1
|
Atrián-Blasco E, Sáez J, Rodriguez-Yoldi MJ, Cerrada E. Heteronuclear Complexes with Promising Anticancer Activity against Colon Cancer. Biomedicines 2024; 12:1763. [PMID: 39200227 PMCID: PMC11351612 DOI: 10.3390/biomedicines12081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigates the activity of novel gold(I) and copper(I)/zinc(II) heteronuclear complexes against colon cancer. The synthesised heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes were characterised and evaluated for their anticancer activity using human colon cancer cell lines (Caco-2). The complexes exhibited potent cytotoxicity, with IC50 values in the low micromolar range, and effectively induced apoptosis in cancer cells. In the case of complex [Cu{Au(Spy)(PTA)}2]PF6 (2), its cytotoxicity is ×10 higher than its mononuclear precursor, while showing low cytotoxicity towards differentiated healthy cells. Mechanistic studies revealed that complex 2 inhibits the activity of thioredoxin reductase, a key enzyme involved in redox regulation, leading to an increase in reactive oxygen species (ROS) levels and oxidative stress, in addition to an alteration in DNA's tertiary structure. Furthermore, the complexes demonstrated a strong binding affinity to bovine serum albumin (BSA), suggesting the potential for effective drug delivery and bioavailability. Collectively, these findings highlight the potential of the investigated heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes as promising anticancer agents, particularly against colon cancer, through their ability to disrupt redox homeostasis and induce oxidative stress-mediated cell death.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Javier Sáez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Maria Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| |
Collapse
|
2
|
Vučelj S, Hasić R, Ašanin D, Šmit B, Caković A, Bogojeski J, Serafinović MĆ, Marković BS, Stojanović B, Pavlović S, Stanisavljević I, Ćorović I, Stojanović MD, Jovanović I, Soldatović TV, Stojanović B. Modes of Interactions with DNA/HSA Biomolecules and Comparative Cytotoxic Studies of Newly Synthesized Mononuclear Zinc(II) and Heteronuclear Platinum(II)/Zinc(II) Complexes toward Colorectal Cancer Cells. Int J Mol Sci 2024; 25:3027. [PMID: 38474273 DOI: 10.3390/ijms25053027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.
Collapse
Affiliation(s)
- Samir Vučelj
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Rušid Hasić
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Darko Ašanin
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Biljana Šmit
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Angelina Caković
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jovana Bogojeski
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | | | - Bojana Simović Marković
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Surgery, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Sladjana Pavlović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Isidora Stanisavljević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Milica Dimitrijević Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Bojana Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathophysiology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
3
|
Dolatyari V, Shahsavari HR, Fereidoonnezhad M, Farhadi F, Akhlaghi S, Latouche C, Sakamaki Y, Beyzavi H. Luminescent Heterobimetallic Pt II-Au I Complexes Bearing N-Heterocyclic Carbenes (NHCs) as Potent Anticancer Agents. Inorg Chem 2023; 62:13241-13252. [PMID: 37550287 DOI: 10.1021/acs.inorgchem.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This study aims to probe into new series of heterobimetallic PtII-AuI complexes with a general formula of [Pt(p-MeC6H4)(dfppy)(μ-dppm)Au(NHC)]OTf, NHC = IPr, 2; IMes, 3; dfppy = 2-(2,4-difluorophenyl)pyridinate; dppm = 1,1-bis(diphenylphosphino)methane, which are the resultant of the reaction between [Pt(p-MeC6H4)(dfppy)(κ1-dppm)], 1, with [AuCl(NHC)], NHC = IPr, B; IMes, C, in the presence of [Ag(OTf)]. In the heterobimetallic complexes, the dppm ligand is settled between both metals as an unsymmetrical bridging ligand. Several techniques are employed to characterize the resulting compounds. Moreover, the photophysical properties of the complexes are investigated by means of UV-vis and photoluminescence spectroscopy. Furthermore, the experimental study is enriched by ab initio calculations (density functional theory (DFT) and time-dependent DFT (TD-DFT)) to assess the role of Pt and Au moieties in the observed optical properties. It is revealed that 1-3 is luminescent in the solid state and solution at different temperatures. In addition, the achieved results indicate the emissive properties of 1-3 are originated from a mixed 3IL/3MLCT excited state with major contribution of intraligand charge transfer (dfppy). A comparative study is conducted into the cytotoxic activities of starting materials and 1-3 against different human cancer cell lines such as the pancreas (MIA-PaCa2), breast (MDA-MB-231), cervix (HeLa), and noncancerous breast epithelial cell line (MCF-10A). The achieved results suggest the heterobimetallic PtII-AuI species as optimal compounds that signify the existence of cooperative and synergistic effects in their structures. The complex 3 is considered as the most cytotoxic compound with the maximum selectivity index in our screened complex series. Moreover, it is disclosed that 3 effectively causes cell death by inducing apoptosis in MIA-PaCa2 cells. Furthermore, the finding results by fluorescent cell microscopy manifest cytoplasmic staining of 3 rather than nucleus.
Collapse
Affiliation(s)
- Vahideh Dolatyari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Fahimeh Farhadi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Shiva Akhlaghi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Camille Latouche
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
4
|
Highlights of New Strategies to Increase the Efficacy of Transition Metal Complexes for Cancer Treatments. Molecules 2022; 28:molecules28010273. [PMID: 36615466 PMCID: PMC9822110 DOI: 10.3390/molecules28010273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.
