1
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
2
|
Chen X, Yang G, Quan X, Zhu S, Qin B, Shou D, Zhuang L. Significance of a minor pilin PilV in biofilm cohesion of Geobacter sulfurreducens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172242. [PMID: 38582122 DOI: 10.1016/j.scitotenv.2024.172242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.
Collapse
Affiliation(s)
- Xiaochun Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Quan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Siyue Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Baoli Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Danyang Shou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Hernández-Sánchez A, Páez-Pérez ED, Alfaro-Saldaña E, Olivares-Illana V, García-Meza JV. Understanding a Core Pilin of the Type IVa Pili of Acidithiobacillus thiooxidans, PilV. J Microbiol Biotechnol 2024; 34:527-537. [PMID: 38346803 PMCID: PMC11016768 DOI: 10.4014/jmb.2310.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.
Collapse
Affiliation(s)
- Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Edgar D. Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, 78210, SLP, México
| | - J. Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| |
Collapse
|
4
|
Zuke JD, Burton BM. From isotopically labeled DNA to fluorescently labeled dynamic pili: building a mechanistic model of DNA transport to the cytoplasmic membrane. Microbiol Mol Biol Rev 2024; 88:e0012523. [PMID: 38466096 PMCID: PMC10966944 DOI: 10.1128/mmbr.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane. First, the challenges inherent to DNA movement through the cell periphery will be discussed to provide context for DNA transport during natural competence. The following sections will trace the development of a comprehensive model for DNA translocation to the cytoplasmic membrane, highlighting the crucial studies performed over the last century that have contributed to building contemporary DNA import models. Finally, this review will conclude by reflecting on what is still unknown about the process and the possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Jason D. Zuke
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Briana M. Burton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024:eesp00032023. [PMID: 38294234 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
6
|
Weawsiangsang S, Rattanachak N, Ross S, Ross GM, Baldock RA, Jongjitvimol T, Jongjitwimol J. Hydroquinine Enhances the Efficacy of Contact Lens Solutions for Inhibiting Pseudomonas aeruginosa Adhesion and Biofilm Formation. Antibiotics (Basel) 2024; 13:56. [PMID: 38247615 PMCID: PMC10812619 DOI: 10.3390/antibiotics13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
P. aeruginosa is one of the most common bacteria causing contact lens-related microbial keratitis (CLMK). Previous studies report that disinfecting solutions were ineffective in preventing biofilm formation. Solutions containing novel natural agents may be an excellent alternative for reducing the risk of CLMK. Here, we investigate the disinfecting properties of hydroquinine in combination with multipurpose solutions (MPSs) to prevent P. aeruginosa adhesion and biofilm formation. We examined the antibacterial, anti-adhesion, and anti-biofilm properties of hydroquinine-formulated MPSs compared to MPSs alone. Using RT-qPCR, hydroquinine directly affected the expression levels of adhesion-related genes, namely, cgrC, cheY, cheZ, fimU, and pilV, resulting in reduced adhesion and anti-biofilm formation. Using ISO 14729 stand-alone testing, hydroquinine met the criteria (>99.9% killing at disinfection time) against both P. aeruginosa reference and clinical strains. Using the crystal violet retention assay and FE-SEM, MPSs combined with hydroquinine were effective in inhibiting P. aeruginosa adhesion and destroying preexisting biofilms. This report is the first to highlight the potential utility of hydroquinine-containing formulations as a disinfecting solution for contact lenses, specifically for inhibiting adhesion and destroying biofilm. These findings may aid in the development of novel disinfectants aimed at combating P. aeruginosa, thereby potentially reducing the incidence of CLMK.
Collapse
Affiliation(s)
- Sattaporn Weawsiangsang
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nontaporn Rattanachak
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (N.R.); (T.J.)
| | - Sukunya Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (S.R.); (G.M.R.)
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M. Ross
- Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; (S.R.); (G.M.R.)
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Robert A. Baldock
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Touchkanin Jongjitvimol
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (N.R.); (T.J.)
| | - Jirapas Jongjitwimol
- Biomedical Sciences Program, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Centre of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
7
|
Sonani RR, Sanchez JC, Baumgardt JK, Kundra S, Wright ER, Craig L, Egelman EH. Tad and toxin-coregulated pilus structures reveal unexpected diversity in bacterial type IV pili. Proc Natl Acad Sci U S A 2023; 120:e2316668120. [PMID: 38011558 PMCID: PMC10710030 DOI: 10.1073/pnas.2316668120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.
Collapse
Affiliation(s)
- Ravi R. Sonani
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| | - Juan Carlos Sanchez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Joseph K. Baumgardt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Shivani Kundra
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
8
|
Páez-Pérez ED, Hernández-Sánchez A, Alfaro-Saldaña E, García-Meza JV. Disorder and amino acid composition in proteins: their potential role in the adaptation of extracellular pilins to the acidic media, where Acidithiobacillus thiooxidans grows. Extremophiles 2023; 27:31. [PMID: 37848738 DOI: 10.1007/s00792-023-01317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
There are few biophysical studies or structural characterizations of the type IV pilin system of extremophile bacteria, such as the acidophilic Acidithiobacillus thiooxidans. We set out to analyze their pili-comprising proteins, pilins, because these extracellular proteins are in constant interaction with protons of the acidic medium in which At. thiooxidans grows. We used the web server Operon Mapper to analyze and identify the cluster codified by the minor pilin of At. thiooxidans. In addition, we carried an in-silico characterization of such pilins using the VL-XT algorithm of PONDR® server. Our results showed that structural disorder prevails more in pilins of At. thiooxidans than in non-acidophilic bacteria. Further computational characterization showed that the pilins of At. thiooxidans are significantly enriched in hydroxy (serine and threonine) and amide (glutamine and asparagine) residues, and significantly reduced in charged residues (aspartic acid, glutamic acid, arginine and lysine). Similar results were obtained when comparing pilins from other Acidithiobacillus and other acidophilic bacteria from another genus versus neutrophilic bacteria, suggesting that these properties are intrinsic to pilins from acidic environments, most likely by maintaining solubility and stability in harsh conditions. These results give guidelines for the application of extracellular proteins of acidophiles in protein engineering.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico.
| | - Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico.
