1
|
Khan M. Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules. Polymers (Basel) 2024; 16:2629. [PMID: 39339093 PMCID: PMC11435517 DOI: 10.3390/polym16182629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Molinar C, Tannous M, Meloni D, Cavalli R, Scomparin A. Current Status and Trends in Nucleic Acids for Cancer Therapy: A Focus on Polysaccharide-Based Nanomedicines. Macromol Biosci 2023; 23:e2300102. [PMID: 37212473 DOI: 10.1002/mabi.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Indexed: 05/23/2023]
Abstract
The efficacious delivery of therapeutic nucleic acids to cancer still remains an open issue. Through the years, several strategies are developed for the encapsulation of genetic molecules exploiting different materials, such as viral vectors, lipid nanoparticles (LNPs), and polymeric nanoparticles (NPs). Indeed, the rapid approval by regulatory authorities and the wide use of LNPs complexing the mRNA coding for the spark protein for COVID-19 vaccination paved the way for the initiation of several clinical trials exploiting lipid nanoparticles for cancer therapy. Nevertheless, polymers still represent a valuable alternative to lipid-based formulations, due to the low cost and the chemical flexibility that allows for the conjugation of targeting ligands. This review will analyze the status of the ongoing clinical trials for cancer therapy, including vaccination and immunotherapy approaches, exploiting polymeric materials. Among those nanosized carriers, sugar-based backbones are an interesting category. A cyclodextrin-based carrier (CALAA-01) is the first polymeric material to enter a clinical trial complexed with siRNA for cancer therapy, and chitosan is one of the most characterized non-viral vectors able to complex genetic material. Finally, the recent advances in the use of sugar-based polymers (oligo- and polysaccharides) for the complexation of nucleic acids in advanced preclinical stage will be discussed.
Collapse
Affiliation(s)
- Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Maria Tannous
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, Torino, 10125, Italy
| | - Domitilla Meloni
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, Torino, 10125, Italy
| |
Collapse
|
4
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
5
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
6
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
7
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
9
|
Bera H, Abosheasha MA, Ito Y, Ueda M. Etherified pullulan-polyethylenimine based nanoscaffolds improved chemosensitivity of erlotinib on hypoxic cancer cells. Carbohydr Polym 2021; 271:118441. [PMID: 34364579 DOI: 10.1016/j.carbpol.2021.118441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/18/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022]
Abstract
The current research endeavor aimed to accomplish hypoxia-responsive polyethyleneimine-conjugated carboxymethyl pullulan-based co-polymer (CMP-HA-NI-PEI-NBA) bearing nitroaromatic subunits to efficiently deliver erlotinib (ERL) to reverse its hypoxia-induced resistance in cancer cells. As compared to a control co-polymer (CMP-HA-MI-PEI-BA) devoid of hypoxia-sensitive moieties, this scaffold demonstrated a hypochromic shift in the UV spectra and rapid dismantling of its self-assembled architecture upon exposure to simulated hypoxic condition. The hypoxia-responsive co-polymer encapsulated ERL with desirable loading capacity (DEE, 63.05 ± 2.59%), causing attenuated drug crystallinity. The drug release rate of the scaffold under reducing condition was faster relative to that of non-reducing environment. Their cellular uptake occurred through an energy-dependent endocytic process, which could exploit its caveolae/lipid raft-mediated internalization pathway. The ERL-loaded scaffolds more efficiently induced apoptosis and suppressed the proliferation of drug-resistant hypoxic HeLa cells than the pristine ERL. Hence, this study presented a promising drug delivery nanoplatform to overcome hypoxia-evoked ERL resistance.
Collapse
Affiliation(s)
- Hriday Bera
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Mohammed A Abosheasha
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
11
|
Yang J, Sato T. Transition from the random coil to the flower necklace of a hydrophobically modified pullulan in aqueous solution by changing the degree of substitution. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Tang Y, Wu J, Zhang Y, Ju L, Qu X, Jiang D. Magnetic transfection with superparamagnetic chitosan-loaded IGFBP 5 nanoparticles and their in vitro biosafety. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201331. [PMID: 33614075 PMCID: PMC7890493 DOI: 10.1098/rsos.201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
We prepared the superparamagnetic chitosan nanoparticles (SPCIONPs) to study the application of them as gene vectors using a magnetic transfection system for the targeted treatment of lung metastasis of osteosarcoma. The SPCIONPs were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, superconducting quantum interference device and atomic force microscopy. Their biosafety was determined by cell counting kit-8 (CCK8) and live-dead staining assays. The transfection in vitro was detected by laser confocal microscopy. SPCIONPs, which can bind closely to plasmids and protect them from DNA enzyme degradation, were prepared with an average particle size of approximately 22 nm and zeta potential of 11.3 mV. The results of the CCK8 and live-dead staining assays showed that superparamagnetic chitosan nanoparticles loaded with insulin-like growth factor-binding protein 5 (SPCIONPs/pIGFBP5) induced no significant cytotoxicity compared to the control group. The result of transfection in vitro suggested that pIGFBP5 emitted a greater amount of red fluorescence in the SPCIONPs/pIGFBP5 group than that in the chitosan-loaded IGFBP5 (CS/pIGFBP5) group. In conclusion, the prepared SPCIONPs had good biosafety and could be effectively used to transfer pIGFBP5 into 143B cells, and they thus have good application prospects for the treatment of lung metastasis of osteosarcoma.
