1
|
Shen L, Wang P, Xiang S, Zhao S, Fu F, Dong Q, Liu X. Janus Structure Construction of Polyester-Cotton Fabrics for Achieving Excellent Moisture, Moisture-Permeability, and Antibacterial Capability. Macromol Rapid Commun 2024; 45:e2400556. [PMID: 39283827 DOI: 10.1002/marc.202400556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Indexed: 12/11/2024]
Abstract
Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively. The resulting Janus fabric exhibits an antibacterial rate of 99.9% against both E. coli and S. aureus, along with a hydrophobic property on its single side (PTCO-HDA@PLMA). Additionally, the establishment of a surface-free energy gradient across the fabric confers superior moisture-permeability to the Janus fabric, offering advantages in preserving textile comfort. Moreover, this approach does not significantly compromise the original fabric properties, such as mechanical strength, moisture permeability, and fabric softness. The proposed method offers a straightforward and scalable strategy for textile finishing, demonstrating great potential in expanding the application scope of PTCO fabrics, and it may hold a pivotal role in diverse applications, notably encompassing home textiles, wound dressings, and high-performance sportswear.
Collapse
Affiliation(s)
- Liwen Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pei Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuangfei Xiang
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, 700 Yuhui Road, Keqiao District, Shaoxing, 312030, China
| | - Shujun Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingqi Dong
- Zhe Jiang Hengyi High-Tech Materials Co. Ltd., No. 11268, Red 15th Line, Qiantang New Area, Hangzhou, 311228, China
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
2
|
Lu Z, Zhang H, Toivakka M, Xu C. Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. Int J Biol Macromol 2024; 267:131490. [PMID: 38604423 DOI: 10.1016/j.ijbiomac.2024.131490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
There is a growing interest in utilizing renewable biomass resources to manufacture environmentally friendly active food packaging, against the petroleum-based polymers. Cellulose nanofibers (CNFs) have received significant attention recently due to their sustainability, biodegradability, and widely available sources. CNFs are generally obtained through chemical or physical treatment, wherein the original surface chemistry and interfacial interactions can be changed if the functionalization process is applied. This review focuses on promising and sustainable methods of functionalization to broaden the potential uses of CNFs in active food packaging. Novel aspects, including functionalization before, during and after cellulose isolation, and functionalization during and after material processing are addressed. The CNF-involved structural construction including films, membranes, hydrogels, aerogels, foams, and microcapsules, is illustrated, which enables to explore the correlations between structure and performance in active food packaging. Additionally, the enhancement of CNFs on multiple properties of active food packaging are discussed, in which the interaction between active packaging systems and encapsulated food or the internal environment are highlighted. This review emphasizes novel approaches and emerging trends that have the potential to revolutionize the field, paving the way for advancements in the properties and applications of CNF-involved active food packaging.
Collapse
Affiliation(s)
- Zonghong Lu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland
| | - Hao Zhang
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland.
| | - Chunlin Xu
- Laboratory of Natural Materials Technology, Åbo Akademi University, 20500 Turku, Finland.
| |
Collapse
|
3
|
Gomte SS, Agnihotri TG, Khopade S, Jain A. Exploring the potential of pH-sensitive polymers in targeted drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:228-268. [PMID: 37927045 DOI: 10.1080/09205063.2023.2279792] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The pH-sensitive polymers have attained significant attention in the arena of targeted drug delivery (TDD) because of their exceptional capability to respond to alteration in pH in various physiological environments. This attribute aids pH-sensitive polymers to act as smart carriers for therapeutic agents, transporting them precisely to target locations while curtailing the release of drugs in off-targeted sites, thereby diminishing side effects. Many pH-responsive polymers in TDD have revealed promising results, with increased therapeutic efficacy and decreased toxic effects. Several pH-sensitive polymers, including, hydroxy-propyl-methyl cellulose, poly (methacrylic acid) (Eudragit series), poly (acrylic acid), and chitosan, have been broadly studied for their myriad applications in the management of various types of diseases. Additionally, the amalgamation of pH-sensitive polymers with, additive manufacturing techniques like 3D printing, has resulted in the progression of novel drug delivery systems that regulate drug release in a controlled manner. Herein, types of pH-sensitive polymers in TDD are systemically reviewed. We have briefly discussed the nanocarriers employed for the delivery of various pH-sensitive polymers in TDD. Finally, miscellaneous applications of pH-sensitive polymers are discussed thoroughly with special attention to the implication of 3D printing in pH-sensitive polymers.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
5
|
Wu M, Xue Z, Wang C, Wang T, Zou D, Lu P, Song X. Smart antibacterial nanocellulose packaging film based on pH-stimulate responsive microcapsules synthesized by Pickering emulsion template. Carbohydr Polym 2024; 323:121409. [PMID: 37940292 DOI: 10.1016/j.carbpol.2023.121409] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Spoilage results in food waste and endangers consumer health, and the smart antibacterial packaging can effectively inhibit bacterial growth and reduce food spoilage. In this study, the smart antibacterial nanocellulose packaging films were developed by adding the pH-stimulated responsive microcapsules into cellulose nanofibril (CNF) film-forming. The microcapsules were synthesized by interfacial polymerization of Pickering emulsion. Carboxylated cellulose nanocrystals as solid particles stabilized the composited oil phase to prepare the oil-in-water Pickering emulsion. The emulsion with the particle concentration of 1.25 wt% and the oil phase mass fraction of 7.5 % processes excellent stability and uniform particle size, was chosen to synthesize microcapsules. The cinnamaldehyde in the film with the addition amount of microcapsules 0.6 g burst released in the first 1 h and then slowly, and the cumulative release at pH 2.0, 4.0, 5.5 and 7.2 was 28.43 μg/cm2, 18.84 μg/cm2, 16.52 μg/cm2 and 12.89 μg/cm2, respectively. The inhibitory rate of film against both E. coli and L. monocytogenes reached 99 % at pH 4.0. The shelf life of pork packed by the film prolonged to nearly 9 d at room temperature. The developed films have the potential to be used in food packaging.
