University, 3rd Floor Sherrod Library, Johnson City, TN 37614, USA
| | - Chinwenwa Esther Iheme
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Taiwo Opeyemi Aremu
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
- Department of Pharmaceutical Care & Health Systems (PCHS), College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Extraction, purification and structural characterization of polysaccharides from Apocynum venetum L. roots with anti-inflammatory activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Structure elucidation and antitumor activity of a water soluble polysaccharide from Hemicentrotus pulcherrimus. Carbohydr Polym 2022; 292:119718. [PMID: 35725190 DOI: 10.1016/j.carbpol.2022.119718] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Sea urchin nowadays serves as a delicacy around the world, and its gonads accumulate abundant polysaccharides before gametogenesis. However, the structure and bioactivity of these polysaccharides remain less well understood. Herein, a water soluble polysaccharide (HPP-1S) with a molecular weight of 2.996 × 107 Da was purified from the gonads of Hemicentrotus pulcherrimus. Chemical, spectroscopic and oligosaccharide sequencing analyses revealed that HPP-1S was a highly homogeneous polysaccharide featuring a linear backbone of 1,4-linked α-d-glucose with 1,6-α-d-glucose and 1,6-α-D-glucuronic acid side chains grafted on the backbone in an alternating pattern. In vitro, HPP-1S can arrest the cell cycle at G2/M and sub-G1 phases, and induce apoptosis in Hela cells potentially by increasing expression ratio of Bax/Bcl-2. In vivo, HPP-1S exhibited obvious antitumor efficacy in Hela xenograft-bearing nude mice with low toxicity. These findings indicated that HPP-1S might serve as a potential low toxic antitumor agent.
Collapse
|
35
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
36
|
Structural Characteristics and the Antioxidant and Hypoglycemic Activities of a Polysaccharide from Lonicera caerulea L. Pomace. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel polysaccharide, LPP, was obtained from Lonicera caerulea L. pomace by ultrasonic-assisted heating and was purified by Sephadex G-100. The structural characteristics of LPP showed that the molecular weight (Mw) was 8.53 × 104 Da; that it was mainly composed of galacturonic acid, followed by galactose; that it possessed the characteristic functional groups of polysaccharides; and that it had an absence of O-glycosidic bonds and crystalline and triple helix structures. Furthermore, LPP exhibited a favorable thermodynamic stability and antioxidant, hypoglycemic, and hypolipidemic activities in a dose-dependent manner in vitro, demonstrating that LPP can be used as an agent to regulate glycolipid metabolism. Additionally, the relationship between its bio-activities is discussed in this paper. The results revealed that the RP, •OH, and NO2− radicals had synergistic promoting effects, and polysaccharides with a strong antioxidant ability may have excellent hypoglycemic and hypolipidemic effects. Collectively, these results suggest that LPP has a strong bio-activity, and that Lonicera caerulea L. pomace can be used as a potential polysaccharide source.
Collapse
|
37
|
Liang J, Zhao Y, Yang F, Zheng L, Ma Y, Liu Q, Cai L, Gong W, Wang B. Preparation and structure-activity relationship of highly active black garlic polysaccharides. Int J Biol Macromol 2022; 220:601-612. [PMID: 35988729 DOI: 10.1016/j.ijbiomac.2022.08.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023]
Abstract
The aim of this study was to establish a method to improve the biological activity of polysaccharides. Three acid-treated polysaccharides (BGPS-2, BGPS-3 and BGPS-4) were obtained by treating black garlic polysaccharides (BGPS-1) with sulfuric acid at different intensities. The structure was characterized using the sulfuric acid-carbazole assay, IC, HPSEC-MALLS and FT-IR. The biological functions were evaluated using antioxidant and melanin biosynthesis inhibition assays. Compared with BGPS-1, the molecular weight of acid-treated polysaccharides significantly decreased, and the uronic acid content significantly increased. Antioxidant capacity negatively correlated with molecular weight, whereas melanin inhibition activity positively correlated with uronic acid content. BGPS-4 had the highest antioxidant capacity and the lowest molecular weight (1.25 × 103 Da), 79.41 % lower than that of BGPS-1. BGPS-3 was the strongest inhibitor of melanin formation and had the highest uronic acid content (50.73 %), 238.2 % higher than that of BGPS-1. Molecular weight and uronic acid content were the main structural characteristics that affected the antioxidant and melanin biosynthesis inhibition activities, respectively. BGPS-1, BGPS-2, BGPS-3, and BGPS-4 all had β-linked pyranose, multi-branched, and non-triple helical spiral structures. Therefore, the acid hydrolysis method markedly modified the structural characteristics of black garlic polysaccharides, and increased their antioxidant capacity and melanin biosynthesis inhibition activity.
