1
|
Al Musaimi O. FDA's stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and beyond. J Pept Sci 2024; 30:e3627. [PMID: 38885943 DOI: 10.1002/psc.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Peptides exhibit significant specificity and effective interaction with therapeutic targets, positioning themselves as key players in the global pharmaceutical market. They offer potential treatments for a wide range of diseases, including those that pose significant challenges. Notably, the peptide trofinetide (Daybue) marked a groundbreaking achievement by providing the first-ever cure for Rett syndrome, and several peptides have secured FDA approval as first-in-class medications. Furthermore, peptides are expanding their presence in areas traditionally dominated by either small or large molecules. A noteworthy example is the FDA approval of motixafortide (Aphexda) as the first peptide-based chemokine antagonist. Here, the focus will be on the analysis of FDA-approved peptides, particularly those targeting cardiovascular diseases, human immunodeficiency, central nervous system diseases, and various other intriguing classes addressing conditions such as osteoporosis, thrombocytopenia, Cushing's disease, and hypoglycemia, among others. The review will explore the chemical structures of the peptides, their indications and modes of action, the developmental trajectory, and potential adverse effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle upon Tyne, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
2
|
He L, McAndrew R, Barbu R, Gifford G, Halacoglu C, Drouin-Allaire C, Weber L, Kristensen LG, Gupta S, Chen Y, Petzold CJ, Allaire M, Li KH, Ralston CY, Gochin M. Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity. J Mol Biol 2024; 436:168650. [PMID: 38866091 PMCID: PMC11297672 DOI: 10.1016/j.jmb.2024.168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.
Collapse
Affiliation(s)
- Li He
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Ryan McAndrew
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Razvan Barbu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Grant Gifford
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Cari Halacoglu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Camille Drouin-Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lindsey Weber
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Murugesan J, Mubarak SJ, Vedagiri H. Design of novel anti-quorum sensing peptides targeting LuxO to combat Vibrio cholerae pathogenesis. In Silico Pharmacol 2023; 11:30. [PMID: 37899970 PMCID: PMC10611667 DOI: 10.1007/s40203-023-00172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Vibrio cholerae, the Gram-negative bacterium abruptly colonizes the human intestine causing diarrhea, employing quorum sensing (QS) system as the major survival technique for mediating biofilm formation, virulence, competence, etc. Two distinct QS systems coordinated by the auto-inducer molecules, cholera-specific CqsA/S system and universal LuxS/PQ system, operate in parallel converging into a common phosphorelay pathway involving LuxU and LuxO. The master regulatory proteins of the QS system, AphA and HapR regulate the biofilm formation based on cell density, whose expression is controlled by the global response regulator LuxO. At low cell density, activated LuxO indirectly represses HapR, favoring the virulence cascade expression. Rather at high cell densities, LuxO represses AphA expression subsequently blocking the expression of virulence factors. Hence, targeting LuxO would be a promising strategy to downregulate the virulence pathway and modulate the QS system. With this insight, the present study has been designed to intrude the interaction between LuxU and LuxO through in silico design of novel peptides and validation of these peptides through molecular simulations. QS peptides were designed using QSPred server by altering the template sequence representing the LuxU-LuxO interaction, among which PEP8 exhibited better interaction and stability with the target protein LuxO. These in silico designed novel peptides would serve as potential target-specific molecules that would inhibit the LuxU-LuxO interaction and modulate the QS system to restrict Vibrio cholerae pathogenesis. However, further in vitro validations would substantiate the efficacy of these novel QS peptides. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00172-2.
Collapse
Affiliation(s)
- Janaranjani Murugesan
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| | - Shoufia Jabeen Mubarak
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| | - Hemamalini Vedagiri
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| |
Collapse
|
4
|
Wang C, Wang H, Wang X, Sun L, Wang Q, Li Q, Liang R, Dou D, Yu F, Lu L, Jiang S. Multitargeted drug design strategy for discovery of short-peptide-based HIV-1 entry inhibitors with high potency. Eur J Med Chem 2023; 252:115294. [PMID: 36944281 DOI: 10.1016/j.ejmech.2023.115294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
The development of short-peptide-based inhibitors to prevent HIV-1 entry into the host cell has been rewarded with limited success. Herein, we report a multitarget-directed ligand strategy to generate a series of short-peptide HIV-1 entry inhibitors that integrated the pharmacological activities of a peptide fusion inhibitor able to disrupt HIV-1 gp41 glycoprotein hexameric coiled-coil assembly and a small-molecule CCR5 antagonist that blocks the interaction between HIV-1 and its coreceptor. Among these inhibitors, dual-target 23-residue peptides SP12T and SP12L displayed dramatically increased inhibitory activities against HIV-1 replication as compared to the marketed 36-residue peptide T20. Moreover, results suggested that SP12T and SP12L successfully performed a dual-targeting mechanism. It can be concluded that these short-peptide-based HIV-1 entry inhibitors have potential for further development as candidates for a novel multitarget therapy to treat HIV-1 infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Lujia Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Ruiying Liang
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Dou Dou
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fei Yu
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
The Updated Review on Plant Peptides and Their Applications in Human Health. Int J Pept Res Ther 2022; 28:135. [PMID: 35911180 PMCID: PMC9326430 DOI: 10.1007/s10989-022-10437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
6
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
7
|
Huhmann S, Nyakatura EK, Rohrhofer A, Moschner J, Schmidt B, Eichler J, Roth C, Koksch B. Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection. Chembiochem 2021; 22:3443-3451. [PMID: 34605595 PMCID: PMC9297971 DOI: 10.1002/cbic.202100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Indexed: 01/01/2023]
Abstract
With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Susanne Huhmann
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Elisabeth K. Nyakatura
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
- Antibody Engineering Tri-Institutional Therapeutics Discovery Institute417 East 68th Street, 19 Floor North, P: 646-888-2003New YorkNY 10021USA
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Johann Moschner
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-NürnbergDepartment Chemie und PharmazieNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Christian Roth