Collapse
|
5
|
Komarnicka UK, Kozieł S, Pucelik B, Barzowska A, Siczek M, Malik M, Wojtala D, Niorettini A, Kyzioł A, Sebastian V, Kopel P, Caramori S, Bieńko A. Liposomal Binuclear Ir(III)–Cu(II) Coordination Compounds with Phosphino-Fluoroquinolone Conjugates for Human Prostate Carcinoma Treatment. Inorg Chem 2022; 61:19261-19273. [DOI: 10.1021/acs.inorgchem.2c03015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Urszula K. Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Barbara Pucelik
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Agata Barzowska
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Malik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Alessandro Niorettini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Victor Sebastian
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Campus Río Ebro-Edificio I+D, Mariano Esquillor S/N, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28-029 Madrid, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Lu Y, Ma X, Chang X, Liang Z, Lv L, Shan M, Lu Q, Wen Z, Gust R, Liu W. Recent development of gold(I) and gold(III) complexes as therapeutic agents for cancer diseases. Chem Soc Rev 2022; 51:5518-5556. [PMID: 35699475 DOI: 10.1039/d1cs00933h] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal complexes have demonstrated significant antitumor activities and platinum complexes are well established in the clinical application of cancer chemotherapy. However, the platinum-based treatment of different types of cancers is massively hampered by severe side effects and resistance development. Consequently, the development of novel metal-based drugs with different mechanism of action and pharmaceutical profile attracts modern medicinal chemists to design and synthesize novel metal-based agents. Among non-platinum anticancer drugs, gold complexes have gained considerable attention due to their significant antiproliferative potency and efficacy. In most situations, the gold complexes exhibit anticancer activities by targeting thioredoxin reductase (TrxR) or other thiol-rich proteins and enzymes and trigger cell death via reactive oxygen species (ROS). Interestingly, gold complexes were recently reported to elicit biochemical hallmarks of immunogenic cell death (ICD) as an ICD inducer. In this review, the recent progress of gold(I) and gold(III) complexes is comprehensively summarized, and their activities and mechanism of action are documented.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xingyu Chang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiuyue Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ronald Gust
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innsbruck, Austria.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Hashem AH, Shehabeldine AM, Ali OM, Salem SS. Synthesis of Chitosan-Based Gold Nanoparticles: Antimicrobial and Wound-Healing Activities. Polymers (Basel) 2022; 14:2293. [PMID: 35683965 PMCID: PMC9182795 DOI: 10.3390/polym14112293] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023] Open
Abstract
The global spread of multidrug-resistant bacteria has become a significant hazard to public health, and more effective antibacterial agents are required. Therefore, this study describes the preparation, characterization, and evaluation of gold nanoparticles modified with chitosan (Chi/AuNPs) as a reducing and stabilizing agent with efficient antimicrobial effects. In recent years, the development of an efficient and ecofriendly method for synthesizing metal nanoparticles has attracted a lot of interest in the field of nanotechnology. Colloidal gold nanoparticles (AuNPs) were prepared by the chemical reduction of gold ions in the presence of chitosan (Chi), giving Chi/AuNPs. The characterization of Chi/AuNPs was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). Chi/AuNPs appeared spherical and monodispersed, with a diameter ranging between 20 to 120 nm. The synergistic effects of AuNPs and Chi led to the disruption of bacterial membranes. The maximum inhibitory impact was seen against P. aeruginosa at 500 µg/mL, with a zone of inhibition diameter of 26 ± 1.8 mm, whereas the least inhibitory effect was reported for S. aureus, with a zone of inhibition diameter of 16 ± 2.1 mm at the highest dose tested. Moreover, Chi/AuNPs exhibited antifungal activity toward Candida albicans when the MIC was 62.5 µg/mL. Cell viability and proliferation of the developed nanocomposite were evaluated using a sulphorhodamine B (SRB) assay with a half inhibitory concentration (IC50) of 111.1 µg/mL. Moreover, the in vitro wound-healing model revealed that the Chi/AuNP dressing provides a relatively rapid and efficacious wound-healing ability, making the obtained nanocomposite a promising candidate for the development of improved bandage materials.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
8
|
Banerjee S, Banerjee S. Metal-Based Complexes as Potential Anti-cancer Agents. Anticancer Agents Med Chem 2022; 22:2684-2707. [PMID: 35362388 DOI: 10.2174/1871520622666220331085144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Metal based therapy is no new in biomedical research. In early days the biggest limitation was the inequality among therapeutical and toxicological dosages. Ever since, Barnett Rosenberg discovered cisplatin, a new era has begun to treat cancer with metal complexes. Platinum complexes such as oxaliplatin, cisplatin, and carboplatin, seem to be the foundation of metal/s-based components to challenge malignancies. With an advancement in the biomolemoecular mechanism, researchers have started developing non-classical platinum-based complexes, where a different mechanistic approach of the complexes is observed towards the biomolecular target. Till date, larger number of metal/s-based complexes was synthesized by overhauling the present structures chemically by substituting the ligand or preparing the whole novel component with improved cytotoxic and safety profiles. Howsoever, due to elevated accentuation upon the therapeutic importance of metal/s-based components, a couple of those agents are at present on clinical trials and several other are in anticipating regulatory endorsement to enter the trial. This literature highlights the detailed heterometallic multinuclear components, primarily focusing on platinum, ruthenium, gold and remarks on possible stability, synergism, mechanistic studies and structure activity relationships.
Collapse
Affiliation(s)
- Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol-713301, West Bengal, India
| |
Collapse
|
9
|
Rousselle B, Massot A, Privat M, Dondaine L, Trommenschlager A, Bouyer F, Bayardon J, Ghiringhelli F, Bettaieb A, Goze C, Paul C, Malacea-Kabbara R, Bodio E. Conception and evaluation of fluorescent phosphine-gold complexes: from synthesis to in vivo investigations. ChemMedChem 2022; 17:e202100773. [PMID: 35254001 DOI: 10.1002/cmdc.202100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A phosphine gold(I) and phosphine-phosphonium gold(I) complexes bearing a fluorescent coumarin moiety were synthesized and characterized. Both complexes displayed interesting photophysical properties: good molar absorption coefficient, good quantum yield of fluorescence, and ability to be tracked in vitro thanks to two-photon imaging. Their in vitro and in vivo biological properties were evaluated onto cancer cell lines both human and murine and into CT26 tumor-bearing BALB/c mice. They displayed moderate to strong antiproliferative properties and the phosphine-phosphonium gold(I) complex induced significant in vivo anti-cancer effect.
