1
|
Dasgupta M, Guha S, Armbruster L, Das D, Mitra MK. Nature of barriers determines first passage times in heterogeneous media. SOFT MATTER 2024; 20:8353-8362. [PMID: 39318347 DOI: 10.1039/d4sm00908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Intuition suggests that passage times across a region increase with the number of barriers along the path. Can this fail depending on the nature of the barrier? To probe this fundamental question, we exactly solve for the first passage time in general d-dimensions for diffusive transport through a spatially patterned array of obstacles - either entropic or energetic, depending on the nature of the obstacles. For energetic barriers, we show that first passage times vary non-monotonically with the number of barriers, while for entropic barriers it increases monotonically. This non-monotonicity for energetic barriers is further reflected in the behaviour of effective diffusivity as well. We then design a simple experiment where a robotic bug navigates in a heterogeneous environment through a spatially patterned array of obstacles to validate our predictions. Finally, using numerical simulations, we show that this non-monotonic behaviour for energetic barriers is general and extends to even super-diffusive transport.
Collapse
Affiliation(s)
| | - Sougata Guha
- Department of Physics, IIT Bombay, Mumbai 400076, India.
- INFN Napoli, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy
| | | | - Dibyendu Das
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| | - Mithun K Mitra
- Department of Physics, IIT Bombay, Mumbai 400076, India.
| |
Collapse
|
2
|
Qian J, Lubkowska L, Zhang S, Tan C, Hong Y, Fulbright RM, Inman JT, Kay TM, Jeong J, Gotte D, Berger JM, Kashlev M, Wang MD. Chromatin Buffers Torsional Stress During Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618270. [PMID: 39464147 PMCID: PMC11507789 DOI: 10.1101/2024.10.15.618270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Transcription through chromatin under torsion represents a fundamental problem in biology. Pol II must overcome nucleosome obstacles and, because of the DNA helical structure, must also rotate relative to the DNA, generating torsional stress. However, there is a limited understanding of how Pol II transcribes through nucleosomes while supercoiling DNA. In this work, we developed methods to visualize Pol II rotation of DNA during transcription and determine how torsion slows down the transcription rate. We found that Pol II stalls at ± 9 pN·nm torque, nearly sufficient to melt DNA. The stalling is due to extensive backtracking, and the presence of TFIIS increases the stall torque to + 13 pN·nm, making Pol II a powerful rotary motor. This increased torsional capacity greatly enhances Pol II's ability to transcribe through a nucleosome. Intriguingly, when Pol II encounters a nucleosome, nucleosome passage becomes more efficient on a chromatin substrate than on a single-nucleosome substrate, demonstrating that chromatin efficiently buffers torsional stress via its torsional mechanical properties. Furthermore, topoisomerase II relaxation of torsional stress significantly enhances transcription, allowing Pol II to elongate through multiple nucleosomes. Our results demonstrate that chromatin greatly reduces torsional stress on transcription, revealing a novel role of chromatin beyond the more conventional view of it being just a roadblock to transcription.
Collapse
Affiliation(s)
- Jin Qian
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuming Zhang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Taryn M. Kay
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deanna Gotte
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Fisher MJ, Luse DS. Defining a chromatin architecture that supports transcription at RNA polymerase II promoters. J Biol Chem 2024; 300:107515. [PMID: 38945447 PMCID: PMC11298586 DOI: 10.1016/j.jbc.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Mammalian RNA polymerase II preinitiation complexes assemble adjacent to a nucleosome whose proximal edge (NPE) is typically 40 to 50 bp downstream of the transcription start site. At active promoters, that +1 nucleosome is universally modified by trimethylation on lysine 4 of histone H3 (H3K4me3). The Pol II preinitiation complex only extends 35 bp beyond the transcription start site, but nucleosomal templates with an NPE at +51 are nearly inactive in vitro with promoters that lack a TATA element and thus depend on TFIID for promoter recognition. Significantly, this inhibition is relieved when the +1 nucleosome contains H3K4me3, which can interact with TFIID subunits. Here, we show that H3K4me3 templates with both TATA and TATA-less promoters are active with +35 NPEs when transcription is driven by TFIID. Templates with +20 NPE are also active but at reduced levels compared to +35 and +51 NPEs, consistent with a general inhibition of promoter function when the proximal nucleosome encroaches on the preinitiation complex. Remarkably, dinucleosome templates support transcription when H3K4me3 is only present in the distal nucleosome, suggesting that TFIID-H3K4me3 interaction does not require modification of the +1 nucleosome. Transcription reactions performed with an alternative protocol retaining most nuclear factors results primarily in early termination, with a minority of complexes successfully traversing the first nucleosome. In such reactions, the +1 nucleosome does not substantially affect the level of termination even with an NPE of +20, indicating that a nucleosome barrier is not a major driver of early termination by Pol II.
