1
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Zeng J, Zhao Q, Xiong Z, Zhang S, Deng S, Liu D, Zhang X. Surface functionalization of two-dimensional nanomaterials beyond graphene: Applications and ecotoxicity. Adv Colloid Interface Sci 2025; 336:103357. [PMID: 39612722 DOI: 10.1016/j.cis.2024.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Two dimensional (2D) nanomaterials have emerged as promising candidates in nanotechnology due to their excellent physical, chemical, and electronic properties. However, they also pose challenges such as environmental instability and low biosafety. To address these issues, researchers have been exploring various surface functionalization methods to enhance the performance of 2D nanomaterials in practical applications. Moreover, when released into the environment, these 2D nanomaterials may interact with natural organic matter (NOM). Both intentional surface modification and unintentional environmental corona formation can alter the structure and physicochemical properties of 2D nanomaterials, potentially affecting their ecological toxicity. This review provides a comprehensive overview of covalent functionalization strategies and non-covalent interactions of 2D nanomaterials beyond graphene with organic substances, examining the resultant changes in material properties after modification. Covalent functionalization methods discussed include nucleophilic substitution reactions, addition reactions, condensation, and coordination. Non-covalent interactions are classified by substance type, covering interactions with NOM, in vivo biomolecules, and synthetic compounds. In addition, the review delves into the effects of surface functionalization on the toxicity of 2D nanomaterials to bacteria and algae. This discussion contributes to a foundational understanding for assessing the potential ecological risks associated with 2D nanomaterials.
Collapse
Affiliation(s)
- Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
4
|
Luo Y, Chen M, Zhang T, Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114074. [PMID: 38972257 DOI: 10.1016/j.colsurfb.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
As the field of cancer therapeutics evolves, integrating two-dimensional (2D) nanomaterials with photo-immunotherapy has emerged as a promising approach with significant potential to augment cancer treatment efficacy. These 2D nanomaterials include graphene-based 2D nanomaterials, 2D MXenes, 2D layered double hydroxides, black phosphorus nanosheets, 2D metal-organic frameworks, and 2D transition metal dichalcogenides. They exhibit high load capacities, multiple functionalization pathways, optimal biocompatibility, and physiological stability. Predominantly, they function as anti-tumor delivery systems, amalgamating diverse therapeutic modalities, most notably phototherapy and immunotherapy, and the former is a recognized non-invasive treatment modality, and the latter represents the most promising anti-cancer strategy presently accessible. Thus, integrating phototherapy and immunotherapy founded on 2D nanomaterials unveils a novel paradigm in the war against cancer. This review delineates the latest developments in 2D nanomaterials as delivery systems for synergistic photo-immunotherapy in cancer treatment. We elaborate on the burgeoning realm of photo-immunotherapy, exploring the interplay between phototherapy and enhanced immune cells, immune response modulation, or immunosuppressive tumor microenvironments. Notably, the strategies to augment photo-immunotherapy have also been discussed. Finally, we discuss the challenges and future perspectives of these 2D nanomaterials in photo-immunotherapy.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Chen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Barros AB, Teles FB, Araújo DD, Da Silva DA, Santos LBPD, Aldeman NLS, Cajado AG, Assef ANB, Wilke DV, Lima-Junior RCP, Araújo AJ, Marinho-Filho JDB. Combining cashew gum with cyclophosphamide in murine melanoma model: A strategy for the reduction of side effects. Int J Biol Macromol 2024; 275:133588. [PMID: 38960246 DOI: 10.1016/j.ijbiomac.2024.133588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The understanding of cancer immunity and antitumor factors generated by natural polysaccharides is not yet fully comprehended. Polysaccharides, like cashew gum (CG), can exhibit immunomodulatory action and may assist in the antitumor process and side effects relieve. This study aimed to determine the antitumor effect of CG alone or in combination with cyclophosphamide (CTX), and its interactions with immune cells, in a murine melanoma model, using the B16-F10 cell line. Tumor growth inhibition, hematological, histopathological, ELISA, flow cytometry, immunofluorescence, and qRT-PCR analyses were performed to elucidate the antitumor potential, involvement of immune cells, and potential toxic effects. CG showed significant tumor growth inhibition, reaching up to 42.9 % alone and 51.4 % in combination with CTX, with mild toxicity to organs. CG enhanced leukocyte count, even in the presence of CTX. Furthermore, CG influenced the activation of tumor-associated macrophages (TAM), characterized by an increase in Il4, as well as a reduction in Ifng, Il1b, Tgfb, and Il6 gene expression. Nevertheless, these effects did not compromise the antitumor activity of CG. In summary, the combination of CG with CTX is a promising approach for leukopenia, one of the most important side effects of cancer treatment and deserves further investigation.
Collapse
Affiliation(s)
- Ayslan Batista Barros
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | - Felipe Barros Teles
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Dakson Douglas Araújo
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | - Durcilene Alves Da Silva
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | | | - Nayze Lucena Sangreman Aldeman
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil; Faculdade de Ciências Humanas, Exatas e da Saúde do Piauí, Instituto de Educação Superior do Vale do Parnaíba, 64212-790 Parnaíba, Brazil
| | - Aurilene Gomes Cajado
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Alexia Nathália Brígido Assef
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Diego Veras Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Roberto Cesar Pereira Lima-Junior
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, 60430-160 Fortaleza, Ceará, Brazil
| | - Ana Jérsia Araújo
- Universidade Federal do Delta do Parnaíba, Núcleo de Pesquisa e Pós-graduação, 64.202-020 Parnaíba, PI, Brazil
| | | |
Collapse
|
6
|
Liu B, Ma J, Li T, Li P, Yan D, Zhu J, Zhang X. Advances in the Preparation, Structure and Bioactivity of Polysaccharides from Lycium ruthenicum Murr.: A Review. Foods 2024; 13:1995. [PMID: 38998501 PMCID: PMC11241109 DOI: 10.3390/foods13131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Lycium ruthenicum Murr. is rich in polysaccharides, and the polysaccharides in Lycium ruthenicum Murr. (LRPS) have various bioactivities, such as antioxidant activity, anti-tumor activity, neuroprotective activity, and immunomodulatory activity. It has broad prospects in the development of functional foods and pharmaceuticals. Researchers have found that the structural characteristics of LRPS, such as molecular weight, monosaccharide composition, primary structure, etc., have a significant impact on their bioactivities. Therefore, studying the structure of LRPS is of great significance in revealing their bioactivities and mechanisms. This study, based on introducing the preparation methods of LRPS, focuses on reviewing the research progress on the main structural characteristics, various bioactivities, and mechanisms of action of LRPS. In addition, the study provides prospects for the development of LRPS in the fields of food and medicine, aiming to provide theoretical support for its deep processing and application.
