1
|
Alshehri AA, Irekeola AA. Prevalence of carbapenem-resistant Enterobacterales (CRE) in Saudi Arabia: A systematic review and meta-analysis. Saudi Pharm J 2024; 32:102186. [PMID: 39498344 PMCID: PMC11532984 DOI: 10.1016/j.jsps.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Antimicrobial resistance is a significant public health issue. In addressing the threat of multidrug resistant bacterial infections, carbapenems have been used. The carbapenem-resistant Enterobacterales (CRE) are, however, rapidly expanding worldwide. Since the issue of CRE is also a problem in Saudi Arabia, the current meta-analysis was performed to comprehensively evaluate the resistance rates to the main carbapenem antibiotics and determine the actual prevalence of CRE in the country. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines was followed. Different web databases including PubMed, Scopus, Web of Science, and ScienceDirect were searched for relevant records. Data were extracted, and summary estimates for resistance to carbapenems were calculated using DerSimonian-Laird method of meta-analysis and the random-effects model. From a total of 787 retrieved records, 69 studies were found fully eligible and were included in the final analyses. More than 50 % of all the studies were conducted after 2010, and the most frequently examined members of the Enterobacterales were Escherichia coli and Klebsiella pneumoniae. The pooled prevalence estimate for imipenem resistance was 6.6 % (95 % CI: 4.7-9.2), 9.1 % (95 % CI: 6.7-12.3) for meropenem, and 18.6 % (95 % CI: 11.9-27.9) for ertapenem. High heterogeneity (I2 > 97 %, p < 0.001) was observed for all the estimates. Compared to other regions of the country, there was higher resistance rates in the Al-Qassim and Al-Jouf provinces. Additionally, resistance to ertapenem was as high as 34.2 % in the most recent study period (2021-2024). Proteus spp was the most prevalent CRE (26.2 %). This review highlights an increasing rate of carbapenem resistance among Enterobacterales, emphasizing the need for collaborative efforts to implement strict infection control and prevention measures. Consistent surveillance is indispensable for safeguarding public health, guiding clinical decisions, and strengthening efforts to tackle the challenges of antibiotic resistance.
Collapse
Affiliation(s)
- Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara, Nigeria
| |
Collapse
|
2
|
Yang Q, Zhang M, Tu Z, Sun Y, Zhao B, Cheng Z, Chen L, Zhong Z, Ye Y, Xia Y. Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. Appl Microbiol Biotechnol 2024; 108:487. [PMID: 39412549 PMCID: PMC11485044 DOI: 10.1007/s00253-024-13326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs.
Collapse
Affiliation(s)
- Qing Yang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Miao Zhang
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihao Tu
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfeng Zhong
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yuhui Ye
- Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian, Shenzhen, 518036, Guangdong, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Cheney C, Johnson JD, Ste. Marie JP, Gacosta KYM, Denlinger Drumm NB, Jones GD, Waite-Cusic J, Navab-Daneshmand T. Resolved genomes of wastewater ESBL-producing Escherichia coli and metagenomic analysis of source wastewater samples. Microbiol Spectr 2024; 12:e0071724. [PMID: 39166863 PMCID: PMC11448238 DOI: 10.1128/spectrum.00717-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli pose a serious threat to human health because of their resistance to the most commonly prescribed antibiotics: penicillins and cephalosporins. In this study, we provide a genomic and metagenomic context for the determinant beta-lactam resistance genes of ESBL-positive E. coli isolated from various wastewater treatment utilities in Oregon, USA. Class A beta-lactamase genes on chromosomes (blaCTX-M, blaTEM) were clustered with antibiotic resistance genes associated with other classes of antibiotics (sulfonamides and aminoglycosides) along with insertional elements. ESBL genes such as blaCTX-M, blaTEM, and blaSHV were also detected on conjugable plasmids of IncF and IncI incompatibility types. One novel IncF plasmid (pSHV2A_ESBLF) was identified, which carried a multidrug resistance genotype (blaSHV-2A, aadA22, aac3, aph6, tetA, and sul1) in addition to a mer (mercury resistance) operon, colicin, and aerobactin genes. Shotgun metagenomic analysis of the ESBL-producing E. coli-originating wastewater samples showed the presence of class A beta-lactamases; however, the ESBL genes identified in the E. coli genomes were below the detection limits. Other ESBL-associated genes (i.e., blaOXA.11, blaFOX.7, and blaGES.17) were identified in the wastewater samples, and their occurrences were correlated with the core microbial genera (e.g., Paraprevotella). In the E. coli genomes and wastewater samples, tetracycline, aminoglycoside, and beta-lactam resistance determinants frequently co-occurred. The combination of whole-genome and metagenomic analysis provides a holistic description of ESBL-producing organisms and genes in wastewater systems.IMPORTANCEUsing a hybrid sequencing and assembly strategy (short- and long-read sequencing), we identified the distribution of ARGs and virulence factors harbored on plasmids and chromosomes. We further characterized plasmids' incompatibility types and the co-occurrences of ARGs and virulence factors on plasmids and chromosomes. We investigated the transferability of plasmid-mediated beta-lactams via conjugation. Finally, using shotgun metagenomic analysis of the ESBL-producing Escherichia coli-originated wastewater samples, we described the microbial community, the resistome composition, and the potential associations with plasmid-mediated beta-lactam genes and other ARGs.
Collapse
Affiliation(s)
- Clinton Cheney
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Jared D. Johnson
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - John P. Ste. Marie
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Kayla Y. M. Gacosta
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Natalie B. Denlinger Drumm
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Tala Navab-Daneshmand
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Thadtapong N, Chaturongakul S, Tangphatsornruang S, Sonthirod C, Ngamwongsatit N, Aunpad R. Four New Sequence Types and Molecular Characteristics of Multidrug-Resistant Escherichia coli Strains from Foods in Thailand. Antibiotics (Basel) 2024; 13:935. [PMID: 39452202 PMCID: PMC11505251 DOI: 10.3390/antibiotics13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The presence of antibiotic-resistant Escherichia coli in food is a serious and persistent problem worldwide. In this study, 68 E. coli strains isolated from Thai food samples were characterized. Based on antibiotic susceptibility assays, 31 of these isolates (45.59%) showed multiple antibiotic resistance (MAR) index values > 0.2, indicating high exposure to antibiotics. Among these, strain CM24E showed the highest resistance (it was resistant to ten antibiotics, including colistin and imipenem). Based on genome sequencing, we identified four isolates (namely, CF25E, EF37E, NM10E1, and SF50E) with novel Achtman-scheme multi-locus sequence types (STs) (ST14859, ST14866, ST14753, and ST14869, respectively). Clermont phylogrouping was used to subtype the 68 researched isolates into five Clermont types, mainly A (51.47%) and B1 (41.18%). The blaEC gene was found only in Clermont type A, while the blaEC-13 gene was predominant in Clermont type B1. A correlation between genotypes and phenotypes was found only in Clermont type B1, which showed a strong positive correlation between the presence of an afa operon and yersiniabactin-producing gene clusters with the colistin resistance phenotype. Strain SM47E1, of Clermont type B2, carried the highest number of predicted virulence genes. In summary, this study demonstrates the pressing problems posed by the prevalence and potential transmission of antimicrobial resistance and virulence genes in the food matrix.
Collapse
Affiliation(s)
- Nalumon Thadtapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| | - Soraya Chaturongakul
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand;
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (C.S.)
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (S.T.); (C.S.)
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12121, Thailand;
| |
Collapse
|
5
|
Hoseinzadeh M, Sedighi M, Yahyapour Y, Javanian M, Beiranvand M, Mohammadi M, Zarei S, Pournajaf A, Ebrahimzadeh Namvar A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in northern Iran. Heliyon 2024; 10:e37534. [PMID: 39315185 PMCID: PMC11417531 DOI: 10.1016/j.heliyon.2024.e37534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) contributes to treatment failures, extended hospital stays, and increased mortality percentages. We aimed to determine the prevalence of PMQR genes in ESBL-producing K. pneumoniae isolates from clinical samples in Babol, North of Iran region. This is the first study in this region to investigate this specific association. A total of 95 K. pneumoniae isolates were obtained from hospitalized patients with various clinical infections during March 2022 to February 2023. Disk diffusion and Combination disk method were performed to identification of antimicrobial resistance profiles and ESBL-producing strains. The presence of ESBL and PMQR genes among K. pneumoniae isolates was assessed using polymerase chain reaction (PCR) method. Of the isolates, 68 (71.57 %) were considered as ESBL-producers. The bla TEM, bla SHV and bla CTX-M genes were detected in 74.73 %, 57.89 %, and 41.05 % of K. pneumoniae isolates, respectively. Among the PMQR encoding genes, the highest and lowest frequency was associated to qepA (67.3 %) and qnrA (4.2 %), respectively. The frequency of qnrA, qnrB, qnrS, acc (6')-Ib-cr, qepA, oqxA, and oqxB genes in 26 MDR-Kp isolates was 11.53 % (n; 3), 69.23 % (n; 18), 65.38 % (n; 17), 73.07 % (n; 19), 80.76 % (n; 21), 84.61 % (n; 22), and 76.92 % (n; 20), respectively. Our result revealed of the 68 ESBL gene-positive isolates, 60 (88.23 %) were positive for the PMQR gene. The co-occurrence of these genes within resistant isolates suggests potential linkage on mobile genetic elements such as plasmids. These findings highlight the significant burden of PMQR determinants in ESBL-producing K. pneumoniae and underscore the urgent need for effective control measures. Implementing robust antimicrobial stewardship programs and strengthening drug-resistance surveillance and control protocols are crucial to prevent the spread of resistant isolates.