Collapse
Affiliation(s)
- Jie Liang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yonglei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Furui Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lan Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qingai Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Weili Gong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Binglian Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
38
|
Liu C, Wang F, Zhang R. An Acidic Polysaccharide with Anti-Inflammatory Effects from Blackened Jujube: Conformation and Rheological Properties. Foods 2022; 11:foods11162488. [PMID: 36010488 PMCID: PMC9407416 DOI: 10.3390/foods11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
An acidic polysaccharide fraction (BJP-4) was isolated from blackened jujube, and its advanced structures and anti-inflammatory activity were investigated. X-ray diffraction showed that BJP-4 exhibits both crystalline and amorphous portions. Atomic force microscopy data suggested that it contains a large number of spherical lumps. Circular dichroism and Congo red experiments revealed that it has no triple-helix conformation. In steady shear flow results, the BJP-4 solution was a pseudoplastic non-Newtonian fluid with acid-base stability. BJP-4 (20 mg/mL) showed liquid-like properties (G″ > G′), while it performed weak gel-like behavior at a high concentration (40 mg/mL) (G′ > G″). The anti-inflammatory effects of BJP-4 were further evaluated through in vitro experiments. BJP-4 could down-regulate the over-secretion of inflammatory factors (NO, IL-6, IL-1β, TNF-α, iNOS and COX-2) in RAW264.7 cells due to LPS stimulation. Moreover, it demonstrated that BJP-4 restrained the NF-κB signal pathway by regulating TLR4 expression, reducing IκBα phosphorylation level and NF-κB p65 nuclear translocation. In summary, this present study contributes to the application of blackened jujube polysaccharides in the foods and medicine field.
Collapse
|
39
|
Zhang Z, Mwizerwa Muhindo E, Wang S, Yun L, Zhang M. Structural characteristics and immunostimulatory activity of sea cucumber tendon polysaccharides in cyclophosphamide-induced Balb/c mice. Food Funct 2022; 13:8627-8642. [PMID: 35894650 DOI: 10.1039/d2fo00942k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sea cucumber tendon, one of the main parts of sea cucumber viscera, is widely accepted as a waste residue. In this study, a sea cucumber tendon polysaccharide (SCTPII) was purified from sea cucumber tendons and its primary structures and immunomodulatory activity were investigated. SCTPII is a triple-helix conformation homogeneous polysaccharide with a molecular weight of 3.97 × 106 Da that consists of glucose and fucose with molar ratios of 92.09% and 7.91% with high thermostability. In vivo tests on immunosuppressed Balb/c mice revealed that compared with the model group, the proliferation of T cells and B cells in splenic lymphocytes of mice in the high-dose group was significantly improved by 0.92 times and 5.14 times, respectively. Additionally, SCTPII could improve the proliferation ability and phagocytosis of macrophages, as well as promoting the expression of IL-6, TNF-α and IFN-γ and enhancing the intestinal physical barrier function by increasing the protein expression of claudin-1, occludin, ZO-1 and MUC2. Furthermore, the 16S rRNA sequencing of fecal samples was performed, and gene count and α-diversity analysis revealed that SCTPs could improve the microbial community richness. In particular, SCTPs could increase the relative abundance of Lactobacillus, Bacteroides and Akkermansia and reduce the relative abundance of Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group. These results demonstrate that SCPII possesses potential immunoregulatory activities in cyclophosphamide-induced mice by regulating intestinal microbiota diversity and improving immune organs, enhancing the proliferation ability of macrophages and splenocyte proliferation, and enhancing intestinal physical barrier function, which might provide important evidence for the development and utilization of the viscera of sea cucumber.