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico
| | - J Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
9
|
Riediger M, Hoffmann K, Isberner R, Dreyer A, Tersteegen A, Marquardt P, Kaasch AJ, Zautner AE. Chimaeribacter arupi a new member of the Yersineacea family has the characteristics of a human pathogen. Front Cell Infect Microbiol 2023; 13:1277522. [PMID: 37868348 PMCID: PMC10587679 DOI: 10.3389/fcimb.2023.1277522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Chimaeribacter arupi (heterotypic synonym: "Nissabacter archeti") is a facultative anaerobic, newly described Gram-negative rod and belongs to the Yersineacea family. Here, we report the case of a 19-month-old female infant patient who presented to the emergency unit with somnolence and fever. C. arupi was isolated from a positive blood culture, taken via an implanted Broviac catheter, proving a bloodstream infection by the pathogen. The objective of this study was to utilize whole genome sequencing to assess the genes encoding potential virulence associated factors, which may play a role in host tropism, tissue invasion and the subsequent stages in the pathogenesis of a bloodstream infection with C. arupi. The genome of the isolate was completely sequenced employing Illumina MiSeq and Nanopore MinION sequencing and the presumptive virulence associated factors and antimicrobial resistance genes were investigated in more detail. Additionally, we performed metabolic profiling and susceptibility testing by microdilution. The presence of predicted TcfC-like α-Pili suggests that C. arupi is highly adapted to humans as a host. It utilizes flagellar and type IV pili-mediated motility, as well as a number of γ1-pili and a σ-pilus, which may be used to facilitate biofilm formation and adherence to host epithelia. Additionally, long polar fimbriae may aid in tissue invasion. The bacterium possesses antioxidant factors, which may enable temporary survival in phagolysosomes, and a capsule that potentially provides protection from phagocytosis. It may acquire iron ions from erythrocytes through the type 6 secretion system and hemolysins. Furthermore, the isolate exhibits beta-lactamase-mediated penicillin and aminopenicillin resistance. Based on the analysis of the whole genome, we conclude that C. arupi possesses virulence factors associated with tissue invasion and may thus be a potential opportunistic pathogen of bloodstream infections.
Collapse
Affiliation(s)
- Matthias Riediger
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Katharina Hoffmann
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Riekje Isberner
- Universitätskinderklinik, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Annika Dreyer
- Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Aljoscha Tersteegen
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Pauline Marquardt
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
10
|
Vo N, Sidner BS, Yu Y, Piepenbrink KH. Type IV Pilus-Mediated Inhibition of Acinetobacter baumannii Biofilm Formation by Phenothiazine Compounds. Microbiol Spectr 2023; 11:e0102323. [PMID: 37341603 PMCID: PMC10433872 DOI: 10.1128/spectrum.01023-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Infections by pathogenic Acinetobacter species represent a significant burden on the health care system, despite their relative rarity, due to the difficulty of treating infections through oral antibiotics. Multidrug resistance is commonly observed in clinical Acinetobacter infections and multiple molecular mechanisms have been identified for this resistance, including multidrug efflux pumps, carbapenemase enzymes, and the formation of bacterial biofilm in persistent infections. Phenothiazine compounds have been identified as a potential inhibitor of type IV pilus production in multiple Gram-negative bacterial species. Here, we report the ability of two phenothiazines to inhibit type IV pilus-dependent surface (twitching) motility and biofilm formation in multiple Acinetobacter species. Biofilm formation was inhibited in both static and continuous flow models at micromolar concentrations without significant cytotoxicity, suggesting that type IV pilus biogenesis was the primary molecular target for these compounds. These results suggest that phenothiazines may be useful lead compounds for the development of biofilm dispersal agents against Gram-negative bacterial infections. IMPORTANCE Acinetobacter infections are a growing burden on health care systems worldwide due to increasing antimicrobial resistance through multiple mechanisms. Biofilm formation is an established mechanism of antimicrobial resistance, and its inhibition has the potential to potentiate the use of existing drugs against pathogenic Acinetobacter. Additionally, as discussed in the manuscript, anti-biofilm activity by phenothiazines has the potential to help to explain their known activity against other bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nam Vo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin S. Sidner
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Yang WT, Yi YJ, Xia B. Unveiling the duality of Pantoea dispersa: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162320. [PMID: 36801414 DOI: 10.1016/j.scitotenv.2023.162320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pantoea dispersa is a Gram-negative bacterium that exists in a variety of environments and has potential in many commercial and agricultural applications, such as biotechnology, environmental protection, soil bioremediation, and plant growth stimulation. However, P. dispersa is also a harmful pathogen to both humans and plants. This "double-edged sword" phenomenon is not uncommon in nature. To ensure survival, microorganisms respond to both environmental and biological stimuli, which could be beneficial or detrimental to other species. Therefore, to harness the full potential of P. dispersa, while minimizing potential harm, it is imperative to unravel its genetic makeup, understand its ecological interactions and underlying mechanisms. This review aims to provide a comprehensive and up-to-date overview of the genetic and biological characteristics of P. dispersa, in addition to potential impacts on plants and humans, as well as to provide insights into potential applications.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China.
| |
Collapse
|
12
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Gaines MC, Isupov MN, Sivabalasarma S, Haque RU, McLaren M, Mollat CL, Tripp P, Neuhaus A, Gold VAM, Albers SV, Daum B. Electron cryo-microscopy reveals the structure of the archaeal thread filament. Nat Commun 2022; 13:7411. [PMID: 36456543 PMCID: PMC9715654 DOI: 10.1038/s41467-022-34652-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022] Open
Abstract
Pili are filamentous surface extensions that play roles in bacterial and archaeal cellular processes such as adhesion, biofilm formation, motility, cell-cell communication, DNA uptake and horizontal gene transfer. The model archaeaon Sulfolobus acidocaldarius assembles three filaments of the type-IV pilus superfamily (archaella, archaeal adhesion pili and UV-inducible pili), as well as a so-far uncharacterised fourth filament, named "thread". Here, we report on the cryo-EM structure of the archaeal thread. The filament is highly glycosylated and consists of subunits of the protein Saci_0406, arranged in a head-to-tail manner. Saci_0406 displays structural similarity, but low sequence homology, to bacterial type-I pilins. Thread subunits are interconnected via donor strand complementation, a feature reminiscent of bacterial chaperone-usher pili. However, despite these similarities in overall architecture, archaeal threads appear to have evolved independently and are likely assembled by a distinct mechanism.