- Max Planck Institute of Colloids and InterfacesBiomolecular SystemsArnimallee 2214195BerlinGermany
| | - Beate Koksch
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| |
Collapse
|
8
|
Wang F, Yu Q, Hu M, Xing G, Zhao D, Zhang G. Purification of Classical Swine Fever Virus E2 Subunit Vaccines Based on High Affinity Peptide Ligand. Protein Pept Lett 2021; 28:554-562. [PMID: 33143607 DOI: 10.2174/0929866527666201103152100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The purification of expressed proteins is the most critical part of subunit-- vaccine production. Protein-purification methods such as affinity chromatography and ion exchange still have the shortcomings of being time consuming and complicated. With the rapid development of computational molecular-simulation technology, structure-based peptide-ligand design has become feasible. Objection: We aimed to apply molecular docking for a peptide ligand designed for classical swine fever virus (CSFV) E2 purification. METHODS Computational-derived peptides were synthesized, and the in vitro binding interaction with E2 was investigated. The effects of purification on E2 were also evaluated. RESULTS The best peptide recognizing E2 was P6, which had a sequence of KKFYWRYWEH. Based on kinetic surface plasmon resonance (SPR) analysis, the apparent affinity constant of P6 was found to be 148 nM. Importantly, P6 showed suitable binding affinity and specificity for E2 purification from transgenic rice seeds. Evaluation of immune antibodies in mice showed that the antibody- blocking rate on day 42 after inoculation reached 86.18% and 90.68%. CONCLUSION The computational-designed peptide in this study has high sensitivity and selectivity and is thus useful for the purification of CSFV E2. The novel method of design provided a broad platform and powerful tool for protein-peptide screening, as well as new insights into CSFV vaccine design.
Collapse
Affiliation(s)
- Fangyu Wang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuying Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Man Hu
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guangxu Xing
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dong Zhao
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
9
|
Zhou G, He L, Li KH, Pedroso CCS, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun (Camb) 2021; 57:4528-4531. [PMID: 33956029 DOI: 10.1039/d1cc01013a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a low molecular weight covalent inhibitor targeting a conserved lysine residue within the hydrophobic pocket of HIV-1 glycoprotein-41. The inhibitor bound selectively to the hydrophobic pocket and exhibited an order of magnitude enhancement of anti-fusion activity against HIV-1 compared to its non-covalent counterpart. The findings represent a significant advance in the quest to obtain non-peptide fusion inhibitors.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Li He
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Cássio C S Pedroso
- Lawrence Berkeley National Laboratory, The Molecular Foundry, 1 Cyclotron Road, 67R5114, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Cadima-Couto I, Tauzin A, Freire JM, Figueira TN, Silva RDM, Pérez-Peinado C, Cunha-Santos C, Bártolo I, Taveira N, Gano L, Correia JDG, Goncalves J, Mammano F, Andreu D, Castanho MARB, Veiga AS. Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infect Dis 2021; 7:6-22. [PMID: 33319557 DOI: 10.1021/acsinfecdis.9b00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for the development of new anti-HIV drugs that can complement existing medicines to be used against resistant strains. Here, we report the anti-HIV-1 peptide pepRF1, a human serum-resistant peptide derived from the Dengue virus capsid protein. In vitro, pepRF1 shows a 50% inhibitory concentration of 1.5 nM with a potential therapeutic window higher than 53 000. This peptide is specific for CXCR4-tropic strains, preventing viral entry into target cells by binding to the viral coreceptor CXCR4, acting as an antagonist of this receptor. pepRF1 is more effective than T20, the only peptide-based HIV-1 entry inhibitor approved, and excels in inhibiting a HIV-1 strain resistant to T20. Potentially, pepRF1 can be used alone or in combination with other anti-HIV drugs. Furthermore, one can also envisage its use as a novel therapeutic strategy for other CXCR4-related diseases.
Collapse
Affiliation(s)
- Iris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Alexandra Tauzin
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - João M. Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tiago N. Figueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Clara Pérez-Peinado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Catarina Cunha-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Monte de Caparica, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Fabrizio Mammano
- INSERM UMR 1124, Université de Paris, 45 rue des Saints Pères, F-75006 Paris, France
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
11
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
12
|
Khan RJ, Jha RK, Singh E, Jain M, Amera GM, Singh RP, Muthukumaran J, Singh AK. Identification of promising antiviral drug candidates against non-structural protein 15 (NSP15) from SARS-CoV-2: an in silico assisted drug-repurposing study. J Biomol Struct Dyn 2020; 40:438-448. [DOI: 10.1080/07391102.2020.1814870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P., India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
13
|
Zhou G, Chu S, Kohli A, Szoka FC, Gochin M. Biophysical studies of HIV-1 glycoprotein-41 interactions with peptides and small molecules - Effect of lipids and detergents. Biochim Biophys Acta Gen Subj 2020; 1864:129724. [PMID: 32889078 DOI: 10.1016/j.bbagen.2020.129724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hydrophobic pocket (HP) of HIV-1 glycoprotein-41 ectodomain is defined by two chains of the N-heptad repeat trimer, within the protein-protein interface that mediates 6HB formation. It is a potential target for inhibitors of viral fusion, but its hydrophobic nature and proximity to membrane in situ has precluded ready analysis of inhibitor interactions. METHODS We evaluated the sensitivity of 19F NMR and fluorescence for detecting peptide and small molecule binding to the HP and explored the effect of non-denaturing detergent or phospholipid as cosolvents and potential mimics of the membrane environment surrounding gp41. RESULTS Chemical shifts of aromatic fluorines were found to be sensitive to changes in the hydrogen bonding network that occurred when inhibitors transitioned from solvent into the HP or into ordered detergent micelles. Fluorescence intensities and emission maxima of autofluorescent compounds responded to changes in the local environment. CONCLUSIONS Gp41 - ligand binding occurred under all conditions, but was diminished in the presence of detergents. NMR and fluorescence studies revealed that dodecylphosphocholine (DPC) was a poor substitute for membrane in this system, while liposomes could mimic the membrane surroundings. GENERAL SIGNIFICANCE Our findings suggest that development of high potency small molecule binders to the HP may be frustrated by competition between binding to the HP and binding to the bilayer membrane.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Aditya Kohli
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Miriam Gochin
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America.