Collapse
Affiliation(s)
- Michael J Fisher
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Donal S Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
4
|
Jin L, Zhang S, Song Z, Heng X, Chen SJ. Kinetic pathway of HIV-1 TAR cotranscriptional folding. Nucleic Acids Res 2024; 52:6066-6078. [PMID: 38738640 PMCID: PMC11162800 DOI: 10.1093/nar/gkae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
The Trans-Activator Receptor (TAR) RNA, located at the 5'-end untranslated region (5' UTR) of the human immunodeficiency virus type 1 (HIV-1), is pivotal in the virus's life cycle. As the initial functional domain, it folds during the transcription of viral mRNA. Although TAR's role in recruiting the Tat protein for trans-activation is established, the detailed kinetic mechanisms at play during early transcription, especially at points of temporary transcriptional pausing, remain elusive. Moreover, the precise physical processes of transcriptional pause and subsequent escape are not fully elucidated. This study focuses on the folding kinetics of TAR and the biological implications by integrating computer simulations of RNA folding during transcription with nuclear magnetic resonance (NMR) spectroscopy data. The findings reveal insights into the folding mechanism of a non-native intermediate that triggers transcriptional pause, along with different folding pathways leading to transcriptional pause and readthrough. The profiling of the cotranscriptional folding pathway and identification of kinetic structural intermediates reveal a novel mechanism for viral transcriptional regulation, which could pave the way for new antiviral drug designs targeting kinetic cotranscriptional folding pathways in viral RNAs.
Collapse
Affiliation(s)
- Lei Jin
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sicheng Zhang
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Zhenwei Song
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Lu Q, Shi W, Zhang F, Ding Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1760-1773. [PMID: 38446797 DOI: 10.1111/tpj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Histone 2B ubiquitination (H2Bub) and trimethylation of H3 at lysine 4 (H3K4me3) are associated with transcription activation. However, the function of these modifications in transcription in plants remains largely unknown. Here, we report that coordination of H2Bub and H3K4me3 deposition with the binding of the RNA polymerase-associated factor VERNALIZATION INDEPENDENCE2 (VIP2) to FLOWERING LOCUS C (FLC) modulates flowering time in Arabidopsis. We found that RING domain protein HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 (we refer as HUB1/2), which are responsible for H2Bub, interact with ARABIDOPSIS TRITHORAX1 (ATX1), which is required for H3K4me3 deposition, to promote the transcription of FLC and repress the flowering time. The atx1-2 hub1-10 hub2-2 triple mutant in FRIGIDIA (FRI) background displayed early flowering like FRI hub1-10 hub2-2 and overexpression of ATX1 failed to rescue the early flowering phenotype of hub1-10 hub2-2. Mutations in HUB1 and HUB2 reduced the ATX1 enrichment at FLC, indicating that HUB1 and HUB2 are required for ATX1 recruitment and H3K4me3 deposition at FLC. We also found that the VIP2 directly binds to HUB1, HUB2, and ATX1 and that loss of VIP2 in FRI hub1-10 hub2-2 and FRI atx1-2 plants resulted in early flowering like that observed in FRI vip2-10. Loss of function of HUB2 and ATX1 impaired VIP2 enrichment at FLC, and reduced the transcription initiation and elongation of FLC. In addition, mutations in VIP2 reduced HUB1 and ATX1 enrichment and H2Bub and H3K4me3 levels at FLC. Together, our findings revealed that HUB1/2, ATX1, and VIP2 coordinately modulate H2Bub and H3K4me3 deposition, FLC transcription, and flowering time.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Wenwen Shi
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
6
|
Siametis A, Stratigi K, Giamaki D, Chatzinikolaou G, Akalestou-Clocher A, Goulielmaki E, Luke B, Schumacher B, Garinis GA. Transcription stress at telomeres leads to cytosolic DNA release and paracrine senescence. Nat Commun 2024; 15:4061. [PMID: 38744897 PMCID: PMC11094137 DOI: 10.1038/s41467-024-48443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription stress has been linked to DNA damage -driven aging, yet the underlying mechanism remains unclear. Here, we demonstrate that Tcea1-/- cells, which harbor a TFIIS defect in transcription elongation, exhibit RNAPII stalling at oxidative DNA damage sites, impaired transcription, accumulation of R-loops, telomere uncapping, chromatin bridges, and genome instability, ultimately resulting in cellular senescence. We found that R-loops at telomeres causally contribute to the release of telomeric DNA fragments in the cytoplasm of Tcea1-/- cells and primary cells derived from naturally aged animals triggering a viral-like immune response. TFIIS-defective cells release extracellular vesicles laden with telomeric DNA fragments that target neighboring cells, which consequently undergo cellular senescence. Thus, transcription stress elicits paracrine signals leading to cellular senescence, promoting aging.
Collapse
Affiliation(s)
- Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Despoina Giamaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology (IMB), Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Oka Y, Nakazawa Y, Shimada M, Ogi T. Endogenous aldehyde-induced DNA-protein crosslinks are resolved by transcription-coupled repair. Nat Cell Biol 2024; 26:784-796. [PMID: 38600234 PMCID: PMC11098742 DOI: 10.1038/s41556-024-01401-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.
Collapse
Affiliation(s)
- Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan.