Collapse
Affiliation(s)
- Benjamin Rousselle
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Aurélie Massot
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Malorie Privat
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | - Lucile Dondaine
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | | | - Florence Bouyer
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM 1231, FRANCE
| | - Jérôme Bayardon
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM UMR 1231, FRANCE
| | - Ali Bettaieb
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Christine Goze
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Catherine Paul
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | | | - Ewen Bodio
- Burgundy University, Institut de Chimie Moleculaire de l'Universite de Bourgogne - UMR CNRS 6302, 9 avenue Alain Savary, BP 47870, 21078, Dijon, FRANCE
| |
Collapse
|
10
|
Mironov IV, Kharlamova VY. The Cu2+ and Zn2+ Heterobinuclear Complexes Based on Gold(I) Glutathionate Complexes in Aqueous Solution. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Design of hydroxyl- and thioether-functionalized iron-platinum dimetallacyclopentenone complexes. Crystal and electronic structures, Hirshfeld and docking analyses and anticancer activity evaluated by in silico simulation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|
13
|
Benamrane A, Herry B, Vieru V, Chakraborty S, Biswas S, Prince S, Marschner C, Blom B. Ionic Ruthenium and Iron Based Complexes Bearing Silver Containing Anions as a Potent New Class of Anticancer Agents. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Redrado M, Fernández-Moreira V, Gimeno MC. Theranostics Through the Synergistic Cooperation of Heterometallic Complexes. ChemMedChem 2021; 16:932-941. [PMID: 33305458 DOI: 10.1002/cmdc.202000833] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Indexed: 12/23/2022]
Abstract
Heterometallic drugs are emerging as a great alternative to conventional metallodrugs. Careful selection of different metallic fragments makes possible to enhance not only the therapeutic potential by a synergistic effect, but also to incorpore key features like traceability. Drugs that integrate traceability and therapy in one system are known as theranostic agents. In cancer research, theranostic agents are becoming increasingly important. They deliver crucial information regarding their biological interplay that can ultimately be used for optimization. The well-established therapeutic potential of PtII -, RuII - and AuI -based drugs combined with the outstanding optical properties of d6 transition metal complexes grant the delivery of traceable metallodrugs. These species can be easily fine-tuned through modification of their respective ligands to provide a new generation of drugs.
Collapse
Affiliation(s)
- Marta Redrado
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
15
|
Melounková L, Syková M, Jirásko R, Jambor R, Havelek R, Peterová E, Honzíček J, Vinklárek J. Heterobimetallic platinum( ii) complexes with increased cytotoxicity against ovarian cancer cell lines. NEW J CHEM 2021. [DOI: 10.1039/d1nj03533a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two series of heterobimetallic compounds were prepared from the starting complex [cis-L2PtCl2] containing an aminophosphine ligand (L = 2,6-iPr2-C6H3-NHPPh2).
Collapse
Affiliation(s)
- Lucie Melounková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Miriam Syková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Šimkova 870, 500 01 Hradec Králové, Czech Republic
| | - Jan Honzíček
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Jaromír Vinklárek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
16
|
Sun Y, Lu Y, Bian M, Yang Z, Ma X, Liu W. Pt(II) and Au(III) complexes containing Schiff-base ligands: A promising source for antitumor treatment. Eur J Med Chem 2020; 211:113098. [PMID: 33348237 DOI: 10.1016/j.ejmech.2020.113098] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
The effective application of cisplatin in the clinic as an antitumor treatment has stimulated widespread interest in inorganic metal drugs. In particular, complexes containing the transition metals platinum and gold have attracted considerable attention due to their antitumor effects. The Pt(II) and Au(III) Schiff-base complexes are potential antitumor agents because of their remarkable biological activities and good stability, lipophilicity, and electroluminescent properties. These complexes act via various antitumor mechanisms that are unlike those of the classic platinum drugs, providing a feasible solution for improving the serious side effects caused by metal chemotherapy. In this review, promising antitumor agents based on Pt(II) and Au(III) complexes containing Schiff-base ligands, and their biological targets, including G-quadruplex DNA and thioredoxin reductase, are comprehensively summarized.
Collapse
Affiliation(s)
- Ying Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Mandegani Z, Nahaei A, Nikravesh M, Nabavizadeh SM, Shahsavari HR, Abu-Omar MM. Synthesis and Characterization of RhIII–MII (M = Pt, Pd) Heterobimetallic Complexes Based on a Bisphosphine Ligand: Tandem Reactions Using Ethanol. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Bertrand B, Botuha C, Forté J, Dossmann H, Salmain M. A Bis-Chelating O N O ^ / N N ^ Ligand for the Synthesis of Heterobimetallic Platinum(II)/Rhenium(I) Complexes: Tools for the Optimization of a New Class of Platinum(II) Anticancer Agents. Chemistry 2020; 26:12846-12861. [PMID: 32602602 DOI: 10.1002/chem.202001752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Indexed: 01/03/2023]
Abstract
The two independent and N N ^ coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second N N ^ coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII /ReI complexes, as well as a cationic PtII /ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII , respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3 } fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.