| |
Collapse
|
14
|
Huang X, Pearce R, Zhang Y. De novo design of protein peptides to block association of the SARS-CoV-2 spike protein with human ACE2. Aging (Albany NY) 2020; 12:11263-11276. [PMID: 32544884 PMCID: PMC7343451 DOI: 10.18632/aging.103416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19 has now become a global pandemic that has severely impacted lives and economic stability. There is, however, no effective antiviral drug that can be used to treat COVID-19 to date. Built on the fact that SARS-CoV-2 initiates its entry into human cells by the receptor binding domain (RBD) of its spike protein binding to the angiotensin-converting enzyme 2 (hACE2), we extended a recently developed approach, EvoDesign, to design multiple peptide sequences that can competitively bind to the SARS-CoV-2 RBD to inhibit the virus from entering human cells. The protocol starts with the construction of a hybrid peptidic scaffold by linking two fragments grafted from the interface of the hACE2 protein (a.a. 22-44 and 351-357) with a linker glycine, which is followed by the redesign and refinement simulations of the peptide sequence to optimize its binding affinity to the interface of the SARS-CoV-2 RBD. The binding experiment analyses showed that the designed peptides exhibited a significantly stronger binding potency to hACE2 than the wild-type hACE2 receptor (with -53.35 vs. -46.46 EvoEF2 energy unit scores for the top designed and wild-type peptides, respectively). This study demonstrates a new avenue to utilize computationally designed peptide motifs to treat the COVID-19 disease by blocking the critical spike-RBD and hACE2 interactions.
Collapse
Affiliation(s)
- Xiaoqiang Huang
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors. J Virol 2019; 94:JVI.01358-19. [PMID: 31619552 DOI: 10.1128/jvi.01358-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 11/20/2022] Open
Abstract
Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.
Collapse
|
16
|
Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S, Liu K. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled-Coil Fusion Complex. J Med Chem 2019; 62:8773-8783. [PMID: 31513410 DOI: 10.1021/acs.jmedchem.9b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide-based inhibition of fusion remains an attractive goal in antihuman immunodeficiency virus (HIV) research based on its potential for the development of technically and economically desirable antiviral agents. Herein, we report the use of the dithiol bisalkylation reaction to generate a series of m-xylene thioether-stapled 22-residue α-helical peptides that have been identified as fusion inhibitors targeting HIV-1 glycoprotein 41 (gp41). The peptide sequence is based on the helix-zone binding domain of the gp41 C-terminal heptad repeat region. We found that one of these stapled peptides, named hCS6ERE, showed promising inhibitory potency against HIV-1 Env-mediated cell-cell fusion and viral replication at a level comparable to the clinically used 36-mer peptide T20. Furthermore, combining hCS6ERE with a fusion inhibitor having a different target site, such as HP23, produced synergistic anti-HIV-1 activity. Collectively, our study offers new insight into the design of anti-HIV peptides with short sequences.
Collapse
Affiliation(s)
- Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Yue Li
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aixin Han
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Xue Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , 310 East 67th Street , New York , New York 10065 , United States
| | - Keliang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China.,State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| |
Collapse
|
17
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
18
|
Wang J, Zhang J, Sun X, Liu C, Li X, Chen L. Molecular design of sequence‐minimized, structure‐optimized, and hydrocarbon‐stapled helix–helix interactions in the trimer‐of‐hairpins motif of pediatric pneumonia
RSV
‐F protein. Chem Biol Drug Des 2019; 94:1292-1299. [PMID: 30776182 DOI: 10.1111/cbdd.13501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/20/2019] [Accepted: 02/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jihong Wang
- Department of PediatricsLinyi Central Hospital Linyi China
| | - Jingxiu Zhang
- Department of PediatricsLinyi Central Hospital Linyi China
| | - Xiangguo Sun
- Department of PediatricsLinyi Central Hospital Linyi China
| | - Chengjun Liu
- Department of PediatricsLinyi Central Hospital Linyi China
| | - Xingli Li
- Department of PediatricsLinyi Central Hospital Linyi China
| | - Lei Chen
- Shandong Academy of Pharmaceutical Sciences Jinan China
| |
Collapse
|
19
|
Mostashari-Rad T, Saghaei L, Fassihi A. Gp41 inhibitory activity prediction of theaflavin derivatives using ligand/structure-based virtual screening approaches. Comput Biol Chem 2019; 79:119-126. [PMID: 30785021 DOI: 10.1016/j.compbiolchem.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 11/25/2022]
Abstract
Gp41 and its conserved hydrophobic groove on the NHR region is one of the attractive targets in the design of HIV-1 entry inhibitory agents. This hydrophobic pocket is very critical for the progression of HIV and host cell fusion. In this study different ligand-based (structure similarity search) and structure-based (molecular docking and molecular dynamic simulation) methods were performed in a virtual screening procedure to select the best compounds with the most probable HIV-1 gp41 inhibitory activities. In silico pharmacokinetics and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties filtration also was considered to choose the compounds with best drug-like properties. The results of molecular docking and molecular dynamic simulations of the final selected compounds showed suitable stabilities of their complexes with gp41. The final selected hits could have better pharmacokinetics properties than the template compound, theaflavin digallate (TF3), a naturally-originated potent gp41 inhibitor.