Collapse
Affiliation(s)
- Maedeh Hoseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mansour Sedighi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Beiranvand
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Disease Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sepide Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirmorteza Ebrahimzadeh Namvar
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Geleta D, Abebe G, Tilahun T, Gezahegn D, Workneh N, Beyene G. Phenotypic bacterial epidemiology and antimicrobial resistance profiles in neonatal sepsis at Jimma medical center, Ethiopia: Insights from prospective study. PLoS One 2024; 19:e0310376. [PMID: 39283882 PMCID: PMC11404823 DOI: 10.1371/journal.pone.0310376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Epidemiological profiles and the rundown crisis of antimicrobial resistance from bacterial isolates in neonatal sepsis compel regular surveillance to enhance data-driven decision-making. Accordingly, this study aimed to assess the phenotypic epidemiology and antimicrobial resistance profiles of bacteria isolated from clinically suspected neonatal sepsis in Ethiopia. METHODS A total of 342 neonates suspected of clinical sepsis were randomly included in a prospective observational study conducted at the neonatal intensive care unit (NICU) of Jimma medical center (JMC) from May 2022 to July 2023. Blood samples were collected from each neonate and subjected to a culture test for identification of bacterial isolates and their antibiotic resistance profiles following the standardized guidelines. The laboratory results, along with relevant clinical data, were recorded using WHONET and analyzed using STATA software. RESULTS Out of the 342 blood samples that were analyzed, 138 samples (40.4%, 95% CI: 35.1-45.6, P<0.01) exhibited proven bacterial infection. The infection rates were notably higher in males with 85/138 (61.6%, 95% CI: 53.4-69.8, P<0.01) and neonates aged 0-3 days with 81/138 (58.7%, 95% CI: 50.5-66.9, P<0.01). The majority of the infections were attributed to Gram-negative bacteria, accounting for 101/138(73.2%, 95% CI: 65.6-80.7) cases, with 69/101(68.3%, 95% CI: 63.8-72.8) cases involving ESBL-producing strains, while Gram-positive bacteria were responsible for 26.8% (95% CI: 19.3-34.4) of the infections. The predominant isolates included Klebsiella pneumoniae (37.7%, 95% CI: 29.6-45.8), Coagulase-negative Staphylococci (CoNs) (20.3%, 95% CI: 13.6-27.0), and Acinetobacter species (11.6%, 95% CI: 6.0-17.1). Of the total cases, 43/72 (59.7%, 95% CI: 48.4-71.1, P<0.01) resulted in mortality, with 28/72 (38.9%, 95% CI: 27.70-50.1, P<0.03) deaths linked to Extended-Spectrum Beta-Lactamase (ESBL)-producing strains. Klebsiella pneumoniae displayed high resistance rates to trimethoprim-sulfamethoxazole (100%), ceftriaxone (100%), cefotaxime (98.1%), ceftazidime (90.4%), and gentamicin (84.6%). Acinetobacter species showed resistance to ampicillin (100%), cefotaxime (100%), trimethoprim-sulfamethoxazole (75%), ceftazidime (68.8%), chloramphenicol (68.8%), and ceftriaxone (68.8%). Likewise, CoNs displayed resistance to ampicillin (100%), penicillin (100%), cefotaxime (86.0%), gentamicin (57.2%), and oxacillin (32.2%). Multidrug resistance was observed in 88.4% (95% CI: 81.8-93.0) of isolates, with ESBL-producers significantly contributing (49.3%, 95% CI: 45.1-53.5). Furthermore, 23.0% (95% CI: 15.8-31.6) exhibited a prevalent resistance pattern to seven distinct antibiotic classes. CONCLUSION The prevalence and mortality rates of neonatal sepsis were significantly high at JMC, with a notable surge in antibiotic and multidrug resistance among bacterial strains isolated from infected neonates, specifically ESBL-producers. These resistant strains have a significant impact on infection rates and resistance profiles, highlighting the requisite for enhanced diagnostic and antimicrobial stewardship, stringent infection control, and further molecular characterization of isolates to enhance neonatal survival.
Collapse
Affiliation(s)
- Daniel Geleta
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemeda Abebe
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
| | - Tsion Tilahun
- Department of Pediatrics and Child Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Didimos Gezahegn
- Microbiology Unit, Jimma Medical Center, Jimma, Oromia, Ethiopia
| | - Netsanet Workneh
- Department of Health Behavior and Society, Jimma University, Jimma, Oromia, Ethiopia
| | - Getenet Beyene
- Department of Medical Laboratory Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
7
|
Maddheshiya AK, Kumar M, Tufail A, Yadav PS, Deswal Y, Yadav N, Yadav TP, Dubey A. Synergistic Activity of Noble Trimetallic Nanofluids: Unveiling Unprecedented Antimicrobial Potential and Computational Insights. ACS APPLIED BIO MATERIALS 2024; 7:5906-5924. [PMID: 38722351 DOI: 10.1021/acsabm.3c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nanofluids hold significant promise in diverse applications, particularly in biomedicine, where noble trimetallic nanofluids outperformed their monometallic counterparts. The composition, morphology, and size of these nanofluids play pivotal roles in their functionality. Controlled synthesis methods have garnered attention, focusing on precise morphology, content, biocompatibility, and versatile chemistry. Understanding how reaction parameters such as time, reducing agents, stabilizers, precursor concentration, temperature, and pH affect size and shape during synthesis is crucial. Trimetallic nanofluids, with their ideal composition, size, surface structure, and synergistic properties, are gaining traction in antimicrobial applications. These nanofluids were tested against seven microorganisms, demonstrating a heightened antimicrobial efficacy. Computational analyses, including molecular docking, dynamics, density functional theory (DFT), molecular electrostatic potential (MESP) analysis, and absorption, distribution, metabolism, elimination, and toxicology studies (ADMET) provided insights into binding interactions, energy, reactivity, and safety profiles, affirming the antimicrobial potential of trimetallic nanofluids. These findings emphasize the importance of controlled synthesis and computational validation in harnessing the unique properties of trimetallic nanofluids for biomedical applications.
Collapse
Affiliation(s)
- Ajit Kumar Maddheshiya
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Manish Kumar
- Department of Biochemistry, Iswar Saran Degree College (A Constituent PG College of University of Allahabad), Teliarganj, Prayagraj 211004, India
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India
| | - Phool Singh Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Yogesh Deswal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Navneet Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Thakur Prasad Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
8
|
Rodrigues HC, Sampaio GV, Bolsan AC, De Prá MC, Ghisi NDC, Gabiatti NC. Bacteriophages Against Bacterial Infections in Poultry Systems: A Scientometric Review. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:130-142. [PMID: 39372361 PMCID: PMC11447387 DOI: 10.1089/phage.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Poultry production faces challenges from bacterial infections, aggravated by antibiotic resistance, affecting bird welfare and the industry's economy. Bacteriophages show promise as a solution, but their use in poultry systems is still limited. This study uses scientometric analysis to investigate the incidence of bacterial infections in poultry systems and bacteriophage application trends. The Web of Science database was used, and the articles were refined by searching for keywords that included the most rep orted bacteria in the different phases of poultry farming and the application of phages. The articles were analyzed using the CiteSpace and Excel software, allowing the evaluation of publication trends, influential countries, and correlations with antimicrobial resistance and the use of bacteriophages. Results highlight Escherichia coli prevalence in poultry systems and reveal a correlation between the number of publications and poultry productivity, with the United States and China leading both aspects. Findings offer insights into bacterial control gaps in poultry systems, underscoring the need for further research and practical strategies.
Collapse
Affiliation(s)
- Heloisa Campeão Rodrigues
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Gabrielli Vaz Sampaio
- Interunit Graduate Program in Biotechnology (IB IPT), Universidade de São Paulo, São Paulo, Brazil
| | - Alice Chiapetti Bolsan
- Graduate Program in Urban Environmental Sustainability (PPGSAU), Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
| | - Marina Celant De Prá
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| | - Naiana Cristine Gabiatti
- Graduate Program in Biotechnology (PPGBIOTEC), Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Brazil
| |
Collapse
|
9
|
Dubey S, Siddiqui AH, Sharma M. The Impact of Fosfomycin on Gram Negative Infections: A Comprehensive Review. Indian J Microbiol 2024; 64:846-858. [PMID: 39282196 PMCID: PMC11399380 DOI: 10.1007/s12088-024-01293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/21/2024] [Indexed: 09/18/2024] Open
Abstract
Multidrug-resistant or extended drug resistance has created havoc when it comes to patient treatment, as options are limited because of the spread of pathogens that are extensively or multidrug-resistant (MDR or XDR) and the absence of novel antibiotics that are effective against these pathogens. Physicians have therefore started using more established antibiotics such as polymyxins, tetracyclines, and aminoglycosides. Fosfomycin has just come to light as a result of the emergence of resistance to these medications since it continues to be effective against MDR and XDR bacteria that are both gram-positive and gram-negative. Fosfomycin, a bactericidal analogue of phosphoenolpyruvate that was formerly utilised as an oral medication for uncomplicated urinary tract infections, has recently attracted the interest of clinicians around the world. It may generally be a suitable therapy option for patients with highly resistant pathogenic infections, according to the advanced resistance shown by gram-negative bacteria. This review article aims to comprehensively evaluate the impact of fosfomycin on gram negative infections, highlighting its mechanism of action, pharmacokinetics, clinical efficacy, and resistance patterns.