Collapse
Affiliation(s)
- Bing Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Jingyu Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Ting Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Pei Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Dehui Yan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| | - Jun Zhu
- Gansu Institute of Standardization, Lanzhou 730000, China;
| | - Xinguo Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (J.M.); (T.L.); (P.L.); (D.Y.); (X.Z.)
| |
Collapse
|
7
|
Liu R. A promising area of research in medicine: recent advances in properties and applications of Lactobacillus-derived exosomes. Front Microbiol 2024; 15:1266510. [PMID: 38686107 PMCID: PMC11056577 DOI: 10.3389/fmicb.2024.1266510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Lactobacillus-derived exosomes, small extracellular vesicles released by bacteria, have emerged as a promising area of research in recent years. These exosomes possess a unique structural and functional diversity that allows them to regulate the immune response and promote gut health. The isolation and purification of these exosomes are crucial for their effective use as a therapeutic agent. Several isolation and purification methods have been developed, including differential ultracentrifugation, density gradient centrifugation, and size-exclusion chromatography. Lactobacillus-derived exosomes have been demonstrated to have therapeutic potential in various diseases, such as inflammatory bowel disease, liver disease, and neurological disorders. Moreover, they have been shown to serve as effective carriers for drug delivery. Genetic engineering of these exosomes has also shown promise in enhancing their therapeutic potential. Overall, Lactobacillus-derived exosomes represent a promising area of research for the development of novel therapeutics for immunomodulation, gut health, and drug delivery.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
8
|
Hu J, Mei Y, Zhang H, Li J, Zhang M, Li Y, Yang W, Liu Y, Liang Y. Ameliorative effect of an acidic polysaccharide from Phellinus linteus on ulcerative colitis in a DSS-induced mouse model. Int J Biol Macromol 2024; 265:130959. [PMID: 38499127 DOI: 10.1016/j.ijbiomac.2024.130959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Phellinus linteus, a rare medicinal fungus, displays strong antitumor and anti-inflammatory activities because of its active metabolites, particularly polysaccharides. We investigated effects of P. linteus acidic polysaccharide (PLAP) on amelioration of dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in a mouse model, and associated mechanisms. PLAP treatment alleviated major UC symptoms (weight loss, reduced food intake, increased disease activity index), and ameliorated histopathological colon tissue damage, reduced levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β), enhanced anti-inflammatory factor IL-10 level, reduced levels of oxidative stress-related enzymes iNOS and MPO, and enhanced expression of tight junction proteins (ZO-1, occludin, claudin-1). qPCR analysis revealed that PLAP downregulated phosphorylation levels of p65 and p38 and transcriptional level of TLR-4. High-throughput sequencing showed that PLAP restored gut microbiota diversity and species abundances in the UC model, and gas chromatographic analysis showed that it increased levels of beneficial short-chain fatty acids. Our findings indicate that PLAP has strong potential for development as an anti-UC agent based on its reduction of inflammation and oxidative stress levels, modulation of gut microbiota composition, and promotion of normal intestinal barrier function.
Collapse
Affiliation(s)
- Jutuan Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxia Mei
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Heng Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ji Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanbin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wendi Yang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangyang Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
9
|
Son SU, Lee HW, Park JH, Shin KS. Identification of intracellular activation mechanism of rhamnogalacturonan-I type polysaccharide purified from Panax ginseng leaves in macrophages and roles of component sugar chains on activity. J Nat Med 2024; 78:328-341. [PMID: 38153587 DOI: 10.1007/s11418-023-01768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to investigate the mechanisms underlying intracellular signaling pathways in macrophages in relation to the structural features of rhamnogalacturonan (RG) I-type polysaccharide (PGEP-I) purified from Panax ginseng leaves. For this investigation, we used several specific inhibitors and antibodies against mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and pattern recognition receptors (PRRs). Furthermore, we investigated the roles of component sugar chains on immunostimulating activity through a sequential enzymatic and chemical degradation steps. We found that PGEP-I effectively induced the phosphorylation of several MAPK- and NF-κB-related proteins, such as p38, cJun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p65. Particularly, immunocytochemistry analysis confirmed the PGEP-I-induced translocation of p65 into the nucleus. Furthermore, the breakdown of PGEP-I side chains and main chain during sequential enzymatic and chemical degradation reduced the PGEP-I-induced macrophage cytokine secretion activity. IL-6, TNF-α, and NO secreted by macrophages are associated with several signaling pathway proteins such as ERK, JNK, and NF-κB and several PRRs such as dectin-1, CD11b, CD14, TLR2, TLR4, and SR. Thus, these findings suggest that PGEP-I exerts potent macrophage-activating effects, which can be attributed to its typical RG-I structure comprising arabinan, type II arabinogalactan, and rhamnose-galacturonic acid repeating units in the main chain.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Won Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Ju-Hyeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
10
|
Zhang R, Zhang Y, Yan SW, Cheng YK, Zheng WW, Long SR, Wang ZQ, Cui J. Galactomannan inhibits Trichinella spiralis invasion of intestinal epithelium cells and enhances antibody-dependent cellular cytotoxicity related killing of larvae by driving macrophage polarization. Parasite 2024; 31:6. [PMID: 38334686 PMCID: PMC10854486 DOI: 10.1051/parasite/2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1β, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.
Collapse
Affiliation(s)
- Ru Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yao Zhang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shu Wei Yan
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Yong Kang Cheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Wen Wen Zheng
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Shao Rong Long
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Zhong Quan Wang
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, Medical College, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
11
|
Balakrishnan B, Sarojini BK, Kodoth AK, Dayananda BS, Venkatesha R. Fabrication and characterization of tamarind seed gum based novel hydrogel for the targeted delivery of omeprazole magnesium. Int J Biol Macromol 2024; 258:128758. [PMID: 38103480 DOI: 10.1016/j.ijbiomac.2023.128758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The tamarind seed gum based novel hydrogel was fabricated by varying concentration of polymer, monomer and crosslinker for the targeted delivery of omeprazole magnesium at stomach pH of 1.5. The free radical graft copolymerization of 2-acrylamido-2-methyl propane sulfonic acid with tamarind seed gum backbone resulted in hydrogel. The formation of sulfonic acid pendant groups in hydrogel was observed by the existence of an infrared absorption band at 1152 cm-1 for SO group. The conversion to semicrystalline nature on incorporation of drug evidenced by powder X-ray diffraction studies with peaks at 2θ = 20.4° 31.5° and 52.2°. The scanning electron microscopy images showed bigger voids which narrowed down for drug loaded matrix, supported by the presence of a peak for magnesium in the energy dispersive X-ray spectroscopy. The greatest swelling was observed at pH 7 with second-order rate constant 1.5371 (g/g)/min and drug release was found to be 97.85 ± 1 % over 1200 min at pH 1.5. The drug release transport was found combination of diffusion and erosion of polymer chain to be super case II diffusion and Hill equation model was good fit. The hydrogel drug conjugate found to be non-toxic at tested concentrations (17 mg/50 mg) on in-vivo testing in Drosophila model.