Collapse
Affiliation(s)
- Zhuchi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Esther Mwizerwa Muhindo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Songjun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China. .,China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| |
Collapse
|
40
|
Wei X, Yao J, Wang F, Wu D, Zhang R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front Nutr 2022; 9:947706. [PMID: 35928842 PMCID: PMC9343709 DOI: 10.3389/fnut.2022.947706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The isolation, purification, and antioxidant activity of polysaccharides extracted from elderberry fruits were studied. Two neutral polysaccharides (EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all contain arabinose, galactose, glucose, and mannose, with molecular weights of 1.7981 × 106, 7.0523 × 106, 7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 Da, respectively. Structural characterization showed that the backbone of EFP-2 consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were detected by methylation analysis and NMR analysis. In addition, the MTT assay and zebrafish oxidative damage assay showed that EFP-2 had a protective effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and zebrafish with the addition of EFP-2 would have low levels of ROS in vivo which showed significant antioxidant activity. Therefore, the results showed that the elderberry polysaccharides have antioxidant activity and can be used as potential antioxidants in functional foods.
Collapse
Affiliation(s)
- Xinxin Wei
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Dejun Wu
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
- *Correspondence: Dejun Wu,
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Rentang Zhang,
| |
Collapse
|
41
|
Cao S, Yang Y, Liu S, Shao Z, Chu X, Mao W. Immunomodulatory Activity In Vitro and In Vivo of a Sulfated Polysaccharide with Novel Structure from the Green Alga Ulvaconglobata Kjellman. Mar Drugs 2022; 20:md20070447. [PMID: 35877740 PMCID: PMC9320874 DOI: 10.3390/md20070447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
Collapse
Affiliation(s)
- Sujian Cao
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China;
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
42
|
Cai B, Chen H, Wan P, Luo L, Ye Z, Huang J, Chen D, Pan J. Isolation and identification of immunomodulatory peptides from the protein hydrolysate of tuna trimmings (Thunnas albacares). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Liao Y, Gao M, Wang Y, Liu X, Zhong C, Jia S. Structural characterization and immunomodulatory activity of exopolysaccharide from Aureobasidium pullulans CGMCC 23063. Carbohydr Polym 2022; 288:119366. [DOI: 10.1016/j.carbpol.2022.119366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
|
44
|
Zhang W, He J, Hu Y, Lu J, Zhao J, Li P. Chemical Structure and Immune Activation of a Glucan From Rhizoma Acori Tatarinowii. Front Nutr 2022; 9:942241. [PMID: 35845784 PMCID: PMC9277461 DOI: 10.3389/fnut.2022.942241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Rhizoma Acori Tatarinowii is a traditional Chinese herb used to treat depression and coronary heart disease. Studies on its active components mainly focus on small molecular compounds such as asarone and other essential oil components, while the large molecular active components such as polysaccharides are ignored. In this study, we aimed to study the chemical structure and immune activation of polysaccharides from Rhizoma Acori Tatarinowii. In this study, a polysaccharide (RATAPW) was isolated and purified by DEAE-52 cellulose and Sephadex G-100 column chromatography from alkali extraction polysaccharide of Rhizoma Acori Tatarinowii. The average molecular weight of RATAPW was 2.51 × 104 Da, and the total carbohydrate contents of RATAPW were 98.23 ± 0.29%. The monosaccharide composition, methylation, and nuclear magnetic resonance (NMR) analysis results displayed that the polysaccharide was α-1,4-glucan with short α-1,6 branches. Immunofluorescence assay and inhibitor neutralization assay indicated that RATAPW could promote the TNF-α production of RAW264.7 macrophage through the nuclear factor kappa B (NF-κB) molecular signaling pathway. Treatment with 200 μg/ml of RATAPW enhanced a 38.77% rise in the proliferation rate of spleen lymphocytes. RATAPW also enhances ConA-induced T cells and lipopolysaccharide (LPS)-induced B cell proliferation in a dose-dependent effect. Our study lays a foundation for the discovery of natural polysaccharide immune modulators or functional food from Rhizoma Acori Tatarinowii.