Collapse
Affiliation(s)
- Sandeepika Dubey
- Department of Microbiology, Integral Institute of Medical Sciences Research, Integral University, Lucknow, Uttar Pradesh India
| | - Areena Hoda Siddiqui
- Department of Microbiology, Integral Institute of Medical Sciences Research, Integral University, Lucknow, Uttar Pradesh India
| | - Meenakshi Sharma
- Autonomous State Medical College, Lakhimpur Kheri, Uttar Pradesh India
| |
Collapse
|
10
|
Laçinel Gürlevik S, Oygar PD, Köseoğlu B, Hazırolan G, Cengiz AB, Ozsurekci Y. Is the high dose extended infusion of meropenem useful in the treatment of highly resistant gram-negative bacteria in children? J Infect Chemother 2024:S1341-321X(24)00230-7. [PMID: 39168281 DOI: 10.1016/j.jiac.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Multidrug resistant infections present a treatment challenge for clinicians. These infections have been associated with increased morbidity and mortality. Recently, there has been increasing discussion in the literature that high dose extended infusion of meropenem may be helpful. We aimed to evaluate the clinical efficacy of high dose extended infusion of meropenem in the treatment of highly resistant Gram-negative infections. METHODS This retrospective observational study was conducted between December 2014 and December 2020 at Hacettepe University Ihsan Dogramaci Children's Hospital. Clinical and microbiological data of children diagnosed with invasive multidrug and extremely drug resistant Gram-negative infections were studied. The findings of patients given high dose extended infusion of meropenem were compared with patients who received colistin or tigecycline. RESULTS Overall, 158 pediatric patients infected with multidrug and extremely drug resistant gram-negatives were enrolled; 76 treated with high-dose prolonged infusion of meropenem; 60 treated with colistin and 22 with tigecycline. The overall clinical response at the end of the treatment was 81.6 % in meropenem group, 83.3 % in colistin group and 77.3 % in tigecycline group (P = 0.821). Microbiological response at the end of the treatment was 81.1 % in meropenem group, 76.4 % in colistin group and 72.2 % in tigecycline group (P = 0.694). CONCLUSION Meropenem, with an adjusted dose (high-dose and extended), seems a crucial and robust fighting agent in the treatment of pediatric patients infected with highly-resistant Gram-negative bacteria. It may also be useful in preventing the use of the latest fighting tools such as colistin and tigecycline during the antibacterial stewardship process.
Collapse
Affiliation(s)
- Sibel Laçinel Gürlevik
- Hacettepe University Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Pembe Derin Oygar
- Hacettepe University Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Büşra Köseoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Ankara, Turkey
| | - Gülşen Hazırolan
- Hacettepe University Faculty of Medicine, Department of Microbiology, Ankara, Turkey
| | - Ali Bülent Cengiz
- Hacettepe University Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Yasemin Ozsurekci
- Hacettepe University Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey.
| |
Collapse
|
11
|
Alanazi B, Muhiuddin G, Albalawi Y, Alhazmi K, Alzahrani O, Alamri M, Alshadfan H, Zubair M. Antibiotic Resistance & Extended-Spectrum ß-Lactamase Production in Clinical and Non-Clinical Isolates in Tabuk. Med Sci (Basel) 2024; 12:42. [PMID: 39189205 PMCID: PMC11348262 DOI: 10.3390/medsci12030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
The increasing prevalence of antibiotic resistance, driven by the production of extended-spectrum beta-lactamases (ESBLs), presents a critical challenge to current medical treatments, particularly in clinical settings. Understanding the distribution and frequency of ESBL-producing bacteria is essential for developing effective control strategies. This study investigated the antibiotic resistance and extended-spectrum beta-lactamase (ESBL) production in bacterial isolates in clinical and non-clinical (food) specimens in Tabuk, KSA. A total of 57 bacterial isolates were analysed, with E. coli and Pseudomonas sp. being the most prevalent. High resistance rates were observed, particularly against third-generation cephalosporins in clinical isolates. ESBL screening revealed a significant prevalence in clinical samples (58.3%), with E. coli showing the highest positivity. Conversely, only a low percentage of food isolates were ESBL positive. Molecular analysis confirmed the presence of various ESBL genes, with blaCTX-M being the most frequent, predominantly found in clinical isolates. This study highlights the concerning levels of antibiotic resistance and ESBL production in the region, emphasising the need for effective infection control measures and prudent antibiotic use.
Collapse
Affiliation(s)
- Badriah Alanazi
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Ghulam Muhiuddin
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Yazeed Albalawi
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Khalid Alhazmi
- Department of Pathology, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Marai Alamri
- Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Hisham Alshadfan
- Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 47512, Saudi Arabia
| |
Collapse
|
12
|
Patil HV, Patil VC, Patange AP, Asim Khan M. Antibiotic Resistance Profiles of Extended-Spectrum β-Lactamase (ESBL)- and Metallo-β-Lactamase (MBL)-Producing Klebsiella pneumoniae Isolates From Diabetic Foot Ulcers: Implications for Treatment Strategies. Cureus 2024; 16:e66089. [PMID: 39229443 PMCID: PMC11368707 DOI: 10.7759/cureus.66089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Background Diabetic foot ulcers (DFUs) are prevalent complications of diabetes mellitus, often leading to severe infections and adverse clinical outcomes. Klebsiella pneumoniae, a gram-negative bacterium, has emerged as a significant causative agent in DFU infections, raising concerns due to its increasing antibiotic resistance, particularly in extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) production. Aim This study aimed to comprehensively assess the prevalence, antibiotic resistance profiles, and clinical correlates of ESBL- and MBL-producing K. pneumoniae isolates specifically derived from DFUs. Methods A cross-sectional observational study was conducted at Krishna Vishwa Vidyapeeth from January 2023 to June 2023, involving 126 patients diagnosed with DFUs. Clinical and demographic data were collected, and wound swabs underwent microbiological analysis. Phenotypic detection methods were employed to identify ESBL and MBL production, followed by standardized antibiotic susceptibility testing. Results Among the 126 isolates tested, 36 (28.6%) were identified as ESBL-producing and 21 (16.7%) as MBL-producing strains. ESBL-producing isolates exhibited high resistance rates to antibiotics such as ampicillin (92.3%), amoxicillin-acid (84.6%), and cephalosporins, including ceftriaxone (76.9%), and cefepime (73.8%). MBL-producing isolates demonstrated even broader resistance profiles, including resistance to fluoroquinolones (ciprofloxacin, 60.0%; levofloxacin, 57.1%), aminoglycosides (gentamicin, 42.9%), and carbapenems (meropenem, 38.1%; imipenem, 35.7%). Conclusion This study identifies a significant prevalence of ESBL- and MBL-producing K. pneumoniae in DFUs, showcasing high antibiotic resistance rates. Comorbidities correlate significantly with the presence of resistant isolates, necessitating treatment strategies for effective management.
Collapse
Affiliation(s)
- Harsha V Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Virendra C Patil
- Department of Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aparna P Patange
- Department of Medicine, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Mohammad Asim Khan
- Department of Community Medicine, Mahatma Gandhi Medical College, Jaipur, IND
| |
Collapse
|
13
|
Donkor ES, Odoom A, Osman AH, Darkwah S, Kotey FCN. A Systematic Review on Antimicrobial Resistance in Ghana from a One Health Perspective. Antibiotics (Basel) 2024; 13:662. [PMID: 39061344 PMCID: PMC11274323 DOI: 10.3390/antibiotics13070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a global health threat, with lower-middle-income countries bearing a disproportionate burden. Surveillance of AMR under a One Health framework is needed to elucidate the associations among clinical, animal, and environmental AMR. This review aimed to describe the state of AMR in Ghana, focusing on One Health. METHOD This review utilized the PRISMA guidelines and major databases to systematically search and analyze AMR in Ghana published from 1 January 2014 to 1 May 2023. RESULTS Out of the 48 articles that met the inclusion criteria, 28 studies were conducted on humans, 14 studies involved animals, and 6 studies focused on the environment. A total of 48 different pathogens were identified across the human, animal, and environmental sectors, with the most common being Escherichia coli (67%, n = 32), Klebsiella spp. (52%, n = 25), Pseudomonas spp. (40%, n = 19), and Salmonella spp. (38%, n = 18). Generally, a high prevalence of antibiotic resistance was observed among various bacterial species across the sectors. These bacteria exhibited resistance to commonly used antibiotics, with resistance to ampicillin and tetracycline exceeding 80%, and multidrug resistance (MDR) ranging from 17.6% in Shigella spp. to 100% in Acinetobacter spp. CONCLUSION This review reaffirms the significant challenge of AMR in Ghana, with a high prevalence observed in the human, animal, and environmental sectors. Key pathogens (e.g., Staphylococcus aureus and Escherichia coli) found across the sectors emphasize the urgent need for a One Health approach to tackle AMR in Ghana.