Collapse
Affiliation(s)
- Yue Tang
- Department of Traumatic Joint Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), No 1 Shuanghu Road, Yubei District, Chongqing 401120, People's Republic of China
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing 400016, People's Republic of China
| | - Jun Wu
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Yuan Zhang
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Lingpeng Ju
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Xiangyang Qu
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Laboratory of Biomaterials, 136# Zhongshan 2 road, Yuzhong District, Chongqing 400014, People's Republic of China
| | - Dianming Jiang
- Department of Traumatic Joint Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), No 1 Shuanghu Road, Yubei District, Chongqing 401120, People's Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No 1 Medicine Road, Yuzhong District, Chongqing 400016, People's Republic of China
| |
Collapse
|
13
|
Production, optimization and characterization of pullulan from sesame seed oil cake as a new substrate by Aureobasidium pullulans. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
14
|
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2020; 166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Pullulan is an imperative microbial exo-polymer commercially produced by yeast like fungus Aureobasidium pullulans. Its structure contains maltosyl repeating units which comprises two α-(1 → 4) linked glucopyranose rings attached to one glucopyranose ring through α-(1 → 6) glycosidic bond. The co-existence of α-(1 → 6) and α-(1 → 4) glycosidic linkages endows distinctive physico-chemical properties to pullulan. It is highly biocompatible, non-toxic and non-carcinogenic in nature. It is extremely resistant to any mutagenicity or immunogenicity. The unique properties of pullulan make it a potent candidate for biomedical applications viz. drug delivery, gene delivery, tissue engineering, molecular chaperon, plasma expander, vaccination, etc. This review highlights the potential of pullulan in biomedical research and development.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Muhammad Hassan
- US-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
15
|
Xiao MC, Chou YH, Hung YN, Hu SH, Chiang WH. Hybrid polymeric nanoparticles with high zoledronic acid payload and proton sponge-triggered rapid drug release for anticancer applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111277. [DOI: 10.1016/j.msec.2020.111277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
|
16
|
Maghsoudnia N, Baradaran Eftekhari R, Naderi Sohi A, Norouzi P, Akbari H, Ghahremani MH, Soleimani M, Amini M, Samadi H, Dorkoosh FA. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J Drug Target 2020; 28:818-830. [PMID: 32452217 DOI: 10.1080/1061186x.2020.1774594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many biological mechanisms including cellular metabolism and cell death are regulated by mitochondria known as powerhouse of the cell. Recently, let-7b, a tumour-suppressor microRNA has been detected in mitochondria of human cells targeting several mitochondrial-encoded respiratory chain genes. Triphenylphosphonium cation (TPP) is one of the major classes of mitochondriotropics that possess the ability of specifically targeting the mitochondria. PAMAM dendrimers are one of the most available agents in gene delivery due to their well-defined and beneficial features such as large density of surface functional groups. Hyaluronic acid (HA), a natural polysaccharide has been demonstrated to have the abilities such as good biocompatibility and targeting CD44 overexpressed receptors on non-small cell lung cancer (NSCLC) cells. In this research, let-7b-PAMAM (G5)-TPP and let-7b-PAMAM (G5)-TPP-HA nano-carriers were designed to deliver let-7b miRNA mimic to NSCLC cells' mitochondria as a novel way of cancer cells inhibition. Nano-carriers were capable of being successfully taken up by A549 cells and localised in mitochondria environment. Let-7b loaded nanoparticles reduced cell viability and induced apoptosis significantly. Expression of genes involved in mitochondrial oxidative function was decreased resulting in nanoparticles effect on mitochondria. Application of mitochondria targeted-miRNA delivery systems could regulate cellular functions to inhibit lung cancer.
Collapse
Affiliation(s)
- Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Samadi
- Science and Research Center, Faculty of Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abd Elhameed HAH, Ungor D, Igaz N, Gopisetty MK, Kiricsi M, Csapó E, Gyurcsik B. High Molecular Weight Poly(ethylenimine)-Based Water-Soluble Lipopolymer for Transfection of Cancer Cells. Macromol Biosci 2020; 20:e2000040. [PMID: 32449312 DOI: 10.1002/mabi.202000040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Over the past decade, search for novel materials for nucleic acid delivery has prompted a special interest in polymeric nanoparticles (NPs). In this study, the biological applicability of a water-soluble cationic lipopolymer (WSLP) obtained by the modification of high molecular weight branched poly(ethylenimine) (PEI) with cholesteryl chloroformate is characterized and assessed for better cellular membrane permeability. To test the delivery efficiency of the produced lipopolymer, plasmid DNA (pDNA) encoding the enhanced green fluorescent protein and WSLP are mixed at different charge ratios. WSLP and WSLP/pDNA complexes are characterized by dynamic and static light scattering, particle charge detection, scanning electron microscopy, and transmission electron microscopy. The pDNA loading of WSLP is also verified by agarose gel electrophoresis. Cytotoxicity of PEI, WSLP, and of WSLP/pDNA is evaluated on human A549 and HeLa cells. A remarkable dependence of the toxicity on the dose, cholesterylation, and charge ratio is detected. Transfection is monitored by flow cytometry and by fluorescence microscopy. Importantly, cholesterylation decreases the toxicity of the polymer, while promoting high transfection efficiency in both cell lines. This work indicates a possible optimization mode of the high molecular weight PEI-based WSLP rendering it a promising candidate for gene delivery.