Collapse
|
45
|
Yang P, Jin J, Ma Y, Wang F, Li Y, Duan B, Zhang Y, Liu Y. Structure Characterization, Immunological Activity, and Mechanism of a Polysaccharide From the Rhizome of Menispermum dauricum DC. Front Nutr 2022; 9:922569. [PMID: 35782915 PMCID: PMC9240474 DOI: 10.3389/fnut.2022.922569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the structural characterization and immunological activity in vitro and in vivo of a polysaccharide from the rhizome of Menispermum dauricum. A new polysaccharide named MDP was isolated from the rhizome of Menispermum dauricum by hot water extraction, ethanol precipitation, anion-exchange, and gel-filtration chromatography. MDP was homogeneous and had a molecular weight of 6.16 ×103 Da, and it was an α-D-glucan containing a (1 → 6)-linked backbone, with a glucosyl residue at the C-3 position along the main chain. MDP exhibited immunological activity in vitro, which could significantly promote the proliferation and phagocytosis of RAW264.7 cells and the release of TNF-α and IL-6 factors. For immunological activity in vivo. MDP could significantly increase the thymus and spleen indices, enhance the macrophage function, increase the level of cytokine (IL-6 and TNF-α) and immunoglobulin IgM in the serum and regulate T lymphocyte subsets. Furthermore, MDP elevated the expression of the critical nodes in the TLR4-MyD88 signaling pathways in vivo. These results support the concept that MDP may exhibit immunological activity through TLR4-MyD88 signaling pathway in vivo.
Collapse
Affiliation(s)
- Pei Yang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Jin
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengshan Wang
- National Medical Products Administration Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoguo Duan
- Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sisui, China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Yongqing Zhang
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yuhong Liu
| |
Collapse
|
46
|
Jing Y, Cheng W, Ma Y, Zhang Y, Li M, Zheng Y, Zhang D, Wu L. Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Polysaccharide From Zingiber officinale and Its Application in Synthesis of Silver Nanoparticles. Front Nutr 2022; 9:917094. [PMID: 35719161 PMCID: PMC9204034 DOI: 10.3389/fnut.2022.917094] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
A novel polysaccharide (ZOP) was extracted from Zingiber officinale with ultrasonic assisted extraction method. ZOP monosaccharide composition and mole ratio is GlcA: GalA: Glc: Gal: Ara = 1.97:1.15:94.33:1.48:1.07. Then, the particle size of ZOP-NPs prepared by nano-precipitation method was 230.5 nm, and the polydispersity index (PDI) was 0.260. Using ZOP and ZOP-NPs as reductants and stabilizers, ZOP-AgNPs and ZOP-NPs-AgNPs were prepared. They were characterized by ultraviolet-visible spectrophotometer (UV-Vis), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The silver chelation rate of polysaccharide silver nanoparticles (AgNPs) ranged from 68.70 to 82.12%. ZOP-AgNPs (0.5%, w/v; 1%, w/v) and ZOP-NPs-AgNPs (0.5%, w/v; 1%, w/v) exhibited a narrow particle size distribution of 31.1, 34.6, 25.1 and 27.6 nm, respectively. And the zeta potential values of them were−19.4,−21.6,−19.7,−23.8mV, respectively. The antioxidant and antibacterial activities of ZOP-NPs-AgNPs were superior to those of ZOP, ZOP-NPs and ZOP-AgNPs.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wenjing Cheng
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yunfeng Ma
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yameng Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Mingsong Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Danshen Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Lanfang Wu
| |
Collapse
|
47
|
Li F, Wang K, Dong X, Xu H. Structure, conformation and immunomodulatory activity of a polysaccharide from
Morchella sextelata. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Li
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Kunhua Wang