Collapse
Affiliation(s)
- Tahereh Mostashari-Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Zhou G, Chu S, Nemati A, Huang C, Snyder BA, Ptak RG, Gochin M. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur J Med Chem 2018; 161:533-542. [PMID: 30390441 DOI: 10.1016/j.ejmech.2018.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
Abstract
In previous work, we described 6-6'-bisindole compounds targeting a hydrophobic pocket on the N-heptad repeat region of viral glycoprotein-41 as effective inhibitors of HIV-1 fusion. Two promising compounds with sub-micromolar IC50's contained a benzoic acid group and a benzoic acid ester attached at the two indole nitrogens. Here we have conducted a thorough structure-activity relationship (SAR) study evaluating the contribution of each of the ring systems and various substituents to compound potency. Hydrophobicity, polarity and charge were varied to produce 35 new compounds that were evaluated in binding, cell-cell fusion and viral infectivity assays. We found that (a) activity based solely on increasing hydrophobic content plateaued at ∼ 200 nM; (b) the bisindole scaffold surpassed other heterocyclic ring systems in efficacy; (c) a polar interaction possibly involving Gln575 in the pocket could supplant less specific hydrophobic interactions; and (d) the benzoic acid ester moiety did not appear to form specific contacts with the pocket. The importance of this hydrophobic group to compound potency suggests a mechanism whereby it might interact with a tertiary component during fusion, such as membrane. A promising small molecule 10b with sub-μM activity was discovered with molecular weight <500 da and reduced logP compared to earlier compounds. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Shidong Chu
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Ariana Nemati
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Chunsheng Huang
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Beth A Snyder
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Roger G Ptak
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, CA, 94143, USA.
| |
Collapse
|
21
|
Rational Design of the Minimal Requirement for Helix–Helix Peptide Interactions in the Trimer-of-Hairpins Motif of Pediatric Pneumonia RSV Fusion Glycoprotein. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9756-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Yu Q, Wang F, Hu X, Xing G, Deng R, Guo J, Cheng A, Wang J, Hao J, Zhao D, Teng M, Zhang G. Comparison of two docking methods for peptide-protein interactions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3722-3727. [PMID: 29315602 DOI: 10.1002/jsfa.8880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 12/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The importance of peptides in regulatory interactions has caused peptide-protein docking to attract the attention of many researchers. A variety of methods for molecular modeling of peptide-protein docking, such as local search and global search, are currently used. RESULTS The interactions of 11 peptides and CSFV E2 protein were evaluated by the GalaxyPepDock and FlexX/ SYBYL programs, respectively. The assessment scores of all the peptides were correlated with their KD values. The final results showed that a moderate correlation coefficient was represented between KD values and CScores of predicted models by FlexX/ SYBYL. CONCLUSION Our results demonstrate that considering the flexibility of the peptide is better than searching for more potential binding sites on the target protein surface while performing peptide-protein molecular docking. These data provide reasonable evidence for the molecular design of peptides and guidance for the functional assignment of target proteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuying Yu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fangyu Wang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaofei Hu
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guangxu Xing
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiguang Deng
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junqing Guo
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junfang Hao
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dong Zhao
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Man Teng
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
23
|
de Castro S, Camarasa MJ. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 2018. [PMID: 29529501 DOI: 10.1016/j.ejmech.2018.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples.
Collapse
Affiliation(s)
- Sonia de Castro
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica (IQM, CSIC) Juan de La Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
24
|
Liu W, An X, Wang J, Zhang X, Tan J, Zhou Z, Zeng Y. A novel peptide shows excellent anti-HIV-1 potency as a gp41 fusion inhibitor. Bioorg Med Chem Lett 2018; 28:910-914. [DOI: 10.1016/j.bmcl.2018.01.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
25
|
Samuels S, Alwan Z, Egnin M, Jaynes J, Connell TD, Bernard GC, Nashar T. Novel Therapeutic Approach for Inhibition of HIV-1 Using Cell-Penetrating Peptide and Bacterial Toxins. ACTA ACUST UNITED AC 2017; 8. [PMID: 29226013 PMCID: PMC5719890 DOI: 10.4172/2155-6113.1000737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite advancements in our understanding of HIV-1 pathogenesis, critical virus components for immunity, vaccines trials, and drugs development, challenges remain in the fight against HIV-1. Of great importance is the inhibitory function of microbicidal cell penetrating peptides and bacterial toxins that interfere with production and neutralize infection of HIV-1 particles. We demonstrate that the neutralizing activity of a cationic 18 amino acids peptide, is similar to a broadly neutralizing human antibody, and inhibits production of two HIV-1 strains in human cell lines. Pretreatment of cells with bacterial toxins or toxoids derived from enterotoxigenic E. coli, boost subsequent activity of the peptide against HIV-1, to inhibit simultaneously production and infection. The synthetic peptide crosses the cell membrane into the cytoplasm and nucleus. In vitro analysis of a possible target for this peptide revealed specific binding to recombinant HIV-1 gag p24. This is the first demonstration of a synergy between bacterial toxins and a cell-penetrating peptide against HIV-1.