Collapse
Affiliation(s)
| | - Ditta Ungor
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology Doctoral School of Biology, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.,Faculty of Medicine, MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| |
Collapse
|
18
|
Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment. Cancers (Basel) 2020; 12:E522. [PMID: 32102429 PMCID: PMC7073194 DOI: 10.3390/cancers12020522] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Routes of drug administration and their corresponding physiochemical characteristics play major roles in drug therapeutic efficiency and biological effects. Each route of delivery has favourable aspects and limitations. The oral route of delivery is the most convenient, widely accepted and safe route. However, the oral route of chemotherapeutics to date have displayed high gastric degradation, low aqueous solubility, poor formulation stability and minimum intestinal absorption. Thus, mainstream anti-cancer drugs in current formulations are not suitable as oral chemotherapeutic formulations. The use of biopolymers such as chitosan, gelatin, hyaluronic acid and polyglutamic acid, for the synthesis of oral delivery platforms, have potential to help overcome problems associated with oral delivery of chemotherapeutics. Biopolymers have favourable stimuli-responsive properties, and thus can be used to improve oral bioavailability of anti-cancer drugs. These biopolymeric formulations can protect gastric-sensitive drugs from pH degradation, target specific binding sites for targeted absorption and consequently control drug release. In this review, the use of various biopolymers as oral drug delivery systems for chemotherapeutics will be discussed.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (V.T.C.); (P.P.D.K.); (Y.E.C.)
| |
Collapse
|
19
|
Wang X, Qi Y, Liu L, Ganbold T, Baigude H, Han J. Preparation and cell activities of lactosylated curdlan-triornithine nanoparticles for enhanced DNA/siRNA delivery in hepatoma cells. Carbohydr Polym 2019; 225:115252. [DOI: 10.1016/j.carbpol.2019.115252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022]
|
20
|
Thomas TJ, Tajmir-Riahi HA, Pillai CKS. Biodegradable Polymers for Gene Delivery. Molecules 2019; 24:molecules24203744. [PMID: 31627389 PMCID: PMC6832905 DOI: 10.3390/molecules24203744] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular transport process of DNA is hampered by cell membrane barriers, and hence, a delivery vehicle is essential for realizing the potential benefits of gene therapy to combat a variety of genetic diseases. Virus-based vehicles are effective, although immunogenicity, toxicity and cancer formation are among the major limitations of this approach. Cationic polymers, such as polyethyleneimine are capable of condensing DNA to nanoparticles and facilitate gene delivery. Lack of biodegradation of polymeric gene delivery vehicles poses significant toxicity because of the accumulation of polymers in the tissue. Many attempts have been made to develop biodegradable polymers for gene delivery by modifying existing polymers and/or using natural biodegradable polymers. This review summarizes mechanistic aspects of gene delivery and the development of biodegradable polymers for gene delivery.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, KTL N102, 675 Hoes Lane, Piscataway, NJ 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | | | - C K S Pillai
- Department of Chemistry-Biochemistry-Physics, University of Québec in Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada.
| |
Collapse
|
21
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Derivatization approaches and applications of pullulan. Adv Colloid Interface Sci 2019; 269:296-308. [PMID: 31128461 DOI: 10.1016/j.cis.2019.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Pullulan (PUL), a linear exo-polysaccharide, is useful in industries as diverse as food, cosmetics and pharmaceuticals. PUL presents many favorable characteristics, such as renewable origin, biocompatibility, stability, hydrophilic nature, and availability of reactive sites for chemical modification. With an inherent affinity to asialoglycoprotein receptors, PUL can be used for targeted drug delivery to the liver. Besides, these primary properties have been combined with modern synthetic approaches for developing multifunctional biomaterials. This is evident from numerous studies on approaches, such as hydrophobic modification, cross-linking, grafting and transformation as a polyelectrolyte. In this review, we have discussed up-to-date advances on chemical modifications and emerging applications of PUL in targeted theranostics and tissue engineering. Besides, we offer an overview of its applications in food, cosmetics and environment remediation.