Collapse
Affiliation(s)
- Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Zhou Xue
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Caixia Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Dongcheng Zou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| |
Collapse
|
6
|
Abdelaty MA, Abu-Zahra N. Thermo-pH-Salt Environmental Terpolymers Influenced by 2-((Dimethylamino)methyl)-4-methylphenyl Acrylate: A Comparative Study for Tuning Phase Separation Temperature. ACS OMEGA 2023; 8:45026-45044. [PMID: 38046335 PMCID: PMC10687971 DOI: 10.1021/acsomega.3c06634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
This study offers a comparison between three different types of thermoresponsive (TR) and thermo-pH-salt (TPR) multiresponsive polymers including homopoly(N-isopropylacrylamide) (PNIPAAm), copolymers with three different monomers, 2-hydroxyethyl methacrylate (HEMA), N,N-dimethylacrylamide (DMAAm), and styrene (S) at three different concentrations (5, 10, and 20 mol %), and a PNIPAAm terpolymer with 5, 10, and 20 mol % 2-((dimethylamino)methyl)-4-methylphenyl acrylate (DMAMCA) and 10 mol % HEMA, DMAAm, and S monomers. All polymers were chemically analyzed with 1H NMR and Fourier transform infrared spectroscopy (FT-IR) as well as gel permeation chromatography (GPC) for the molecular weights and dispersity and differential scanning calorimeter (DSC) for the glass transition temperatures. The cloud point, also known as the phase separation temperature (Cp), was determined for all polymers by a turbidity test using a UV-vis spectrophotometer; a micro-differential scanning calorimeter was used for measuring the cloud point in deionized water. The influence of a tertiary amine cationic group of DMAMCA changed the behavior of TR copolymers into TPR by shifting the cloud point of the TPR to higher values in acidic solutions (lower pH) and to lower values in alkaline solutions. The Cp was measured at different concentrations of Hofmeister kosmotropic and chaotropic anion salt solutions in a range of pH solutions for the terpolymers. It demonstrated the same behavior as mentioned in pH solutions besides the effect of salt ions. By measuring the Tc and Cp of these polymers, we can exploit various applications of stimuli-responsive materials for sensors and biomedical technology.
Collapse
Affiliation(s)
- Momen
S. A. Abdelaty
- Polymer
Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Polymer
Lab, Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Nidal Abu-Zahra
- Materials
Science and Engineering Department, University
of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
7
|
Straker MA, Levy JA, Stine JM, Borbash V, Beardslee LA, Ghodssi R. Freestanding region-responsive bilayer for functional packaging of ingestible devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:61. [PMID: 37206701 PMCID: PMC10188515 DOI: 10.1038/s41378-023-00536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 05/21/2023]
Abstract
Ingestible capsules have the potential to become an attractive alternative to traditional means of treating and detecting gastrointestinal (GI) disease. As device complexity increases, so too does the demand for more effective capsule packaging technologies to elegantly target specific GI locations. While pH-responsive coatings have been traditionally used for the passive targeting of specific GI regions, their application is limited due to the geometric restrictions imposed by standard coating methods. Dip, pan, and spray coating methods only enable the protection of microscale unsupported openings against the harsh GI environment. However, some emerging technologies have millimeter-scale components for performing functions such as sensing and drug delivery. To this end, we present the freestanding region-responsive bilayer (FRRB), a packaging technology for ingestible capsules that can be readily applied for various functional ingestible capsule components. The bilayer is composed of rigid polyethylene glycol (PEG) under a flexible pH-responsive Eudragit® FL 30 D 55, which protects the contents of the capsule until it arrives in the targeted intestinal environment. The FRRB can be fabricated in a multitude of shapes that facilitate various functional packaging mechanisms, some of which are demonstrated here. In this paper, we characterize and validate the use of this technology in a simulated intestinal environment, confirming that the FRRB can be tuned for small intestinal release. We also show a case example where the FRRB is used to protect and expose a thermomechanical actuator for targeted drug delivery.
Collapse
Affiliation(s)
- Michael A. Straker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
| | - Joshua A. Levy
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Material Science and Engineering, University of Maryland, College Park, MD 20740 USA
| | - Justin M. Stine
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| | - Vivian Borbash
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| | - Luke A. Beardslee
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
| | - Reza Ghodssi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
- Institute for Systems Research, University of Maryland, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20850 USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
8
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
9
|
Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. NANO RESEARCH 2023; 16:5155-5168. [PMID: 36618069 PMCID: PMC9807988 DOI: 10.1007/s12274-022-5252-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Stimuli-responsive polymers are promising to achieve targeted delivery, improved stability during circulation, and controlled release of therapeutic and diagnostic agents. Among them, pH-responsive polymeric nanocarriers have attracted significant attention as pH varies in different body fluids (e.g., stomach, intestine, and colon) and intracellular organelles (e.g., endosome, lysosome, and mitochondria) to maintain homeostasis, while distinctive pH changes are also found in certain pathological states. For example, the extracellular environment of the tumor is acidic, which can be employed to drive selective delivery. During the internalization process, since most nanocarriers enter cells upon endocytosis where a drop of pH from 6.5 to 5.0 can occur from endosome to lysosome, pH-sensitive groups have been developed for enhanced cargo release. In this review, both non-covalent and covalent interactions responsive to pH changes are introduced, with a focus on the structure-property relationship and their applications in cancer targeting and endosomal escape.