Collapse
Affiliation(s)
- Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra P.O. Box KB 4236, Ghana; (A.O.); (A.-H.O.); (S.D.); (F.C.N.K.)
| | | | | | | | | |
Collapse
|
14
|
Eddair Y, Belouad E, Benaissa E, Abassor T, Bsaibiss F, Maleb A, Elouennass M. Phenotypic and genotypic characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in a Moroccan hospital. Access Microbiol 2024; 6:000822.v3. [PMID: 39070755 PMCID: PMC11282464 DOI: 10.1099/acmi.0.000822.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) is a major public health problem in hospitals and in the community. The objective of this work was to describe the epidemiology of ESBL-E, to study their resistance profile and to determine the genes encoding the ESBL phenotype. This is a retrospective study conducted in the bacteriology laboratory of the Mohamed V Military Training Hospital in Rabat, and covering all isolates of Enterobacteriaceae from 1 January 2018 to 31 December 2020. The molecular study of ESBL genes involved a representative sample of all ESBL isolates. The overall prevalence of ESBLs in isolated Enterobacteriaceae (1402/10268) is 13.65 %. The urinary tract was the main site of isolation of ESBL (61 %). The bacterial species most concerned are Escherichia coli (41.9 %), Klebsiella pneumoniae (42.2 %) and Enterobacter cloacae (11.9 %). The study of antibiotic susceptibility showed a resistant profile marked mainly by 100 % resistance to first generation cephalosporins (1GC) and third generation cephalosporins (3GC), 55 % to piperacillin-tazobactam, 16 % to imipenem, and 87 % to fluoroquinolones. Molecular typing of ESBL strains showed a prevalence of CTX-M (95 %), SHV (50 %) and TEM (56 %). The CTX-M-1 and the CTX-M-9 groups were the most common (96.19 % and 7.62 % respectively), and CTX-M15 was found in 78.10 % of CTX-M-1 ESBL positive isolates. Most strains had more than two coexisting resistance genes. The prevalence rate of ESBL-E is critical, and preventive action at different levels (prescriber, biologist, hospital, patient, etc.) are necessary in order to limit their spread and to manage a better therapeutic strategy.
Collapse
Affiliation(s)
- Yassine Eddair
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Elmehdi Belouad
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Elmostafa Benaissa
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Tilila Abassor
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Fatna Bsaibiss
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Adil Maleb
- Laboratory of Microbiology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed the First, Oujda, Morocco
| | - Mostafa Elouennass
- Laboratory of Bacteriology, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- Research Team of Epidemiology and Bacterial Resistance, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| |
Collapse
|
15
|
Visan AI, Negut I. Coatings Based on Essential Oils for Combating Antibiotic Resistance. Antibiotics (Basel) 2024; 13:625. [PMID: 39061307 PMCID: PMC11273621 DOI: 10.3390/antibiotics13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In the current era of widespread antimicrobial resistance, the utilization of essential oils (EOs) derived from plants has emerged as a promising alternative in combating pathogens that have developed resistance to antibiotics. This review explores the therapeutic potential of essential oils as valuable tools in restoring the efficacy of antibiotics, highlighting their unique ability to affect bacteria in multiple ways and target various cellular systems. Despite the challenge of elucidating their precise mode of action, EOs have shown remarkable results in rigorous testing against a diverse range of bacteria. This review explores the multifaceted role of EOs in combating bacterial microorganisms, emphasizing their extraction methods, mechanisms of action, and comparative efficacy against synthetic antibiotics. Key findings underscore the unique strategies EOs deploy to counter bacteria, highlighting significant differences from conventional antibiotics. The review extends to advanced coating solutions for medical devices, exploring the integration of EO formulations into these coatings. Challenges in developing effective EO coatings are addressed, along with various innovative approaches for their implementation. An evaluation of these EO coatings reveals their potential as formidable alternatives to traditional antibacterial agents in medical device applications. This renaissance in exploring natural remedies emphasizes the need to combine traditional wisdom with modern scientific advancements to address the urgent need for effective antimicrobial solutions in the post-antibiotic era.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
16
|
Whelan S, Bottacini F, Buttimer C, Finn K, Lucey B. Whole genome sequencing of uropathogenic E. coli from Ireland reveals diverse resistance mechanisms and strong correlation with phenotypic (EUCAST) susceptibility testing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 121:105600. [PMID: 38692501 DOI: 10.1016/j.meegid.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) pose a global health concern. Resistance mechanisms, including genetic mutations in antimicrobial target genes, efflux pumps, and drug deactivating enzymes, hinder clinical treatment. These resistance factors often spread through mobile genetic elements. Molecular techniques like whole genome sequencing (WGS), multilocus sequence typing (MLST), and phylotyping help decode bacterial genomes and categorise resistance genes. In this study, we analysed 57 UPEC isolates from different UTI patients following EUCAST guidelines. A selection of 17 representative strains underwent WGS, phylotyping, MLST, and comparative analysis to connect laboratory susceptibility data with predictive genomics based on key resistance genes and chromosomal mutations in antimicrobial targets. Trimethoprim resistance consistently correlated with dfr genes, with six different alleles detected among the isolates. These dfr genes often coexisted with class 1 integrons, with the most common gene cassette combining dfr and aadA. Furthermore, 52.9% of isolates harboured the blaTem-1 gene, rendering resistance to ampicillin and amoxicillin. Ciprofloxacin-resistant strains exhibited mutations in GyrA, GyrB and ParC, plasmid-mediated quinolone resistance genes (qnrb10), and aac(6')-Ib-cr5. Nitrofurantoin resistance in one isolate stemmed from a four amino acid deletion in NfsB. These findings illustrate the varied strategies employed by UPEC to resist antibiotics and the correlation between clinical susceptibility testing and molecular determinants. As molecular testing gains prominence in clinical applications, understanding key resistance determinants becomes crucial for accurate susceptibility testing and guiding effective antimicrobial therapy.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, Galway, Ireland.
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| |
Collapse
|
17
|
Ragab S, Gouda SM, Abdelmoteleb M, El-Shibiny A. The role of identified and characterized bacteriophage ZCEC13 in controlling pathogenic and multidrug-resistant Escherichia coli in wastewater: in vitro study. ENVIRONMENTAL TECHNOLOGY 2024; 45:3544-3558. [PMID: 37255221 DOI: 10.1080/09593330.2023.2220886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
The spread and development of Multi-Drug Resistant (MDR) bacteria in wastewater became beyond control and a global public health concern. The conventional disinfectants used in wastewater treatment methods have been becoming increasingly ineffective against a range of pathogenic and MDR bacteria. Bacteriophages are considered a novel approach to microbial control. Therefore, this study aims to explore the possibility of using phages against pathogenic and MDR Escherichia coli strains isolated from wastewater treatment plants. The wastewater samples were collected from two different treatment plants for E. coli isolation. The antibiotic sensitivity profile and occurrence of virulence and resistant genes were tested in 28 E. coli isolates. Phage ZCEC13 was selected based on its promising activity and host range to undergo identification and characterization. ZCEC13 was evaluated by transmission electron microscopy, genomic sequencing, in vitro lytic activity and tested for its stability under different conditions such as pH, Ultraviolet light exposure, and temperature. The results reported that ZCEC13 belongs to the Caudoviricetes class, with a high antibacterial dynamic. Phage ZCEC13 displayed high stability at different pH values ranging from 2 to 12, good tolerance to temperatures from -4 to 65°C, and high stability at UV exposure for 120 min. Respectively, the findings showed stability of the phage under several conditions and high efficiency in killing MDR bacteria isolated from the treatment plants. Further studies are encouraged to analyse the efficacy of phages as a microbial control agent in wastewater treatment plants.