Collapse
|
22
|
A long non-coding RNA TSLD8 inhibits hepatocellular carcinoma by stabilizing WWOX. Biochem Biophys Res Commun 2019; 516:526-532. [PMID: 31230746 DOI: 10.1016/j.bbrc.2019.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
Abstract
The hepatocellular carcinoma (HCC) is a common and highly aggressive malignancy especially in China. Accumulating data have shown a critical role of long non-coding RNAs (lncRNAs) during cancer progression. However, the function of lncRNA TSLD8 remains elusive. By lncRNA profiling, we identify a novel lncRNA termed TSLD8 in HCC. TSLD8 expression is significantly lowered in HCC tissues and cell lines. TSLD8 facilitates migration and viability in SMMC-7721 and HepG2 cells. Furthermore, TSLD8 can interact with WWOX and protect WWOX from proteasome-mediated degradation. Using PuPGEA-based nanocomplex for gene delivery, we found that co-delivery of TSLD8 and WWOX may exhibit synergistic and additive effects to inhibit HCC progression. PuPGEA-based nanocomplex delivery does not substantially alter the blood chemistries (e.g. alkaline phosphatase, blood urea nitrogen, aspartate aminotransferase, alanine aminotransferase) or initiate immune responses implying a safe strategy. Collectively, our current study has identified a novel tumor suppressive lncRNA TSLD8 which exerts its tumor suppressive function by stabilizing WWOX. Co-delivery of TSLD8 and WWOX via PuPGEA-based nanocomplexes might provide promising therapeutics for eradicating HCC.
Collapse
|
23
|
Yousef S, Alsaab HO, Sau S, Iyer AK. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon 2018; 4:e01071. [PMID: 30603704 PMCID: PMC6305692 DOI: 10.1016/j.heliyon.2018.e01071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular cellular carcinoma (HCC) is one of the most challenging liver cancer subtypes. Due to lack of cell surface biomarkers and highly metastatic nature, early detection and targeted therapy of HCC is an unmet need. Galactosamine (Gal) is among the few selective ligands used for targeting HCCs due to its high binding affinity to asialoglycoprotein receptors (ASGPRs) overexpressed in HCC. In the present work, we engineered nanoscale G4 polyamidoamine (PAMAM) dendrimers anchored to galactosamine and loaded with the potent anticancer curcumin derivative (CDF) as a platform for targeted drug delivery to HCC. In vivo targeting ability and bio-distribution of PAMAM-Gal were assessed via its labeling with the clinically used, highly contrast, near infrared (NIR) dye: S0456, with testing of the obtained conjugate in aggressive HCC xenograft model. Our results highlighted the targeted dendrimer PAMAM-Gal ability to achieve selective high cellular uptake via ASGPR mediated endocytosis and significantly enhance the delivery of CDF into the studied HCC cell lines. Cytotoxicity MTT assays in HCC cell lines, interestingly highlighted, the comparative high potency of CDF, where CDF was more potent as a chemotherapeutic anticancer small molecule than the currently in use Doxorubicin, Sorafenib and Cisplatin chemotherapeutic agents. In conclusion the proof-of-concept study using nanoscale PAMAM-Gal dendrimer has demonstrated its competency as an efficient delivery system for selective delivery of potent CDF for HCC anticancer therapy as well as HCC diagnosis via NIR imaging.
Collapse
Affiliation(s)
- Shaimaa Yousef
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O. Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Tabasum S, Noreen A, Maqsood MF, Umar H, Akram N, Nazli ZIH, Chatha SAS, Zia KM. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. Int J Biol Macromol 2018; 120:603-632. [DOI: 10.1016/j.ijbiomac.2018.07.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
|
25
|
Yang J, Zhang Y, Zhao S, Zhou Q, Xin X, Chen L. Statistical Optimization of Medium for Pullulan Production by Aureobasidium pullulans NCPS2016 Using Fructose and Soybean Meal Hydrolysates. Molecules 2018; 23:E1334. [PMID: 29865206 PMCID: PMC6100430 DOI: 10.3390/molecules23061334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022] Open
Abstract
Pullulan, with its excellent characteristics of film-forming, water solubility, and biodegradability, is attracting more and more attention in agricultural products preservation. However, high pullulan production cost largely restricts its widely application due to its low production. In order to improve pullulan production by Aureobasidium pullulans NCPS2016, the medium was optimized using single factor experiment and response surface methodology. Based on the single factor experiments, the contents of soybean meal hydrolysates (SMHs), (NH₄)₂SO₄, and K₂HPO₄·3H₂O were considered to be main factors influencing the extracellular polysaccharide (EPS) production, and were further optimized by Box⁻Behnken design. The optimal content of SMHs of 7.71 g/L, (NH₄)₂SO₄ of 0.35 g/L, and K₂HPO₄·3H₂O of 8.83 g/L were defined. Finally, EPS production of 59.8 g/L was obtained, 39% higher in comparison with the production in the basal medium. The purified EPS produced by NCPS2016 was confirmed to be pullulan. This is the first time fructose is reported to be the optimal carbon source for pullulan production by Aureobasidium pullulans, which is of great significance for the further study of the mechanism of the synthesis of pullulan by NCPS2016. Also, the results here have laid a foundation for reducing the industrial production cost of pullulan.
Collapse
Affiliation(s)
- Jinyu Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Yanhao Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Qingxin Zhou
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| | - Xue Xin
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
| | - Leilei Chen
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan 250100, China.