Collapse
Affiliation(s)
- Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
10
|
Fu B, Yang Z, Li X, Xu W, Pan G, Chen N, Xie Q, Wang X. Construction of pH-sensitive sodium alginates/sodium carboxymethyl cellulose/zeolite P composite hydrogel microspheres loaded with potassium diformate. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:89-107. [PMID: 35938516 DOI: 10.1080/09205063.2022.2111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a substitute for feed antibiotics, potassium diformate (KDF) can effectively inhibit bacterial overgrowth in the gastrointestinal tract. To avoid the sudden release of KDF in the stomach, this article proposes a new controlled drug delivery system for controlled drug release. In this system, P-type zeolite molecular sieve (Zeolite P) and drug KDF are combined and embedded into the hydrogel microspheres of sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC). In addition, ALG/CMC/Zeolite P composite hydrogel microspheres were prepared with Ca2+ as the crosslinking agent. The structure, composition, morphology, and thermal stability of the hydrogel microspheres were systematically characterized. The effect of the composition ratio of ALG and CMC on the swelling properties of the hydrogel microspheres was also investigated. The results revealed that ALG and CMC form a hydrogen bond and chelate with Ca2+ to form a double crosslinked network structure. Thus, Zeolite P can be effectively encapsulated in the hydrogel microspheres to form a dense three-dimensional network structure. Particularly, Zeolite P helps in improving the thermal stability of microspheres, balance the swelling properties, and control the release of KDF. The drug release results and release kinetics reveal that the ALG/CMC/Zeolite P composite hydrogel has higher drug release in an environment with pH 7.4. The release kinetics follow the Ritger-Peppas model and the first-order kinetic model, which indicates that the composite hydrogel has good specific pH sensitivity. In vitro antibacterial experiments revealed that the composite hydrogel microspheres have broad-spectrum antibacterial activity, and certain inhibitory effects on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis.
Collapse
Affiliation(s)
- Bei Fu
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - ZhongXin Yang
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xing Li
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - WenQin Xu
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - GuangHua Pan
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - NanChun Chen
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - QingLin Xie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China.,College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - XiuLi Wang
- College of Chemical and Biomedical Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
11
|
Wang X, Hu J, Liu S. Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking. Acc Chem Res 2022; 55:3404-3416. [PMID: 36351034 DOI: 10.1021/acs.accounts.2c00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Penrhyn-Lowe OB, Cassin SR, Chambon P, Rannard SP. Controlling the pH-response of branched copolymer nanoprecipitates synthesised by transfer-dominated branching radical telomerisation (TBRT) through telogen chemistry and spatial distribution of tertiary amine functionality. NANOSCALE ADVANCES 2022; 4:4051-4058. [PMID: 36285220 PMCID: PMC9514558 DOI: 10.1039/d2na00399f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Amine functionality offers the modification of polymer properties to enable stimuli-responsive behaviour, and this feature has been utilised in numerous studies of self-assembly and disassembly. The ability to place amines as pendant groups along linear polymer backbones within distinct blocks, at chain ends or as statistical mixtures with other functionalities, has allowed fine tuning of responses to pH. Here we study and compare the placement of amines within the backbones or as pendant groups within polyesters synthesised by the newly reported transfer-dominated branching radical telomerisation (TBRT). Branched polymers with backbone amines are clearly shown to undergo dissolution that is determined by pH and telogen selection; they undergo nanoprecipitation only when hydrophilic telogens are present within their structure and provide nanoprecipitates that are highly sensitive to the addition of acid. In contrast, TBRT polymers with pendant amines form uniform nanoparticles with remarkable stability to pH changes, under identical nanoprecipitation conditions. The behaviour differences shown here open new avenues of synthetic flexibility for pH-responsive polymer design using TBRT.
Collapse
Affiliation(s)
- Oliver B Penrhyn-Lowe
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Savannah R Cassin
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
13
|
Men X, Fang X, Liu Z, Zhang Z, Wu C, Chen H. Anisotropic assembly and fluorescence enhancement of conjugated polymer nanostructures. VIEW 2022. [DOI: 10.1002/viw.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xiaoju Men
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation Changsha Medical University Changsha Hunan China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhihe Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences Central South University Changsha Hunan China
| |
Collapse
|
14
|
Arsenie LV, Hausig F, Kellner C, Brendel JC, Lacroix-Desmazes P, Ladmiral V, Catrouillet S. Stimuli-Responsive Thiomorpholine Oxide-Derived Polymers with Tailored Hydrophilicity and Hemocompatible Properties. Molecules 2022; 27:molecules27134233. [PMID: 35807477 PMCID: PMC9268026 DOI: 10.3390/molecules27134233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Thermo-responsive hydrophilic polymers, including those showing tuneable lower critical solution temperature (LCST), represent a continuous subject of exploration for a variety of applications, but particularly in nanomedicine. Since biological pH changes can inform the organism about the presence of disequilibrium or diseases, the development of dual LCST/pH-responsive hydrophilic polymers with biological potential is an attractive subject in polymer science. Here, we present a novel polymer featuring LCST/pH double responsiveness. The monomer ethylthiomorpholine oxide methacrylate (THOXMA) can be polymerised via the RAFT process to obtain well-defined polymers. Copolymers with hydroxyethyl methacrylate (HEMA) were prepared, which allowed the tuning of the LCST behaviour of the polymers. Both, the LCST behaviour and pH responsiveness of hydrophilic PTHOXMA were tested by following the evolution of particle size by dynamic light scattering (DLS). In weak and strong alkaline conditions, cloud points ranged between 40–60 °C, while in acidic medium no LCST was found due to the protonation of the amine of the THOX moieties. Additional cytotoxicity assays confirmed a high biocompatibility of PTHOXMA and haemolysis and aggregation assays proved that the thiomorpholine oxide-derived polymers did not cause aggregation or lysis of red blood cells. These preliminary results bode well for the use of PTHOXMA as smart material in biological applications.
Collapse
Affiliation(s)
| | - Franziska Hausig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
| | - Carolin Kellner
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany; (F.H.); (C.K.); (J.C.B.)