Collapse
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Jérémy Forté
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Héloïse Dossmann
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| |
Collapse
|
19
|
Bertrand B, Gontard G, Botuha C, Salmain M. Pincer‐Based Heterobimetallic Pt(II)/Ru(II), Pt(II)/Ir(III), and Pt(II)/Cu(I) Complexes: Synthesis and Evaluation of Antiproliferative Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| |
Collapse
|
20
|
Facile synthesis of heterobimetallic [FeII(µ-diphosphine)RuII] and homobimetallic [FeII(µ-diphosphine)FeII] complexes and their in vitro cytotoxic activity on cisplatin-resistant cancer cells. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Scarpantonio L, Cotton S, Del Giorgio E, McCallum M, Hannon M, Pikramenou Z. A luminescent europium hairpin for DNA photosensing in the visible, based on trimetallic bis-intercalators. J Inorg Biochem 2020; 209:111119. [DOI: 10.1016/j.jinorgbio.2020.111119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 01/15/2023]
|
22
|
Odachowski M, Marschner C, Blom B. A review on 1,1-bis(diphenylphosphino)methane bridged homo- and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity. Eur J Med Chem 2020; 204:112613. [PMID: 32784095 DOI: 10.1016/j.ejmech.2020.112613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(μ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Askari B, Amiri Rudbari H, Micale N, Schirmeister T, Efferth T, Seo EJ, Bruno G, Schwickert K. Ruthenium(ii) and palladium(ii) homo- and heterobimetallic complexes: synthesis, crystal structures, theoretical calculations and biological studies. Dalton Trans 2019; 48:15869-15887. [PMID: 31620752 DOI: 10.1039/c9dt02353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four Ru-Pd heterobimetallic complexes, each one in two different coordination modes (NNSS and NS) having metals connected by a binucleating dialkyldithiooxamidate [N(R)SC-CS(R)N] [R = methyl, ethyl, n-butyl and isopropyl], were prepared by reacting the monochelate [(trinpropyl-phosphine)ClPd(HR2C2N2S2κ-S,S-Pd)] with [(η6-p-cymene)RuCl2]2. Furthermore, two palladium homobimetallic complexes having two (trinpropyl-phosphine)ClPd moieties joined by a diethyldithiooxamidate in both κ-N,S Pd, κ-N',S' Pd' and κ-N,N' Pd, κ-S,S' Pd' coordination modes were synthesized. For both kinds of complexes, homo- and heterobimetallic, at room temperature and in chloroform solution, the NNSS coordination mode (kinetic compounds) turns out to be unstable and therefore the resulting complexes rearrange into a thermodynamically more stable form (NS coordination mode). The crystal structures of [(trinpropyl-phosphine)ClPd]2[μ-(ethyl)2-DTO κ-N,S Pd, κ-N',S' Pd'] (2) and [(η6-p-cymene)ClRu][μ-(methyl)2-DTO κ-N,S Ru, κ-N,S Pd] [(trinpropyl-phosphine)ClPd] (1c) were determined by solid state X-ray crystallography. Moreover, the higher stability of the thermodynamic species in the heterobimetallic complexes (Ru-Pd) was evaluated by means of computational studies in accordance with the maximum hardness principle. All stable NS complexes (i.e.1c-4c, 2 and the previously reported homobimetallic Ru complex 3) were tested against two leukemia cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000 showing anti-proliferative activity in the low micromolar range (∼1-5 μM) and micromolar range (∼10-25 μM), respectively. In addition, these complexes efficaciously block at least two out of the three proteolytic activities of the tumor target 20S proteasome, with heterobimetallic complex 3c and homobimetallic complex 3 possessing the best inhibitory profile.
Collapse
Affiliation(s)
- Banafshe Askari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Giuseppe Bruno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy.
| | - Kevin Schwickert
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
24
|
|
25
|
van Niekerk A, Chellan P, Mapolie SF. Heterometallic Multinuclear Complexes as Anti-Cancer Agents-An Overview of Recent Developments. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Annick van Niekerk
- Department of Chemistry and Polymer Science; Stellenbosch University; Private bag X1, Matieland 7602 Stellenbosch South Africa
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science; Stellenbosch University; Private bag X1, Matieland 7602 Stellenbosch South Africa
| | - Selwyn F. Mapolie
- Department of Chemistry and Polymer Science; Stellenbosch University; Private bag X1, Matieland 7602 Stellenbosch South Africa
| |
Collapse
|
26
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. Preparation of platinum(II) complexes with naphthalene imide derivatives and exploration of their in vitro cytotoxic activities. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Shahsavari HR, Giménez N, Lalinde E, Moreno MT, Fereidoonnezhad M, Babadi Aghakhanpour R, Khatami M, Kalantari F, Jamshidi Z, Mohammadpour M. Heterobimetallic PtII
-AuI
Complexes Comprising Unsymmetrical 1,1-Bis(diphenylphosphanyl)methane Bridges: Synthesis, Photophysical, and Cytotoxic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Mehri Khatami
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Foroogh Kalantari
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Zahra Jamshidi
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| | - Mozhdeh Mohammadpour
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| |
Collapse
|
28
|
Moes-Sosnowska J, Rzepecka IK, Chodzynska J, Dansonka-Mieszkowska A, Szafron LM, Balabas A, Lotocka R, Sobiczewski P, Kupryjanczyk J. Clinical importance of FANCD2, BRIP1, BRCA1, BRCA2 and FANCF expression in ovarian carcinomas. Cancer Biol Ther 2019; 20:843-854. [PMID: 30822218 PMCID: PMC6606037 DOI: 10.1080/15384047.2019.1579955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE DNA repair pathways are potential targets of molecular therapy in cancer patients. The FANCD2, BRIP1, BRCA1/2, and FANCF genes are involved in homologous recombination DNA repair, which implicates their possible role in cell response to DNA-damaging agents. We evaluated a clinical significance of pre-treatment expression of these genes at mRNA level in 99 primary, advanced-stage ovarian carcinomas from patients, who later received taxane-platinum (TP) or platinum-cyclophosphamide (PC) treatment. METHODS Gene expression was determined with the use of Real-Time PCR. The BRCA2 and BRIP1 gene sequence was investigated with the use of SSCP, dHPLC, and PCR-sequencing. RESULTS Increased FANCD2 expression occurred to be a negative prognostic factor for all patients (PC+TP:HR 3.85, p = 