- Division of Molecular Physiology and Dynamics, Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
9
|
Wang Y, Wang S, Meng Z, Liu XM, Mao Y. Determinant of m6A regional preference by transcriptional dynamics. Nucleic Acids Res 2024; 52:3510-3521. [PMID: 38452220 DOI: 10.1093/nar/gkae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant chemical modification occurring on eukaryotic mRNAs, and has been reported to be involved in almost all stages of mRNA metabolism. The distribution of m6A sites is notably asymmetric along mRNAs, with a strong preference toward the 3' terminus of the transcript. How m6A regional preference is shaped remains incompletely understood. In this study, by performing m6A-seq on chromatin-associated RNAs, we found that m6A regional preference arises during transcription. Nucleosome occupancy is remarkedly increased in the region downstream of m6A sites, suggesting an intricate interplay between m6A methylation and nucleosome-mediated transcriptional dynamics. Notably, we found a remarkable slowdown of Pol-II movement around m6A sites. In addition, inhibiting Pol-II movement increases nearby m6A methylation levels. By analyzing massively parallel assays for m6A, we found that RNA secondary structures inhibit m6A methylation. Remarkably, the m6A sites associated with Pol-II pausing tend to be embedded within RNA secondary structures. These results suggest that Pol-II pausing could affect the accessibility of m6A motifs to the methyltransferase complex and subsequent m6A methylation by mediating RNA secondary structure. Overall, our study reveals a crucial role of transcriptional dynamics in the formation of m6A regional preference.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Shen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhen Meng
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Min Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanhui Mao
- Department of Neurology of The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Wenck BR, Vickerman RL, Burkhart BW, Santangelo TJ. Archaeal histone-based chromatin structures regulate transcription elongation rates. Commun Biol 2024; 7:236. [PMID: 38413771 PMCID: PMC10899632 DOI: 10.1038/s42003-024-05928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Many archaea encode and express histone proteins to compact their genomes. Archaeal and eukaryotic histones share a near-identical fold that permits DNA wrapping through select histone-DNA contacts to generate chromatin-structures that must be traversed by RNA polymerase (RNAP) to generate transcripts. As archaeal histones can spontaneously assemble with a single histone isoform, single-histone chromatin variants provide an idealized platform to detail the impacts of distinct histone-DNA contacts on transcription efficiencies and to detail the role of the conserved cleavage stimulatory factor, Transcription Factor S (TFS), in assisting RNAP through chromatin landscapes. We demonstrate that substitution of histone residues that modify histone-DNA contacts or the three-dimensional chromatin structure result in radically altered transcription elongation rates and pausing patterns. Chromatin-barriers slow and pause RNAP, providing regulatory potential. The modest impacts of TFS on elongation rates through chromatin landscapes is correlated with TFS-dispensability from the archaeon Thermococcus kodakarensis. Our results detail the importance of distinct chromatin structures for archaeal gene expression and provide a unique perspective on the evolution of, and regulatory strategies imposed by, eukaryotic chromatin.
Collapse
Affiliation(s)
- Breanna R Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert L Vickerman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
11
|
Gao J, Jishage M, Wang Y, Wang R, Chen M, Zhu Z, Zhang J, Diwu Y, Xu C, Liao S, Roeder RG, Tu X. Structural basis for evolutionarily conserved interactions between TFIIS and Paf1C. Int J Biol Macromol 2023; 253:126764. [PMID: 37696373 PMCID: PMC11164251 DOI: 10.1016/j.ijbiomac.2023.126764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The elongation factor TFIIS interacts with Paf1C complex to facilitate processive transcription by Pol II. We here determined the crystal structure of the trypanosoma TFIIS LW domain in a complex with the LFG motif of Leo1, as well as the structures of apo-form TFIIS LW domains from trypanosoma, yeast and human. We revealed that all three TFIIS LW domains possess a conserved hydrophobic core that mediates their interactions with Leo1. Intriguingly, the structural study revealed that trypanosoma Leo1 binding induces the TFIIS LW domain to undergo a conformational change reflected in the length and orientation of α6 helix that is absent in the yeast and human counterparts. These differences explain the higher binding affinity of the TFIIS LW domain interacting with Leo1 in trypanosoma than in yeast and human, and indicate species-specific variations in the interactions. Importantly, the interactions between the TFIIS LW domain and an LFG motif of Leo1 were found to be critical for TFIIS to anchor the entire Paf1C complex. Thus, in addition to revealing a detailed structural basis for the TFIIS-Paf1C interaction, our studies also shed light on the origin and evolution of the roles of TFIIS and Paf1C complex in regulation of transcription elongation.
Collapse
Affiliation(s)
- Jie Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, PR China
| | - Miki Jishage
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yuzhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Rui Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China; Department of Anthropotomy and Histoembryology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471023, PR China
| | - Meng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Zhongliang Zhu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Yating Diwu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China
| | - Shanhui Liao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Xiaoming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230022, PR China.
| |
Collapse
|
12
|
Deák G, Wapenaar H, Sandoval G, Chen R, Taylor MRD, Burdett H, Watson J, Tuijtel M, Webb S, Wilson M. Histone divergence in trypanosomes results in unique alterations to nucleosome structure. Nucleic Acids Res 2023; 51:7882-7899. [PMID: 37427792 PMCID: PMC10450195 DOI: 10.1093/nar/gkad577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
Collapse
Affiliation(s)
- Gauri Deák
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hannah Wapenaar
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Gorka Sandoval
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Ruofan Chen
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Mark R D Taylor
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hayden Burdett
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - James A Watson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Maarten W Tuijtel
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Shaun Webb
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Marcus D Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
13
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. Effects of Histone H2B Ubiquitylations and H3K79me 3 on Transcription Elongation. ACS Chem Biol 2023; 18:537-548. [PMID: 36857155 PMCID: PMC10023449 DOI: 10.1021/acschembio.2c00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semisynthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
Affiliation(s)
- Mai T. Huynh
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Bhaswati Sengupta
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| | - Wladyslaw A. Krajewski
- N. K. Koltsov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, State College, PA 16801, USA
| |
Collapse
|
14
|
Wee LM, Tong AB, Florez Ariza AJ, Cañari-Chumpitaz C, Grob P, Nogales E, Bustamante CJ. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 2023; 186:1244-1262.e34. [PMID: 36931247 PMCID: PMC10135430 DOI: 10.1016/j.cell.2023.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023]
Abstract
In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.