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | | | - Vincent Ladmiral
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; (L.V.A.); (P.L.-D.)
- Correspondence: (V.L.); (S.C.)
| | - Sylvain Catrouillet
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; (L.V.A.); (P.L.-D.)
- Correspondence: (V.L.); (S.C.)
| |
Collapse
|
15
|
Wang L, Zhou Q, Yang H. A Facile Fabrication of Lysosome-Targeting pH Fluorescent Nanosensor Based on PEGylated Polyester Block Copolymer. Polymers (Basel) 2022; 14:2420. [PMID: 35745996 PMCID: PMC9231249 DOI: 10.3390/polym14122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
A novel lysosome-targeting PEGylated polyester-based fluorescent pH nanosensor is fabricated by the combination of ring-opening copolymerization (ROCOP), side-group modification and subsequent self-assembly. First, a key target amphiphilic copolymer carrier for rhodamine (Rh) pH indicator is synthesized in a facile manner by the ROCOP of phthalic anhydride with allyl glycidyl ether using mPEG-OH and t-BuP1/Et3B as the macroinitiator and binary catalyst, respectively. Subsequently, Rh moieties are covalently attached on the polymer chain with controllable grafting degree via an efficient thiol-ene click reaction. Concurrently, the effect of catalyst systems and reaction conditions on the catalytic copolymerization performance is presented, and the quantitative introduction of Rh is described in detail. Owing to its amphiphilic characteristics, the rhodamine-functionalized polyester-based block copolymer can self-assemble into micelles. With the covalent incorporation of Rh moieties, the as-formed micelles exhibit excellent absorption and fluorescence-responsive sensitivity and selectivity towards H+ in the presence of various metal cations. Moreover, the as-prepared micelles with favorable water dispersibility, good pH sensitivity and excellent biocompatibility also display appreciable cell-membrane permeability, staining ability and pH detection capability for lysosomes in living cells. This work provides a new strategy for the facile synthesis of novel biocompatible polymeric fluorescent pH nanosensors for the fluorescence imaging of lysosomal pH changes.
Collapse
Affiliation(s)
- Lijun Wang
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; (Q.Z.); (H.Y.)
| |
Collapse
|
16
|
Tunning the properties of pH-responsive lignin-based hydrogels by regulating hydroxyl content. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Wen SP, Fielding LA. Pyridine-functional diblock copolymer nanoparticles synthesized via RAFT-mediated polymerization-induced self-assembly: effect of solution pH. SOFT MATTER 2022; 18:1385-1394. [PMID: 35084008 DOI: 10.1039/d1sm01793d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerization has become widely recognized as a versatile and efficient strategy to prepare complex block copolymer nanoparticles with controlled morphology, size, and surface functionality. In this article, we report the preparation of cationic sterically-stabilized poly(2-vinylpyridine)-poly(benzyl methacrylate) (P2VP-PBzMA) diblock copolymer nanoparticles via RAFT-mediated PISA under aqueous emulsion polymerization conditions. It is demonstrated that the solution pH during PISA has a dramatic effect on the resulting P2VP-PBzMA nanoparticles, as judged by dynamic light scattering (DLS), disc centrifuge photosedimentometry (DCP) and transmission electron microscopy (TEM). Varying the solution pH results in the P2VP stabilizer having different solubilities due to protonation/deprotonation of the pyridine groups. This allows P2VP-PBzMA nanoparticles with tunable diameters to be prepared by altering the DP of the stabilizer (P2VP) and/or core-forming block (PBzMA), or simply by changing the solution pH for a fixed copolymer composition. For example, P2VP-PBzMA nanoparticles with larger diameters can be obtained at higher solution pH as the protonation degree of the P2VP stabilizer has a large effect on both the aggregation of polymer chains during the PISA process, and the resulting behavior of the diblock copolymer nanoparticles. Changing the dispersion pH post-polymerization has a relatively limited effect on particle diameter. Furthermore, aqueous electrophoresis studies indicate that these P2VP-PBzMA nanoparticles had good colloidal stability and high cationic charge (>30 mV) below pH 5 and can be dispersed readily over a wide pH range.
Collapse
Affiliation(s)
- Shang-Pin Wen
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
18
|
Liu G, Tan J, Cen J, Zhang G, Hu J, Liu S. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nat Commun 2022; 13:585. [PMID: 35102153 PMCID: PMC8803951 DOI: 10.1038/s41467-022-28227-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022] Open
Abstract
The unique permselectivity of cellular membranes is of crucial importance to maintain intracellular homeostasis while adapting to microenvironmental changes. Although liposomes and polymersomes have been widely engineered to mimic microstructures and functions of cells, it still remains a considerable challenge to synergize the stability and permeability of artificial cells and to imitate local milieu fluctuations. Herein, we report concurrent crosslinking and permeabilizing of pH-responsive polymersomes containing Schiff base moieties within bilayer membranes via enzyme-catalyzed acid production. Notably, this synergistic crosslinking and permeabilizing strategy allows tuning of the mesh sizes of the crosslinked bilayers with subnanometer precision, showing discriminative permeability toward maltooligosaccharides with molecular sizes of ~1.4-2.6 nm. The permselectivity of bilayer membranes enables intravesicular pH oscillation, fueled by a single input of glucose. This intravesicular pH oscillation can further drive the dissipative self-assembly of pH-sensitive dipeptides. Moreover, the permeabilization of polymersomes can be regulated by intracellular pH gradient as well, enabling the controlled release of encapsulated payloads.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jiajia Tan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| |
Collapse
|
19
|
Li S, Liu P, Wang Z, Lian L, Zhao Y. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rational design of comb-like and linear conjugates comprising PNIPAM and PDMAEMA segments allows the construction of a multi-tunable hierarchical self-assembly platform and insight into the topology effect.