Collapse
Affiliation(s)
- Matthew C Gaines
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4QD, Exeter, UK
| | - Shamphavi Sivabalasarma
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Risat Ul Haque
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Clara L Mollat
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Patrick Tripp
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, Stocker Road, EX4 4QD, Exeter, UK.
| |
Collapse
|
14
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
15
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
16
|
Ronish LA, Sidner B, Yu Y, Piepenbrink KH. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem 2022; 298:102449. [PMID: 36064001 PMCID: PMC9556784 DOI: 10.1016/j.jbc.2022.102449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile is a Gram-positive bacillus, which is a frequent cause of gastrointestinal infections triggered by the depletion of the gut microbiome. Because of the frequent recurrence of these infections after antibiotic treatment, mechanisms of C. difficile persistence and recurrence, including biofilm formation, are of increasing interest. Previously, our group and others found that type IV pili, filamentous helical appendages polymerized from protein subunits, promoted microcolony and biofilm formation in C. difficile. In Gram-negative bacteria, the ability of type IV pili to mediate bacterial self-association has been explained through interactions between the pili of adjacent cells, but type IV pili from several Gram-negative species are also required for natural competence through DNA uptake. Here, we report the ability of two C. difficile pilin subunits, PilJ and PilW, to bind to DNA in vitro, as well as the defects in biofilm formation in the pilJ and pilW gene-interruption mutants. Additionally, we have resolved the X-ray crystal structure of PilW, which we use to model possible structural mechanisms for the formation of C. difficile biofilm through interactions between type IV pili and the DNA of the extracellular matrix. Taken together, our results provide further insight into the relationship between type IV pilus function and biofilm formation in C. difficile and, more broadly, suggest that DNA recognition by type IV pili and related structures may have functional importance beyond DNA uptake for natural competence.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
17
|
Alteri CJ, Rios-Sarabia N, De la Cruz MA, González-y-Merchand JA, Soria-Bustos J, Maldonado-Bernal C, Cedillo ML, Yáñez-Santos JA, Martínez-Laguna Y, Torres J, Friedman RL, Girón JA, Ares MA. The Flp type IV pilus operon of Mycobacterium tuberculosis is expressed upon interaction with macrophages and alveolar epithelial cells. Front Cell Infect Microbiol 2022; 12:916247. [PMID: 36204636 PMCID: PMC9531140 DOI: 10.3389/fcimb.2022.916247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of Mycobacterium tuberculosis (Mtb) harbors the genetic machinery for assembly of the Fimbrial low-molecular-weight protein (Flp) type IV pilus. Presumably, the Flp pilus is essential for pathogenesis. However, it remains unclear whether the pili genes are transcribed in culture or during infection of host cells. This study aimed to shed light on the expression of the Flp pili-assembly genes (tadZ, tadA, tadB, tadC, flp, tadE, and tadF) in Mtb growing under different growth conditions (exponential phase, stationary phase, and dormancy NRP1 and NRP2 phases induced by hypoxia), during biofilm formation, and in contact with macrophages and alveolar epithelial cells. We found that expression of tad/flp genes was significantly higher in the stationary phase than in exponential or NRP1 or NRP2 phases suggesting that the bacteria do not require type IV pili during dormancy. Elevated gene expression levels were recorded when the bacilli were in contact for 4 h with macrophages or epithelial cells, compared to mycobacteria propagated alone in the cultured medium. An antibody raised against a 12-mer peptide derived from the Flp pilin subunit detected the presence of Flp pili on intra- and extracellular bacteria infecting eukaryotic cells. Altogether, these are compelling data showing that the Flp pili genes are expressed during the interaction of Mtb with host cells and highlight a role for Flp pili in colonization and invasion of the host, subsequently promoting bacterial survival during dormancy.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Nora Rios-Sarabia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - María L. Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A. Yáñez-Santos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Richard L. Friedman
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| |
Collapse
|
18
|
Suraby EJ, Sruthi KB, Antony G. Genome-wide identification of type III effectors and other virulence factors in Ralstonia pseudosolanacearum causing bacterial wilt in ginger (Zingiber officinale). Mol Genet Genomics 2022; 297:1371-1388. [PMID: 35879566 DOI: 10.1007/s00438-022-01925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
Ralstonia pseudosolanacearum causes bacterial wilt in ginger, reducing ginger production worldwide. We sequenced the whole genome of a highly virulent phylotype I, race 4, biovar 3 Ralstonia pseudosolanacearum strain GRsMep isolated from a severely infected ginger field in India. R. pseudosolanacearum GRsMep genome is organised into two replicons: chromosome and megaplasmid with a total genome size of 5,810,605 bp. This strain encodes approximately 72 effectors which include a combination of core effectors as well as highly variable, diverse repertoire of type III effectors. Comparative genome analysis with GMI1000 identified conservation in the genes involved in the general virulence mechanism. Our analysis identified type III effectors, RipBJ and RipBO as present in GRsMep but absent in the reported genomes of other strains infecting Zingiberaceae family. GRsMep contains 126 unique genes when compared to the pangenome of the Ralstonia strains that infect the Zingiberaceae family. The whole-genome data of R. pseudosolanacearum strain will serve as a resource for exploring the evolutionary processes that structure and regulate the virulence determinants of the strain. Pathogenicity testing of the transposon insertional mutant library of GRsMep through virulence assay on ginger plants identified a few candidate virulence determinants specific to bacterial wilt in ginger.
Collapse
Affiliation(s)
- Erinjery Jose Suraby
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India
| | - K Bharathan Sruthi
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India
| | - Ginny Antony
- Department of Plant Science, Central University of Kerala, Periye, 671320, Kasaragod, Kerala, India.
| |
Collapse
|
19
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
20
|
Cyanobacteria: Model Microorganisms and Beyond. Microorganisms 2022; 10:microorganisms10040696. [PMID: 35456747 PMCID: PMC9025173 DOI: 10.3390/microorganisms10040696] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In this review, the general background is provided on cyanobacteria, including morphology, cell membrane structure, and their photosynthesis pathway. The presence of cyanobacteria in nature, and their industrial applications are discussed, and their production of secondary metabolites are explained. Biofilm formation, as a common feature of microorganisms, is detailed and the role of cell diffusion in bacterial colonization is described. Then, the discussion is narrowed down to cyanobacterium Synechocystis, as a lab model microorganism. In this relation, the morphology of Synechocystis is discussed and its different elements are detailed. Type IV pili, the complex multi-protein apparatus for motility and cell-cell adhesion in Synechocystis is described and the underlying function of its different elements is detailed. The phototaxis behavior of the cells, in response to homogenous or directional illumination, is reported and its relation to the run and tumble statistics of the cells is emphasized. In Synechocystis suspensions, there may exist a reciprocal interaction between the cell and the carrying fluid. The effects of shear flow on the growth, doubling per day, biomass production, pigments, and lipid production of Synechocystis are reported. Reciprocally, the effects of Synechocystis presence and its motility on the rheological properties of cell suspensions are addressed. This review only takes up the general grounds of cyanobacteria and does not get into the detailed biological aspects per se. Thus, it is substantially more comprehensive in that sense than other reviews that have been published in the last two decades. It is also written not only for the researchers in the field, but for those in physics and engineering, who may find it interesting, useful, and related to their own research.