Collapse
Affiliation(s)
- Liang Meng Wee
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alexander B Tong
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Alfredo Jose Florez Ariza
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Cristhian Cañari-Chumpitaz
- QB3-Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patricia Grob
- QB3-Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos J Bustamante
- QB3-Berkeley, Berkeley, CA, USA; Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California Berkeley, Berkeley, CA, USA; Department of Physics, University of California Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
15
|
Obermeyer S, Stöckl R, Schnekenburger T, Kapoor H, Stempfl T, Schwartz U, Grasser KD. TFIIS Is Crucial During Early Transcript Elongation for Transcriptional Reprogramming in Response to Heat Stress. J Mol Biol 2023; 435:167917. [PMID: 36502880 DOI: 10.1016/j.jmb.2022.167917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
In addition to the stage of transcriptional initiation, the production of mRNAs is regulated during elongation. Accordingly, the synthesis of mRNAs by RNA polymerase II (RNAPII) in the chromatin context is modulated by various transcript elongation factors. TFIIS is an elongation factor that stimulates the transcript cleavage activity of RNAPII to reactivate stalled elongation complexes at barriers to transcription including nucleosomes. Since Arabidopsis tfIIs mutants grow normally under standard conditions, we have exposed them to heat stress (HS), revealing that tfIIs plants are highly sensitive to elevated temperatures. Transcriptomic analyses demonstrate that particularly HS-induced genes are expressed at lower levels in tfIIs than in wildtype. Mapping the distribution of elongating RNAPII uncovered that in tfIIs plants RNAPII accumulates at the +1 nucleosome of genes that are upregulated upon HS. The promoter-proximal RNAPII accumulation in tfIIs under HS conditions conforms to that observed upon inhibition of the RNAPII transcript cleavage activity. Further analysis of the RNAPII accumulation downstream of transcriptional start sites illustrated that RNAPII stalling occurs at +1 nucleosomes that are depleted in the histone variant H2A.Z upon HS. Therefore, assistance of early transcript elongation by TFIIS is required for reprogramming gene expression to establish plant thermotolerance.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Tobias Schnekenburger
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Henna Kapoor
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Am Biopark 9, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
16
|
Huynh MT, Sengupta B, Krajewski WA, Lee TH. The Effects of Histone H2B ubiquitylations and H3K79me 3 on Transcription Elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522859. [PMID: 36712011 PMCID: PMC9881898 DOI: 10.1101/2023.01.05.522859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Post-translational modifications of histone proteins often mediate gene regulation by altering the global and local stability of the nucleosome, the basic gene-packing unit of eukaryotes. We employed semi-synthetic approaches to introduce histone H2B ubiquitylations at K34 (H2BK34ub) and K120 (H2BK120ub) and H3 K79 trimethylation (H3K79me3). With these modified histones, we investigated their effects on the kinetics of transcription elongation by RNA Polymerase II (Pol II) using single-molecule FRET. Pol II pauses at several locations within the nucleosome for a few seconds to minutes, which governs the overall transcription efficiency. We found that H2B ubiquitylations suppress pauses and shorten the pause durations near the nucleosome entry while H3K79me3 shortens the pause durations and increases the rate of RNA elongation near the center of the nucleosome. We also found that H2BK34ub facilitates partial rewrapping of the nucleosome upon Pol II passage. These observations suggest that H2B ubiquitylations promote transcription elongation and help maintain the chromatin structure by inducing and stabilizing nucleosome intermediates and that H3K79me3 facilitates Pol II progression possibly by destabilizing the local structure of the nucleosome. Our results provide the mechanisms of how these modifications coupled by a network of regulatory proteins facilitate transcription in two different regions of the nucleosome and help maintain the chromatin structure during active transcription.
Collapse
|
17
|
N-Terminal Tails of Histones H2A and H2B Differentially Affect Transcription by RNA Polymerase II In Vitro. Cells 2022; 11:cells11162475. [PMID: 36010552 PMCID: PMC9406932 DOI: 10.3390/cells11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Histone N-terminal tails and their post-translational modifications affect various biological processes, often in a context-specific manner; the underlying mechanisms are poorly studied. Here, the role of individual N-terminal tails of histones H2A/H2B during transcription through chromatin was analyzed in vitro. spFRET data suggest that the tail of histone H2B (but not of histone H2A) affects nucleosome stability. Accordingly, deletion of the H2B tail (amino acids 1–31, but not 1–26) causes a partial relief of the nucleosomal barrier to transcribing RNA polymerase II (Pol II), likely facilitating uncoiling of DNA from the histone octamer during transcription. Taken together, the data suggest that residues 27–31 of histone H2B stabilize DNA–histone interactions at the DNA region localized ~25 bp in the nucleosome and thus interfere with Pol II progression through the region localized 11–15 bp in the nucleosome. This function of histone H2B requires the presence of the histone H2A N-tail that mediates formation of nucleosome–nucleosome dimers; however, nucleosome dimerization per se plays only a minimal role during transcription. Histone chaperone FACT facilitates transcription through all analyzed nucleosome variants, suggesting that H2A/H2B tails minimally interact with FACT during transcription; therefore, an alternative FACT-interacting domain(s) is likely involved in this process.