Collapse
Affiliation(s)
- Steven Samuels
- Environment and Nutrition Sciences, Faculty of Agriculture, Tuskegee University, Tuskegee, Alabama, USA.,Department of Life and Earth Sciences, Perimeter College at Georgia State University, 555 North Indian Creek Drive, Clarkston, USA
| | - Zainab Alwan
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, USA.,Department of Community Health, Institute of Medical Technology, Middle Technical University Baghdad, Iraq
| | - Marceline Egnin
- Environment and Nutrition Sciences, Faculty of Agriculture, Tuskegee University, Tuskegee, Alabama, USA
| | - Jessie Jaynes
- Environment and Nutrition Sciences, Faculty of Agriculture, Tuskegee University, Tuskegee, Alabama, USA
| | - Terry D Connell
- Department of Microbiology and Immunology, The Witebsky Center for Microbial Pathogenesis and Immunology, Buffalo, New York, USA
| | - Gregory C Bernard
- Environment and Nutrition Sciences, Faculty of Agriculture, Tuskegee University, Tuskegee, Alabama, USA
| | - Toufic Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, USA
| |
Collapse
|
26
|
Chu S, Zhou G, Gochin M. Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 2017; 15:5210-5219. [PMID: 28590477 PMCID: PMC5530879 DOI: 10.1039/c7ob00954b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule inhibitors of glycoprotein-41 (gp41) are able to prevent HIV infection by binding to a hydrophobic pocket (HP) contained within the gp41 ectodomain, and preventing progression of fusion. There is little structural information on gp41-ligand complexes, owing to hydrophobicity of the ligands, occlusion of the HP in folded gp41 ectodomain, and failure to form crystals of complexes. Here we used an engineered gp41 ectodomain protein containing an exposed HP and a small molecule designed to bind with weak affinity to the HP. We evaluated NMR methods, including WaterLOGSY, Saturation Transfer Difference spectroscopy (STD-NMR) and 1H relaxation rate difference spectroscopy with and without target irradiation (DIRECTION) for their ability to probe complex formation and structure. WaterLOGSY was the most sensitive technique for monitoring formation of the complex. STD-NMR and DIRECTION experiments gave similar pharmacophore mapping profiles, although the low dynamic range of the DIRECTION experiment limited its discrimination and sensitivity. A unique binding pose was identified from the STD data and provided clues for future optimization. Advantages and disadvantages of the techniques are discussed. This is the first example of the use of STD for structural analysis of a gp41-small molecule complex.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA.
| | - Guangyan Zhou
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA.
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Zaidman D, Wolfson HJ. Protein-Peptide Interaction Design: PepCrawler and PinaColada. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1561:279-290. [PMID: 28236244 DOI: 10.1007/978-1-4939-6798-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this chapter we present two methods related to rational design of inhibitory peptides: PepCrawler: A tool to derive binding peptides from protein-protein complexes and the prediction of protein-peptide complexes. Given an initial protein-peptide complex, the method detects improved predicted peptide binding conformations which bind the protein with higher affinity. This program is a robotics motivated algorithm, representing the peptide as a robotic arm moving among obstacles and exploring its conformational space in an efficient way. PinaColada: A peptide design program for the discovery of novel peptide candidates that inhibit protein-protein interactions. PinaColada uses PepCrawler while introducing sequence mutations, in order to find novel inhibitory peptides for PPIs. It uses the ant colony optimization approach to explore the peptide's sequence space, while using PepCrawler in the refinement stage.
Collapse
Affiliation(s)
- Daniel Zaidman
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Haim J Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
28
|
Sofiyev V, Kaur H, Snyder BA, Hogan PA, Ptak RG, Hwang P, Gochin M. Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 2017; 25:408-420. [PMID: 27908751 PMCID: PMC5260928 DOI: 10.1016/j.bmc.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 11/28/2022]
Abstract
Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40-60times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.
Collapse
Affiliation(s)
- Vladimir Sofiyev
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, United States
| | - Hardeep Kaur
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, United States
| | - Beth A Snyder
- Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, United States
| | - Priscilla A Hogan
- Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, United States
| | - Roger G Ptak
- Southern Research Institute, 431 Aviation Way, Frederick, MD 21701, United States
| | - Peter Hwang
- Department of Biophysics and Biochemistry, University of California San Francisco, CA 94143, United States
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94143, United States.
| |
Collapse
|
29
|
Obarska-Kosinska A, Iacoangeli A, Lepore R, Tramontano A. PepComposer: computational design of peptides binding to a given protein surface. Nucleic Acids Res 2016; 44:W522-8. [PMID: 27131789 PMCID: PMC4987918 DOI: 10.1093/nar/gkw366] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/22/2016] [Indexed: 02/03/2023] Open
Abstract
There is a wide interest in designing peptides able to bind to a specific region of a protein with the aim of interfering with a known interaction or as starting point for the design of inhibitors. Here we describe PepComposer, a new pipeline for the computational design of peptides binding to a given protein surface. PepComposer only requires the target protein structure and an approximate definition of the binding site as input. We first retrieve a set of peptide backbone scaffolds from monomeric proteins that harbor the same backbone arrangement as the binding site of the protein of interest. Next, we design optimal sequences for the identified peptide scaffolds. The method is fully automatic and available as a web server at http://biocomputing.it/pepcomposer/webserver.
Collapse
Affiliation(s)
| | - Alfredo Iacoangeli
- Department of Physics, Sapienza University, Piazzale Aldo Moro, 5-00184 Rome, Italy
| | - Rosalba Lepore
- Department of Physics, Sapienza University, Piazzale Aldo Moro, 5-00184 Rome, Italy
| | - Anna Tramontano
- Department of Physics, Sapienza University, Piazzale Aldo Moro, 5-00184 Rome, Italy Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
30
|
Zaidman D, Wolfson HJ. PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm. ACTA ACUST UNITED AC 2016; 32:2289-96. [PMID: 27153578 DOI: 10.1093/bioinformatics/btw133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 03/04/2016] [Indexed: 11/14/2022]
Abstract
MOTIVATION Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. RESULTS In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein-protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ([Formula: see text]) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. AVAILABILITY AND IMPLEMENTATION An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. CONTACT danielza@post.tau.ac.il; wolfson@tau.ac.il.