0.0003 for the risk of recurrence; HR 1.96, p = 0.02 for the risk of death), and this association was even stronger in the TP-treated group (HR 6.7, p = 0.0002 and HR 2.33, p = 0.01, respectively). Elevated BRIP1 expression was the only unfavorable molecular factor in the PC-treated patients (HR 8.37, p = 0.02 for the risk of recurrence). Additionally, an increased FANCD2 and BRCA1/2 expression levels were associated with poor ovarian cancer outcome in either TP53-positive or -negative subgroups of the TP-treated patients, however these groups were small. Sequence analysis identified one protein truncating variant (1/99) in BRCA2 and no mutations (0/56) in BRIP1. CONCLUSIONS Our study shows for the first time that FANCD2 overexpression is a strong negative prognostic factor in ovarian cancer, particularly in patients treated with TP regimen. Moreover, increased mRNA level of the BRIP1 is a negative prognostic factor in the PC-treated patients. Next, changes in the BRCA2 and BRIP1 genes are rare and together with other analyzed FA genes considered as homologous recombination deficiency may not affect the expression level of analyzed genes.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Iwona K Rzepecka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Joanna Chodzynska
- c Laboratory of Bioinformatics and Biostatistics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Agnieszka Dansonka-Mieszkowska
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Lukasz M Szafron
- a Department of Immunology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Aneta Balabas
- d Department of Genetics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Renata Lotocka
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Piotr Sobiczewski
- e Department of Gynecologic Oncology , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| | - Jolanta Kupryjanczyk
- b Department of Pathology and Laboratory Diagnostics , Maria Sklodowska-Curie Institute - Oncology Center , Warsaw , Poland
| |
Collapse
|
29
|
Xiao X, Wang T, Li L, Zhu Z, Zhang W, Cui G, Li W. Co-delivery of Cisplatin(IV) and Capecitabine as an Effective and Non-toxic Cancer Treatment. Front Pharmacol 2019; 10:110. [PMID: 30837877 PMCID: PMC6390499 DOI: 10.3389/fphar.2019.00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
A strategy for preparing composite micelles (CM) containing both cisplatin(IV) [CisPt(IV)] prodrug and capecitabine using a co-assembly method is described in this study. The CM are capable of an effective release of the anticancer drug cisplatin(II) [CisPt(II)] and capecitabine via acid hydrolysis once they are internalized by cancer cells. Moreover, the CM display a synergistic effect in vitro and the combination therapy in the micellar dosage form leads to reduced systemic toxicity and enhanced antitumor efficacy in vivo.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
- Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Leijiao Li
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Zhongli Zhu
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Weina Zhang
- Common Subjects Department, Shangqiu Medical College, Henan, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
- Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Center for Biomaterials, Jilin Medical University, Jilin, China
| |
Collapse
|
30
|
Batchelor LK, Ortiz D, Dyson PJ. Histidine Targeting Heterobimetallic Ruthenium(II)–Gold(I) Complexes. Inorg Chem 2019; 58:2501-2513. [DOI: 10.1021/acs.inorgchem.8b03069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Daniel Ortiz
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
32
|
Cerrada E, Fernández-Moreira V, Gimeno MC. Gold and platinum alkynyl complexes for biomedical applications. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Abyar F, Tabrizi L. New multinuclear Scaffold molybdocene-gold lidocaine complex: DNA/HSA binding, molecular docking, cytotoxicity and mechanistic insights. J Biomol Struct Dyn 2018; 37:3366-3378. [DOI: 10.1080/07391102.2018.1515114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Abyar
- Chemical Engineering Department, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | - Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
34
|
Elie BT, Fernández-Gallardo J, Curado N, Cornejo MA, Ramos JW, Contel M. Bimetallic titanocene-gold phosphane complexes inhibit invasion, metastasis, and angiogenesis-associated signaling molecules in renal cancer. Eur J Med Chem 2018; 161:310-322. [PMID: 30368130 DOI: 10.1016/j.ejmech.2018.10.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023]
Abstract
Following promising recent in vitro and in vivo studies of the anticancer efficacies of heterometallic titanocene-gold chemotherapeutic candidates against renal cancer, we report here on the synthesis, characterization, stability studies and biological evaluation of a new titanocene complex containing a gold-triethylphosphane fragment [(η-C5H5)2TiMe(μ-mba)Au(PEt3)] (4) Titanofin. The compound is more stable in physiological fluid than those previously reported, and it is highly cytotoxic against a line of human clear cell renal carcinoma. We describe here preliminary mechanistic data for this compound and previously reported [(η-C5H5)2TiMe(μ-mba)Au(PPh3)] (2) Titanocref which displayed remarkable activity in an in vivo mouse model. Mechanistic studies were carried out in the human clear cell renal carcinoma Caki-1 line for the bimetallic compounds [(η-C5H5)2TiMe(μ-mba)Au(PR3)] (PR3 = PPh32 Titanocref and PEt34 Titanofin), the two monometallic gold derivatives [Au(Hmba)(PR3)] (PR3 = PPh31 cref; PEt33 fin), titanocene dichloride and Auranofin as controls. These studies indicate that bimetallic compounds Titanocref (2) and Titanofin (4) are more cytotoxic than gold monometallic derivatives (1 and 3) and significantly more cytotoxic than titanocene dichloride while being quite selective. Titanocref (2) and Titanofin (4) inhibit migration, invasion, and angiogenic assembly along with molecular markers associated with these processes such as prometastatic IL(s), MMP(s), TNF-α, and proangiogenic VEGF, FGF-basic. The bimetallic compounds also strongly inhibit the mitochondrial protein TrxR often overexpressed in cancer cells evading apoptosis and also inhibit FOXC2, PECAM-1, and HIF-1α whose overexpression is linked to resistance to genotoxic chemotherapy. In summary, bimetallic titanocene-gold phosphane complexes (Titanocref 2 and Titanofin 4) are very promising candidates for further preclinical evaluations for the treatment of renal cancer.