Collapse
|
21
|
Ragab W, Kawato S, Nozaki R, Kondo H, Hirono I. Comparative genome analyses of five Vibrio penaeicida strains provide insights into their virulence-related factors. Microb Genom 2022; 8. [PMID: 35171089 PMCID: PMC8942037 DOI: 10.1099/mgen.0.000766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio penaeicida (family Vibrionaceae) is an important bacterial pathogen that affects Japanese shrimp aquaculture. Only two whole-genome sequences of V. penaeicida are publicly available, which has hampered our understanding of the pathogenesis of shrimp vibriosis caused by this bacterium. To gain insight into the genetic features, evolution and pathogenicity of V. penaeicida, we sequenced five V. penaeicida strains (IFO 15640T, IFO 15641, IFO 15642, TUMSAT-OK1 and TUMSAT-OK2) and performed comparative genomic analyses. Virulence factors and mobile genetic elements were detected. Furthermore, average nucleotide identities (ANIs), clusters of orthologous groups and phylogenetic relationships were evaluated. The V. penaeicida genome consists of two circular chromosomes. Chromosome I sizes ranged from 4.1 to 4.3 Mb, the GC content ranged from 43.9 to 44.1 %, and the number of predicted protein-coding sequences (CDSs) ranged from 3620 to 3782. Chromosome II sizes ranged from 2.2 to 2.4 Mb, the GC content ranged from 43.5 to 43.8 %, and the number of predicted CDSs ranged from 1992 to 2273. All strains except IFO 15641 harboured one plasmid, having sizes that ranged from 150 to 285 kb. All five genomes had typical virulence factors, including adherence, anti-phagocytosis, flagella-related proteins and toxins (repeats-in-toxin and thermolabile haemolysin). The genomes also contained factors responsible for iron uptake and the type II, IV and VI secretion systems. The genome of strain TUMSAT-OK2 tended to encode more prophage regions than the other strains, whereas the genome of strain IFO 15640T had the highest number of regions encoding genomic islands. For comparative genome analysis, we used V. penaeicida (strain CAIM 285T) as a reference strain. ANIs between strain CAIM 285T and the five V. penaeicida strains were >95 %, which indicated that these strains belong to the same species. Orthology cluster analysis showed that strains TUMSAT-OK1 and TUMSAT-OK2 had the greatest number of shared gene clusters, followed by strains CAIM 285T and IFO 15640T. These strains were also the most closely related to each other in a phylogenetic analysis. This study presents the first comparative genome analysis of V. penaeicida and these results will be useful for understanding the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Wafaa Ragab
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Ikuo Hirono,
| |
Collapse
|
22
|
Moreira RA, Baker JL, Guzman HV, Poma AB. Assessing the Stability of Biological Fibrils by Molecular-Scale Simulations. Methods Mol Biol 2022; 2340:357-378. [PMID: 35167082 DOI: 10.1007/978-1-0716-1546-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nanomechanical characterization of several biological fibrils that are the result of protein aggregation via molecular dynamics simulation is nowadays feasible, and together with atomic force microscopy experiments has widened our understanding of the forces in the regime of pN-nN and system sizes of about hundreds of nanometers. Several methodologies have been developed to achieve this target, and they range from the atomistic representation via molecular force fields to coarse-grained strategies that provide comparable results with experiments in a systematic way. In this chapter, we discuss several methodologies for the calculation of mechanical parameters, such as the elastic constants of relevant biological systems. They are presented together with details about parameterization and current limitations. Then, we discuss some of the applications of such methodologies for the description of bacterial filament and β-amyloid systems. Finally, the latest lines of development are discussed.
Collapse
Affiliation(s)
- Rodrigo A Moreira
- Soft Matter and Biosystems, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, USA
| | | | - Adolfo B Poma
- Soft Matter and Biosystems, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
23
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
24
|
Mignolet J, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. AFM force-clamp spectroscopy captures the nanomechanics of the Tad pilus retraction. NANOSCALE HORIZONS 2021; 6:489-496. [PMID: 33982737 DOI: 10.1039/d1nh00158b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Motorization of bacterial pili is key to generate traction forces to achieve cellular function. The Tad (or Type IVc) pilus from Caulobacter crescentus is a widespread motorized nanomachine crucial for bacterial survival, evolution and virulence. An unusual bifunctional ATPase motor drives Tad pilus retraction, which helps the bacteria to land on target surfaces. Here, we use a novel platform combining a fluorescence-based screening of piliated bacteria and atomic force microscopy (AFM) force-clamp spectroscopy, to monitor over time (30 s) the nanomechanics and dynamics of the Tad nanofilament retraction under a high constant tension (300 pN). We observe striking transient variations of force and height originating from two phenomena: active pilus retraction and passive hydrophobic interactions between the pilus and the hydrophobic substrate. That the Tad pilus is able to retract under high tensile loading - at a velocity of ∼150 nm s-1 - indicates that this nanomachine is stronger than previously anticipated. Our findings show that pilus retraction and hydrophobic interactions work together to mediate bacterial cell landing and surface adhesion. The motorized pilus retraction actively triggers the cell to approach the substrate. At short distances, passive hydrophobic interactions accelerate the approach phenomenon and promote strong cell-substrate adhesion. This mechanism could provide a strategy to save ATP-based energy by the retraction ATPase. Our force-clamp AFM methodology offers promise to decipher the physics of bacterial nanomotors with high sensitivity and temporal resolution.
Collapse
Affiliation(s)
- Johann Mignolet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07, Louvain-la-Neuve B-1348, Belgium.
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07, Louvain-la-Neuve B-1348, Belgium.
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07, Louvain-la-Neuve B-1348, Belgium.