Collapse
|
18
|
The Development of Single Molecule Force Spectroscopy: From Polymer Biophysics to Molecular Machines. Q Rev Biophys 2022; 55:e9. [PMID: 35916314 DOI: 10.1017/s0033583522000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
Farnung L, Ochmann M, Garg G, Vos SM, Cramer P. Structure of a backtracked hexasomal intermediate of nucleosome transcription. Mol Cell 2022; 82:3126-3134.e7. [PMID: 35858621 DOI: 10.1016/j.molcel.2022.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
During gene transcription, RNA polymerase II (RNA Pol II) passes nucleosomes with the help of various elongation factors. Here, we show that RNA Pol II achieves efficient nucleosome passage when the human elongation factors DSIF, PAF1 complex (PAF), RTF1, SPT6, and TFIIS are present. The cryo-EM structure of an intermediate of the nucleosome passage shows a partially unraveled hexasome that lacks the proximal H2A-H2B dimer and interacts with the RNA Pol II jaw, DSIF, and the CTR9trestle helix. RNA Pol II adopts a backtracked state with the RNA 3' end dislodged from the active site and bound in the RNA Pol II pore. Additional structures and biochemical data show that human TFIIS enters the RNA Pol II pore and stimulates the cleavage of the backtracked RNA and nucleosome passage.
Collapse
Affiliation(s)
- Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Moritz Ochmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gaurika Garg
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Seychelle M Vos
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
21
|
Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro. Int J Mol Sci 2022; 23:ijms23137107. [PMID: 35806109 PMCID: PMC9266421 DOI: 10.3390/ijms23137107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Human poly(ADP)-ribose polymerase-1 (PARP1) is a global regulator of various cellular processes, from DNA repair to gene expression. The underlying mechanism of PARP1 action during transcription remains unclear. Herein, we have studied the role of human PARP1 during transcription through nucleosomes by RNA polymerase II (Pol II) in vitro. PARP1 strongly facilitates transcription through mononucleosomes by Pol II and displacement of core histones in the presence of NAD+ during transcription, and its NAD+-dependent catalytic activity is essential for this process. Kinetic analysis suggests that PARP1 facilitates formation of “open” complexes containing nucleosomal DNA partially uncoiled from the octamer and allowing Pol II progression along nucleosomal DNA. Anti-cancer drug and PARP1 catalytic inhibitor olaparib strongly represses PARP1-dependent transcription. The data suggest that the negative charge on protein(s) poly(ADP)-ribosylated by PARP1 interact with positively charged DNA-binding surfaces of histones transiently exposed during transcription, facilitating transcription through chromatin and transcription-dependent histone displacement/exchange.
Collapse
|
22
|
Couvillion M, Harlen KM, Lachance KC, Trotta KL, Smith E, Brion C, Smalec BM, Churchman LS. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 2022; 11:e78944. [PMID: 35575476 PMCID: PMC9154744 DOI: 10.7554/elife.78944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.
Collapse
Affiliation(s)
- Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kevin M Harlen
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kate C Lachance
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kristine L Trotta
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Erin Smith
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christian Brion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Brendan M Smalec
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
23
|
Gerasimova NS, Korovina AN, Afonin DA, Shaytan KV, Feofanov AV, Studitsky VM. Analysis of Structure of Elongation Complexes in Polyacrylamide Gel with Förster Resonance Energy Transfer Technique. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
25
|
Palo MZ, Zhu J, Mishanina TV, Landick R. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects. Biochemistry 2021; 60:3323-3336. [PMID: 34705427 DOI: 10.1021/acs.biochem.1c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In all domains of life, multisubunit RNA polymerases (RNAPs) catalyze both the extension of mRNA transcripts by nucleotide addition and the hydrolysis of RNA, which enables proofreading by removal of misincorporated nucleotides. A highly conserved catalytic module within RNAPs called the trigger loop (TL) functions as the key controller of these activities. The TL is proposed to act as a positional catalyst of phosphoryl transfer and transcript cleavage via electrostatic and steric contacts with substrates in its folded helical form. The function of a near-universally conserved TL histidine that contacts NTP phosphates is of particular interest. Despite its exceptional conservation, substitutions of the TL His with Gln support efficient catalysis in bacterial and yeast RNAPs. Unlike bacterial TLs, which contain a nearby Arg, the TL His is the only acid-base catalyst candidate in the eukaryotic RNAPII TL. Nonetheless, replacement of the TL His with Leu is reported to support cell growth in yeast, suggesting that even hydrogen bonding and polarity at this position may be dispensable for efficient catalysis by RNAPII. To test how a TL His-to-Leu substitution affects the enzymatic functions of RNAPII, we compared its rates of nucleotide addition, pyrophosphorolysis, and RNA hydrolysis to those of the wild-type RNAPII enzyme. The His-to-Leu substitution slightly reduced rates of phosphoryl transfer with little if any effect on intrinsic transcript cleavage. These findings indicate that the highly conserved TL His is neither an obligate acid-base catalyst nor a polar contact for NTP phosphates but instead functions as a positional catalyst mainly through steric effects.