Collapse
Affiliation(s)
- Bhavya Balakrishnan
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Arun Krishna Kodoth
- Department of Industrial Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| | | | - Ranjitha Venkatesha
- Department of Chemistry, Mangalore University, Mangalagangotri 574199, Karnataka, India
| |
Collapse
|
12
|
Štěpánková K, Ozaltin K, Gorejová R, Doudová H, Bergerová ED, Maskalová I, Stupavská M, Sťahel P, Trunec D, Pelková J, Mozetič M, Lehocky M. Sulfation of furcellaran and its effect on hemocompatibility in vitro. Int J Biol Macromol 2024; 258:128840. [PMID: 38103479 DOI: 10.1016/j.ijbiomac.2023.128840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
In this study, furcellaran (FUR) obtained from Furcellaria lumbricalis was firstly employed for sulfation via various methods, including SO3-pyridine (SO3∙Py) complex in different aprotic solvents, chlorosulfonic acid and sulfuric acid with a "coupling" reagent N,N'-Dicyclohexylcarbodiimide. Structural characterization through FT-IR, GPC, XPS and elemental analyses confirmed the successful synthesis of 6-O-sulfated FUR derivates characterized by varying degrees of sulfation (DS) ranging from 0.15 to 0.91 and molecular weight (Mw) spanning from12.5 kDa to 2.7 kDa. In vitro clotting assays, partial thromboplastin time (aPTT), thrombin time (TT), and prothrombin time (PT) underscored the essential role of sulfate esters in conferring anticoagulant activity whereas FUR prepared via chlorosulfonic acid with DS of 0.91 reached 311.4 s in aPPT showing almost 4-fold higher anticoagulant activity than native FUR at the concentration 2 mg/mL. MTT test showed all tested samples decreased cell viability in a dose dependent manner while all of them are non-cytotoxic up to the concentration of 0.1 mg/mL. Furthermore, sulfated derivates deposited onto polyethylene terephthalate surface presented substantial decrease in platelet adhesion, as well as absence of the most activated platelet stages. These findings support the pivotal role of O-6 FUR sulfates in enhancing hemocompatibility and provide valuable insights for a comparative assessment of effective sulfating approaches.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Radka Gorejová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, Moyzesova 11, 041 54 KoŠice, Slovakia.
| | - Hana Doudová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic
| | - Iveta Maskalová
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Slovakia.
| | - Monika Stupavská
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Sťahel
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - David Trunec
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Jana Pelková
- Department of Hematology, Tomas Bata Regional Hospital, Havlickovo Nabrezi 2916, 76001 Zlín, Czech Republic; Faculty of Humanities, Tomas Bata University in Zlín, Stefanikova 5670, 76001 Zlin, Czech Republic.
| | - Miran Mozetič
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Marian Lehocky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| |
Collapse
|
13
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
14
|
Zhang S, Zhang Q, Li C, Xing N, Zhou P, Jiao Y. A zinc-modified Anemarrhena asphodeloides polysaccharide complex enhances immune activity via the NF-κB and MAPK signaling pathways. Int J Biol Macromol 2023; 249:126017. [PMID: 37517752 DOI: 10.1016/j.ijbiomac.2023.126017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Anemarrhena asphodeloides polysaccharide (AAP70-1) was reported to have immunomodulatory effects in our previous report. To further improve the immunomodulatory effects of AAP70-1, an A. asphodeloides polysaccharide-zinc complex (AAP-Zn) was synthesized using a ZnCl2 modification method, and the potential mechanisms by which AAP-Zn activates macrophages were investigated. The results showed that the structural features of AAP-Zn were similar to those of AAP70-1 with a Zn content of 0.2 %, confirming that Zn mainly interacted with AAP70-1 by forming ZnO coordination bonds and Zn…OH bonds. In addition, the administration of AAP70-1 and AAP-Zn effectively improved the immunomodulatory effects by enhancing phagocytosis and upregulating the mRNA expression of cytokines (TNF-α, IL-6, IL-1β, and IL-18), as well as increasing the production levels of nitric oxide (NO) and reactive oxygen species (ROS) in zebrafish embryos. The intracellular mechanism by which AAP-Zn activates macrophages was found to involve activation of the NF-κB and MAPK signaling pathways. Our findings suggested that AAP-Zn may be a potential immunopotentiator in the field of biomedicine or functional foods.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Pengfei Zhou
- School of Basic Medical Science, Guangdong Medical University, Dongguan 523808, China
| | - Yukun Jiao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
15
|
Jiang B, Chen P, Guo J, Han B, Jin H, Li D, Liu C, Feng Z. Structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by ethanol/(NH 4) 2SO 4 ATPS. Int J Biol Macromol 2023:125451. [PMID: 37331540 DOI: 10.1016/j.ijbiomac.2023.125451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Exopolysaccharides (EPS) from lactic acid bacteria (LAB) as edible and safe bioproducts with health benefits have become an interesting topic. In this study, aqueous two-phase system (ATPS) was established using ethanol and (NH4)2SO4 as phase-forming substances to separate and purify LAB EPS from Lactobacillus plantarum 1.0665. The operating conditions were optimized by a single factor and response surface method (RSM). The results indicated that an effectively selective separation of LAB EPS was achieved by the ATPS consisted of 28 % (w/w) ethanol and 18 % (w/w) (NH4)2SO4 at pH 4.0. Under optimized conditions, the partition coefficient (K) and recovery rate (Y) were well matched with the predicted value of 3.83 ± 0.019 and 74.66 ± 1.05 %. The physicochemical properties of purified LAB EPS were characterized by various technologies. According to the results, LAB EPS was a complex polysaccharide with a triple helix structure mainly composed of mannose, glucose and galactose in the molar ratio of 1.00: 0.32: 0.14, and it proved that the ethanol/(NH4)2SO4 system had good selectivity for LAB EPS. In addition, LAB EPS displayed excellent antioxidant activity, antihypertension activity, anti-gout capacity and hypoglycemic activity in vitro analysis. The results suggested that LAB EPS could be a dietary supplement applied in functional foods.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Peifeng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiaxuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bing Han
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongwei Jin
- Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen 518107, People's Republic of China
| | - Dongmei Li
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Chunhong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
16
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
17
|
Abd El‐Ghany NA, Abu Elella MH. Overview of Different Materials Used in Food Production. MATERIALS SCIENCE AND ENGINEERING IN FOOD PRODUCT DEVELOPMENT 2023:1-25. [DOI: 10.1002/9781119860594.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Gou Z, Peng Z, Wang S, Chen L, Ma Z, Kang Y, Sun L, Wang R, Xu H, Gu Y, Sun D, Lei P. Efficient production and skincare activity evaluation of schizophyllan, a β-glucan derived from Schizophyllum commune NTU-1. Int J Biol Macromol 2023; 241:124504. [PMID: 37080406 DOI: 10.1016/j.ijbiomac.2023.124504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Schizophyllan (SPG), a β-glucan produced by the fungus Schizophyllum commune, possesses a β-(1 → 3)-linked backbone with single β-(1 → 6)-linked glucose side chains at approximately every third residue. In this study, we screened SPG-producing strains of S. commune from different provinces in China. A candidate strain (NTU-1) with a high SPG yield was chosen, and the fermentation conditions were optimized. The optimal carbon and nitrogen sources were sucrose (40 g/L) and yeast extract (20 g/L), respectively. The optimal conditions for pH and temperature were 5.0 and 28 °C, respectively. Inclusion of 0.2 mg/L of 2,4-Dichlorophenoxyacetic acid in the medium further increased the SPG concentration. In a 5-L bioreactor, the fermentation cycle was reduced from the initial seven days to five days, and the concentration of SPG obtained was 21.3 g/L, which is the highest reported to date. In addition, we evaluated the bioactivity of the SPG prepared using strain NTU-1. The results showed that SPG had certain characteristics of anti-oxidation, anti-photoaging, and inhibition of melanin production, making it a promising reagent for skin care.