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte, L7.07.07, Louvain-la-Neuve B-1348, Belgium.
| |
Collapse
|
25
|
Rozman V, Accetto T, Duncan SH, Flint HJ, Vodovnik M. Type IV pili are widespread among non-pathogenic Gram-positive gut bacteria with diverse carbohydrate utilization patterns. Environ Microbiol 2021; 23:1527-1540. [PMID: 33331146 DOI: 10.1111/1462-2920.15362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Type IV pili (T4P) are bacterial surface-exposed appendages that have been extensively studied in Gram-negative pathogenic bacteria. Despite recent sequencing efforts, little is known regarding these structures in non-pathogenic anaerobic Gram-positive species, particularly commensals of the mammalian gut. Early studies revealed that T4P in two ruminal Gram-positive species are associated with growth on cellulose, suggesting possible associations of T4P with substrate utilization patterns. In the present study, genome sequences of 118 taxonomically diverse, mainly Gram-positive, bacterial strains isolated from anaerobic (gastrointestinal) environments, have been analysed. The genes likely to be associated with T4P biogenesis were analysed and grouped according to T4P genetic organization. In parallel, consortia of Carbohydrate Active enZYmes (CAZymes) were also analysed and used to predict carbohydrate utilization abilities of selected strains. The predictive power of this approach was additionally confirmed by experimental assessment of substrate-related growth patterns of selected strains. Our analysis revealed that T4P systems with diverse genetic organization are widespread among Gram-positive anaerobic non-pathogenic bacteria isolated from different environments, belonging to two phylogenetically distantly related phyla: Firmicutes and Actinobacteria.
Collapse
Affiliation(s)
- Vita Rozman
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tomaž Accetto
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Maša Vodovnik
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
26
|
Graham KJ, Burrows LL. More than a feeling: microscopy approaches to understanding surface-sensing mechanisms. J Bacteriol 2020; 203:JB.00492-20. [PMID: 33077631 PMCID: PMC8095462 DOI: 10.1128/jb.00492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms by which bacteria sense and respond to surface attachment have long been a mystery. Our understanding of the structure and dynamics of bacterial appendages, notably type IV pili (T4P), provided new insights into the potential ways that bacteria sense surfaces. T4P are ubiquitous, retractable hair-like adhesins that until recently were difficult to image in the absence of fixation due to their nanoscale size. This review focuses on recent microscopy innovations used to visualize T4P in live cells to reveal the dynamics of their retraction and extension. We discuss recently proposed mechanisms by which T4P facilitate bacterial surface sensing, including the role of surface-exposed PilY1, two-component signal transduction pathways, force-induced structural modifications of the major pilin, and altered dynamics of the T4P motor complex.
Collapse
Affiliation(s)
- Katherine J Graham
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, and the Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton ON Canada L8S4K1
| |
Collapse
|
27
|
The variable oligomeric state of Amuc_1100 from Akkermansia muciniphila. J Struct Biol 2020; 212:107593. [PMID: 32736072 DOI: 10.1016/j.jsb.2020.107593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
Akkermansia muciniphila is a beneficial microorganism colonized in the human gut that can reverse many intestinal metabolic-related diseases. Amuc_1100 is an outer-membrane protein of A. muciniphila. Oral administration of Amuc_1100 can reduce fat mass development, insulin resistance, and dyslipidemia in mice and activated the toll-like receptor 2 (TLR2) to regulate the immune response of the host, but the molecular mechanism remains unclear. Here we report the crystal structure of the extramembranous domain of Amuc_1100, which consists of a four-stranded antiparallel β-sheet and four α-helices. Two C-terminal helices and the four-stranded antiparallel β-sheet formed two "αββ" motifs and constituted the core domain, which shared a similar fold with type IV pili and type II Secretion system protein. Although the full-length of the extramembranous domain of Amuc_1100 existed as a monomer in solution, they formed trimer in the crystal. Elimination of the N-terminal coiled-coil helix α1 led to dimerization of Amuc_1100 both in solution and in crystal, indicating that the oligomeric state of Amuc_1100 was variable and could be influenced by α1. In addition, we identified that Amuc_1100 could directly bind human TLR2 (hTRL2) in vitro, suggesting that Amuc_1100 may serve as a new ligand for hTLR2. Dimerization of Amuc_1100 improved its hTLR2-binding affinity, suggesting that the α1-truncated Amuc_1100 could be a beneficial candidate for the development of A. muciniphila related drugs.
Collapse
|
28
|
Zhang Y, Han L, Zhang L, Xu C, Shi X, Hikichi Y, Ohnishi K. Expression of Ralstonia solanacearum type III secretion system is dependent on a novel type 4 pili (T4P) assembly protein (TapV) but is T4P independent. MOLECULAR PLANT PATHOLOGY 2020; 21:777-793. [PMID: 32196936 PMCID: PMC7214476 DOI: 10.1111/mpp.12930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Type IV pili (T4P) are virulence factors in various pathogenic bacteria of animals and plants that play important roles in twitching motility, swimming motility, biofilm formation, and adhesion to host cells. Here, we genetically characterized functional roles of a putative T4P assembly protein TapV (Rsc1986 in reference strain GMI1000) and its homologue Rsp0189, which shares 58% amino acid identity with TapV, in Ralstonia solanacearum. Deletion of tapV, but not rsp0189, resulted in significantly impaired twitching motility, swimming motility, and adhesion to tomato roots, which are consistent as phenotypes of the pilA mutant (a known R. solanacearum T4P-deficient mutant). However, unlike the pilA mutant, the tapV mutant produced more biofilm than the wild-type strain. Our gene expression studies revealed that TapV, but not Rsp0189, is important for expression of a type III secretion system (T3SS, a pathogenicity determinant of R. solanacearum) both in vitro and in planta, but it is T4P independent. We further revealed that TapV affected the T3SS expression via the PhcA-TapV-PrhG-HrpB pathway, consistent with previous reports that PhcA positively regulates expression of pilA and prhG. Moreover, deletion of tapV, but not rsp0189, significantly impaired the ability to migrate into and colonize xylem vessels of host plants, but there was no alteration in intercellular proliferation of R. solanacearum in tobacco leaves, which is similar to the pilA mutant. The tapV mutant showed significantly impaired virulence in host plants. This is the first report on the impact of T4P components on the T3SS, providing novel insights into our understanding of various biological functions of T4P and the complex regulatory pathway of T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqingChina
| | - Liangliang Han
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Research Institute of Molecular GeneticsKochi UniversityKochiJapan
| | - Lichun Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Research Institute of Molecular GeneticsKochi UniversityKochiJapan
| | - Changzheng Xu
- College of Life scienceSouthwest UniversityChongqingChina
| | - Xiaojun Shi
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqingChina
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityKochiJapan
| | - Kouhei Ohnishi
- Research Institute of Molecular GeneticsKochi UniversityKochiJapan
| |
Collapse
|
29
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
30
|
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Appl Environ Microbiol 2020; 86:AEM.00200-20. [PMID: 32086304 DOI: 10.1128/aem.00200-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.