Collapse
Affiliation(s)
- Michael Z Palo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Zhang J, Cavallaro M, Hebenstreit D. Timing RNA polymerase pausing with TV-PRO-seq. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723238 PMCID: PMC8547241 DOI: 10.1016/j.crmeth.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Transcription of many genes in metazoans is subject to polymerase pausing, which is the transient stop of transcriptionally engaged polymerases. This is known to mainly occur in promoter-proximal regions but it is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking. We present here the time-variant precision nuclear run-on and sequencing (TV-PRO-seq) assay, an extension of the standard PRO-seq that allows us to estimate genome-wide pausing times at single-base resolution. Its application to human cells demonstrates that, proximal to promoters, polymerases pause more frequently but for shorter times than in other genomic regions. Comparison with single-cell gene expression data reveals that the polymerase pausing times are longer in highly expressed genes, while transcriptionally noisier genes have higher pausing frequencies and slightly longer pausing times. Analyses of histone modifications suggest that the marker H3K36me3 is related to the polymerase pausing.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
| | - Massimo Cavallaro
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, the University of Warwick, CV4 7AL Coventry, UK
| | - Daniel Hebenstreit
- School of Life Sciences, Gibbet Hill Campus, the University of Warwick, CV4 7AL Coventry, UK
| |
Collapse
|
27
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
28
|
Chanou A, Hamperl S. Single-Molecule Techniques to Study Chromatin. Front Cell Dev Biol 2021; 9:699771. [PMID: 34291054 PMCID: PMC8287188 DOI: 10.3389/fcell.2021.699771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Besides the basic organization in nucleosome core particles (NCPs), eukaryotic chromatin is further packed through interactions with numerous protein complexes including transcription factors, chromatin remodeling and modifying enzymes. This nucleoprotein complex provides the template for many important biological processes, such as DNA replication, transcription, and DNA repair. Thus, to understand the molecular basis of these DNA transactions, it is critical to define individual changes of the chromatin structure at precise genomic regions where these machineries assemble and drive biological reactions. Single-molecule approaches provide the only possible solution to overcome the heterogenous nature of chromatin and monitor the behavior of individual chromatin transactions in real-time. In this review, we will give an overview of currently available single-molecule methods to obtain mechanistic insights into nucleosome positioning, histone modifications and DNA replication and transcription analysis-previously unattainable with population-based assays.
Collapse
Affiliation(s)
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
29
|
Cucinotta CE, Dell RH, Braceros KCA, Tsukiyama T. RSC primes the quiescent genome for hypertranscription upon cell-cycle re-entry. eLife 2021; 10:e67033. [PMID: 34042048 PMCID: PMC8186906 DOI: 10.7554/elife.67033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Quiescence is a reversible G0 state essential for differentiation, regeneration, stem-cell renewal, and immune cell activation. Necessary for long-term survival, quiescent chromatin is compact, hypoacetylated, and transcriptionally inactive. How transcription activates upon cell-cycle re-entry is undefined. Here we report robust, widespread transcription within the first minutes of quiescence exit. During quiescence, the chromatin-remodeling enzyme RSC was already bound to the genes induced upon quiescence exit. RSC depletion caused severe quiescence exit defects: a global decrease in RNA polymerase II (Pol II) loading, Pol II accumulation at transcription start sites, initiation from ectopic upstream loci, and aberrant antisense transcription. These phenomena were due to a combination of highly robust Pol II transcription and severe chromatin defects in the promoter regions and gene bodies. Together, these results uncovered multiple mechanisms by which RSC facilitates initiation and maintenance of large-scale, rapid gene expression despite a globally repressive chromatin state.
Collapse
Affiliation(s)
| | - Rachel H Dell
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Keean CA Braceros
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
30
|
Farnung L, Ochmann M, Engeholm M, Cramer P. Structural basis of nucleosome transcription mediated by Chd1 and FACT. Nat Struct Mol Biol 2021; 28:382-387. [PMID: 33846633 PMCID: PMC8046669 DOI: 10.1038/s41594-021-00578-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Efficient transcription of RNA polymerase II (Pol II) through nucleosomes requires the help of various factors. Here we show biochemically that Pol II transcription through a nucleosome is facilitated by the chromatin remodeler Chd1 and the histone chaperone FACT when the elongation factors Spt4/5 and TFIIS are present. We report cryo-EM structures of transcribing Saccharomyces cerevisiae Pol II-Spt4/5-nucleosome complexes with bound Chd1 or FACT. In the first structure, Pol II transcription exposes the proximal histone H2A-H2B dimer that is bound by Spt5. Pol II has also released the inhibitory DNA-binding region of Chd1 that is poised to pump DNA toward Pol II. In the second structure, Pol II has generated a partially unraveled nucleosome that binds FACT, which excludes Chd1 and Spt5. These results suggest that Pol II progression through a nucleosome activates Chd1, enables FACT binding and eventually triggers transfer of FACT together with histones to upstream DNA.