Collapse
Affiliation(s)
- Samar Ragab
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | - Shrouk Mohamed Gouda
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
| | | | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
18
|
Lim AH, Ab Rahman N, Ong SM, Mohamad Azman SR, Mohd Rathi FZ, Ismail M, Tok PSK, Kiau Ho B, Sivasampu S. Impact evaluation of guidelines on antibiotic utilisation & appropriateness in Malaysian public primary care: an interrupted time series analysis. J Pharm Policy Pract 2024; 17:2355666. [PMID: 38845627 PMCID: PMC11155422 DOI: 10.1080/20523211.2024.2355666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Background The National Antimicrobial Guidelines (NAG) 2014 and NAG2019 in Malaysia targeted rational and judicious use of antimicrobials. In this study, we assessed the change in antibiotic utilisation and appropriateness due to the guidelines that were implemented from 2011 to 2019. Methods Interrupted time series analyses on rates of antibiotic appropriateness and utilisation were performed using prescription data from public primary care clinics in Malaysia between January 2011 and December 2019. Rates of antibiotic utilisation, reported as Defined Daily Dose (DDD) per 1000 patients per day, were stratified by antibiotic classes. Results Of the 16,081,492 prescriptions recorded during the study period, 4.98% (n = 800,899) contained antibiotics. NAG2014 resulted in a significant increase in antibiotic utilisation trend by 0.029 (p < 0.0001) while NAG2019 had a substantial impact on antibiotic utilisation, decreasing DDD by 1778 and increasing appropriateness by 54.6% (p < 0.0001). Variation in the number of antibiotic molecules being prescribed also decreased after NAG2019. Conclusion Our findings indicate that the introduction of NAG2019 led to a substantial improvement in antibiotic appropriateness. At the same time, antibiotic utilisation decreased. Further research is needed to ascertain and ensure the sustainability of these changes and to establish targeted improvement strategies focusing on reducing inappropriate and unnecessary prescribing.
Collapse
Affiliation(s)
- Audrey Huili Lim
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Norazida Ab Rahman
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Su Miin Ong
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Malaysia
| | | | | | - Mastura Ismail
- Primary Health Sector, Family Health Development Division, Ministry of Health, Malaysia
| | - Peter Seah Keng Tok
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Bee Kiau Ho
- Bandar Botanik Health Clinic, Klang, Malaysia
| | - Sheamini Sivasampu
- Institute for Clinical Research, National Institutes of Health, Ministry of Health, Malaysia
| |
Collapse
|
19
|
Dayie NTKD, Egyir B, Amoa-Owusu F, Owusu-Nyantakyi C, Adu B, Kotey FCN, Donkor ES, Stabler RA. Genome Sequences of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Recovered from Mid-Stream Urine Samples in Accra, Ghana. Microorganisms 2024; 12:1139. [PMID: 38930521 PMCID: PMC11205560 DOI: 10.3390/microorganisms12061139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli, a member of the commensal intestinal microbiota, is a significant aetiology of urinary tract infections (UTIs) and has a propensity for acquiring multidrug resistance characteristics, such as extended-spectrum beta-lactamases (ESBLs). Despite the increase in the incidence of ESBL-producing E. coli infections in sub-Saharan Africa, routine ESBL detection in Ghana is often absent, and molecular data on ESBL genotypes is scarce. Eleven ESBL-producing E. coli recovered from mid-stream urine samples were subjected to antimicrobial susceptibility testing and whole-genome sequence analyses. All isolates exhibited multidrug resistance, demonstrating phenotypic resistance to third-generation cephalosporins, such as cefotaxime, ceftazidime, and cefpodoxime. Three isolates demonstrated resistance to norfloxacin (a fluoroquinolone), and one isolate demonstrated intermediate resistance to ertapenem (a carbapenem). Analysis of the draft genomes identified multiple antimicrobial resistance genes including ESBL genotypes blaTEM-1B/TEM-190 (6/11 and 1/11, respectively), blaCTX-M-15/CTX-M-3 (7/11 and 1/11) and blaOXA-1/OXA-181 (3/11 and 1/11). The strains belong to 10 different serotypes and 10 different multilocus sequence types. This study provides information on phenotypic resistance in 11 ESBL E. coli from Ghana and AMR genotypes within their genomes.
Collapse
Affiliation(s)
- Nicholas T. K. D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (N.T.K.D.D.); (F.C.N.K.); (E.S.D.)
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (B.E.); (F.A.-O.); (C.O.-N.)
| | - Felicia Amoa-Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (B.E.); (F.A.-O.); (C.O.-N.)
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana; (B.E.); (F.A.-O.); (C.O.-N.)
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana;
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (N.T.K.D.D.); (F.C.N.K.); (E.S.D.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (N.T.K.D.D.); (F.C.N.K.); (E.S.D.)
| | - Richard A. Stabler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
20
|
Kharat AS, Makwana N, Nasser M, Gayen S, Yadav B, Kumar D, Veeraraghavan B, Mercier C. Dramatic increase in antimicrobial resistance in ESKAPE clinical isolates over the 2010-2020 decade in India. Int J Antimicrob Agents 2024; 63:107125. [PMID: 38431109 DOI: 10.1016/j.ijantimicag.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
RATIONALE AND OBJECTIVES ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) constitute a threat to humans worldwide. India is now the most populous country. The goal was to investigate the evolution of the rates of antimicrobial resistance in ESKAPE pathogens across India over the 2010-20 decade. METHODS The data (89 studies) were retrieved from the Medline PubMed repository using specific keywords. RESULTS The study of 20 177 ESKAPE isolates showed that A. baumannii isolates were the most represented (35.9%, n = 7238), followed by P. aeruginosa (25.3%, n = 5113), K. pneumoniae (19.5%, n = 3934), S. aureus (16.3%, n = 3286), E. faecium (2.6%, n = 517) and Enterobacter spp. (0.4%, n = 89). A notable increase in the resistance rates to antimicrobial agents occurred over the 2010-20 decade. The most important levels of resistance were observed in 2016-20 for A. baumannii (90% of resistance to the amoxicillin-clavulanate combination) and K. pneumoniae (81.6% of resistance to gentamycin). The rise in β-lactamase activities was correlated with an increase in the positivity of Gram-negative isolates for β-lactamase genes. CONCLUSIONS This review highlighted that, in contrast to developed countries that kept resistance levels under control, a considerable increase in resistance to various classes of antibiotics occurred in ESKAPE pathogens in India over the 2010-2020 decade.
Collapse
Affiliation(s)
- Arun S Kharat
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Nilesh Makwana
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mahfouz Nasser
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus Osmanbad, MS, Aurangabad, Maharashtra, India; National Center for Public Health Laboratories, Hodeidah, Yemen
| | - Samarpita Gayen
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Subcampus Osmanbad, MS, Aurangabad, Maharashtra, India
| | - Bipin Yadav
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Durgesh Kumar
- Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore Tamil Nadu, India
| | - Corinne Mercier
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
21
|
Omar MH, Kilale AM, Rashid HK, Mwakapeje ER, Onoka IM, Gimbi AA. Prevalence and risk factors for extended-spectrum β-lactamase producing antimicrobial-resistant E. coli in urinary tract infections among inpatients in the tertiary hospitals in Zanzibar (Tanzania): a prospective cross-sectional study. Pan Afr Med J 2024; 47:193. [PMID: 39119113 PMCID: PMC11308945 DOI: 10.11604/pamj.2024.47.193.37920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae, such as E. coli, has been increasing worldwide, which causes treatment failure for urinary tract infections. Therefore, this study aimed to determine the prevalence and risk factors for the production of ESBL in E. coli from patients with urinary tract infections (UTI) in Zanzibar. Methods a prospective cross-sectional study was conducted from January 2018 to December 2021 in Zanzibar. Data were retrieved from a routine bacteriological laboratory culture report from urine samples of 4306 patients at the Lancet Laboratory. In addition, the patient's social demographics and clinical data were retrieved by examining the medical records in the respective hospitals. All inpatients older than fifteen years diagnosed with urinary tract infections (UTI) and requested urine culture and sensitivity were included. The Chi-square and Fischer's exact tests were used to compare antibiotic resistance. In addition, a binary logistic regression analysis was used to predict ESBL production risk factors. Results the prevalence of E. coli-producing ESBL was 13.4% (578/4030). Infection of ESBL. E. coli was prevalent in females 52.6% (n=304) compared to male patients, 47.4% (n=274), and the majority 38.8% (n=224), were people of young age, between 16-30 years. The average age of patients was 31.5±10.2 years, with minimum age of 16 years and a maximum age of 72 years. In multivariate analysis, results shown that previously hospitalised patients aOR: 6.35, 95% Cl 3.37-11.92; p=0.001, long hospital stays aOR: 10.34, 95% Cl 3.03-22.29; p <0.001, prior use of penicillin aOR: 7.78, 95% Cl 2.99-29.11; p < 0.001, and prior use of cephalosporin drugs aOR: 4.64, 95% Cl 2.99-9.96; p=0.001, were strongly associated with the emergence of ESBL-producing E. coli in urinary tract infection patients. ESBL E. coli showed high resistance to amoxicillin 99.5% (n=575), ampicillin 97.8.% (n=570), cotrimazaxole 86.2% (n=344), ceftriaxone 73.7% (n=344), ciprofloxacin 73.2% (n=423), and ceftaxime 59.5% (n=426). There was a less resistance to ampicillin -cloxacillin 44.3% (n=256), gentamicin 22.5% (n=22.5), and norfloxacin 18.9% (n=109) respectively. Isolates were shown to be more susceptible to meropenem at 1.6% (n=9). Conclusion the overall prevalence of ESBL-producing E. coli is 13.4%. The risk of emergence ESBL was higher in patients with previous history of hospitalisation, long hospital stay, prior use of penicillin and cephalosporin drugs. High level of antimicrobial resistance observed against most commonly used antibiotics in treatment of urinary tract infections. The clinicians should rely on microbiological diagnosis in treatment of UTIs to reduce risk of treatment failure. Further study should be carried out to assess the prevalence and resistance pattern of other uropathogens and other risk factors.