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| | - Xiaobo Dong
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
- Edible Fungi Center Northwest A&F University Yangling 712100 China
| | - Huaide Xu
- College of Food Science and Engineering Northwest A&F University Yangling 712100 China
| |
Collapse
|
48
|
An Y, Liu H, Li X, Liu J, Chen L, Jin X, Chen T, Wang W, Liu Z, Zhang M, Liu F. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide. Carbohydr Res 2022; 515:108555. [PMID: 35405391 DOI: 10.1016/j.carres.2022.108555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/27/2022]
Abstract
Taking the degree of substitution (DS) as the index, the carboxymethylation conditions of Sargassum fusiforme polysaccharide (SFP) were studied. According to the single factor experiment results, the optimum experimental conditions were obtained: sodium hydroxide concentration, 15% (20 mL); alkalization temperature, 50 °C; dosage of chloroacetic acid 1.5 g; etherification time, 2 h, and the Carboxymethyl Sargassum fusiforme polysaccharide (CSFP) with the highest DS (0.635) was obtained. And then, the physicochemical properties, structural information and bioactivity of SFP and CSFP were characterized. The SFP and CSFP were composed of four monosaccharides, with a small amount of protein, and their molecular weights to 780.2 kDa and 386.3 kDa respectively. The results of FTIR and NMR showed that the carboxymethyl was successfully grafted onto the C-4 and C-6 of sugar chain. The results of anti UVC experiment showed that SFP and CSFP had a certain negative effect on cell activity, and the degree of damage caused by UVC radiation was weakened, and the anti UVC performance of CSFP was better than that of SFP.
Collapse
Affiliation(s)
- Yongzhen An
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haitang Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Xuexiu Li
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lin Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xin Jin
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenqian Wang
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Zhong Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China.
| |
Collapse
|
49
|
Wang X, Xiu W, Han Y, Xie J, Zhang K, Zhou K, Ma Y. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats : Structural characterization of a novel polysaccharide. Glycoconj J 2022; 39:413-427. [PMID: 35386020 DOI: 10.1007/s10719-022-10059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
In the current study, we extracted a polysaccharide from sweet corncob and evaluated its hypoglycemic function. After collection in water, alcohol precipitation, and purification by DEAE-52 and Sephadex G-100 columns, we obtained a polysaccharide (SCP50) that was composed primarily of mannose and glucose (9.73:190.27), with a molecular weight of 9280.33 Da. We demonstrated that SCP50 exhibited significant inhibition of α-glucosidase activity, with an IC50 of 4.866 mg/mL, Km of 1.297 × 10-3, and Vmax of 0.076 mol/L·min-1 in vitro. We also observed that SCP50 markedly attenuated disaccharidase (maltase, sucrase, and lactase) activity in a rat model of T2DM. We conclude that SCP50 exerts a hypoglycemic effect via inhibition of intestinal glycosylase. These results thus provide new insight into the hypoglycemic action underlying sweet corncob polysaccharide's effects.
Collapse
Affiliation(s)
- Xin Wang
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Weiye Xiu
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ye Han
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Jingnan Xie
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Kai Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, 161000, China
| | - Yongqiang Ma
- Heilongjiang Provincial Key Laboratory of Cereal and Comprehensive Processing of Cereal Resources, School of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
50
|
Study on the characterization of polysaccharide from Tuber sinense and its desensitization effect to β-lactoglobulin in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|