Collapse
Affiliation(s)
- Zekai Gou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhibo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shiyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liuyang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhicong Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Kang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dafeng Sun
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, Yunnan, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
19
|
Lv H, Yang H, Jiang C, Shi J, Chen RA, Huang Q, Shao D. Microgravity and immune cells. J R Soc Interface 2023; 20:20220869. [PMID: 36789512 PMCID: PMC9929508 DOI: 10.1098/rsif.2022.0869] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The microgravity environment experienced during spaceflight severely impaired immune system, making astronauts vulnerable to various diseases that seriously threaten the health of astronauts. Immune cells are exceptionally sensitive to changes in gravity and the microgravity environment can affect multiple aspects of immune cells through different mechanisms. Previous reports have mainly summarized the role of microgravity in the classification of innate and adaptive immune cells, lacking an overall grasp of the laws that microgravity effects on immune cells at different stages of their entire developmental process, such as differentiation, activation, metabolism, as well as function, which are discussed and concluded in this review. The possible molecular mechanisms are also analysed to provide a clear understanding of the specific role of microgravity in the whole development process of immune cells. Furthermore, the existing methods by which to reverse the damage of immune cells caused by microgravity, such as the use of polysaccharides, flavonoids, other natural immune cell activators etc. to target cell proliferation, apoptosis and impaired function are summarized. This review will provide not only new directions and ideas for the study of immune cell function in the microgravity environment, but also an important theoretical basis for the development of immunosuppression prevention and treatment drugs for spaceflight.
Collapse
Affiliation(s)
- Hongfang Lv
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huan Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Ren-an Chen
- Hematology Department, Shaanxi Provincial Tumor Hospital, 309 Yanta West Road, Xi'an, Shaanxi 710072, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
20
|
An Alkali-extracted Polysaccharide from Poria cocos Activates RAW264.7 Macrophages via NF-κB Signaling Pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
21
|
An arabinogalactan isolated from Pollen Typhae induces the apoptosis of RKO cells by promoting macrophage polarization. Carbohydr Polym 2023; 299:120216. [PMID: 36876818 DOI: 10.1016/j.carbpol.2022.120216] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
An arabinogalactan (PTPS-1-2) was isolated and characterized from Pollen Typhae, and its potential antitumor effects on activating macrophages to produce immunomodulatory factors and promoting apoptosis in colorectal cancer cells were investigated. Structural characterization showed that PTPS-1-2 had a molecular weight of 59 kDa and was composed of rhamnose, arabinose, glucuronic acid, galactose, and galacturonic acid with a molar ratio of 7.6: 17.1: 6.5: 61.4: 7.4. Its backbone was predominantly composed of T-β-D-Galp, 1,3-β-D-Galp, 1,6-β-D-Galp, 1,3,6-β-D-Galp, 1,4-α-D-GalpA, 1,2-α-L-Rhap, additionally, branches contained 1,5-α-L-Araf, T-α-L-Araf, T-β-D-4-OMe-GlcpA, T-β-D-GlcpA and T-α-L-Rhap. PTPS-1-2 activated RAW264.7 cell by triggering the NF-kB signaling pathway and M1 macrophage polarization. Furthermore, the conditioned medium (CM) of Mφ pretreated with PTPS-1-2 exerted marked antitumor effects by inhibiting RKO cell proliferation and suppressing cell colony formation. Collectively, our findings suggested that PTPS-1-2 might be a therapeutic option for the prevention and treatment of tumors.
Collapse
|
22
|
Le TH, Le LS, Nguyen DGC, Tran TVT, Vu Ho XA, Tran TM, Nguyen MN, Nguyen VT, Le TT, Nguyen THC, Nguyen CC, Le QV. Rich d-Fructose-Containing Polysaccharide Isolated from Myxopyrum smilacifolium Roots toward a Superior Antioxidant Biomaterial. ACS OMEGA 2022; 7:47923-47932. [PMID: 36591194 PMCID: PMC9798761 DOI: 10.1021/acsomega.2c05779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The presented study attempts to unveil and evaluate the antioxidant activity of a novel heteropolysaccharide separated from the roots of Myxopyrum smilacifolium (denoted as PS-MSR). The molecular weight of PS-MSR is found to be 1.88 × 104 Da and contains two principal sugars, which are d-glucose and d-fructose, in the backbone. Decoding the structure of the obtained PS-MSR sample has disclosed a novel polysaccharide for the first time. Indeed, the PS-MSR is composed of (1 → 3)-linked glucosyl units and (2 → 3)-linked fructosyl units. In addition, the 1D and 2D NMR spectra of the PS-MSR sample display the repeating unit of the isolated polysaccharide, [→3)-α-d-Glcp-(1 → 3)-β-d-Frucf-(2 → 3)-β-d-Frucf-2 → 3)-)-β-d-Frucf-β-(2→] n . Interestingly, the PS-MSR sample exhibits outstanding antioxidant activity, signifying the potential utilization of the explored polysaccharide for antioxidant-based material.