Collapse
Affiliation(s)
- Siyu Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu Lian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Abousalman-Rezvani Z, Roghani-Mamaqani H, Riazi H, Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers. Polym Chem 2022. [DOI: 10.1039/d2py00992g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration processes.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- CSIRO, Manufacturing–Biomedical Manufacturing, Ian Wark Laboratory, Research Way, Clayton, VIC 3168, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Hossein Riazi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
21
|
Zhu R, Lang T, Yin Q, Li Y. Nano drug delivery systems improve metastatic breast cancer therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:244-274. [PMID: 37724299 PMCID: PMC10388745 DOI: 10.1515/mr-2021-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Despite continual progress in the technologies and regimens for cancer therapy, the treatment outcome of fatal metastatic breast cancer is far from satisfactory. Encouragingly, nanotechnology has emerged as a valuable tool to optimize drug delivery process in cancer therapy via preventing the cargos from degradation, improving the tumor-targeting efficiency, enhancing therapeutic agents' retention in specific sites, and controlling drug release. In the last decade, several mechanisms of suppressing tumor metastasis by functional nano drug delivery systems (NDDSs) have been revealed and a guidance for the rational design of anti-metastasis NDDSs is summarized, which consist of three aspects: optimization of physiochemical properties, tumor microenvironment remodeling, and biomimetic strategies. A series of medicinal functional biomaterials and anti-metastatic breast cancer NDDSs constructed by our team are introduced in this review. It is hoped that better anti-metastasis strategies can be inspired and applied in clinic.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong Province, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong Province, China
- School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
22
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart
131
I‐Labeled Self‐Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Kai Feng
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Wenyu Wu
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Xiuping Han
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Guoqiang Shao
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
23
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart 131 I-Labeled Self-Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:21884-21889. [PMID: 34374188 DOI: 10.1002/anie.202107231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Stimulating photosensitizers (PS) by Cerenkov radiation (CR) can overcome the light penetration limitation in traditional photodynamic therapy. However, separate injection of radiopharmaceuticals and PS cannot guarantee their efficient interaction in tumor areas, while co-delivery of radionuclides and PS face the problem of nonnegligible phototoxicity in normal tissues. Here, we describe a 131 I-labeled smart photosensitizer, composed of pyropheophorbide-a (photosensitizer), a diisopropylamino group (pH-sensitive group), an 131 I-labeled tyrosine group (CR donor), and polyethylene glycol, which can self-assemble into nanoparticles (131 I-sPS NPs). The 131 I-sPS NPs showed low phototoxicity in normal tissues due to aggregation-caused quenching effect, but could self-produce reactive oxygen species in tumor sites upon disassembly. Upon intravenous injection, 131 I-sPS NPs showed great tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice and orthotopic VX2 liver tumor bearing rabbits. We believed 131 I-sPS NPs could expand the application of CR and provide an effective strategy for deep tumor theranostics.
Collapse
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
24
|
Pang B, Yu Y, Zhang W. Thermoresponsive Polymers Based on Tertiary Amine Moieties. Macromol Rapid Commun 2021; 42:e2100504. [PMID: 34523742 DOI: 10.1002/marc.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers exhibiting unique reversible phase transition properties in aqueous solution in response to temperature stimuli have been extensively investigated. In the past two decades, thermoresponsive polymers based on tertiary amine moieties have achieved considerable progress and become an important family of thermoresponsive polymers, including tertiary amine functionalized poly((meth)acrylamide)s, poly((meth)acrylate)s, poly(styrene)s, poly(vinyl alcohol)s, and poly(ethylene oxide)s, which exhibit lower critical solution temperature and/or upper critical solution temperature in water or aliphatic alcohols. Their phase transition behavior can be modulated by the solution pH and CO2 due to the protonation of tertiary amine moieties in acidic condition and deprotonation in alkaline condition and the charged ammonium bicarbonate formed by the tertiary amine moieties and CO2 . The aim of this review is to summarize the recent progress in the thermoresponsive polymers based on tertiary amine moieties.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Zhang J, Li S, Wang Z, Liu P, Zhao Y. Multitunable Thermoresponsive and Aggregation Behaviors of Linear and Cyclic Polyacrylamide Copolymers Comprising Heterofunctional Y Junctions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Kumbhakar K, Dey A, Mondal A, De P, Biswas R. Interactions and Dynamics in Aqueous Solutions of pH-Responsive Polymers: A Combined Fluorescence and Dielectric Relaxation Study. J Phys Chem B 2021; 125:6023-6035. [PMID: 34057364 DOI: 10.1021/acs.jpcb.1c03435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction and dynamics of aqueous solutions of pH-responsive smart polymers are investigated via steady-state, time-resolved fluorescence emission spectroscopy with the help of external local reporter coumarin 153 (C153), while MHz to GHz dielectric relaxation spectroscopic (DRS) measurement reports the intrinsic medium relaxation features. A series of pH-responsive random copolymers (DPL-DP60) comprising of a pH-responsive moiety 2-((leucinyl)oxy)ethyl methacrylate (l-Leu-HEMA) and hydrophobic methyl methacrylate (MMA) are synthesized and characterized. A balance between the pH-responsive (l-Leu-HEMA) and the hydrophobic (MMA) content dictates the phase transition pH, which is found to be ∼5-7 for these aqueous copolymer solutions (1 mg/mL). Dynamic light scattering measurements in aqueous solutions of these polymers reflect a small particle size (∼2-8 nm) at solution pH below their individual phase transition pH, while a large particle size (∼140-340 nm) forms beyond their phase transition pH. No signature of a phase transition pH-driven abrupt change in static and dynamic properties of aqueous polymer solutions has been registered from pH-dependent dielectric relaxation as well as solute (C153)-centric fluorescence measurements. A significant impact of varying the l-Leu-HEMA/MMA segment ratio on steady-state fluorescence emission and rotational anisotropy decay of the fluorophore solute (C153) has been observed. MHz to GHz DRS in aqueous solutions of these pH-responsive polymers reflects bulk water-like dielectric features.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Amrita Mondal