Collapse
|
31
|
Crawshaw AD, Baslé A, Salgado PS. A practical overview of molecular replacement: Clostridioides difficile PilA1, a difficult case study. Acta Crystallogr D Struct Biol 2020; 76:261-271. [PMID: 32133990 PMCID: PMC7057214 DOI: 10.1107/s2059798320000467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Many biologists are now routinely seeking to determine the three-dimensional structures of their proteins of choice, illustrating the importance of this knowledge, but also of the simplification and streamlining of structure-determination processes. Despite the fact that most software packages offer simple pipelines, for the non-expert navigating the outputs and understanding the key aspects can be daunting. Here, the structure determination of the type IV pili (TFP) protein PilA1 from Clostridioides difficile is used to illustrate the different steps involved, the key decision criteria and important considerations when using the most common pipelines and software. Molecular-replacement pipelines within CCP4i2 are presented to illustrate the more commonly used processes. Previous knowledge of the biology and structure of TFP pilins, particularly the presence of a long, N-terminal α-helix required for pilus formation, allowed informed decisions to be made during the structure-determination strategy. The PilA1 structure was finally successfully determined using ARCIMBOLDO and the ab initio MR strategy used is described.
Collapse
Affiliation(s)
- Adam D. Crawshaw
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| | - Arnaud Baslé
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| | - Paula S. Salgado
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
32
|
Walker DJF, Nevin KP, Holmes DE, Rotaru AE, Ward JE, Woodard TL, Zhu J, Ueki T, Nonnenmann SS, McInerney MJ, Lovley DR. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME JOURNAL 2020; 14:837-846. [PMID: 31896792 DOI: 10.1038/s41396-019-0575-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/16/2019] [Indexed: 11/09/2022]
Abstract
Syntrophic interspecies electron exchange is essential for the stable functioning of diverse anaerobic microbial communities. Hydrogen/formate interspecies electron transfer (HFIT), in which H2 and/or formate function as diffusible electron carriers, has been considered to be the primary mechanism for electron transfer because most common syntrophs were thought to lack biochemical components, such as electrically conductive pili (e-pili), necessary for direct interspecies electron transfer (DIET). Here we report that Syntrophus aciditrophicus, one of the most intensively studied microbial models for HFIT, produces e-pili and can grow via DIET. Heterologous expression of the putative S. aciditrophicus type IV pilin gene in Geobacter sulfurreducens yielded conductive pili of the same diameter (4 nm) and conductance of the native S. aciditrophicus pili and enabled long-range electron transport in G. sulfurreducens. S. aciditrophicus lacked abundant c-type cytochromes often associated with DIET. Pilin genes likely to yield e-pili were found in other genera of hydrogen/formate-producing syntrophs. The finding that DIET is a likely option for diverse syntrophs that are abundant in many anaerobic environments necessitates a reexamination of the paradigm that HFIT is the predominant mechanism for syntrophic electron exchange within anaerobic microbial communities of biogeochemical and practical significance.
Collapse
Affiliation(s)
- David J F Walker
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA.,Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA.,Department of Physical and Biological Science, Western New England University, Springfield, MA, USA
| | - Amelia-Elena Rotaru
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Joy E Ward
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Jiaxin Zhu
- Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Toshiyuki Ueki
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Stephen S Nonnenmann
- Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA, USA.,Department of Mechanical and Industrial Engineering, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Michael J McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, USA. .,Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA, USA.
| |
Collapse
|
33
|
Cosert KM, Castro-Forero A, Steidl RJ, Worden RM, Reguera G. Bottom-Up Fabrication of Protein Nanowires via Controlled Self-Assembly of Recombinant Geobacter Pilins. mBio 2019; 10:e02721-19. [PMID: 31822587 PMCID: PMC6904877 DOI: 10.1128/mbio.02721-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Metal-reducing bacteria in the genus Geobacter use a complex protein apparatus to guide the self-assembly of a divergent type IVa pilin peptide and synthesize conductive pilus appendages that show promise for the sustainable manufacturing of protein nanowires. The preferential helical conformation of the Geobacter pilin, its high hydrophobicity, and precise distribution of charged and aromatic amino acids are critical for biological self-assembly and conductivity. We applied this knowledge to synthesize via recombinant methods truncated pilin peptides for the bottom-up fabrication of protein nanowires and identified rate-limiting steps of pilin nucleation and fiber elongation that control assembly efficiency and nanowire length, respectively. The synthetic fibers retained the biochemical and electronic properties of the native pili even under chemical fixation, a critical consideration for integration of the nanowires into electronic devices. The implications of these results for the design and mass production of customized protein nanowires for diverse applications are discussed.IMPORTANCE The discovery in 2005 of conductive protein appendages (pili) in the metal-reducing bacterium Geobacter sulfurreducens challenged our understanding of biological electron transfer and pioneered studies in electromicrobiology that revealed the electronic basis of many microbial metabolisms and interactions. The protein nature of the pili afforded opportunities for engineering novel conductive peptides for the synthesis of nanowires via cost-effective and scalable manufacturing approaches. However, methods did not exist for efficient production, purification, and in vitro assembly of pilins into nanowires. Here we describe platforms for high-yield recombinant synthesis of Geobacter pilin derivatives and their assembly as protein nanowires with biochemical and electronic properties rivaling those of the native pili. The bottom-up fabrication of protein nanowires exclusively from pilin building blocks confirms unequivocally the charge transport capacity of the peptide assembly and establishes the intellectual foundation needed to manufacture pilin-based nanowires in bioelectronics and other applications.