Collapse
Affiliation(s)
- Trung Hieu Le
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Lam Son Le
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | | | - Thi Van Thi Tran
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Xuan Anh Vu Ho
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Thanh Minh Tran
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Minh Nhung Nguyen
- Department
of Science and Technology of Thua Thien Hue, Technical Center for Quality Measurement Standards, Hue City530000, Vietnam
| | - Viet Thang Nguyen
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Thuy Trang Le
- Hue
University of Sciences, Hue University, Thua Thien Hue, Hue530000, Vietnam
| | - Thi Hong Chuong Nguyen
- Institute
of Research and Development, Duy Tan University, Da Nang550000, Vietnam
- Faculty
of Environmental and Chemical Engineering, Duy Tan University, Da Nang550000, Vietnam
| | - Chinh Chien Nguyen
- Institute
of Research and Development, Duy Tan University, Da Nang550000, Vietnam
- Faculty
of Environmental and Chemical Engineering, Duy Tan University, Da Nang550000, Vietnam
| | - Quyet Van Le
- Department
of Materials Science and Engineering, Institute
of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul02841, Republic
of Korea
| |
Collapse
|
23
|
Li R, Zhou QL, Chen ST, Tai MR, Cai HY, Ding R, Liu XF, Chen JP, Luo LX, Zhong SY. Chemical Characterization and Immunomodulatory Activity of Fucoidan from Sargassum hemiphyllum. Mar Drugs 2022; 21:18. [PMID: 36662191 PMCID: PMC9865083 DOI: 10.3390/md21010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Fucoidan is a sulfated algal polyanionic polysaccharide that possesses many biological activities. In this paper, a fucoidan (SHF) polysaccharide was extracted from Sargassum hemiphyllum collected in the South China Sea. The SHF, with a molecular weight of 1166.48 kDa (44.06%, w/w), consisted of glucose (32.68%, w/w), galactose (24.81%, w/w), fucose (20.75%, w/w), xylose (6.98%, w/w), mannose (2.76%, w/w), other neutral monosaccharides, and three uronic acids, including glucuronic acid (5.39%, w/w), mannuronic acid (1.76%, w/w), and guronuronic acid (1.76%, w/w). The SHF exhibited excellent immunostimulatory activity. An immunostimulating assay showed that SHF could significantly increase NO secretion in macrophage RAW 264.7 cells via upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels based on both gene expression and protein abundance. These results suggest that SHF isolated from Sargassum hemiphyllum has great potential to act as a health-boosting ingredient in the pharmaceutical and functional-food fields.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qing-Ling Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Shu-Tong Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Min-Rui Tai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Hong-Ying Cai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Rui Ding
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
24
|
Rusinova-Videva S, Ognyanov M, Georgiev Y, Petrova A, Dimitrova P, Kambourova M. Chemical characterization and biological effect of exopolysaccharides synthesized by Antarctic yeasts Cystobasidium ongulense AL 101 and Leucosporidium yakuticum AL 102 on murine innate immune cells. World J Microbiol Biotechnol 2022; 39:39. [PMID: 36512173 DOI: 10.1007/s11274-022-03477-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The current study aimed to investigate exopolysaccharides (EPSs) produced by two Antarctic yeasts isolated from soil and penguin feathers samples collected on Livingston Island (Antarctica). The strains were identified as belonging to the species Leucosporidium yakuticum (LY) and Cystobasidium ongulense (CO) based on molecular genetic analysis. The EPS production was investigated using submerged cultivation. Different chemical, chromatographic, and spectral analyses were employed to characterize EPSs. LY accumulated 5.5 g/L biomass and 4.0 g/L EPS after 120 h of cultivation, while CO synthesized 2.1 g/L EPS at the end of cultivation, and the biomass amount reached 5.5 g/L. LY-EPS was characterized by a higher total carbohydrate content (80%) and a lower protein content (18%) by comparison with CO-EPS (62%, 30%). The LY-EPS mainly consisted of mannose (90 mol%), whereas CO-EPS had also glucose, galactose, and small amounts of uronic acids (8-5 mol%). Spectral analyses (FT-IR and 1D, 2D NMR) revealed that LY-EPS comprised a typical β-(1 → 4)-mannan. Branched (hetero)mannan, together with β/α-glucans constituted the majority of CO-EPS. Unlike LY-EPS, which had a high percentage of high molecular weight populations, CO-EPS displayed a large quantity of lower molecular weight fractions and a higher degree of heterogeneity. LY-EPS (100 ng/mL) elevated significantly interferon gamma (IFN-γ) production in splenic murine macrophages and natural killer (NK) cells. The results indicated that newly identified EPSs might affect IFN-γ signaling and in turn, might enhance anti-infectious responses. The data obtained also revealed the potential of EPSs and yeasts for practical application in biochemical engineering and biotechnology.
Collapse
Affiliation(s)
- Snezhana Rusinova-Videva
- Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Yordan Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ani Petrova
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Petya Dimitrova
- Department of Immunology, Laboratory of Experimental Immunotherapy, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Margarita Kambourova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
25
|
Prompting immunostimulatory activity of curdlan with grafting methoxypolyethylene glycol. Int J Biol Macromol 2022; 222:1092-1100. [DOI: 10.1016/j.ijbiomac.2022.09.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022]
|
26
|
Jeon H, Oh S, Kum E, Seo S, Park Y, Kim G. Immunomodulatory Effects of an Aqueous Extract of Black Radish on Mouse Macrophages via the TLR2/4-Mediated Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1376. [PMID: 36355548 PMCID: PMC9697478 DOI: 10.3390/ph15111376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 10/14/2023] Open
Abstract
Here, we determined the immunostimulatory effects of black radish (Raphanus sativus ver niger) hot water extract (BRHE) on a mouse macrophage cell line (RAW 264.7) and mouse peritoneal macrophages. We found that BRHE treatment increased cell proliferation, phagocytic activity, nitric oxide (NO) levels, cytokine production, and reactive oxygen species synthesis. Moreover, BRHE increased the expression of the following immunomodulators in RAW 264.7 cells and peritoneal macrophages: pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), iNOS, and COX-2. BRHE treatment significantly up-regulated the phosphorylation of components of the mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Akt, and STAT3 signaling pathways. Further, the effects of BRHE on macrophages were significantly diminished after the cells were treated with the TLR2 antagonist C29 or the TLR4 antagonist TAK-242. Therefore, BRHE-induced immunostimulatory phenotypes in mouse macrophages were reversed by multiple inhibitors, such as TLR antagonist, MAPK inhibitor, and Akt inhibitor indicating that BRHE induced macrophage activation through the TLR2/4-MAPK-NFκB-Akt-STAT3 signaling pathway. These results indicate that BRHE may serve as a potential immunomodulatory factor or functional food and provide the scientific basis for the comprehensive utilization and evaluation of black radish in future applications.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Soyeon Oh
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| | - Eunjoo Kum
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Sooyeong Seo
- Yuyu Healthcare Inc., 59-11. Ucheonsaneopdanji-ro, Ucheon-myeon, Heengseong-gun 25244, Korea
| | - Youngjun Park
- Jeju Research Institute of Pharmaceutical, College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Seogwipo 63608, Korea
| |
Collapse
|
27
|
Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
HP S, BS U, J S, MG A, Joseph MM, GU P, KS A, PL R, R S, TT S. Bio fabrication of galactomannan capped silver nanoparticles to apprehend Ehrlich ascites carcinoma solid tumor in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Wang HY, Ge JC, Zhang FY, Zha XQ, Liu J, Li QM, Luo JP. Dendrobium officinale polysaccharide promotes M1 polarization of TAMs to inhibit tumor growth by targeting TLR2. Carbohydr Polym 2022; 292:119683. [DOI: 10.1016/j.carbpol.2022.119683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/29/2022] [Indexed: 01/01/2023]
|
30
|
Roszczyk A, Turło J, Zagożdżon R, Kaleta B. Immunomodulatory Properties of Polysaccharides from Lentinula edodes. Int J Mol Sci 2022; 23:ijms23168980. [PMID: 36012249 PMCID: PMC9409024 DOI: 10.3390/ijms23168980] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, also known as shiitake mushroom, is a popular edible macrofungus and a source of numerous bioactive substances with multiple beneficial health effects. L. edodes-derived polysaccharides are the most valuable compounds, with anticancer, antioxidant, antimicrobial, and immunomodulatory properties. It has been demonstrated that their biological activity depends on the extraction method, which affects monosaccharide composition, molecular weight, branching degrees, and helical conformation. In this review, we discuss the immunomodulatory properties of various polysaccharides from L. edodes in animal models and in humans.