Collapse
Affiliation(s)
- Muhiddin Hamada Omar
- Department of Preventive Service and Health Education, Ministry of Health, Unguja, Zanzibar, Tanzania
- The Open University of Tanzania, Dar es Salaam, Tanzania
| | - Andrew Martin Kilale
- National Institute for Medical Research, Muhimbili Research Centre, Dar es Salaam, Tanzania
| | - Huba Khamis Rashid
- Department of Pharmacology, School of Health and Medical Science, State University of Zanzibar, Zanzibar, Tanzania
| | - Elibariki Reuben Mwakapeje
- Food and Agriculture Organization of the United Nations, emergence Center for Transboundary Animal Diseases, Dar es Salaam, Tanzania
| | | | | |
Collapse
|
22
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
23
|
Mohanty D, Das BK, Kumari P, Dey S, Bera AK, Sahoo AK, Dasgupta S, Roy S. Prevalence of Extended-Spectrum β-Lactamases (ESBLs) Producing Aeromonas spp. Isolated from Lamellidens marginalis (Lamark, 1819) of Sewage-Fed Wetland: A Phenotypic and Genotypic Approach. Microorganisms 2024; 12:723. [PMID: 38674667 PMCID: PMC11051913 DOI: 10.3390/microorganisms12040723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 04/28/2024] Open
Abstract
The global rise of zoonotic bacteria resistant to multiple antimicrobial classes and the growing occurrence of infections caused by Aeromonas spp. resistant to β-lactam antibiotics pose a severe threat to animal and human health. However, the contribution of natural environments, particularly aquatic ecosystems, as ideal settings for the development and spread of antimicrobial resistance (AMR) is a key concern. Investigating the phenotypic antibiotic resistance and detection of β-lactamase producing Aeromonas spp. in Lamellidens marginalis, which inhabit all freshwater ecosystems of the Indian subcontinent, is essential for implications in monitoring food safety and drug resistance. In the present investigation, 92 isolates of Aeromonas spp. were recovered from 105 bivalves and screened for their antimicrobial resistance patterns. In vitro antibiotic resistance profiling showed a higher Multiple Antibiotic Resistance (MAR) index of 0.8 with the highest resistance against ampicillin/sulbactam (82%), while 58, 44, 39 and 38% of the isolates were resistant to cephalothin, erythromycin, cefoxitin and imipenem, respectively. PCR results revealed that these isolates carried the blaTEM gene (94%), which was followed by the blaCTX-M gene (51%) and the blaSHV gene (45%). A combination of blaSHV, blaCTX-M, and blaTEM genes was found in 17% of the isolates, indicating the presence of all three resistance genes. This is the first investigation which highlights the importance of multidrug-resistant Aeromonas spp. in L. marginalis. The identification of extended-spectrum-β-lactamases (ESBLs) genes demand the necessity of continuous surveillance and systematic monitoring, considering its potential health risks for both animals and human beings.
Collapse
Affiliation(s)
- Debasmita Mohanty
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India;
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Punam Kumari
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India;
| | - Saikat Dey
- National Institute of Mental Health and Neurosciences, Bangalore 5600029, Karnataka, India;
| | - Asit Kumar Bera
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Amiya Kumar Sahoo
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Shubhankhi Dasgupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| | - Shreya Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore 700120, West Bengal, India; (D.M.); (A.K.B.); (A.K.S.); (S.D.); (S.R.)
| |
Collapse
|
24
|
Cosimato I, Santella B, Rufolo S, Sabatini P, Galdiero M, Capunzo M, Boccia G, Folliero V, Franci G. Current Epidemiological Status and Antibiotic Resistance Profile of Serratia marcescens. Antibiotics (Basel) 2024; 13:323. [PMID: 38666999 PMCID: PMC11047617 DOI: 10.3390/antibiotics13040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
The spread of antibiotic resistance represents a serious worldwide public health issue, underscoring the importance of epidemiology research in determining antimicrobial strategies. The purpose of this research was to investigate antibiotic resistance in Serratia marcescens isolates from clinical samples over seven years at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno, Italy. S. marcescens is an important opportunistic pathogen associated with a wide spectrum of clinical diseases, including pneumonia, keratitis, meningitis, and urinary tract and wound infections. Outbreaks of nosocomial infections by S. marcescens strains have been documented in high-risk settings, mainly affecting immunocompromised patients and newborns. The primary objective of this study is to assess the rates of antibiotic resistance over the years to deal with a future emergency which includes the failure of various therapies due to antibiotic resistance. During the investigation, a total of 396 species of S. marcescens were isolated from various clinical samples, mainly from broncho-aspirates and sputum (31.6%) and blood cultures (21.5%). Antibiotics that showed the greatest susceptibility included ceftazidime/avibactam, amikacin, trimethoprim/sulfamethoxazole, and selected members of the cephalosporin class. However, a disconcerting trend of increasing rates of carbapenem resistance was outlined over the observation period. The absence of effective countermeasures, combined with growing antibiotic resistance that negates the effectiveness of multiple antibiotics, highlights the potential for S. marcescens infections to trigger serious clinical complications and increased mortality rates. The surveillance of Serratia marcescens infections constitutes a pivotal element in refining empiric therapy to mitigate the dissemination of antimicrobial resistance.
Collapse
Affiliation(s)
- Ilaria Cosimato
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy; (I.C.)
| | - Biagio Santella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
| | - Sandra Rufolo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
| | - Paola Sabatini
- Unit of Virology and Microbiology, Nocera Inferiore, Umberto I Hospital, 84018 Salerno, Italy;
| | - Massimiliano Galdiero
- U.O.C. of Virology and Microbiology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy; (I.C.)
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa, U.O.C. Patologia Clinica e Microbiologia, A.O.U. San Giovanni di Dio e Ruggi D’Aragona, Largo Città di Ippocrate, 84131 Salerno, Italy
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa, U.O.C. Patologia Clinica e Microbiologia, A.O.U. San Giovanni di Dio e Ruggi D’Aragona, Largo Città di Ippocrate, 84131 Salerno, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (B.S.); (S.R.); (M.C.); (G.B.); (V.F.)
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa, U.O.C. Patologia Clinica e Microbiologia, A.O.U. San Giovanni di Dio e Ruggi D’Aragona, Largo Città di Ippocrate, 84131 Salerno, Italy
| |
Collapse
|
25
|
Kasanga M, Shempela DM, Daka V, Mwikisa MJ, Sikalima J, Chanda D, Mudenda S. Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: findings and implications. JAC Antimicrob Resist 2024; 6:dlae061. [PMID: 38680604 PMCID: PMC11055401 DOI: 10.1093/jacamr/dlae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
Background The overuse and misuse of antimicrobials has worsened the problem of antimicrobial resistance (AMR) globally. This study investigated the AMR profiles of Escherichia coli isolated from clinical and environmental samples in Lusaka, Zambia. Methods This was a cross-sectional study conducted from February 2023 to June 2023 using 450 samples. VITEK® 2 Compact was used to identify E. coli and perform antimicrobial susceptibility testing. Data analysis was done using WHONET 2022 and SPSS version 25.0. Results Of the 450 samples, 66.7% (n = 300) were clinical samples, whereas 33.3% (n = 150) were environmental samples. Overall, 47.8% (n = 215) (37.8% clinical and 10% environmental) tested positive for E. coli. Of the 215 E. coli isolates, 66.5% were MDR and 42.8% were ESBL-producers. Most isolates were resistant to ampicillin (81.4%), sulfamethoxazole/trimethoprim (70.7%), ciprofloxacin (67.9%), levofloxacin (64.6%), ceftriaxone (62.3%) and cefuroxime (62%). Intriguingly, E. coli isolates were highly susceptible to amikacin (100%), imipenem (99.5%), nitrofurantoin (89.3%), ceftolozane/tazobactam (82%) and gentamicin (72.1%). Conclusions This study found a high resistance of E. coli to some antibiotics that are commonly used in humans. The isolation of MDR and ESBL-producing E. coli is a public health concern and requires urgent action. Therefore, there is a need to instigate and strengthen interventional strategies including antimicrobial stewardship programmes to combat AMR in Zambia.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Doreen Mainza Shempela
- Laboratory Department, Churches Health Association of Zambia, CHAZ COMPLEX Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, JC9H+VFF, Lusaka, Zambia
| | - Victor Daka
- Public Health Department, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Mark J Mwikisa
- Department of Pathology and Microbiology, Lusaka Trust Hospital, Plot 2191, H8CC+52F, Nsumbu Rd, Woodlands, Lusaka, Zambia
| | - Jay Sikalima
- Laboratory Department, Churches Health Association of Zambia, CHAZ COMPLEX Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, JC9H+VFF, Lusaka, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
26
|
Kitaba AA, Bonger ZT, Beyene D, Ayenew Z, Tsige E, Kefale TA, Mekonnen Y, Teklu DS, Seyoum E, Negeri AA. Antimicrobial resistance trends in clinical Escherichia coli and Klebsiella pneumoniae in Ethiopia. Afr J Lab Med 2024; 13:2268. [PMID: 38629088 PMCID: PMC11019082 DOI: 10.4102/ajlm.v13i1.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/11/2024] [Indexed: 04/19/2024] Open
Abstract
Background Clinicians rely on local antimicrobial resistance pattern data to guide empiric treatment for seriously ill patients when culture and antimicrobial susceptibility testing results are not immediately available. Objective This study aimed to analyse 5-year trends in antimicrobial resistance profiles of Escherichia coli and Klebsiella pneumoniae isolates. Methods Bacteriology reports from 2017 to 2021 at the Ethiopian Public Health Institute were analysed retrospectively. Isolates were identified using either the VITEK 2 Compact system, the BD Phoenix M50 instrument, or conventional biochemical tests. Antimicrobial susceptibility testing was conducted using either the Kirby-Bauer disk diffusion method or the VITEK 2 Compact system and BD Phoenix M50 systems available at the time of testing. The Cochran Armitage trend test was employed to test the significance of antimicrobial resistance trends over time. P-values less than 0.05 were considered statistically significant. Results Of the 5382 bacteriology reports examined, 458 (9%) were on E. coli and 266 (5%) were on K. pneumoniae. Both K. pneumoniae (88%) and E. coli (65%) demonstrated high resistance to extended-spectrum cephalosporins. However, both K. pneumoniae (14%) and E. coli (5%) showed lower rates of resistance to carbapenems compared to other antimicrobials. In K. pneumoniae, resistance to carbapenems (from 0% to 38%; p < 0.001) and ciprofloxacin (from 41% to 90%; p < 0.001) increased significantly between 2017 and 2021. Conclusion Both organisms showed very high resistance to broad-spectrum antibiotics. Additionally, K. pneumoniae demonstrated a statistically significant rise in ciprofloxacin and carbapenem resistance. What this study adds This study emphasises the significance of regular reporting of local antimicrobial resistance patterns as this information can guide appropriate empiric therapy and efforts to address antimicrobial resistance issues.