Collapse
Affiliation(s)
- Benelita T Elie
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Jacob Fernández-Gallardo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Natalia Curado
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Mike A Cornejo
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA; Biology PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Chemistry PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA; Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
35
|
Trommenschlager A, Chotard F, Bertrand B, Amor S, Dondaine L, Picquet M, Richard P, Bettaïeb A, Le Gendre P, Paul C, Goze C, Bodio E. Gold(i)-BODIPY-imidazole bimetallic complexes as new potential anti-inflammatory and anticancer trackable agents. Dalton Trans 2018; 46:8051-8056. [PMID: 28594007 DOI: 10.1039/c7dt01377a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new gold(i)-BODIPY-imidazole based trackable therapeutic bimetallic complexes have been synthesized and fully characterized. They display strong antiproliferative properties on several types of cancers including colon, breast, and prostate and one of them presents a significant anti-inflammatory effect. Additionally, the two compounds could be visualised in vitro by confocal microscopy in the submicromolar range.
Collapse
|
36
|
Medicinal Applications of Gold(I/III)-Based Complexes Bearing N-Heterocyclic Carbene and Phosphine Ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Elie BT, Pechenyy Y, Uddin F, Contel M. A heterometallic ruthenium-gold complex displays antiproliferative, antimigratory, and antiangiogenic properties and inhibits metastasis and angiogenesis-associated proteases in renal cancer. J Biol Inorg Chem 2018; 23:399-411. [PMID: 29508136 PMCID: PMC6173830 DOI: 10.1007/s00775-018-1546-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022]
Abstract
Heterobimetallic compounds are designed to harness chemotherapeutic traits of distinct metal species into a single molecule. The ruthenium-gold (Ru-Au) family of compounds based on Au-N-heterocyclic carbene (NHC) fragments [Cl2(p-cymene)Ru(μ-dppm)Au(NHC)]ClO4 was conceived to combine the known antiproliferative and cytotoxic properties of Au-NHC-based compounds and the antimigratory, antimetastatic, and antiangiogenic characteristic of specific Ru-based compounds. Following recent studies of the anticancer efficacies of these Ru-Au-NHC complexes with promising potential as chemotherapeutics against colorectal, and renal cancers in vitro, we report here on the mechanism of a selected compound, [Cl2(p-cymene)Ru(μ-dppm)Au(IMes)]ClO4 (RANCE-1, 1). The studies were carried out in vitro using a human clear cell renal carcinoma cell line (Caki-1). These studies indicate that bimetallic compound RANCE-1 (1) is significantly more cytotoxic than the Ru (2) or Au (3) monometallic derivatives. RANCE-1 significantly inhibits migration, invasion, and angiogenesis, which are essential for metastasis. RANCE-1 was found to disturb pericellular proteolysis by inhibiting cathepsins, and the metalloproteases MMP and ADAM which play key roles in the etiopathogenesis of cancer. RANCE-1 also inhibits the mitochondrial protein TrxR that is often overexpressed in cancer cells and facilitates apoptosis evasion. We found that while auranofin perturbed migration and invasion to similar degrees as RANCE-1 (1) in Caki-1 renal cancer cells, RANCE-1 (1) inhibited antiangiogenic formation and VEGF expression. We found that auranofin and RANCE-1 (1) have distinct proteolytic profiles. In summary, RANCE-1 constitutes a very promising candidate for further preclinical evaluations in renal cancer.
Collapse
Affiliation(s)
- Benelita T Elie
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA
- Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Yuriy Pechenyy
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Fathema Uddin
- Biology Department, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, 11210, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
- Chemistry PhD Program, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY, 10016, USA.
| |
Collapse
|
38
|
|
39
|
Fernández-Moreira V, Gimeno MC. Heterobimetallic Complexes for Theranostic Applications. Chemistry 2018; 24:3345-3353. [PMID: 29334153 DOI: 10.1002/chem.201705335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 01/31/2023]
Abstract
The design of more efficient anticancer drugs requires a deeper understanding of their biodistribution and mechanism of action. Cell imaging agents could help to gain insight into biological processes and, consequently, the best strategy for attaining suitable scaffolds in which both biological and imaging properties are maximized. A new concept arises in this field that is the combination of two metal fragments as collaborative partners to provide the precise emissive properties to visualize the cell as well as the optimum cytotoxic activity to build more potent and selective chemotherapeutic agents.
Collapse
Affiliation(s)
- Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
40
|
Chotard F, Dondaine L, Balan C, Bettaïeb A, Paul C, Le Gendre P, Bodio E. Highly antiproliferative neutral Ru(ii)-arene phosphine complexes. NEW J CHEM 2018. [DOI: 10.1039/c7nj04442a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of a benzoate ligand dramatically increases the ruthenium uptake in cells, leading to a low micromolar IC50.