- College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
26
|
Orellana EA, Tenneti S, Rangasamy L, Lyle LT, Low PS, Kasinski AL. FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med 2018; 9:9/401/eaam9327. [PMID: 28768807 DOI: 10.1126/scitranslmed.aam9327] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small RNAs that negatively regulate gene expression posttranscriptionally. Because changes in microRNA expression can promote or maintain disease states, microRNA-based therapeutics are being evaluated extensively. Unfortunately, the therapeutic potential of microRNA replacement is limited by deficient delivery vehicles. In this work, microRNAs are delivered in the absence of a protective vehicle. The method relies on direct attachment of microRNAs to folate (FolamiR), which mediates delivery of the conjugated microRNA into cells that overexpress the folate receptor. We show that the tumor-suppressive FolamiR, FolamiR-34a, is quickly taken up both by triple-negative breast cancer cells in vitro and in vivo and by tumors in an autochthonous model of lung cancer and slows their progression. This method delivers microRNAs directly to tumors in vivo without the use of toxic vehicles, representing an advance in the development of nontoxic, cancer-targeted therapeutics.
Collapse
Affiliation(s)
- Esteban A Orellana
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,PULSe Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Srinivasarao Tenneti
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43202, USA
| | | | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Versatile redox-sensitive pullulan nanoparticles for enhanced liver targeting and efficient cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1005-1017. [DOI: 10.1016/j.nano.2018.01.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
|
28
|
Hong SJ, Ahn MH, Sangshetti J, Choung PH, Arote RB. Sugar-based gene delivery systems: Current knowledge and new perspectives. Carbohydr Polym 2018; 181:1180-1193. [DOI: 10.1016/j.carbpol.2017.11.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
|
29
|
Xia Y, Zhao M, Chen Y, Hua L, Xu T, Wang C, Li Y, Zhu B. Folate-targeted selenium nanoparticles deliver therapeutic siRNA to improve hepatocellular carcinoma therapy. RSC Adv 2018; 8:25932-25940. [PMID: 35541982 PMCID: PMC9082925 DOI: 10.1039/c8ra04204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/05/2018] [Indexed: 12/02/2022] Open
Abstract
To obtain a tumor targeting siRNA delivery vehicle for hepatocellular carcinoma treatments, functionalized selenium nanoparticles, Se–PEI–FA, were first prepared by decorating selenium nanoparticles with polycationic polymers, polyethylenimine (PEI), linked with folic acid (FA). FA functions as the tumor-targeted molecule to enhance tumor targeting activity, and PEI conjugates FA and siRNA. Se–PEI–FA@siRNA entered HepG2 cells principally via clathrin-mediated endocytosis. Due to the active tumor targeting effectiveness of FA, Se–PEI–FA@siRNA has significantly higher cellular uptake and gene silencing efficiency, and more apparent cytotoxicity, in HepG2 cells compared with Se–PEI@siRNA. The silencing of HES5 by Se–PEI–FA@siRNA could induce HepG2 cells arrest at G0/G1 phase possibly via inhibiting protein expression of CDK2, cyclinE, and cyclinD1, and up-regulating the protein expression of p21. More importantly, Se–PEI–FA@siRNA exhibits more significant antitumor efficacy compared with Se–PEI@siRNA in vivo. Additionally, Se–PEI–FA@siRNA exhibits low toxicity to the important organs of tumor-bearing mice. This research provides an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma. We provide an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma by functionalising Se nanoparticles with polyethylenimine linked with folic acid and siRNA.![]()
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Mingqi Zhao
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yi Chen
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Liang Hua
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Tiantian Xu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Changbing Wang
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yinghua Li
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Bing Zhu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| |
Collapse
|
30
|
Chen L, Qian M, Zhang L, Xia J, Bao Y, Wang J, Guo L, Li Y. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv 2018; 8:17710-17722. [PMID: 35542072 PMCID: PMC9080481 DOI: 10.1039/c8ra01679h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is a widely-used effective antitumor agent. However, its clinical application is limited due to its side effects including anti-apoptotic defense of cancer cells caused by DOX-induced autophagy and deleterious effects in normal tissues. Therefore, in this study, a new folate (FA)-decorated amphiphilic bifunctional pullulan-based copolymer (named as FPDP) was developed as an efficient nano-carrier for the co-delivery of DOX and short hairpin RNA of Beclin1, a pivotal autophage-related gene, to enhance the anticancer effect of DOX by the blockade of the Beclin1 protein mediated autophagy process. In FPDP molecules, pullulan was modified with lipophilic desoxycholic acid for the formation of micelles, the introduced low molecular weight (1 kDa) branched polyethylenimine (PEI) was for shBeclin1 delivery, and