Collapse
Affiliation(s)
- Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
- Correspondence: ; Tel.: +48-600301690
| |
Collapse
|
31
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
32
|
DHPW1 attenuation of UVB-induced skin photodamage in human immortalized keratinocytes. Exp Gerontol 2022; 166:111897. [PMID: 35850279 DOI: 10.1016/j.exger.2022.111897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Ultraviolet radiation (UVB) can result in photodamage to the skin and can seriously threaten health, particularly in the elderly. Oxidative stress and the inflammatory response have been shown to play a significant role in the process. In a previous study, we isolated, purified and identified a polysaccharide from the extract of Dendrobium huoshanense (DHPW1). In this study we evaluated the effect of DHPW1 on ameliorating the UVB photodamage of human immortalized keratinocytes (HaCaT). Cell proliferation and cell scratch assays were used to evaluate the viability of the HaCaT treated with DHPW1, and a fluorescent probe and Western blot analysis were used to examine the production of reactive oxygen species (ROS) and the expression of proinflammatory factors IL-1β, IL-6, and NF-κB(p65). The results show that, compared with the control group (UVB irradiation only), DHPW1 significantly improved the viability of UVB-irradiated HaCaT and enhanced the migration rate of the cell scratch after 24 h. The scratch-healing rate reached 90 % after 36 h. DHPW1 also significantly inhibited UVB-induced oxidative stress and expression of proinflammatory factors . Compared with the control group, the production of ROS decreased by 49.11 %, and the relative protein expression of IL-6 and NF-κB(p65) decreased by up to 13.30 % and 31.02 %, respectively. It is concluded that DHPW1 can significantly improve viability and wound closure rate of UVB-irradiated HaCaT. In addition, it can reduce the expression of IL-1 and IL-6 by inhibiting the transcription of NF-κB(p65), thereby reducing inflammation and oxidative stress in UVB-irradiated HaCaT.
Collapse
|
33
|
Li Q, Han W, Yang C, Si Y, Xin M, Guan H, Li C. Low molecular-weight polyguluronate phosphate: An immunostimulant by activating splenocyte/macrophage invitro and improving immune response invivo. Int J Biol Macromol 2022; 216:510-519. [PMID: 35803409 DOI: 10.1016/j.ijbiomac.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
The substituents and backbones are two main factors affecting immune activities of polysaccharides. In the present study, we firstly evaluated the immunostimulating effects of phosphorylated, sulfated, H-phosphonated and nitrated derivatives of low-molecular-weight polymannuronate (LPM) and polyguluronate (LPG) on splenocytes and peritoneal macrophages in vitro. The results showed that the phosphate group was the best substituent to enhance the immune activities, and LPG phosphate (LPGP) had much better activity than LPM phosphate (LPMP). Further studies showed that LPGP not only promoted the proliferation of mouse splenocytes in the presence of either LPS or Con A, but also acted as an excellent peritoneal macrophage activator to enhance the cell phagocytosis, energy metabolism, cytokines release and activities of intracellular enzymes. The studies in RAW264.7 cells revealed that LPGP activated the TBK1-IκBα-NF-κB and the TBK1-IRF3 pathway. Moreover, LPGP rescued the immune response in the Cyclophosphamide-treated mice in vivo. In conclusion, LPGP is a potential alginate-based biological response modifier (BRM).
Collapse
Affiliation(s)
- Quancai Li
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Wenwei Han
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Cheng Yang
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuxi Si
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Xin
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Huashi Guan
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Chunxia Li
- Shandong Key Laboratory of Glycoscience and Glycoengineering, Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
34
|
Bai L, Yi W, Chen J, Wang B, Tian Y, Zhang P, Cheng X, Si J, Hou X, Hou J. Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25050-25064. [PMID: 35608833 DOI: 10.1021/acsami.2c01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 μg mL-1 and 75% at a dose of 25 μg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lei Bai
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenhui Yi
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Bojin Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yilong Tian
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xi'an, Shaanxi 712100, China
| | - Xin Cheng
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Hou
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
35
|
Gallo AL, Soler F, Pellizas C, Vélez ML. Polysaccharide extracts from mycelia of Ganoderma australe: effect on dendritic cell immunomodulation and antioxidant activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Saetang N, Amornlerdpison D, Rattanapot T, Ramaraj R, Unpaprom Y. Processing of split gill mushroom as a biogenic material for functional food purpose. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Sun Q, Liu X, Li X. Peptidoglycan-based immunomodulation. Appl Microbiol Biotechnol 2022; 106:981-993. [PMID: 35076738 DOI: 10.1007/s00253-022-11795-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
Abstract
Peptidoglycan (PGN) is a unique component in the cytoderm of prokaryotes which can be recognized by different pathogen-associated molecular patterns (PAMPs) in eukaryotes, followed by a cascade of immune responses via different pathways. This review outlined the basic structure of PGN, its immunologic functions. The immunomodulation pathways mediated by PGN were elaborated. PGN induces specific immunity through stimulating different cytokine release and Th1/Th2-dominated immune responses during humoral/cellular immune response. The nonspecific immunity activation by PGN involves immunomodulation by different pattern recognition receptors (PRRs) including PGN recognition proteins (PGRPs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), Toll-like receptors (TLRs), and C-type lectin receptors (CLRs). The sources and classification of PGRPs were summarized. In view of the stimulating activities of PGN and its monomers, the potential application of PGN as vaccine or adjuvant was prospected. This review provides systematic information on PGN functionalities from the point of immunoregulation, which might be useful in the deep exploitation of PGN.Key points. The immunological functions of PGN were illustrated. Cellular and humoral immunomodulation by PGN were outlined. The use of PGN as vaccine or adjuvant was prospected.