Collapse
Affiliation(s)
- Florian Chotard
- ICMUB UMR6302
- CNRS
- Univ. Bourgogne Franche-Comté
- F-21000 Dijon
- France
| | - Lucile Dondaine
- ICMUB UMR6302
- CNRS
- Univ. Bourgogne Franche-Comté
- F-21000 Dijon
- France
| | - Cédric Balan
- ICMUB UMR6302
- CNRS
- Univ. Bourgogne Franche-Comté
- F-21000 Dijon
- France
| | - Ali Bettaïeb
- Laboratoire d'Immunologie et Immunothérapie des Cancers
- EPHE
- PSL Research University
- Paris
- France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers
- EPHE
- PSL Research University
- Paris
- France
| | - Pierre Le Gendre
- ICMUB UMR6302
- CNRS
- Univ. Bourgogne Franche-Comté
- F-21000 Dijon
- France
| | - Ewen Bodio
- ICMUB UMR6302
- CNRS
- Univ. Bourgogne Franche-Comté
- F-21000 Dijon
- France
| |
Collapse
|
41
|
Luengo A, Fernández-Moreira V, Marzo I, Gimeno MC. Trackable Metallodrugs Combining Luminescent Re(I) and Bioactive Au(I) Fragments. Inorg Chem 2017; 56:15159-15170. [DOI: 10.1021/acs.inorgchem.7b02470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrés Luengo
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología
Molecular, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea, CSIC-Universidad de Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain
| |
Collapse
|
42
|
Gil-Rubio J, Vicente J. The Coordination and Supramolecular Chemistry of Gold Metalloligands. Chemistry 2017; 24:32-46. [DOI: 10.1002/chem.201703574] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Juan Gil-Rubio
- Departamento de Química Inorgánica. Facultad de Química; Universidad de Murcia; Campus de Espinardo. 30100 Murcia Spain
| | - José Vicente
- Departamento de Química Inorgánica. Facultad de Química; Universidad de Murcia; Campus de Espinardo. 30100 Murcia Spain
| |
Collapse
|
43
|
Singh N, Jang S, Jo JH, Kim DH, Park DW, Kim I, Kim H, Kang SC, Chi KW. Coordination-Driven Self-Assembly and Anticancer Potency Studies of Ruthenium-Cobalt-Based Heterometallic Rectangles. Chemistry 2016; 22:16157-16164. [PMID: 27689935 DOI: 10.1002/chem.201603521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Three new cobalt-ruthenium heterometallic molecular rectangles, 1-3, were synthesized through the coordination-driven self-assembly of a new cobalt sandwich donor, (η5 -Cp)Co[C4 -trans-Ph2 (4-Py)2 ] (L; Cp: cyclopentyl; Py: pyridine), and one of three dinuclear precursors, [(p-cymene)2 Ru2 (OO∩OO)2 Cl2 ] [OO∩OO: oxalato (A1 ), 5,8-dioxido-1,4-naphthoquinone (A2 ), or 6,11-dioxido-5,12-naphthacenedione (A3 )]. All of the self-assembled architectures were isolated in very good yield (92-94 %) and were fully characterized by spectroscopic analysis; the molecular structures of 2 and 3 were determined by single-crystal X-ray diffraction analysis. The anticancer activities of bimetallic rectangles 1-3 were evaluated with a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, an autophagy assay, and Western blotting. Rectangles 1-3 showed higher cytotoxicity than doxorubicin in AGS human gastric carcinoma cells. In addition, the autophagic activities and apoptotic cell death ratios were increased in AGS cells by treatment with 1-3; the rectangles induced autophagosome formation by promoting LC3-I to LC3-II conversion and apoptotic cell death by increasing caspase-3/7 activity. Our results suggest that rectangles 1-3 induce gastric cancer cell death by modulating autophagy and apoptosis and that they have potential use as agents for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sunphil Jang
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jae-Ho Jo
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dong Hwan Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Dae Won Park
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - InHye Kim
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunuk Kim
- Energy Materials Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
44
|
Aranda EE, Matias TA, Araki K, Vieira AP, de Mattos EA, Colepicolo P, Luz CP, Marques FLN, da Costa Ferreira AM. Design, syntheses, characterization, and cytotoxicity studies of novel heterobinuclear oxindolimine copper(II)-platinum(II) complexes. J Inorg Biochem 2016; 165:108-118. [PMID: 27503192 DOI: 10.1016/j.jinorgbio.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values gǁ>g⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents.
Collapse
Affiliation(s)
- Esther Escribano Aranda
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tiago Araújo Matias
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Koiti Araki
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriana Pires Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elaine Andrade de Mattos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carolina Portela Luz
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Luiz Navarro Marques
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
45
|
Mui YF, Fernández-Gallardo J, Elie BT, Gubran A, Maluenda I, Sanaú M, Navarro O, Contel M. Titanocene-Gold Complexes Containing N-Heterocyclic Carbene Ligands Inhibit Growth of Prostate, Renal, and Colon Cancers in Vitro. Organometallics 2016; 35:1218-1227. [PMID: 27182101 PMCID: PMC4863200 DOI: 10.1021/acs.organomet.6b00051] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 12/01/2022]
Abstract
![]()
We report on the synthesis, characterization,
and stability studies
of new titanocene complexes containing a methyl group and a carboxylate
ligand (mba = −OC(O)-p-C6H4-S−) bound to gold(I)–N-heterocyclic carbene
fragments through the thiolate group: [(η5-C5H5)2TiMe(μ-mba)Au(NHC)]. The cytotoxicities
of the heterometallic compounds along with those of novel monometallic
gold–N-heterocyclic carbene precursors [(NHC)Au(mbaH)] have
been evaluated against renal, prostate, colon, and breast cancer cell
lines. The highest activity and selectivity and a synergistic effect
of the resulting heterometallic species was found for the prostate
and colon cancer cell lines. The colocalization of both titanium and
gold metals (1:1 ratio) in PC3 prostate cancer cells was demonstrated
for the selected compound 5a, indicating the robustness
of the heterometallic compound in vitro. We describe here preliminary
mechanistic data involving studies on the interaction of selected
mono- and bimetallic compounds with plasmid (pBR322) used as a model
nucleic acid and the inhibition of thioredoxin reductase in PC3 prostate
cancer cells. The heterometallic compounds, which are highly apoptotic,
exhibit strong antimigratory effects on the prostate cancer cell line
PC3.