Collapse
Affiliation(s)
- Abera A Kitaba
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Zelalem T Bonger
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Degefu Beyene
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Zeleke Ayenew
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Estifanos Tsige
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tesfa Addis Kefale
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Dejenie S Teklu
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Elias Seyoum
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abebe A Negeri
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
27
|
Aldeewan AB, Jaber NN, Abdulhameed MF, Abbas BA. Microbial risk assessment of dairy products from retail marketplaces in Basrah province, Iraq. Open Vet J 2024; 14:779-786. [PMID: 38682148 PMCID: PMC11052614 DOI: 10.5455/ovj.2024.v14.i3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Milk-borne bacteria cause degradation of milk products and constitute a significant risk to public health. Aim The objectives of the present study are to determine the microbiological quality of dairy products and to investigate pathogenic microorganisms. Methods A total of 60 samples of raw milk, homemade cheese, and yogurt were randomly selected from different retail marketplaces in Basrah. The bacteriological and biochemical tests were utilized to identify the pathogens in dairy samples, as well as the molecular technique was used as an accurate diagnostic test. Results The prevalence of contamination of milk products with various isolates was estimated as 50% (95% Cl: 36.8-63.2). The mean of total bacteria count for cheese was 7.29 ± 2.70, raw milk 4.62 ± 2.86, and yogurt 2.87 ± 1.05, with a significant p-value (p = 0.001). The mean count of aerobic spore-forming (ASF) contaminated raw milk was analyzed as 3.77 ± 1.18 and less contamination detected in the yogurt samples with mean of ASF was estimated as 2.52 ± 1.47 SD log 10 CFU/ml. A range of important microorganisms to human health were identified by employing the VITEK_2 system and sequencing 16S rDNA gene, including Staphylococcus aureus, Escherichia coli, Pseudomonas aerogenosa, and Bacillus cereus. Conclusion The study indicates that there is a high level of bacterial contamination in dairy products with different bacteria species, which is medically important. Therefore, food safety management must be implemented to reduce biological risks carried by dairy products and ensure healthy food for consumers.
Collapse
Affiliation(s)
- Ali Balbool Aldeewan
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Nawres Norri Jaber
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | | | - Basil Abdulzahra Abbas
- Microbiology Department, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| |
Collapse
|
28
|
Padhi AK, Maurya S. Uncovering the secrets of resistance: An introduction to computational methods in infectious disease research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:173-220. [PMID: 38448135 DOI: 10.1016/bs.apcsb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Antimicrobial resistance (AMR) is a growing global concern with significant implications for infectious disease control and therapeutics development. This chapter presents a comprehensive overview of computational methods in the study of AMR. We explore the prevalence and statistics of AMR, underscoring its alarming impact on public health. The role of AMR in infectious disease outbreaks and its impact on therapeutics development are discussed, emphasizing the need for novel strategies. Resistance mutations are pivotal in AMR, enabling pathogens to evade antimicrobial treatments. We delve into their importance and contribution to the spread of AMR. Experimental methods for quantitatively evaluating resistance mutations are described, along with their limitations. To address these challenges, computational methods provide promising solutions. We highlight the advantages of computational approaches, including rapid analysis of large datasets and prediction of resistance profiles. A comprehensive overview of computational methods for studying AMR is presented, encompassing genomics, proteomics, structural bioinformatics, network analysis, and machine learning algorithms. The strengths and limitations of each method are briefly outlined. Additionally, we introduce ResScan-design, our own computational method, which employs a protein (re)design protocol to identify potential resistance mutations and adaptation signatures in pathogens. Case studies are discussed to showcase the application of ResScan in elucidating hotspot residues, understanding underlying mechanisms, and guiding the design of effective therapies. In conclusion, we emphasize the value of computational methods in understanding and combating AMR. Integration of experimental and computational approaches can expedite the discovery of innovative antimicrobial treatments and mitigate the threat posed by AMR.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
29
|
Aiesh BM, Natsheh M, Amar M, AbuTaha S, Qadi M, AbuTaha A, Sabateen A, Zyoud SH. Epidemiology and clinical characteristics of patients with healthcare-acquired multidrug-resistant Gram-negative bacilli: a retrospective study from a tertiary care hospital. Sci Rep 2024; 14:3022. [PMID: 38321071 PMCID: PMC10847101 DOI: 10.1038/s41598-024-53596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
The numbers of infections caused by Gram-negative bacteria (GNB) that produce extended-spectrum beta-lactamases (ESBLs) and those that are carbapenem resistant, especially Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae), are increasing, and these infections are becoming a global public health problem. The aim of this study was to assess the prevalence of infections caused by ESBL-producing and carbapenem-resistant Gram-negative bacilli in patients hospitalized at An-Najah National University Hospital in Nablus, Palestine, and to provide healthcare workers with valuable information on the treatment of these infections. A retrospective cross-sectional investigation was conducted at a large tertiary care teaching hospital. The study included patients admitted to the hospital between January and December 2021, from whom ESBL-producing and carbapenem-resistant Gram-negative bacilli were isolated. The patients' clinical and demographic information was obtained from the hospital information system. In addition, information regarding the bacterial isolates and antibiotic resistance was obtained from the hospital's microbiology laboratory. This study included a total of 188 patients-91 males (48.4%) and 97 females (51.6%). The general surgical ward accounted for the highest proportion of infections (30.9%), followed by the surgical ICU (12.2%). The most common infections were caused by ESBL-producing E. coli, which accounted for 62.8% of the cases. Among them, urinary tract infections caused by this microorganism were the most prevalent (44.7% of patients). Over 50% of the patients (54.2%) had a history of antibiotic use, and 77.8% had been hospitalized within the past three months. ESBL-producing E. coli was significantly isolated from blood cultures (p-value = 0.000), and CR-K. pneumoniae was significantly isolated from endotracheal isolates (p-value = 0.001). This study emphasizes the concerning frequency of healthcare-acquired infections caused by ESBL-producing and carbapenem-resistant GNB in a tertiary care hospital. The substantial prevalence of antibiotic resistance presents considerable obstacles to the successful administration of routinely employed antibiotics. The results highlight the immediate need for improved antimicrobial stewardship and the implementation of infection control strategies to reduce the effects of multidrug-resistant GNB on patient well-being and public health.