Collapse
Affiliation(s)
- Daniel Zaidman
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim J Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Moseri A, Biron Z, Arshava B, Scherf T, Naider F, Anglister J. The C4 region as a target for HIV entry inhibitors--NMR mapping of the interacting segments of T20 and gp120. FEBS J 2015; 282:4643-57. [PMID: 26432362 DOI: 10.1111/febs.13541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
The peptide T20, which corresponds to a sequence in the C-terminal segment of the HIV-1 transmembrane glycoprotein gp41, is a strong entry inhibitor of HIV-1. It has been assumed that T20 inhibits HIV-1 infection by binding to the trimer formed by the N-terminal helical region (HR1) of gp41, preventing the formation of a six helix bundle by the N- and C-terminal helical regions of gp41. In addition to binding to gp41, T20 was found to bind to gp120 of X4 viruses and this binding was suggested to be responsible for an alternative mechanism of HIV-1 inhibition by this peptide. In the present study, T20 also was found to bind R5 gp120. Using NMR spectroscopy, the segments of T20 that interact with both gp120 and a gp120/CD4M33 complex were mapped. A peptide corresponding to the fourth constant region of gp120, sC4, was found to partially recapitulate gp120 binding to T20 and the segment of this peptide interacting with T20 was mapped. The present study concludes that an amphiphilic helix on the T20 C-terminus binds through mostly hydrophobic interactions to a nonpolar gp120 surface formed primarily by the C4 region. The ten- to thousand-fold difference between the EC50 of T20 against viral fusion and the affinity of T20 to gp120 implies that binding to gp120 is not a major factor in T20 inhibition of HIV-1 fusion. Nevertheless, this hydrophobic gp120 surface could be a target for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Adi Moseri
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Biron
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Arshava
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Protein/peptide-based entry/fusion inhibitors as anti-HIV therapies: challenges and future direction. Rev Med Virol 2015; 26:4-20. [DOI: 10.1002/rmv.1853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/02/2015] [Accepted: 07/15/2015] [Indexed: 11/07/2022]
|
33
|
Chong H, Qiu Z, Su Y, He Y. The N-Terminal T-T Motif of a Third-Generation HIV-1 Fusion Inhibitor Is Not Required for Binding Affinity and Antiviral Activity. J Med Chem 2015; 58:6378-88. [PMID: 26256053 DOI: 10.1021/acs.jmedchem.5b00109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highlighted next-generation HIV-1 fusion inhibitor peptide 1 is capped by two threonines. Here, we generated peptide 2 by deleting the T-T motif and compared their structural and antiviral properties. Significantly, two peptides showed similar helical and oligomeric states in solution, comparable binding affinities to the target, and no significant difference to inhibit HIV-1 fusion and infection. Also, the T-T motif was not associated with peptide 1 resistant mutations and its deletion did not affect peptide 1 against enfuvirtide-resistant HIV-1 mutants. The redundancy of the T-T motif was further verified by the model peptide C34 and short peptide inhibitors that mainly target the gp41 pocket, suggesting that the N-terminal T-T motif of peptide 1 could be removed or modified toward the development of new anti-HIV-1 drugs. Consistently, our data have verified that the M-T hook structure rather than the T-T motif is an efficient strategy for short peptide fusion inhibitors.
Collapse
Affiliation(s)
- Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Zonglin Qiu
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Yang Su
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College , No. 9, Dong Dan San Tiao, Beijing 100730, China
| |
Collapse
|
34
|
Schindler CEM, de Vries SJ, Zacharias M. Fully Blind Peptide-Protein Docking with pepATTRACT. Structure 2015; 23:1507-1515. [PMID: 26146186 DOI: 10.1016/j.str.2015.05.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/02/2023]
Abstract
Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. Here, we present a new fully blind flexible peptide-protein docking protocol, pepATTRACT, which combines a rapid coarse-grained global peptide docking search of the entire protein surface with a two-stage atomistic flexible refinement. Global unbound-unbound docking yielded near-native models for 70% of the docking cases when testing the protocol on the largest benchmark of peptide-protein complexes available to date. This performance is similar to that of state-of-the-art local docking protocols that rely on information about the binding site. Upon restricting the search to the peptide binding region, the resulting pepATTRACT-local approach outperformed existing methods. Docking scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.ph.tum.de/peptide.html.
Collapse
Affiliation(s)
- Christina E M Schindler
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sjoerd J de Vries
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
35
|
Identification and characterization of a subpocket on the N-trimer of HIV-1 Gp41: implication for viral entry and drug target. AIDS 2015; 29:1015-24. [PMID: 26125136 DOI: 10.1097/qad.0000000000000683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Crystallographic studies of HIV-1 gp41 demonstrate a stable six-helix bundle (6-HB) folded by trimeric N and C-terminal heptad repeats (NHR and CHR), and a deep hydrophobic pocket (pocket-1) on the NHR helices (N-trimer); however, previous crystal structures of 6-HB core were determined by peptide fragments missing the downstream sequence of pocket-1; thus, the structural features of this site could not be observed. DESIGN We recently determined several 6-HB structures containing the pocket-1 and its downstream site. Here, we focused to investigate the structural features of N-trimer previously uncharacterized. METHODS Biophysical, biochemical and functional approaches were combined to characterize the downstream residues of pocket-1. RESULTS A subpocket (designated pocket-2) was visualized on the C-terminal portion of N-trimer, which is formed by a cluster of seven residues, including Leu587, Lys588 and Glu584 on one NHR helix and Tyr586, Val583, Ala582 and Arg579 of another NHR helix. Mutagenesis studies demonstrated that the pocket-2 residues play essential roles for HIV-1 Env-mediated cell entry and critically determine the antiviral activity of NHR-derived peptide fusion inhibitor T21. Further, the pocket-2 mutations dramatically impaired the thermostability and conformation of 6-HB structure and reduced the binding affinity of CHR-derived inhibitor HP23 that specifically targets the deep pocket-1. CONCLUSION These data have provided important information for the structure-function relationship of HIV-1 gp41 and for the development of antiviral entry inhibitors.