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
27
|
Wan J, Fan B, Thang SH. Sonochemical preparation of polymer-metal nanocomposites with catalytic and plasmonic properties. NANOSCALE ADVANCES 2021; 3:3306-3315. [PMID: 36133657 PMCID: PMC9418413 DOI: 10.1039/d1na00120e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 06/01/2023]
Abstract
Polymer-metal nanocomposites are of increasing interest for a wide range of applications; however, the preparation of these nanocomposites often requires the addition of external initiation and reducing agents for the synthesis of polymer and metal nanoparticles, respectively. Herein, we demonstrate the preparation of polymer-metal nanocomposites for improved catalytic performance by utilizing ultrasound as both the initiation and reducing source. Specifically, synthesis of the macro-RAFT agent containing poly[2-(dimethylamino)ethyl methacrylate], followed by ultrasound-initiated polymerization-induced self-assembly (sono-PISA), provides triblock copolymer nanoparticles containing tertiary amine groups. These polymer nanoparticles were further used as the scaffold for the in situ reduction of metal ions (Au and Pd ions) by radicals generated via sonolysis of water without additional reducing agents. The immobilization of metal nanoparticles has been confirmed by TEM and electron diffraction patterns. Polymer-Au nanocomposites with stepwise-grown AuNPs can be applied as surface-enhanced Raman scattering (SERS) substrates for 4-aminothiophenol (4-ATP) detection. Furthermore, the catalytic performances of these prepared polymer-Au and polymer-Pd nanocomposites were examined for aerobic alcohol oxidation and the Suzuki-Miyaura cross-coupling reaction, respectively. Overall, this strategy is expected to greatly expand the utility of ultrasound in the preparation of polymer-metal nanocomposites and promote the catalytic applications of these nanocomposites.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
28
|
|
29
|
Choudhury N, Das S, Samadder S, De P. Phenylalanine-Tethered pH-Responsive Poly(2-Hydroxyethyl Methacrylate). Chem Asian J 2021; 16:1016-1024. [PMID: 33751842 DOI: 10.1002/asia.202100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
A series of pH-responsive random copolymers comprised of 2-hydroxyethyl methacrylate (HEMA) and tert-butyl carbamate (Boc)-protected phenylalanine methacryloyloxyethyl ester (Boc-Phe-EMA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in N,N'-dimethylformamide (DMF) at 70 °C. The synthesized copolymers were comprehensively characterized using a combination of techniques, including 1 H NMR, FT-IR spectroscopy and size exclusion chromatography (SEC). Reactivity of each monomers towards controlled radical polymerization was evaluated by determining the reactivity ratios by virtue of extended Kelen-Tüdös method at high conversions revealed the higher reactivity of non-modified HEMA (rHEMA =1.03) in contrast to Boc-Phe-EMA (rBoc-Phe-EMA =0.48). Furthermore, the expulsion of the Boc-groups resulted copolymers with ionizable pendant primary ammonium and hydroxyl groups. To understand the glass transition behaviours of homo- and co-polymers, differential scanning calorimetric (DSC) measurements were carried out. The effect of HEMA content on the pH-sensitivity of the copolymers in aqueous medium was investigated through turbidity measurements. Finally, the counteranion exchange from trifluoroacetate to chloride provided copolymers with enhanced water solubility and unaltered phase transition pH.
Collapse
Affiliation(s)
- Neha Choudhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Somnath Das
- Unilever R & D Bangalore, 64 main Road, Whitefield, Bangalore, 560066, India
| | - Satyajit Samadder
- Unilever R & D Bangalore, 64 main Road, Whitefield, Bangalore, 560066, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| |
Collapse
|
30
|
Tang Y, Cao P, Li W, He M, Dai Z, Xiong Y. Redox-responsive poly(ionic liquid) microgels explored as the building blocks for supramolecular assembly. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Wu D, Zou W, Quan H, Wei B, Yin H, Feng Y. Smart viscoelastic anion polyelectrolyte fluids “crosslinked” by CO2. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
33
|
Choudhury N, Saha B, De P. Recent progress in polymer-based optical chemosensors for Cu2+ and Hg2+ Ions: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Li X, Li J, Wei W, Yang F, Wu M, Wu Q, Xie T, Chen Y. Enhanced Mechanochemiluminescence from End-Functionalized Polyurethanes with Multiple Hydrogen Bonds. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaopei Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wanyuan Wei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Mengjiao Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Qin Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Titi Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
35
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Guo Z, Liang E, Sui J, Ma M, Yang L, Wang J, Hu J, Sun Y, Fan Y. Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomater 2020; 118:182-195. [PMID: 33045399 DOI: 10.1016/j.actbio.2020.09.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Stimulus-responsive nanosystem is a powerful method to improve the bioavailability and reduce the side effects of anticancer agents. In the present study, a customized dual pH-responsive micellar nanoplatform (DOX+LAP-M) based on polycarbonate-doxorubicin conjugate micelles was prepared to co-deliver the chemotherapeutic agent lapatinib for inhibiting tumor growth and metastasis. DOX+LAP-M micelles with spherical morphology had a size of ~112 nm and had an initial negative surface charge, which are favorable characteristics for long-term circulation in the blood. Once the micelles accumulated in tumor tissues, the intrinsic tumor extracellular acidity triggered the charge switch of DOX+LAP-M micelles from -1 to 9 mV, thereby facilitating cell internalization and tumor penetration. Subsequently, the pH-sensitive micellar core accelerated the release of doxorubicin and lapatinib in the acidic intracellular environment. DOX+LAP-M micelles effectively inhibited the proliferation, migration, and invasion of 4T1 cells in vitro; furthermore, the administration of DOX+LAP-M micelles in 4T1 xenograft-bearing mice suppressed solid tumor growth with an inhibitory rate of 90.2% and significantly decreased pulmonary metastatic nodules, without significant systemic toxicity. This multifunctional micellar system has high potential for clinical cancer therapy.