Collapse
Affiliation(s)
- K M Cosert
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | | | - Rebecca J Steidl
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert M Worden
- Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - G Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
34
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S. Sialic acid mediated mechanical activation of β 2 adrenergic receptors by bacterial pili. Nat Commun 2019; 10:4752. [PMID: 31628314 PMCID: PMC6800425 DOI: 10.1038/s41467-019-12685-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/21/2019] [Indexed: 01/14/2023] Open
Abstract
Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Collapse
Affiliation(s)
- Zoe Virion
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France
| | - Stéphane Doly
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Kusumika Saha
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Mireille Lambert
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Camille Bied
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Catherine Robbe-Masselot
- CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université Lille, 59000, Lille, France
| | - Xavier Nassif
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathieu Coureuil
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.
| | - Stefano Marullo
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
36
|
Rehman T, Yin L, Latif MB, Chen J, Wang K, Geng Y, Huang X, Abaidullah M, Guo H, Ouyang P. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog 2019; 137:103748. [PMID: 31521802 DOI: 10.1016/j.micpath.2019.103748] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/01/2023]
Abstract
Salmonellosis is a serious threat to human and animal health. Salmonella adhesion to the host cell is an initial and most crucial step in the pathogenesis of salmonellosis. Many factors are involved in the adhesion process of Salmonella infection. Fimbriae are one of the most important factors in the adhesion of Salmonella. The Salmonella fimbriae are assembled in three types of assembly pathways: chaperon-usher, nucleation-precipitation, and type IV fimbriae. These assembly pathways lead to multiple types of fimbriae. Salmonella fimbriae bind to host cell receptors to initiate adhesion. So far, many receptors have been identified, such as Toll-like receptors. However, several receptors that may be involved in the adhesive mechanism of Salmonella fimbriae are still un-identified. This review aimed to summarize the types of Salmonella fimbriae produced by different assembly pathways and their role in adhesion. It also enlisted previously discovered receptors involved in adhesion. This review might help readers to develop a comprehensive understanding of Salmonella fimbriae, their role in adhesion, and recently developed strategies to counter Salmonella infection.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Bilal Latif
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, 44195, Ohio, USA.
| | - Jiehao Chen
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Muhammad Abaidullah
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hongrui Guo
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
37
|
Flagellar Mutants Have Reduced Pilus Synthesis in Caulobacter crescentus. J Bacteriol 2019; 201:JB.00031-19. [PMID: 30833355 DOI: 10.1128/jb.00031-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Surface appendages, such as flagella and type IV pili, mediate a broad range of bacterial behaviors, including motility, attachment, and surface sensing. While many species harbor both flagella and type IV pili, little is known about how or if their syntheses are coupled. Here, we show that deletions of genes encoding different flagellum machinery components result in a reduction of pilus synthesis in Caulobacter crescentus First, we show that different flagellar mutants exhibit different levels of sensitivity to a pilus-dependent phage and that fewer cells within populations of flagellar mutants make pili. Furthermore, we find that single cells within flagellar mutant populations produce fewer pili per cell. We demonstrate that these gene deletions result in reduced transcription of pilus-associated genes and have a slight but significant effect on general transcription profiles. Finally, we show that the decrease in pilus production is due to a reduction in the pool of pilin subunits that are polymerized into pilus fibers. These data demonstrate that mutations in flagellar gene components not only affect motility but also can have considerable and unexpected consequences for other aspects of cell biology.IMPORTANCE Most bacterial species synthesize surface-exposed appendages that are important for environmental interactions and survival under diverse conditions. It is often assumed that these appendages act independently of each other and that mutations in either system can be used to assess functionality in specific processes. However, we show that mutations in flagellar genes can impact the production of type IV pili, as well as alter general RNA transcriptional profiles compared to a wild-type strain. These data demonstrate that seemingly simple mutations can broadly affect cell-regulatory networks.
Collapse
|
38
|
Tan X, Qiu H, Li F, Cheng D, Zheng X, Wang B, Huang M, Li W, Li Y, Sang K, Song B, Du J, Chen H, Xie C. Complete Genome Sequence of Sequevar 14M Ralstonia solanacearum Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer. Front Microbiol 2019; 10:1893. [PMID: 31474968 PMCID: PMC6703095 DOI: 10.3389/fmicb.2019.01893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a "species complex" due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong'an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and BAC-end sequencing. Genome assembly results revealed the presence of a conventional chromosome, a megaplasmid as well as a 143 kb plasmid in HA4-1. Comparative genome analysis between HA4-1 and GMI1000 shows high conservation of the general virulence factors such as secretion systems, motility, exopolysaccharides (EPS), and key regulatory factors, but significant variation in the repertoire and structure of type III effectors, which could be the determinants of their differential pathogenesis in certain potato species or genotypes. We have identified two novel type III effectors that were probably acquired through horizontal gene transfer (HGT). These novel R. solanacearum effectors display homology to several YopJ and XopAC family members. We named them as RipBR and RipBS. Notably, the copy of RipBR on the plasmid is a pseudogene, while the other on the megaplasmid is normal. For RipBS, there are three copies located in the megaplasmid and plasmid, respectively. Our results have not only enriched the genome information on R. solanacearum species complex by sequencing the first sequevar 14M strain and the largest plasmid reported in R. solanacearum to date but also revealed the variation in the repertoire of type III effectors. This will greatly contribute to the future studies on the pathogenic evolution, host adaptation, and interaction between R. solanacearum and potato.
Collapse
Affiliation(s)
- Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huishan Qiu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Kangqi Sang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Juan Du
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| |
Collapse
|
39
|
Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M, Bronnimann M, McLean JA, Duncan J, Trees D, Jerse AE, So M. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe 2019; 26:228-239.e8. [PMID: 31378677 DOI: 10.1016/j.chom.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dustin Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Maira Goytia
- Department of Biology, Spelman College, Atlanta, GA 30314, USA
| | - Maria A Rendón
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew Bronnimann
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Jeanine A McLean
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph Duncan
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
Denise R, Abby SS, Rocha EPC. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol 2019; 17:e3000390. [PMID: 31323028 PMCID: PMC6668835 DOI: 10.1371/journal.pbio.3000390] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/31/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.
Collapse
Affiliation(s)
- Rémi Denise
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Sophie S. Abby
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
41
|
Audette GF, Yaseen A, Bragagnolo N, Bawa R. Protein Nanotubes: From Bionanotech towards Medical Applications. Biomedicines 2019; 7:biomedicines7020046. [PMID: 31234611 PMCID: PMC6630890 DOI: 10.3390/biomedicines7020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. This review aims to highlight some of the current research employing protein nanotubes (PNTs) for the development of molecular imaging biosensors, conducting wires for microelectronics, fuel cells, and drug delivery systems. The translational potential of PNTs is highlighted.
Collapse
Affiliation(s)
- Gerald F Audette
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Ayat Yaseen
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Nicholas Bragagnolo
- Department of Chemistry and the Centre for Research on Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada.
| | - Raj Bawa
- Patent Law Department, Bawa Biotech LLC, Ashburn, VA 20147, USA.
- Guanine Inc., Rensselaer, NY 12144-3463, USA.