Collapse
Affiliation(s)
- Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaoli Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China. .,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
38
|
YAN YY, WANG Q, SUN LH, ZHANG XF. Extraction, preparation, and carboxymethyl of polysaccharide from Lotus root. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.17822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Lan H, Li W, Xu J, Yang Y, Tan Z, Yang R. A Novel Polysaccharide Isolated From Fresh Longan (Dimocarpus longan Lour.) Activates Macrophage via TLR2/4-Mediated PI3/AKT and MyD88/TRAF6 Pathways. Front Pharmacol 2021; 12:786127. [PMID: 34992537 PMCID: PMC8724522 DOI: 10.3389/fphar.2021.786127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
A novel immunomodulatory polysaccharide (LP4) with a molecular weight 6.31 × 104 g/mol was purified from fresh longan pulp. It was composed of mannose, glucose, glucuronic acid, galactose, xylose, arabinose, galacturonic acid, fucose, and rhamnose in a molar percentage of 36:31:10:7:4:4:3:2:2, and mainly linked by (1→6)-β-Man, (1→4)-β-Glc and (1→6)-α-Glc. LP4 can obviously enhance the phagocytosis of macrophages and promote the proliferation of lymphocytes. After treating macrophages with LP4 (12.5–50 μg/ml), the production of IL-1β and TNF-α was significantly increased. These increases of cytokines were suppressed when the TLR2/TLR4 receptors were inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Moreover, the mRNA expression of INOS, AKT, PI3K, TRAF6 and MyD88 was significantly suppressed by TLR2/TLR4 antibodies. These results indicated that LP4 induced macrophage activation mainly via the TLR2 and TLR4-induced PI3K/AKT and MyD88/TRAF6 pathways.
Collapse
Affiliation(s)
- Haibo Lan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- College of Food Science, South China Agricultural University, Guangzhou, China
- School of Biotechnology, Sichuan University of Science & Engineering, Yibin, China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- *Correspondence: Wu Li, ; Ruili Yang,
| | - Jucai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yuzhe Yang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhaolun Tan
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ruili Yang
- College of Food Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Wu Li, ; Ruili Yang,
| |
Collapse
|
40
|
Wu X, Cai X, Ai J, Zhang C, Liu N, Gao W. Extraction, Structures, Bioactivities and Structure-Function Analysis of the Polysaccharides From Safflower ( Carthamus tinctorius L.). Front Pharmacol 2021; 12:767947. [PMID: 34744747 PMCID: PMC8563581 DOI: 10.3389/fphar.2021.767947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
Safflower (Carthamus tinctorius L.) is a herbal plant with a long history of clinical application worldwide, such as coronary heart disease, hypertension, dysmenorrhea and amenorrhea. It is also extensively used as an important oilseed plant for hundreds of years in some countries, like China, India, Mexico and the United States. Therefore, safflower is believed as a crop with dual values of medicine and economy as well. Safflower polysaccharides (SPS), from the plant, are believed as one of the most important biologically active components with multiple pharmacological properties, including anti-tumor, immune regulation, anti-oxidation, and anti-cerebral ischemia reperfusion injury effects. The polysaccharides, from bee pollen of safflower, named PBPC, also attract the attention of researchers because of their particular origin and bioactivities. Although the extraction, purification, structure and biological activities of SPS and PBPC have been studied for decades, there is not any available review both concerning SPS and PBPC. In this condition, this paper aims to systematically review the research progress in extraction, purification, structural characteristics, and bioactivities of SPS and PBPC, and provide basis for the in-depth study about their structure-bioactivity relationship. It will serve as a methodological outline for further research in fields of new drug discovery and clinical application of SPS or PBPC, and simultaneously remind us of unresolved problems noted in the polysaccharide research.
Collapse
Affiliation(s)
- Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xinbo Cai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxuan Ai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chi Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Nan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhu L, Li W, Fan Z, Ye X, Lin R, Ban M, Ren L, Chen X, Zhang D. Immunomodulatory activity of polysaccharide from Arca granosa Linnaeus via TLR4/MyD88/NFκB and TLR4/TRIF signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
42
|
Immune-enhancing effects of polysaccharide extract of by-products of Korean liquor fermented by Saccharomyces cerevisiae. Int J Biol Macromol 2021; 188:245-252. [PMID: 34384800 DOI: 10.1016/j.ijbiomac.2021.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
To increase the value of yeast-fermented Korean liquor by-products, we obtained crude polysaccharide (CPS) fractions via ultrasound-assisted extraction and stepwise-gradient ethanol precipitation and investigated their functionality. Nitric oxide production in RAW 264.7 cells was increased following treatment with the CPSs derived from extract. Analysis of the monosaccharide and amino acid composition of the CPS fractions using HPLC revealed that the polysaccharides were mainly composed of glucose (57.2%), mannose (22.6%), and galactose (17.6%), and no amino acids were detected. In addition, a higher concentration of ethanol solvent for fractionation yielded polysaccharides with lower molecular weights (<15 kDa). CPS 3 and 4 fractions increased the production of TNF-α (15 and 17-fold, respectively) and IL-6 (20 and 18-fold, respectively) and iNOS (65 and 35-fold, respectively) expression at concentration 12.5 μg/mL compared with levels in non-treated RAW 264.7 cells. Especially, CPS 4 at 200 and 400 μg/mL significantly increased the proliferation of mouse spleen cells by 126% and 153%, respectively. These results indicated that CPS 4 enhanced the proliferation of mouse spleen cells in vivo, indicating its immune-enhancing effects. Therefore, this research can contribute to the development of eco-friendly extraction techniques and immune-enhancing materials.