Collapse
Affiliation(s)
- Zhihao Guo
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China; National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Enhui Liang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China
| | - Junhui Sui
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (Liaoning Research Institute of Family Planning), The Affiliated Reproductive Hospital of China Medical University, Shenyang, 110031, P. R. China
| | - Jiwei Wang
- Fujian Province University Engineering Research Center of Mindong She Nationality Medicine, College of Chemistry and Materials, Ningde Normal University, Ningde, 352100, P. R. China
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
37
|
Rogers HE, Chambon P, Flynn S, Hern FY, Owen A, Rannard SP. Designing single trigger/dual-response release and degradation into amine-functional hyperbranched-polydendron nanoprecipitates. NANOSCALE ADVANCES 2020; 2:5468-5477. [PMID: 36132019 PMCID: PMC9418457 DOI: 10.1039/d0na00696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 06/15/2023]
Abstract
The synthesis of complex polymer architectures using relatively facile experimental protocols provides access to materials with the opportunity to control functionality and physical behaviour. The scope of hyperbranched-polydendron chemistries has been expanded here to include primary chains comprising amine-functional 'homopolymer', 'statistical copolymer' and amphiphilic 'block copolymer' analogues using 2-(diethyl amino)ethyl methacrylate, 2-hydroxy propyl methacrylate and t-butyl methacrylate. The different primary chain chemistry and architectures leads to a marked variation in nanoprecipitation behaviour and the response of the resulting amine-functional nanoparticles to varying pH. When acid-sensitive and acid-stable branchers, 1,4-butanediol di(methacryoyloxy)-ethyl ether and ethylene glycol dimethacrylate respectively, are utilised, nanoparticles with encapsulation properties are formed and may be triggered to either release-and-disassemble or release-disassemble-degrade to form a solution of lower molecular weight constituent primary chains.
Collapse
Affiliation(s)
- Hannah E Rogers
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | - Pierre Chambon
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Sean Flynn
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Faye Y Hern
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Andrew Owen
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
- Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
38
|
Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1842766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mahua Dhara (Ganguly)
- Department of Chemistry, Vivekananda Satavarshiki Mahavidyalaya, Jhargram, West Bengal, India
| |
Collapse
|
39
|
PNIPAM-b-PDMAEA double stimuli responsive copolymers: Effects of composition, end groups and chemical modification on solution self-assembly. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Banerjee P, Anas M, Jana S, Mandal TK. Recent developments in stimuli-responsive poly(ionic liquid)s. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02091-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Sorokin AV, Kuznetsov VA, Lavlinskaya MS. Synthesis of graft copolymers of carboxymethyl cellulose and N,N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03250-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Wei Y, Zeng Q, Huang J, Guo X, Wang L, Wang L. Preparation of Gas-Responsive Imprinting Hydrogel and Their Gas-Driven Switchable Affinity for Target Protein Recognition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24363-24369. [PMID: 32366087 DOI: 10.1021/acsami.0c05561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel gas-responsive imprinting hydrogels were fabricated by combining N,N'-dimethylaminoethyl methacrylate gas-sensitive monomers, N,N'-methylenebis(acrylamide) cross-linkers, and human serum albumin (HSA) template proteins via a free radical polymerization. The hydrogel exhibited a reversible gas-responsive property upon N2/CO2 exchange. This result was supported by the evidences from hydrogen nuclear magnetic resonance spectroscopy and scanning electron microscopy. By applying this property to sensing application, a CO2-responsive imprinted biosensor was originally designed on the surface of a glassy carbon electrode. The biosensor exhibited unique self-clean and self-recognition properties toward HSA proteins based on reversible conformational changes driven by N2/CO2 stimuli. Moreover, the proposed imprinted biosensor favored HSA proteins by showing satisfactory sensitivity and selectivity and a wider detection range with a low detection limit. As a rare example in imprint sensing, the biosensor was successfully applied to the HSA extraction from complex serum samples. With gas stimuli, the whole process was efficient, controllable, and harmless to the proteins. Thus, the developed biosensor may provide a new prospect in molecularly imprinted sensing applications.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Qiang Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jianzhi Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xinrong Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lulu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
43
|
Tang Y, Wang Q, Wu L, Liu K, Wang W, Shen Y, Xue Y, Dai S. L-proline functionalized pH-responsive copolymers as supported organocatalysts for asymmetric aldol reaction in water. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Regulating vesicle bilayer permeability and selectivity via stimuli-triggered polymersome-to-PICsome transition. Nat Commun 2020; 11:1524. [PMID: 32251282 PMCID: PMC7090076 DOI: 10.1038/s41467-020-15304-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Compared to liposomes, polymersomes of block copolymers (BCPs) possess enhanced stability, along with compromised bilayer permeability. Though polyion complex vesicles (PICsomes) from oppositely charged block polyelectrolytes possess semipermeable bilayers, they are unstable towards physiologically relevant ionic strength and temperature; moreover, permselectivity tuning of PICsomes has remained a challenge. Starting from a single component diblock or triblock precursor, we solve this dilemma by stimuli-triggered chemical reactions within pre-organized BCP vesicles, actuating in situ polymersome-to-PICsome transition and achieving molecular size-selective cargo release at tunable rates. UV light and reductive milieu were utilized to trigger carboxyl decaging and generate ion pairs within hydrophobic polymersome bilayers containing tertiary amines. Contrary to conventional PICsomes, in situ generated ones are highly stable towards extreme pH range (pH 2-12), ionic strength (~3 M NaCl), and elevated temperature (70 °C) due to multivalent ion-pair interactions at high local concentration and cooperative hydrogen bonding interactions of pre-organized carbamate linkages.