Collapse
|
36
|
Chu S, Kaur H, Nemati A, Walsh JD, Partida V, Zhang SQ, Gochin M. Swapped-domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection. ACS Chem Biol 2015; 10:1247-57. [PMID: 25646644 DOI: 10.1021/cb501021j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conformational rearrangement of N- and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus-cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nanomolar inhibitors, whereas peptides derived from the NHR are low micromolar inhibitors. Here, we describe the inhibitory activity of swapped-domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nanomolar inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content, and trimer stability. Low nanomolar activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped-domain design resolves the problem of unstable and weakly active NHR peptides and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Shidong Chu
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Hardeep Kaur
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Ariana Nemati
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Joseph D. Walsh
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Vivian Partida
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Shao-Qing Zhang
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Miriam Gochin
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| |
Collapse
|
37
|
Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X. Glycosylated Enfuvirtide: A Long-Lasting Glycopeptide with Potent Anti-HIV Activity. J Med Chem 2015; 58:1372-9. [DOI: 10.1021/jm5016582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuihong Cheng
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xuesong Chang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Wang
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - George F. Gao
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| | - Yiming Shao
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xuebing Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| |
Collapse
|
38
|
Chong H, Yao X, Qiu Z, Sun J, Qiao Y, Zhang M, Wang M, Cui S, He Y. The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance. J Antimicrob Chemother 2014; 69:2759-2769. [DOI: 10.1093/jac/dku183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
39
|
Wang C, Lu L, Na H, Li X, Wang Q, Jiang X, Xu X, Yu F, Zhang T, Li J, Zhang Z, Zheng B, Liang G, Cai L, Jiang S, Liu K. Conjugation of a Nonspecific Antiviral Sapogenin with a Specific HIV Fusion Inhibitor: A Promising Strategy for Discovering New Antiviral Therapeutics. J Med Chem 2014; 57:7342-54. [PMID: 25156906 DOI: 10.1021/jm500763m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chao Wang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Heya Na
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiangpeng Li
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Xifeng Jiang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiaoyu Xu
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Fei Yu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Tianhong Zhang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jinglai Li
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Zhenqing Zhang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Baohua Zheng
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lifeng Cai
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Keliang Liu
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
40
|
Ding S, Song M, Sim BC, Gu C, Podust VN, Wang CW, McLaughlin B, Shah TP, Lax R, Gast R, Sharan R, Vasek A, Hartman MA, Deniston C, Srinivas P, Schellenberger V. Multivalent antiviral XTEN-peptide conjugates with long in vivo half-life and enhanced solubility. Bioconjug Chem 2014; 25:1351-9. [PMID: 24932887 PMCID: PMC4157762 DOI: 10.1021/bc500215m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
XTENs are unstructured, nonrepetitive
protein polymers designed
to prolong the in vivo half-life of pharmaceuticals by introducing
a bulking effect similar to that of poly(ethylene glycol). While XTEN
can be expressed as a recombinant fusion protein with bioactive proteins
and peptides, therapeutic molecules of interest can also be chemically
conjugated to XTEN. Such an approach permits precise control over
the positioning, spacing, and valency of bioactive moieties along
the length of XTEN. We have demonstrated the attachment of T-20, an
anti-retroviral peptide indicated for the treatment of HIV-1 patients
with multidrug resistance, to XTEN. By reacting maleimide-functionalized
T-20 with cysteine-containing XTENs and varying the number and positioning
of cysteines in the XTENs, a library of different peptide–polymer
combinations were produced. The T-20-XTEN conjugates were tested using
an in vitro antiviral assay and were found to be effective in inhibiting
HIV-1 entry and preventing cell death, with the copy number and spacing
of the T-20 peptides influencing antiviral activity. The peptide–XTEN
conjugates were also discovered to have enhanced solubilities in comparison
with the native T-20 peptide. The pharmacokinetic profile of the most
active T-20-XTEN conjugate was measured in rats, and it was found
to exhibit an elimination half-life of 55.7 ± 17.7 h, almost
20 times longer than the reported half-life for T-20 dosed in rats.
As the conjugation of T-20 to XTEN greatly improved the in vivo half-life
and solubility of the peptide, the XTEN platform has been demonstrated
to be a versatile tool for improving the properties of drugs and enabling
the development of a class of next-generation therapeutics.
Collapse
Affiliation(s)
- Sheng Ding
- Amunix Operating Inc. , 500 Ellis Street, Mountain View, California 94043 United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou G, Sofiyev V, Kaur H, Snyder BA, Mankowski MK, Hogan PA, Ptak RG, Gochin M. Structure-activity relationship studies of indole-based compounds as small molecule HIV-1 fusion inhibitors targeting glycoprotein 41. J Med Chem 2014; 57:5270-81. [PMID: 24856833 PMCID: PMC4216203 DOI: 10.1021/jm500344y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We
previously described indole-containing compounds with the potential
to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane
glycoprotein gp41. Here we report optimization and structure–activity
relationship studies on the basic scaffold, defining the role of shape,
contact surface area, and molecular properties. Thirty new compounds
were evaluated in binding, cell–cell fusion, and viral replication
assays. Below a 1 μM threshold, correlation between binding
and biological activity was diminished, indicating an amphipathic
requirement for activity in cells. The most active inhibitor 6j exhibited 0.6 μM binding affinity and 0.2 μM
EC50 against cell–cell fusion and live virus replication
and was active against T20 resistant strains. Twenty-two compounds
with the same connectivity displayed a consensus pose in docking calculations,
with rank order matching the biological activity. The work provides
insight into requirements for small molecule inhibition of HIV-1 fusion
and demonstrates a potent low molecular weight fusion inhibitor.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University-California , 1310 Club Drive, Mare Island, Vallejo, California 94592, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chong H, Qiu Z, Sun J, Qiao Y, Li X, He Y. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK. Retrovirology 2014; 11:40. [PMID: 24884671 PMCID: PMC4046051 DOI: 10.1186/1742-4690-11-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuxian He
- MOH key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P, R, China.