- Pharmaceutical Research Institute of Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA.
| |
Collapse
|
42
|
Structure and Properties of a Natural Competence-Associated Pilin Suggest a Unique Pilus Tip-Associated DNA Receptor. mBio 2019; 10:mBio.00614-19. [PMID: 31186316 PMCID: PMC6561018 DOI: 10.1128/mbio.00614-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large β-solenoid domain inserted into the β-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and β-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCE Thermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large β-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.
Collapse
|
43
|
Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis. Cell Mol Life Sci 2019; 76:2031-2042. [PMID: 30877336 PMCID: PMC11105444 DOI: 10.1007/s00018-019-03060-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023]
Abstract
Pyroptosis is a caspase-1 or caspase-4/5/11-dependent programmed cell death associated with inflammation, which is initiated by inflammasomes or cytosolic LPS in innate immunity. Sepsis is a life-threatening organ dysfunction caused by an imbalance in the body's response to infection. It is a complex interaction between the pathogen and the host's immune system. Neutrophils play the role of a double-edged sword in sepsis, and a number of studies have previously shown that regulation of neutrophils is the most crucial part of sepsis treatment. Pyroptosis is one of the important forms for neutrophils to function, which is increasingly understood as a host active immune response. There is ample evidence that neutrophil pyroptosis may play an important role in sepsis. In recent years, a breakthrough in pyroptosis research has revealed the main mechanism of pyroptosis. However, the potential value of neutrophil pyroptosis in the treatment of sepsis did not draw enough attention. A literature review was performed on the main mechanism of pyroptosis in sepsis and the potential value of neutrophils pyroptosis in sepsis, which may be suitable targets for sepsis treatment in future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd., Zhenjiang, 212001, Jiangsu, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd., Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
44
|
Kumar SS, Penesyan A, Elbourne LDH, Gillings MR, Paulsen IT. Catabolism of Nucleic Acids by a Cystic Fibrosis Pseudomonas aeruginosa Isolate: An Adaptive Pathway to Cystic Fibrosis Sputum Environment. Front Microbiol 2019; 10:1199. [PMID: 31214142 PMCID: PMC6555301 DOI: 10.3389/fmicb.2019.01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). We undertook Biolog Phenotype Microarray testing of P. aeruginosa CF isolates to investigate their catabolic capabilities compared to P. aeruginosa laboratory strains PAO1 and PA14. One strain, PASS4, displayed an unusual phenotype, only showing strong respiration on adenosine and inosine. Further testing indicated that PASS4 could grow on DNA as a sole carbon source, with a higher biomass production than PAO1. This suggested that PASS4 was specifically adapted to metabolize extracellular DNA, a substrate present at high concentrations in the CF lung. Transcriptomic and proteomic profiling of PASS4 and PAO1 when grown with DNA as a sole carbon source identified a set of upregulated genes, including virulence and host-adaptation genes. PASS4 was unable to utilize N-Acetyl-D-glucosamine, and when we selected PASS4 mutants able to grow on this carbon source, they also displayed a gain in ability to catabolize a broad range of other carbon sources. Genome sequencing of the mutants revealed they all contained mutations within the purK gene, encoding a key protein in the de novo purine biosynthesis pathway. This suggested that PASS4 was a purine auxotroph. Growth assays in the presence of 2 mM adenosine and the complementation of PASS4 with an intact purK gene confirmed this conclusion. Purine auxotrophy may represent a viable microbial strategy for adaptation to DNA-rich environments such as the CF lung.
Collapse
Affiliation(s)
| | - Anahit Penesyan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
45
|
Liu X, Zhan J, Jing X, Zhou S, Lovley DR. A pilin chaperone required for the expression of electrically conductive
Geobacter sulfurreducens
pili. Environ Microbiol 2019; 21:2511-2522. [DOI: 10.1111/1462-2920.14638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Ji Zhan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and EnvironmentFujian Agriculture and Forestry University Fuzhou China
| | - Derek R. Lovley
- Department of MicrobiologyUniversity of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
46
|
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
|
47
|
Denis K, Le Bris M, Le Guennec L, Barnier JP, Faure C, Gouge A, Bouzinba-Ségard H, Jamet A, Euphrasie D, Durel B, Barois N, Pelissier P, Morand PC, Coureuil M, Lafont F, Join-Lambert O, Nassif X, Bourdoulous S. Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nat Microbiol 2019; 4:972-984. [PMID: 30911127 DOI: 10.1038/s41564-019-0395-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Abstract
Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.
Collapse
Affiliation(s)
- Kevin Denis
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marion Le Bris
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Loic Le Guennec
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Philippe Barnier
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Camille Faure
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Gouge
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haniaa Bouzinba-Ségard
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Jamet
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Beatrice Durel
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicolas Barois
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Philippe C Morand
- U1016, Institut Cochin, Inserm, Paris, France.,UMR8104, CNRS, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Centre for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France.,UMR 8204, CNRS, Lille, France.,U1019, Inserm, Lille, France.,Université de Lille, Lille, France
| | - Olivier Join-Lambert
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Xavier Nassif
- U1151, Institut Necker Enfants Malades, Inserm, Paris, France.,UMR 8253, CNRS, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sandrine Bourdoulous
- U1016, Institut Cochin, Inserm, Paris, France. .,UMR8104, CNRS, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
48
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
49
|
Abstract
To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.
Collapse
Affiliation(s)
- Magdalena Lukaszczyk
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
50
|
Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2018; 103:1535-1544. [PMID: 30523372 DOI: 10.1007/s00253-018-9484-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Bioelectrical nanowires as ecomaterials have great potential on environmental applications. A wide range of bacteria can express type IV pili (T4P), which are long protein fibers assembled from PilA. The T4P of Geobacter sulfurreducens are well known as "microbial nanowires," yet T4P of Pseudomonas aeruginosa (PaT4P) was believed to be poorly conductive. P. aeruginosa is an aerobic and electrochemically active bacterium. Its T4P have been known to be responsible for surface attachment, twitching motility and biofilm formation. Here, we show that PaT4P can be highly conductive while assembled by a truncated P. aeruginosa PilA (PaPilA) containing only N-terminus 61 amino acids. Furthermore, increasing the number of aromatic amino acids in the PaPilA1-61 significantly enhances the conductivity of pili and the bioelectricity output of P. aeruginosa in microbial fuel cell system, suggesting a potential application of PaT4P as a conductive nanomaterial. The N-terminal region of PilA from diverse eubacteria is highly conserved, implying a general way to synthesize highly conductive microbial nanowires and to increase the bioelectricity output of microbial fuel cell.
Collapse
|