Collapse
Affiliation(s)
- Lucas Farnung
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Moritz Ochmann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Maik Engeholm
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
31
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Formosa T, Winston F. The role of FACT in managing chromatin: disruption, assembly, or repair? Nucleic Acids Res 2020; 48:11929-11941. [PMID: 33104782 PMCID: PMC7708052 DOI: 10.1093/nar/gkaa912] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription) has long been considered to be a transcription elongation factor whose ability to destabilize nucleosomes promotes RNAPII progression on chromatin templates. However, this is just one function of this histone chaperone, as FACT also functions in DNA replication. While broadly conserved among eukaryotes and essential for viability in many organisms, dependence on FACT varies widely, with some differentiated cells proliferating normally in its absence. It is therefore unclear what the core functions of FACT are, whether they differ in different circumstances, and what makes FACT essential in some situations but not others. Here, we review recent advances and propose a unifying model for FACT activity. By analogy to DNA repair, we propose that the ability of FACT to both destabilize and assemble nucleosomes allows it to monitor and restore nucleosome integrity as part of a system of chromatin repair, in which disruptions in the packaging of DNA are sensed and returned to their normal state. The requirement for FACT then depends on the level of chromatin disruption occurring in the cell, and the cell's ability to tolerate packaging defects. The role of FACT in transcription would then be just one facet of a broader system for maintaining chromatin integrity.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Fred Winston
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Oh J, Xu J, Chong J, Wang D. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194659. [PMID: 33271312 DOI: 10.1016/j.bbagrm.2020.194659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022]
Abstract
Transcription elongation by RNA polymerase II (Pol II) is constantly challenged by numerous types of obstacles that lead to transcriptional pausing or stalling. These obstacles include DNA lesions, DNA epigenetic modifications, DNA binding proteins, and non-B form DNA structures. In particular, lesion-induced prolonged transcriptional blockage or stalling leads to genome instability, cellular dysfunction, and cell death. Transcription-coupled nucleotide excision repair (TC-NER) pathway is the first line of defense that detects and repairs these transcription-blocking DNA lesions. In this review, we will first summarize the recent research progress toward understanding the molecular basis of transcriptional pausing and stalling by different kinds of obstacles. We will then discuss new insights into Pol II-mediated lesion recognition and the roles of CSB in TC-NER.
Collapse
Affiliation(s)
- Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences; University of California, San Diego, La Jolla, CA 92093, United States; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, United States; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
34
|
Xu J, Wang W, Xu L, Chen JY, Chong J, Oh J, Leschziner AE, Fu XD, Wang D. Cockayne syndrome B protein acts as an ATP-dependent processivity factor that helps RNA polymerase II overcome nucleosome barriers. Proc Natl Acad Sci U S A 2020; 117:25486-25493. [PMID: 32989164 PMCID: PMC7568279 DOI: 10.1073/pnas.2013379117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.
Collapse
Affiliation(s)
- Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Wei Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Liang Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
35
|
Abstract
Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Sara Osman
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;,
| |
Collapse
|
36
|
Decker TM. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5). J Mol Biol 2020; 433:166657. [PMID: 32987031 DOI: 10.1016/j.jmb.2020.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
The transcription elongation factor Spt5 is conserved from bacteria to humans. In eukaryotes, Spt5 forms a complex with Spt4 and regulates processive transcription elongation. Recent studies on transcription elongation suggest different mechanistic roles in yeast versus mammals. Higher eukaryotes utilize Spt4-Spt5 (DSIF) to regulate promoter-proximal pausing, a transcription-regulatory mechanism that connects initiation to productive elongation. DSIF is a versatile transcription factor and has been implicated in both gene-specific regulation and transcription through nucleosomes. Future studies will further elucidate the role of DSIF in transcriptional dynamics and disentangle its inhibitory and enhancing activities in transcription.
Collapse
Affiliation(s)
- Tim-Michael Decker
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
37
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
38
|
Kujirai T, Kurumizaka H. Transcription through the nucleosome. Curr Opin Struct Biol 2020; 61:42-49. [DOI: 10.1016/j.sbi.2019.10.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
|
39
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
40
|
Kobayashi W, Kurumizaka H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr Opin Struct Biol 2019; 59:107-114. [DOI: 10.1016/j.sbi.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
41
|
Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, Gregersen L, Dirac-Svejstrup AB, Roma S, Stewart A, Aguilera A, Svejstrup JQ. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Mol Cell 2019; 76:57-69.e9. [PMID: 31519522 PMCID: PMC6863433 DOI: 10.1016/j.molcel.2019.07.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.
Collapse
Affiliation(s)
- Diana Zatreanu
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Zhong Han
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Hannah Williams
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lea Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefania Roma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aengus Stewart
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
42
|
Sanders TJ, Marshall CJ, Santangelo TJ. The Role of Archaeal Chromatin in Transcription. J Mol Biol 2019; 431:4103-4115. [PMID: 31082442 PMCID: PMC6842674 DOI: 10.1016/j.jmb.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 02/08/2023]
Abstract
Genomic organization impacts accessibility and movement of information processing systems along DNA. DNA-bound proteins dynamically dictate gene expression and provide regulatory potential to tune transcription rates to match ever-changing environmental conditions. Archaeal genomes are typically small, circular, gene dense, and organized either by histone proteins that are homologous to their eukaryotic counterparts, or small basic proteins that function analogously to bacterial nucleoid proteins. We review here how archaeal genomes are organized and how such organization impacts archaeal gene expression, focusing on conserved DNA-binding proteins within the clade and the factors that are known to impact transcription initiation and elongation within protein-bound genomes.