Collapse
|
45
|
Teper P, Chojniak-Gronek J, Hercog A, Oleszko-Torbus N, Płaza G, Kubacki J, Balin K, Kowalczuk A, Mendrek B. Nanolayers of Poly( N, N'-Dimethylaminoethyl Methacrylate) with a Star Topology and Their Antibacterial Activity. Polymers (Basel) 2020; 12:E230. [PMID: 31963443 PMCID: PMC7023597 DOI: 10.3390/polym12010230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
In this paper, we focus on the synthesis and characterization of novel stable nanolayers made of star methacrylate polymers. The effect of nanolayer modification on its antibacterial properties was also studied. A covalent immobilization of star poly(N,N'-dimethylaminoethyl methacrylate) (PDMAEMA) to benzophenone functionalized glass or silicon supports was carried out via a "grafting to" approach using UV irradiation. To date, star polymer UV immobilization has never been used for this purpose. The thickness of the resulting nanolayers increased from 30 to 120 nm with the molar mass of the immobilized stars. The successful bonding of star PDMAEMA to the supports was confirmed by surface sensitive quantitative spectroscopic methods. Next, amino groups in the polymer layer were quaternized with bromoethane, and the influence of this modification on the antibacterial properties of the obtained materials was analyzed using a selected reference strain of bacteria. The resulting star nanolayer surfaces exhibited higher antimicrobial activity against Bacillus subtilis ATCC 6633 compared to that of the linear PDMAEMA analogues grafted onto a support. These promising results and the knowledge about the influence of the topology and modification of PDMAEMA layers on their properties may help in searching for new materials for antimicrobial applications in medicine.
Collapse
Affiliation(s)
- Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (P.T.); (A.H.); (N.O.-T.); (A.K.)
| | - Joanna Chojniak-Gronek
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland; (J.C.-G.); (G.P.)
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (P.T.); (A.H.); (N.O.-T.); (A.K.)
| | - Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (P.T.); (A.H.); (N.O.-T.); (A.K.)
| | - Grażyna Płaza
- Institute for Ecology of Industrial Areas, Kossutha 6, 40-844 Katowice, Poland; (J.C.-G.); (G.P.)
| | - Jerzy Kubacki
- A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; (J.K.); (K.B.)
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Balin
- A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland; (J.K.); (K.B.)
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (P.T.); (A.H.); (N.O.-T.); (A.K.)
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (P.T.); (A.H.); (N.O.-T.); (A.K.)
| |
Collapse
|
46
|
Zhang J, Zhu X, Miao C, He Y, Zhao Y. Synthesis and properties of pH-cleavable toothbrush-like copolymers comprising multi-reactive Y junctions and a linear or cyclic backbone. Polym Chem 2020. [DOI: 10.1039/d0py00084a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Y-junction-bearing toothbrush-like copolymers can exhibit unique physical properties and hierarchical (co)assembly behaviors dependent on topology, external stimuli and hydrolysis.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yanzhe He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
47
|
Zhu X, Zhang J, Miao C, Li S, Zhao Y. Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers. Polym Chem 2020. [DOI: 10.1039/d0py00245c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive miktobrush-coil terpolymers can exhibit unique physical properties and hierarchical self-assembly behaviors dependent on composition, concentration and external stimuli.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Siyu Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
48
|
Shahriari M, Torchilin VP, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. “Smart” self-assembled structures: toward intelligent dual responsive drug delivery systems. Biomater Sci 2020; 8:5787-5803. [DOI: 10.1039/d0bm01283a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the current review, we summarized the polymer and peptide-based schizophrenic copolymers which could form micellar and vesicular (polymersome) systems providing novel structures with beneficial applications.
Collapse
Affiliation(s)
- Mahsa Shahriari
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine
- Northeastern University
- Boston
- USA
- Department of Oncology
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Khalil Abnous
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center
- Pharmaceutical Technology Institute
- Mashhad University of Medical Sciences
- Mashhad
- Iran
| |
Collapse
|
49
|
Ma B, Zhuang W, Xu H, Li G, Wang Y. Hierarchical Responsive Nanoplatform with Two-Photon Aggregation-Induced Emission Imaging for Efficient Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47259-47269. [PMID: 31769279 DOI: 10.1021/acsami.9b17587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Theranostic nanoplatforms haev been proven to be a feasible strategy against cancer for convenient diagnosis, efficient drug release, and reduced side effects. However, the drug leakage during blood circulation, poor cellular uptake of drug-loaded nanoparticles, and insufficient drug release still remain to be overcome. Herein, a hierarchical pH and reactive oxygen species (ROS)-responsive nanoplatform is constructed labeling with a two-photon fluorophore developed by us, aiming for a programmed drug delivery and an intensive two-photon bioimaging. With the capecitabine (Cap) conjugated, the prodrug polymer PMPC-b-P[MPA(Cap)-co-TPMA]-PAEMA (PMMTAb-Cap) can be self-assembled into the core-shell structured micelles, which can stay stable in the blood stream. Once the micelles accumulate at the tumor tissue, the outside PMPC shell can be desquamated while the inner PAEMA become hydrophilic and electropositive under the acidic extracellular tumor microenvironment, leading to a shrunken micellar size for the better penetration along with enhanced endocytosis. After cellular internalization, the overexpressed intracellular ROS can eventually trigger the drug delivery for an accurate tumor therapy, which is confirmed by the in vivo antitumor experiments. Furthermore, the in vivo micellar biodistribution can be traced by a deep tissue imaging up to 150 μm because of the aggregation-induced emission active two-photon fluorophore. As a theranostic nanoplatform with two-photon bioimaging and hierarchical responsiveness, these PMMTAb-Cap micelles can be a potential candidate for tumor theranostical applications.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Weihua Zhuang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Hong Xu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
50
|
|