| |
Collapse
|
43
|
Liu W, Tan J, Mehryar MM, Teng Z, Zeng Y. Peptide HIV fusion inhibitors: modifications and conjugations. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00214h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV fusion inhibitors are a group of virus entry preventing drugs aimed at membrane fusion.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| | - Jianjun Tan
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
| | | | - Zhiping Teng
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
- Chinese Centre for Disease Control and Prevention
- Beijing 100052, China
| | - Yi Zeng
- College of Life Science and Bioengineering
- Beijing University of Technology
- Beijing 100124, China
- State Key Laboratory for Infectious Disease Prevention and Control
- National Institute for Viral disease control and prevention
| |
Collapse
|
44
|
Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1777-85. [DOI: 10.1016/j.bbamem.2013.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/01/2013] [Accepted: 03/03/2013] [Indexed: 11/19/2022]
|
45
|
NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41. J Comput Aided Mol Des 2013; 27:569-82. [PMID: 23893342 DOI: 10.1007/s10822-013-9662-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Due to the inherently flexible nature of a protein-protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus-cell and cell-cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein-protein interaction surface.
Collapse
|
46
|
Chu S, Gochin M. Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorg Med Chem Lett 2013; 23:5114-8. [PMID: 23932360 DOI: 10.1016/j.bmcl.2013.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 01/12/2023]
Abstract
The HIV-1 envelope glycoprotein gp41 fusion intermediate is a promising drug target for inhibiting viral entry. However, drug development has been impeded by challenges inherent in mediating the underlying protein-protein interaction. Here we report on the identification of fragments that bind to a C-terminal sub-pocket adjacent to the well-known hydrophobic pocket on the NHR coiled coil. Using a specifically designed assay and ligand-based NMR screening of a fragment library, we identified a thioenylaminopyrazole compound with a dissociation constant of ~500 μM. Interaction with the C-terminal sub-pocket was confirmed by paramagnetic relaxation enhancement NMR experiments, which also yielded the binding mode. Shape-based similarity searching detected additional phenylpyrazole and phenyltriazole fragments within the library, enriching the hit rate over random screening, and revealing molecular features required for activity. Discovery of the novel scaffolds and binding mechanism suggests avenues for extending the interaction surface and improving the potency of a hydrophobic pocket binding inhibitor.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Mare Island, Vallejo, CA 94592, USA
| | | |
Collapse
|
47
|
Martins do Canto AMT, Palace Carvalho AJ, Prates Ramalho JP, Loura LMS. Effect of amphipathic HIV fusion inhibitor peptides on POPC and POPC/cholesterol membrane properties: a molecular simulation study. Int J Mol Sci 2013; 14:14724-43. [PMID: 23860208 PMCID: PMC3742270 DOI: 10.3390/ijms140714724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022] Open
Abstract
T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC) (liquid disordered, ld) and POPC/cholesterol (1:1) (POPC/Chol) (liquid ordered, lo) bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD), T-20 lacks a pocket binding domain (PBD), which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249’s adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.
Collapse
Affiliation(s)
- António M. T. Martins do Canto
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; E-Mails: (A.M.T.M.C.); (A.J.P.C.); (J.P.P.R.)
- Centre for Chemistry-Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Alfredo J. Palace Carvalho
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; E-Mails: (A.M.T.M.C.); (A.J.P.C.); (J.P.P.R.)
- Centre for Chemistry-Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - João P. Prates Ramalho
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; E-Mails: (A.M.T.M.C.); (A.J.P.C.); (J.P.P.R.)
- Centre for Chemistry-Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Luís M. S. Loura
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Centre for Chemistry-Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-239-488-485; Fax: +351-239-827-126
| |
Collapse
|
48
|
Ryan L, Lamarre B, Diu T, Ravi J, Judge PJ, Temple A, Carr M, Cerasoli E, Su B, Jenkinson HF, Martyna G, Crain J, Watts A, Ryadnov MG. Anti-antimicrobial peptides: folding-mediated host defense antagonists. J Biol Chem 2013; 288:20162-72. [PMID: 23737519 PMCID: PMC3711284 DOI: 10.1074/jbc.m113.459560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.
Collapse
Affiliation(s)
- Lloyd Ryan
- National Physical Laboratory, Teddington, Middlesex TW11 0WL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action. PLoS One 2013; 8:e60302. [PMID: 23565220 PMCID: PMC3614957 DOI: 10.1371/journal.pone.0060302] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/25/2013] [Indexed: 01/28/2023] Open
Abstract
Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC), C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.
Collapse
|
50
|
Wang C, Shi W, Cai L, Lu L, Wang Q, Zhang T, Li J, Zhang Z, Wang K, Xu L, Jiang X, Jiang S, Liu K. Design, synthesis, and biological evaluation of highly potent small molecule-peptide conjugates as new HIV-1 fusion inhibitors. J Med Chem 2013; 56:2527-39. [PMID: 23458727 DOI: 10.1021/jm3018964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small molecule fusion inhibitors N-(4-carboxy-3-hydroxyphenyl)-2,5-dimethylpyrrole (NB-2) and N-(3-carboxy-4-hydroxyphenyl)-2,5-dimethylpyrrole (A12) target a hydrophobic pocket of HIV-1 gp41 and have moderate anti-HIV-1 activity. In this paper, we report the design, synthesis, and structure-activity relationship of a group of hybrid molecules in which the pocket-binding domain segment of the C34 peptide was replaced with NB-2 and A12 derivatives. In addition, the synergistic effect between the small molecule and peptide moieties was analyzed, and lead compounds with a novel scaffold were discovered. We found that either the nonpeptide or peptide part alone showed weak activity against HIV-1-mediated cell-cell fusion, but the conjugates properly generated a strong synergistic effect. Among them, conjugates Aoc-βAla-P26 and Noc-βAla-P26 exhibited a low nanomolar IC50 in the cell-cell fusion assay and effectively inhibited T20-sensitive and -resistant HIV-1 strains. Furthermore, the new molecules exhibited better stability against proteinase K digestion than T20 and C34.
Collapse
Affiliation(s)
- Chao Wang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|