Collapse
Affiliation(s)
- Travis J Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig J Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
43
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
44
|
Tokuda JM, Ren R, Levendosky RF, Tay RJ, Yan M, Pollack L, Bowman GD. The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res 2019; 46:4978-4990. [PMID: 29850894 PMCID: PMC6007315 DOI: 10.1093/nar/gky206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/16/2018] [Indexed: 01/21/2023] Open
Abstract
Chromatin remodelers are ATP-dependent motors that reorganize DNA packaging by disrupting canonical histone–DNA contacts within the nucleosome. Here, we show that the Chd1 chromatin remodeler stimulates DNA unwrapping from the edge of the nucleosome in a nucleotide-dependent and DNA sequence-sensitive fashion. Nucleosome binding, monitored by stopped flow, was complex and sensitive to nucleotide, with AMP–PNP promoting faster binding than ADP·BeF3–. Nucleosome unwrapping by Chd1, examined by bulk FRET, occurred in the presence and absence of nucleotide and did not require the Chd1 DNA-binding domain. In AMP–PNP conditions, Chd1 unwrapped one side of the Widom 601 DNA more easily than the other, consistent with previous observations of 601 asymmetry and indicating that Chd1 amplifies intrinsic sequence properties of nucleosomal DNA. Using small angle X-ray scattering (SAXS) with contrast variation, we found distinct DNA conformations depending on the nucleotide analog bound to Chd1: with AMP–PNP, DNA primarily unwrapped in-plane with the nucleosomal disk, whereas with ADP·BeF3–, a significant fraction showed distinctive out-of-plane unwrapping as well. Taken together, our findings show tight coupling between entry/exit DNA of the nucleosome and the Chd1 ATPase motor, suggesting that dynamic nucleosome unwrapping is coupled to nucleosome binding and remodeling by Chd1.
Collapse
Affiliation(s)
- Joshua M Tokuda
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Ren Ren
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Robert F Levendosky
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Rebecca J Tay
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Ming Yan
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
45
|
KIreeva M, Trang C, Matevosyan G, Turek-Herman J, Chasov V, Lubkowska L, Kashlev M. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate. Nucleic Acids Res 2019; 46:5764-5775. [PMID: 29771376 PMCID: PMC6009650 DOI: 10.1093/nar/gky393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA–DNA base pair at the upstream edge of the transcription bubble. DNA–DNA base pairing immediately upstream from the RNA–DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA–DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.
Collapse
Affiliation(s)
- Maria KIreeva
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Cyndi Trang
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Gayane Matevosyan
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joshua Turek-Herman
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Vitaly Chasov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lucyna Lubkowska
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Mikhail Kashlev
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
46
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
47
|
Nakagawa T, Okita AK. Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 2019; 65:1089-1098. [PMID: 30997531 DOI: 10.1007/s00294-019-00975-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.
Collapse
Affiliation(s)
- Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
48
|
Chang HW, Hsieh FK, Patel SS, Studitsky VM. Time-resolved analysis of transcription through chromatin. Methods 2019; 159-160:90-95. [PMID: 30707952 DOI: 10.1016/j.ymeth.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
During transcription along nucleosomal DNA, RNA polymerase II (Pol II) pauses at multiple positions and induces formation of multiple intermediates that aid in maintaining proper chromatin structure. To describe the kinetics of this multiple-step reaction, we utilized a computational model-based approach and KinTek Explorer software to analyze the time courses. Here we describe the stepwise protocol for analysis of the kinetics of transcription through a nucleosome that provides the rate constants for each step of this complex process. We also present an example where this time-resolved approach was applied to study the mechanism of histone chaperone FACT action during Pol II transcription through a single nucleosome by comparing the rate constants derived in the presence or in the absence of FACT.
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fu-Kai Hsieh
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Smita S Patel
- Department of Biochemistry & Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
49
|
Lee J, Crickard JB, Reese JC, Lee TH. Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II. Methods 2019; 159-160:51-58. [PMID: 30660864 PMCID: PMC6589119 DOI: 10.1016/j.ymeth.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Transcription elongation through the nucleosome is a precisely coordinated activity to ensure timely production of RNA and accurate regulation of co-transcriptional histone modifications. Nucleosomes actively participate in transcription regulation at various levels and impose physical barriers to RNA polymerase II (RNAPII) during transcription elongation. Despite its high significance, the detailed dynamics of how RNAPII translocates along nucleosomal DNA during transcription elongation and how the nucleosome structure dynamically conforms to the changes necessary for RNAPII progression remain poorly understood. Transcription elongation through the nucleosome is a complex process and investigating the changes of the nucleosome structure during this process by ensemble measurements is daunting. This is because it is nearly impossible to synchronize elongation complexes within a nucleosome or a sub-nucleosome to a designated location at a high enough efficiency for desired sample homogeneity. Here we review our recently developed single-molecule FRET experimental system and method that has fulfilled this deficiency. With our method, one can follow the changes in the structure of individual nucleosomes during transcription elongation. We demonstrated that this method enables the detailed measurements of the kinetics of transcription elongation through the nucleosome and its regulation by a transcription factor, which can be easily extended to investigations of the roles of environmental variables and histone post-translational modifications in regulating transcription elongation.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
50
|
Sanders TJ, Lammers M, Marshall CJ, Walker JE, Lynch ER, Santangelo TJ. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin. Mol Microbiol 2019; 111:784-797. [PMID: 30592095 PMCID: PMC6417941 DOI: 10.1111/mmi.14191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.
Collapse
Affiliation(s)
- Travis J. Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Marshall Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Current address: Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Erin R. Lynch
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|