folate (FA) was employed as the tumor-targeting group. FPDP micelles demonstrated an average diameter of 161.9 nm, good biocompatibility, applicable storage stability, excellent loading capacities for both DOX and shBeclin1 and a sustained drug release profile. In vitro cell culture experiments demonstrated that the uptake amount of FPDP/DOX micelles in folate receptor positive (FR+) HeLa cells was more than that in folate receptor negative (FR−) HepG2 cells, leading to significantly higher cytotoxicity against FR+ HeLa cells. The simultaneous co-delivery of shBeclin1 and DOX to HeLa cells with FPDP micelles led to efficient reduction in the expression level of Beclin1 as well as synergistic cell apoptotic induction. Furthermore, in vivo studies revealed superior antitumor efficacy of tumor-targeted FPDP/DOX/shBeclin1 in comparison with non-FR-targeted PDP micelles and free DOX. These results highlighted that co-delivery of DOX and shRNA of Beclin1 with FPDP micelles has the potential to overcome the limitations of DOX in clinical cancer therapy. New folate receptor targeted nano-micelles enhanced the anticancer effect of doxorubicin by shBeclin1 with the blockade of the autophagy process.![]()
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Ming Qian
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Liuwei Zhang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jing Xia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Lianying Guo
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| |
Collapse
|
31
|
Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydr Polym 2017; 171:102-121. [DOI: 10.1016/j.carbpol.2017.04.089] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
|
32
|
Wang J, Zhang L, Wang X, Fu S, Yan G. Acid-labile poly(amino alcohol ortho ester) based on low molecular weight polyethyleneimine for gene delivery. J Biomater Appl 2017; 32:349-361. [PMID: 28670944 DOI: 10.1177/0885328217717374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of acid-labile poly(amino alcohol ortho ester) (POEeis) were synthesized through ring-opening polymerization between diglycidyl ethers with ortho ester bonded and low molecular weight polyethyleneimine by various feed molar ratios. The obtain POEei 1 and POEei 2 exhibited clear kinetic of degradation and condensed plasmid DNA into nanoparticles of suitable sizes (250-300 nm) and positive zeta potentials (+20-30 mV) while protecting DNA from enzymatic digestion. Further, these polymers have uniform distribution of abundant hydroxyl groups, which could improve their water solubility, biocompatibility, and lower protein adsorption. Significantly, ortho ester groups in POEeis main-chains could hydrolyze rapidly at acidic endosomal pH, resulting in intracellular DNA release and diminished material toxicity. MTT assay revealed that all the polymers exhibited much lower cytotoxicity than 25 kDa PEI in the human neuroblastoma SH-SY5Y cells. Moreover, the transfection efficiency of POEei 1 was higher than 25 kDa PEI in serum-free medium or 10% serum medium.
Collapse
Affiliation(s)
- Jun Wang
- School of Life Science, Anhui University, Hefei, China
| | - Lei Zhang
- School of Life Science, Anhui University, Hefei, China
| | - Xin Wang
- School of Life Science, Anhui University, Hefei, China
| | - Shengxiang Fu
- School of Life Science, Anhui University, Hefei, China
| | - Guoqing Yan
- School of Life Science, Anhui University, Hefei, China
| |
Collapse
|
33
|
Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells. J Colloid Interface Sci 2017; 498:170-181. [DOI: 10.1016/j.jcis.2017.03.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
|
34
|
Bellettini IC, Fayad SJ, Machado VG, Minatti E. Properties of polyplexes formed through interaction between hydrophobically-modified poly(ethylene imine)s and calf thymus DNA in aqueous solution. SOFT MATTER 2017; 13:2609-2619. [PMID: 28327732 DOI: 10.1039/c6sm02835g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polycationic polymers and DNA form soluble complexes in aqueous solution, which allows the transfer of genetic material into cells. Therefore, these chemically-modified polymers are of interest for use in studies aimed at better transfection efficiency and gene expression along with reduced cytotoxicity. In this study, branched poly(ethylene imine) (PEI) was modified by alkylation with n-alkyl groups (n = 4, 6, 8 and 12 carbons). The polyplexes formed through interaction of the modified PEIs and calf thymus DNA (ctDNA) were investigated using UV-Vis spectrophotometry, ethidium bromide fluorescence emission, circular dichroism spectroscopy, dynamic light scattering, and small-angle X-ray scattering techniques along with the determination of the zeta potential and viscosity. According to the results obtained, the formation of ctDNA-PEI polyplexes occurs in three steps. Firstly, when a small amount of polyelectrolyte is present the ctDNA chains are partially compacted. Subsequently, with the addition of more polyelectrolyte, the complexes have a null charge density and micrometric size. Lastly, with a higher concentration of PEI, the ctDNA is fully compacted by the PEI chains, leading to positively charged complexes with Rh values in the range of 52.0-86.0 nm. The viscosity and SAXS analysis suggested that the unmodified PEI exhibits the strongest interaction and promotes the best ctDNA condensation.