Collapse
|
43
|
Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
45
|
Wang D, Liu Y, Zhao W. The Adjuvant Effects on Vaccine and the Immunomodulatory Mechanisms of Polysaccharides From Traditional Chinese Medicine. Front Mol Biosci 2021; 8:655570. [PMID: 33869288 PMCID: PMC8047473 DOI: 10.3389/fmolb.2021.655570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccination is still the most successful strategy to prevent and control the spread of infectious diseases by generating an adequate protective immune response. However, vaccines composed of antigens alone can only stimulate weak immunogenicity to prevent infection in many cases. Adjuvant can enhance the immunogenicity of the antigens. Therefore, adjuvant is urgently needed to strengthen the immune response of the vaccines. An ideal adjuvant should be safe, cheap, biodegradable and biologically inert. In addition to having a long shelf life, it can also promote cellular and humoral immune responses. Traditional Chinese medicine (TCM) has many different ingredients, such as glycosides, polysaccharides, acids, terpenes, polyphenols, flavonoids, alkaloids, and so on. TCM polysaccharides are one of the main types of biologically active substances. They have a large range of pharmacological activities, especially immunomodulatory. TCM polysaccharides can regulate the immune system of animals by binding to multiple receptors on the surface of immune cells and activating different signal pathways. This review focuses on a comprehensive summary of the most recent developments in vaccine adjuvant effects of polysaccharides from many important TCM, such as Artemisia rupestris L., Cistanche deserticola, Pinus massoniana, Chuanminshen violaceum, Astragalus, Ganoderma lucidum, Codonopsis pilosula, Lycium barbarum, Angelica, Epimedium, and Achyranthes bidentata. Moreover, this review also introduces their immunomodulatory effects and the molecular mechanisms of action on animal bodies, which showed that TCM polysaccharides can activate macrophages, the signal pathway of T/B lymphocytes, regulate the signal pathway of natural killer cells, activate the complement system, and so on.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| | - Yonghui Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Drug Research and KLMDASR of Tianjin, College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Wouk J, Dekker RFH, Queiroz EAIF, Barbosa-Dekker AM. β-Glucans as a panacea for a healthy heart? Their roles in preventing and treating cardiovascular diseases. Int J Biol Macromol 2021; 177:176-203. [PMID: 33609583 DOI: 10.1016/j.ijbiomac.2021.02.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Factors increasing the risks for CVD development are related to obesity, diabetes, high blood cholesterol, high blood pressure and lifestyle. CVD risk factors may be treated with appropriate drugs, but prolonged can use cause undesirable side-effects. Among the natural products used in complementary and alternative medicines, are the β-ᴅ-glucans; biopolymers found in foods (cereals, mushrooms), and can easily be produced by microbial fermentation. Independent of source, β-glucans of the mixed-linked types [(1 → 3)(1 → 6)-β-ᴅ-glucans - fungal, and (1 → 3)(1 → 4)-β-ᴅ-glucans - cereal] have widely been studied because of their biological activities, and have demonstrated cardiovascular protective effects. In this review, we discuss the roles of β-ᴅ-glucans in various pathophysiological conditions that lead to CVDs including obesity, dyslipidemia, hyperglycemia, oxidative stress, hypertension, atherosclerosis and stroke. The β-glucans from all of the sources cited demonstrated potential hypoglycemic, hypocholesterolemic and anti-obesogenicity activities, reduced hypertension and ameliorated the atherosclerosis condition. More recently, β-glucans are recognized as possessing prebiotic properties that modulate the gut microbiome and impact on the health benefits including cardiovascular. Overall, all the studies investigated unequivocally demonstrated the dietary benefits of consuming β-glucans regardless of source, thus constituting a promising panaceutical approach to reduce CVD risk factors.
Collapse
Affiliation(s)
- Jéssica Wouk
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual do Centro-Oeste, Campus CEDETEG, CEP: 85040-167, Guarapuava, Paraná, Brazil
| | - Robert F H Dekker
- Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370 Londrina, Paraná, Brazil; Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil.
| | - Eveline A I F Queiroz
- Núcleo de Pesquisa e Apoio Didático em Saúde, Instituto de Ciências da Saúde, Câmpus Universitário de Sinop, Universidade Federal de Mato Grosso, CEP: 78.557-267 Sinop, Mato Grosso, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Avenida João Miguel Caram 731, Lote 24(A), Bloco Zircônia, Universidade Tecnológica Federal do Paraná, CEP: 86036-700 Londrina, Paraná, Brazil
| |
Collapse
|
47
|
|
48
|
Biologically active polysaccharide from edible mushrooms: A review. Int J Biol Macromol 2021; 172:408-417. [PMID: 33465360 DOI: 10.1016/j.ijbiomac.2021.01.081] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Mushrooms are renewable natural gift for humankind, furnished with unique taste, flavor and medicinal properties. For the last few decades study of mushroom polysaccharides has become a matter of great interest to the researchers for their immunomodulating, antimicrobial, antioxidant, anticancer, and antitumor properties. Molecular mass, branching configuration, conformation of polysaccharides and chemical modification are the major factors influencing their biological activities. The mechanism of action of mushroom polysaccharides is to stimulate T-cells, B-cells, natural killer cells, and macrophage dependent immune responses via binding to receptors like the toll-like receptor-2, dectin-1. The present review offers summarized and significant information about the structural and biological properties of mushroom polysaccharides, and their potential for development of therapeutic materials.
Collapse
|
49
|
Li Y, Ban L, Meng S, Huang L, Sun N, Yang H, Wang Y, Wang L. Bioactivities of crude polysaccharide extracted from fermented soybean curd residue by Cordyceps militaris. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1875874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yiting Li
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Litong Ban
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Shili Meng
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Liang Huang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Ning Sun
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Hongpeng Yang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Yu Wang
- Department of Biotechnology, College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, PR China
| | - Linbo Wang
- Department of Life Science and Bioengineering, Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
50
|
Sivakamavalli J, Park K, Kwak IS, Vaseeharan B. Purification and partial characterization of carbohydrate-recognition protein C-type lectin from Hemifusus pugilinus. Carbohydr Res 2020; 499:108224. [PMID: 33450477 DOI: 10.1016/j.carres.2020.108224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
A mannose binding lectin (C-type lectin) was detected in a molluscan snail Hemifusus pugilinus, this lectin molecule was isolated and purified from the plasma using mannose-fixed sepharose CL-4B column affinity chromatography. The purified protein corresponds to the molecular weight of 118 kDa on an SDS-PAGE gel. The divalent cation-dependent nature of the H. pugilinus lectin (Hp-Lec) evidenced through pH and thermal stability analysis using Circular Dichroism (CD) and Surface Plasmon Resonance (SPR) respectively. Functional investigations of the Hp-Lec reveal a broad spectrum of bacterial agglutination activity against wide range of Gram-positive and Gram-negative bacterial strains. Furthermore, Hp-Lec displayed the haemo agglutination activity against vertebrate red blood cells (RBCs) and its titers were recorded. Excitingly, microbial virulent pathogens such as fungal strains tested against the purified Hp-Lec (25 and 50 μg/ml), which exhibits the effective antifungal activity against tested fungal pathogens such as Aspergillus niger and A. flavus.
Collapse
Affiliation(s)
- Jeyachandran Sivakamavalli
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India.
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Biotechnology & Microbiology, National College, Tiruchirappalli, 620001, India; Faculty of Marine Technology, Chonnam National University, Yeosu, 59626, South Korea.
| | - Baskaralingam Vaseeharan
- Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|