Collapse
Affiliation(s)
- Yiu Fung Mui
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States; Chemistry and Biology Ph.D. Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jacob Fernández-Gallardo
- Department of Chemistry, Brooklyn College, The City University of New York , Brooklyn, New York 11210, United States
| | - Benelita T Elie
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States; Chemistry and Biology Ph.D. Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ahmed Gubran
- Department of Chemistry, Brooklyn College, The City University of New York , Brooklyn, New York 11210, United States
| | - Irene Maluenda
- Department of Chemistry, University of Sussex , Falmer, Brighton BN1 9QJ, U.K
| | - Mercedes Sanaú
- Departamento de Química Inorgánica, Universidad de Valencia , Burjassot, Valencia 46100, Spain
| | - Oscar Navarro
- Department of Chemistry, University of Sussex , Falmer, Brighton BN1 9QJ, U.K
| | - María Contel
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States; Chemistry and Biology Ph.D. Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States; Chemistry and Biology Ph.D. Programs, The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
46
|
Wenzel M, de Almeida A, Bigaeva E, Kavanagh P, Picquet M, Le Gendre P, Bodio E, Casini A. New Luminescent Polynuclear Metal Complexes with Anticancer Properties: Toward Structure–Activity Relationships. Inorg Chem 2016; 55:2544-57. [DOI: 10.1021/acs.inorgchem.5b02910] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margot Wenzel
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Andreia de Almeida
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Emilia Bigaeva
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Paul Kavanagh
- School
of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michel Picquet
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Pierre Le Gendre
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Ewen Bodio
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR 6302 CNRS, Université de Bourgogne Franche-Comté, 9 avenue
A. Savary, BP47870, 21078 Dijon, France
| | - Angela Casini
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
- Department
of Pharmacokinetics, Toxicology and Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
47
|
Visbal R, Fernández-Moreira V, Marzo I, Laguna A, Gimeno MC. Cytotoxicity and biodistribution studies of luminescent Au(i) and Ag(i) N-heterocyclic carbenes. Searching for new biological targets. Dalton Trans 2016; 45:15026-33. [DOI: 10.1039/c6dt02878k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold and silver NHC complexes have been developed as theranostic agents. The unexpected biodistribution opens the door to new biological targets for gold and silver complexes.
Collapse
Affiliation(s)
- Renso Visbal
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología Molecular
- Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - Antonio Laguna
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea
- CSIC-Universidad de Zaragoza
- 50009 Zaragoza
- Spain
| |
Collapse
|
48
|
Bertrand B, Doulain PE, Goze C, Bodio E. Development of trackable metal-based drugs: new generation of therapeutic agents. Dalton Trans 2016; 45:13005-11. [DOI: 10.1039/c5dt04275e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Today, it is not sufficient to conceive an efficient drug, its mechanism of action have to be understood. To tackle this issue, trackable therapeutic agents are an interesting solution.
Collapse
Affiliation(s)
- Benoît Bertrand
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
- School of Chemistry
| | - Pierre-Emmanuel Doulain
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Christine Goze
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Ewen Bodio
- Institut de Chimie Moléculaire
- UMR 6302 CNRS Université de Bourgogne Franche-Comté
- 21078 Dijon
- France
| |
Collapse
|
49
|
Serratrice M, Maiore L, Zucca A, Stoccoro S, Landini I, Mini E, Massai L, Ferraro G, Merlino A, Messori L, Cinellu MA. Cytotoxic properties of a new organometallic platinum(ii) complex and its gold(i) heterobimetallic derivatives. Dalton Trans 2016; 45:579-90. [DOI: 10.1039/c5dt02714d] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The high antiproliferative effects of a new organoplatinum(ii) complex are further enhanced upon coordination of a gold(i) phosphane moiety.
Collapse
|
50
|
Shareena Dasari TP, Zhang Y, Yu H. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. ACTA ACUST UNITED AC 2015; 4. [PMID: 27019770 PMCID: PMC4807878 DOI: 10.4172/2167-0501.1000199] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gold nanoparticles (AuNPs) and gold ion complexes have been investigated for their antibacterial activities. However, the majority of the reports failed to disclose the concentration of free Au(I) or Au(III) present in solutions of AuNPs or gold ion complexes. The inconsistency of antibacterial activity of AuNPs may be due to the effect of the presence of Au(III). Here we report the antibacterial activity of Au(I) and Au(III) to four different bacteria: one nonpathogenic bacterium: E. coli and three multidrug-resistant bacteria: E. coli, S. typhimurium DT104, and S. aureus. Au(I) and Au(III) as chloride are highly toxic to all the four bacteria, with IC50 of 0.35 - 0.49 µM for Au(III) and 0.27-0.52 µM for Au(I).The bacterial growth inhibition by both Au(I) and Au(III) increases with exposure time and is strongly affected by the use of buffers. The IC50 values for Au(I) and Au(III) in different buffers are HEPES (0.48 and 1.55 µM) > Trizma (0.41 and 0.57 µM) > PBS (0.14 and 0.06 µM). Bacterial growth inhibition by AuNPs is gradually reduced by centrifugation-resuspension to remove residual Au(III) ion present in the crude synthetic AuNPs. After 4 centrifugations-resuspensions, AuNPs become non-toxic. In addition, both Au(I) and Au(III) are cytotoxic to skin keratinocyte and blood lymphocyte cells. These results suggest that Au(I) and Au(III) in pure or complex forms may be explored as a method to treat drug-resistant bacteria, and the test of AuNPs toxicity must consider residual Au(III), exposure time, and the use of buffers.
Collapse
Affiliation(s)
| | | | - H Yu
- Corresponding author: Hongtao Yu, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA, Tel: 001-601-979-2171;
| |
Collapse
|