Collapse
Affiliation(s)
- I C Bellettini
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - S J Fayad
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - V G Machado
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| | - E Minatti
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
35
|
Huang L, Wang Y, Ling X, Chaurasiya B, Yang C, Du Y, Tu J, Xiong Y, Sun C. Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydr Polym 2017; 159:178-187. [DOI: 10.1016/j.carbpol.2016.11.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
|
36
|
Han J, Wang X, Liu L, Li D, Suyaola S, Wang T, Baigude H. "Click" chemistry mediated construction of cationic curdlan nanocarriers for efficient gene delivery. Carbohydr Polym 2017; 163:191-198. [PMID: 28267496 DOI: 10.1016/j.carbpol.2017.01.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/01/2016] [Accepted: 01/15/2017] [Indexed: 01/22/2023]
Abstract
A cationic group has been quantitatively and selectively introduced into C6 position of each glucose units of Curdlan by "Click Chemistry" successfully. The resulting cationic Curdlan-Imidazole-lysine polymers (Cur-6-100Lys) exhibit excellent water solubility. Structure of the Cur-6-100Lys complexes was verified by FTIR and NMR spectroscopic measurements, and analysis of Cur-6-100Lys by GPC, DLS and SEM revealed that they have stoichiometric, nanosized spheroidal structures. Cytotoxicity measurement, electrophoretic mobility shift assay and EGFP-pDNA transfection have been carried out respectively. The results clearly show that Cur-6-100Lys nanocarriers have bound to dsDNA promptly, are less cytotoxic to both 7901 cells and HeLa cells, and are readily able to transport EGFP-pDNA into HepG2 cells. Our studies indicated that Cur-6-100Lys can potentially be used as a versatile nano platform for efficient gene delivery in living cells.
Collapse
Affiliation(s)
- Jingfen Han
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Xia Wang
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Lixia Liu
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Dongxue Li
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Suyaola Suyaola
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Tianyue Wang
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia University, 235 West College Road, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
37
|
Propoxylation of cationic polymers provides a novel approach to controllable modulation of their cellular toxicity and interaction with nucleic acids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:60-7. [DOI: 10.1016/j.msec.2016.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 02/04/2023]
|
38
|
Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi MS, Samadi N. Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 2016; 44:487-496. [DOI: 10.1016/j.biologicals.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
|
39
|
Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:904-918. [DOI: 10.1016/j.msec.2016.07.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
|
40
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Arami S, Rashidi MR, Mahdavi M, Fathi M, Entezami AA. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol 2016; 36:227-237. [DOI: 10.1177/0960327116646618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The limited effectiveness of the conventional methods for cancer treatment makes the researchers to find novel safe and effective therapeutic strategies. One of these strategies is to use small interfering RNAs (siRNAs). A major challenge here is the siRNA delivery into the cells. The purpose of this study was to design and prepare a biocompatible, biodegradable, and safe nanosized particle for siRNA delivery into human breast cancer MCF-7 and leukemia K562 cells. Chemically synthesized magnetic nanoparticles containing polyethyleneglycol-lactate polymer (PEG-LAC), chitosan, and polyethyleneimine (PEI) were successfully prepared and used as a gene delivery vehicle. The nanoparticles were characterized by Fourier transform infrared spectroscopy and zeta potential. The Fe3O4-PEG-LAC-chitosan-PEI nanoparticle showed efficient and stable survivin siRNA loading in gel retardation assay. The cytotoxicity of the prepared nanoparticle was studied using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and was compared with that of mitoxantrone (MTX) in combination with the prepared siRNA delivery system to evaluate the possible synergic effect of MTX and survivin siRNA. The nanoparticles with and without noncomplementary siRNA showed low toxicity against both cell lines; however, a twofold decrease was observed in cell survival percent after MTX addition to MCF-7 cells treated with either nanoparticle itself or complexed with noncomplementary siRNA. While survivin siRNA nanoplex caused threefold decrease in the cell survival percent, its combination with MTX did not result in a significant increase in the cytotoxic effect. Therefore, Fe3O4-PEG-LAC-chitosan-PEI nanoparticle should be considered as a potential carrier for enhanced survivin siRNA delivery into MCF-7 and K562 cells.
Collapse
Affiliation(s)
- S Arami
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MR Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Science, University Of Tabriz, Tabriz, Iran
| | - M Fathi
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - AA Entezami
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
42
|
Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 2016; 25:1-16. [DOI: 10.3109/1061186x.2016.1172589] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Xun MM, Zhang JH, Liu YH, Zhang J, Xiao YP, Guo Q, Li S, Yu XQ. Polyethylenimine analogs for improved gene delivery: effect of the type of amino groups. RSC Adv 2016. [DOI: 10.1039/c5ra23715g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 1°, 2° and 3° amine composition of PEI analogs could be easily adjusted by special synthetic method, and their effects on the gene transfection were studied.
Collapse
Affiliation(s)
- Miao-Miao Xun
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Qian Guo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Shuo Li
- School of Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
44
|
Li M, Zhou X, Zeng X, Wang C, Xu J, Ma D, Xue W. Folate-targeting redox hyperbranched poly(amido amine)s delivering MMP-9 siRNA for cancer therapy. J Mater Chem B 2015; 4:547-556. [PMID: 32263218 DOI: 10.1039/c5tb01964h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For effective gene delivery to breast cancer MCF-7 cells, a folate-targeting redox gene carrier was synthesized by Michael addition polymerization between 1-(2-aminoethyl)piperazine and N,N'-cystaminebisacrylamide. Folate was then conjugated through an amidation reaction. The obtained folate-modified hyperbranched poly(amido amine)s (FA-PAAs) degraded in the presence of glutathione and displayed excellent transfection efficiency in vitro. In particular, FA-PAAs showed much higher gene delivery efficiency than PEI-25k in the presence of serum, leading to an obvious decrease in MMP-9 protein expression and the apoptosis of MCF-7 cells. Moreover, FA-PAAs displayed lower cytotoxicity and better blood compatibility than PEI-25k, suggesting a potential application in gene therapy for tumors.
Collapse
Affiliation(s)
- Mengyi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Jian WH, Yu TW, Chen CJ, Huang WC, Chiu HC, Chiang WH. Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6202-10. [PMID: 25985856 DOI: 10.1021/acs.langmuir.5b00963] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Indocyanine green (ICG), an FDA approved medical near-infrared (NIR) imaging agent, has been extensively used in cancer theranosis. However, the limited aqueous photostability, rapid body clearance, and poor cellular uptake severely restrict its practical applications. For these problems to be overcome, ICG-encapsulated hybrid polymeric nanomicelles (PNMs) were developed in this work through coassociation of the amphiphilic diblock copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and hydrophobic electrostatic complexes composed of ICG molecules and branched poly(ethylenimine) (PEI). The ICG-encapsulated hybrid PNMs featured a hydrophobic PLGA/ICG/PEI core stabilized by hydrophilic PEG shells. The encapsulation of electrostatic ICG/PEI complexes into the compact PLGA-rich core not only facilitated the ICG loading but also promoted its aqueous optical stability. The effects of the chain length of PEI in combination with ICG on the physiochemical properties of PNMs and their drug leakage were also investigated. PEI(10k) (10 kDa) could form highly robust and dense complexes with ICG, and thus prominently reduced ICG outflow from the PNMs. The results of in vitro cellular uptake and cytotoxicity studies revealed that the ICG/PEI(10k)-loaded PNMs significantly promoted cellular uptake of ICG by HeLa cells due to their near-neutral surface, and thereby augmented the NIR-triggered hyperthermia effect in destroying cancer cells. These findings strongly indicate that the ICG/PEI10k-loaded PNMs have significant potential for attaining effective cancer imaging and photothermal therapy.
Collapse
Affiliation(s)
- Wei-Hong Jian
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Wei Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chien-Ju Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Chia Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Wen-Hsuan Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
46
|
Singh RS, Kaur N, Kennedy JF. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym 2015; 123:190-207. [DOI: 10.1016/j.carbpol.2015.01.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/03/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
|
47
|
Abstract
Among the several delivery materials available so far, polysaccharides represent very attractive molecules as they can undergo a wide range of chemical modifications, are biocompatible, biodegradable, and have low immunogenic properties. Thus, polysaccharides can contribute to significantly overcome the limitation in the use of many types of drugs, including anti-cancer drugs. The use of conventional anti-cancer drugs is hampered by their high toxicity, mostly depending on the indiscriminate targeting of both cancer and normal cells. Additionally, for nucleic acid based drugs (NABDs), an emerging class of drugs with potential anti-cancer value, the practical use is problematic. This mostly depends on their fast degradation in biological fluids and the difficulties to cross cell membranes. Thus, for both classes of drugs, the development of optimal delivery materials is crucial. Here we discuss the possibility of using different kinds of polysaccharides, such as chitosan, hyaluronic acid, dextran, and pullulan, as smart drug delivery materials. We first describe the main features of polysaccharides, then a general overview about the aspects ruling drug release mechanisms and the pharmacokinetic are reported. Finally, notable examples of polysaccharide-based delivery of conventional anti-cancer drugs and NABDs are reported. Whereas additional research is required, the promising results obtained so far, fully justify further efforts, both in terms of economic support and investigations in the field of polysaccharides as drug delivery materials.
Collapse
|
48
|
Xun MM, Xiao YP, Zhang J, Liu YH, Peng Q, Guo Q, Wu WX, Xu Y, Yu XQ. Low molecular weight PEI-based polycationic gene vectors via Michael addition polymerization with improved serum-tolerance. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 2015; 203:1-15. [PMID: 25660205 DOI: 10.1016/j.jconrel.2015.02.003] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed.
Collapse
Affiliation(s)
- Cornelia Lorenzer
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Mehrdad Dirin
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Anna-Maria Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Volker Baumann
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Subramanian N, Kanwar JR, Athalya PK, Janakiraman N, Khetan V, Kanwar RK, Eluchuri S, Krishnakumar S. EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci 2015; 22:4. [PMID: 25576037 PMCID: PMC4307906 DOI: 10.1186/s12929-014-0108-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Background Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation. Results Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was −30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells. Conclusions The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0108-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nithya Subramanian
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Prasanna Kumar Athalya
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India.
| | - Vikas Khetan
- Departments of Ocular Oncology and Vitreoretina, Medical Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Rupinder K Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Sailaja Eluchuri
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India.
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, 18 College Road, Chennai, 600006, Tamil Nadu, India. .,L & T Ocular Pathology department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India.
| |
Collapse
|