Collapse
Affiliation(s)
- Banan M Aiesh
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Mustafa Natsheh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mohammad Amar
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Shatha AbuTaha
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Mohammad Qadi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
| | - Adham AbuTaha
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Department of Pathology, An-Najah National University Hospital, Nablus, 44839, Palestine.
| | - Ali Sabateen
- Infection Control Department, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine
| |
Collapse
|
30
|
Garcia CR, Norfolk WA, Howard AK, Glatter AL, Beaudry MS, Mallis NA, Welton M, Glenn TC, Lipp EK, Ottesen EA. Long-term gut colonization with ESBL-producing Escherichia coli in participants without known risk factors from the southeastern United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.03.24302254. [PMID: 38370669 PMCID: PMC10871458 DOI: 10.1101/2024.02.03.24302254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
We evaluated gut carriage of extended spectrum beta lactamase producing Enterobacteriaceae (ESBL-E) in southeastern U.S. residents without recent in-patient healthcare exposure. Study enrollment was January 2021-February 2022 in Athens, Georgia, U.S. and included a diverse population of 505 adults plus 50 child participants (age 0-5). Based on culture-based screening of stool samples, 4.5% of 555 participants carried ESBL-Es. This is slightly higher than reported in studies conducted 2012-2015, which found carriage rates of 2.5-3.9% in healthy U.S. residents. All ESBL-E confirmed isolates (n=25) were identified as Escherichia coli. Isolates belonged to 11 sequence types, with 48% classified as ST131. Ninety six percent of ESBL-E isolates carried a blaCTX-M gene. Isolated ESBL-Es frequently carried virulence genes as well as multiple classes of antibiotic resistance genes. Long-term colonization was common, with 64% of ESBL-E positive participants testing positive when rescreened three months later. One participant yielded isolates belonging to two different E. coli sequence types that carried blaCTX-M-1 genes on near-identical plasmids, suggesting intra-gut plasmid transfer. Isolation of E. coli on media without antibiotics revealed that ESBL-E. coli typically made up a minor fraction of the overall gut E. coli population, although in some cases they were the dominant strain. ESBL-E carriage was not associated with a significantly different stool microbiome composition. However, some microbial taxa were differentially abundant in ESBL-E carriers. Together, these results suggest that a small subpopulation of US residents are long-term, asymptomatic carriers of ESBL-Es, and may serve as an important reservoir for community spread of these ESBL genes.
Collapse
Affiliation(s)
| | - William A. Norfolk
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amanda K. Howard
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Amanda L. Glatter
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Megan S. Beaudry
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Nicholas A. Mallis
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Michael Welton
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Travis C. Glenn
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Erin K. Lipp
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
31
|
Kerdtoob S, Chanthasena P, Rosyidah A, Limphirat W, Penkhrue W, Ganta P, Srisakvarangkool W, Yasawong M, Nantapong N. Streptomyces monashensis MSK03-mediated synthesis of gold nanoparticles: characterization and antibacterial activity. RSC Adv 2024; 14:4778-4787. [PMID: 38318610 PMCID: PMC10840456 DOI: 10.1039/d3ra07555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
Nanotechnology is a cutting-edge field with diverse applications, particularly in the utilization of gold nanoparticles (AuNPs) due to their stability and biocompatibility. AuNPs serve as pivotal components in medical applications, with a specific emphasis on their significant antibacterial efficacy. This study focuses on synthesizing AuNPs using the cell-free supernatant of Streptomyces monashensis MSK03, isolated from terrestrial soil in Thailand. The biosynthesis process involved utilizing the cell-free supernatant of S. monashensis MSK03 and hydrogen tetrachloroauric acid (HAuCl4) under controlled conditions of 37 °C and 200 rpm agitation. Characterization studies revealed spherical AuNPs with sizes ranging from 7.1 to 40.0 nm (average size: 23.2 ± 10.7 nm), as confirmed by TEM. UV-Vis spectroscopy indicated a localized surface plasmon resonance (LSPR) band at 545 nm, while XRD analysis confirmed a crystalline structure with characteristics of cubic lattice surfaces. The capping molecules on the surface of AuNPs carry a negative charge, indicated by a Zeta potential of -26.35 mV, and FTIR analysis identified functional groups involved in reduction and stabilization. XANES spectra further confirmed the successful reduction of Au3+ to Au0. Moreover, the synthesized AuNPs demonstrated antibacterial activity against drug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Interestingly, the AuNPs showed non-toxicity to Vero cell lines. These significant antibacterial properties of the produced nanoparticles mean they hold great promise as new antimicrobial treatments for tackling the increasing issue of antibiotic resistance.
Collapse
Affiliation(s)
- Supavadee Kerdtoob
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Panjamaphon Chanthasena
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College Nakhon Ratchasima 30000 Thailand
| | - A'liyatur Rosyidah
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN) Bogor West Java Indonesia
| | - Wanwisa Limphirat
- Synchrotron Light Research Institute 111 University Avenue Nakhon Ratchasima Thailand
| | - Watsana Penkhrue
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Phongsakorn Ganta
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wissarut Srisakvarangkool
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Montri Yasawong
- Programme on Environmental Toxicology, Chulabhorn Graduate Institute Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI Bangkok 10400 Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
32
|
Moglad E, Altayb HN. Genomic characterization of extended spectrum beta lactamases producing multidrug-resistant Escherichia coli clinically isolated harboring chromosomally mediated CTX-M-15 from Alkharj, KSA. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105526. [PMID: 37977421 DOI: 10.1016/j.meegid.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Extended Spectrum Beta Lactamases (ESBLs) are the most prevalent enzymes conferring resistance to beta-lactams encoded on plasmids and rarely in chromosomes. This genomic study aims to characterize Escherichia coli to identify antimicrobial resistance genes (ARG), virulence factors, and phylogenetic relationships among ESBL-positive and negative isolates of E. coli obtained from Al-Kharj, Riyadh region, Saudi Arabia. Three clinical isolates from urine and vaginal swabs were obtained and subjected to whole genome sequencing, minimum inhibitory concentration, and antibiotic sensitivity tests. The pathogenicity and ARG were discovered, and the raw genomic sequences were assembled and annotated. Two isolates (E5 and E15) were MDR and ESBLs producers; the sequence type (ST) for E5 was 58, while those for E15 and E21 were 106. Most of the virulence genes were detected as plasmid-mediated; E21 was identified with a hyper-virulent plasmid (pH 2332-166) carrying different virulence factors (TraJ, traT, iss, etsC, hlyF, and iron acquisition associated proteins), plasmids (IncFII, IncFIB, and IncFIA), and insertion sequences (ISEc31). While most of the antimicrobial resistance genes were chromosomally mediated, a rare chromosome insertion of qnrS1 and blaCTX-M-15 with co-occurrence of Tn2 and ISKpn19 was identified in the E5 isolate. The consistent preservation of these genetic elements on bacterial chromosomes and plasmids could enhance the spread of Multidrug-Resistant (MDR) strains across various Enterobacteriaceae Species. This poses a significant threat to the effectiveness of existing antimicrobial treatments.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia.
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 23589, Saudi Arabia
| |
Collapse
|
33
|
Myataza A, Thomas J, Smith AM. Characterization of Salmonella enterica serovar Isangi from South Africa, 2020-2021. BMC Infect Dis 2023; 23:791. [PMID: 37957562 PMCID: PMC10644633 DOI: 10.1186/s12879-023-08786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND We describe the genotypic characteristics and antimicrobial resistance (AMR) determinants of Salmonella enterica serovar Isangi (Salmonella Isangi) clinical isolates in South Africa from 2020 through 2021. METHODS During the years 2020 to 2021, the Centre for Enteric Diseases of the National Institute for Communicable Diseases, a national reference centre in South Africa for human infections resulting from enteric bacterial pathogens, investigated a total of 3549 clinical isolates of Salmonella species. Whole genome sequencing (WGS) was performed using Illumina NextSeq Technology. WGS data was analyzed using Centre for Genomic Epidemiology-based tools and EnteroBase web-based platform. Genotypic relatedness and cluster analysis was investigated based on core-genome multilocus sequence typing. RESULTS Forty-nine isolates were confirmed to be Salmonella Isangi, with most submitted from Gauteng Province (24/49, 49%). The most prevalent sequence type was ST335 (48/49, 98%), and the remaining 1 isolate was ST216. All ST335 isolates were genotypically multidrug-resistant (MDR), with resistance to fluoroquinolones, chloramphenicol, trimethoprim-sulfamethoxazole and tetracycline; the ST216 isolate was resistant only to aminoglycosides. All ST335 isolates carried ESBL genes, the most common being blaCTX-M-15. Five clusters (consisting of isolates related within five allele differences) were detected, all being ST335. CONCLUSIONS Most Salmonella Isangi isolates in South Africa are MDR and ESBL-positive. Ongoing monitoring of the epidemiology and AMR profile of this serovar is important for public health and treatment guidelines.
Collapse
Affiliation(s)
- Asive Myataza
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Park J, Shin E, Han J, Kang W, Yoo J, Yoo JS, Roh DH, Kim J. Distribution of Extended-Spectrum-β-Lactamase-Producing Diarrheagenic Escherichia coli Clonal Complex 10 Isolates from Patients with Diarrhea in the Republic of Korea. Antibiotics (Basel) 2023; 12:1614. [PMID: 37998816 PMCID: PMC10669089 DOI: 10.3390/antibiotics12111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
ESBL-producing E. coli is a public health concern in healthcare settings and the community. Between 2009 and 2018, a total of 187 ESBL-producing pathogenic E. coli isolates were identified, and clonal complex (CC) 10 was the predominant clone (n = 57). This study aimed to characterize the ESBL-producing pathogenic E. coli CC10 strains obtained from patients with diarrhea to improve our understanding of CC10 distribution in the Republic of Korea. A total of 57 CC10 strains were selected for comprehensive molecular characterization, including serotype identification, the analysis of antibiotic resistance genes, the investigation of genetic environments, the determination of plasmid profiles, and the assessment of genetic correlations among CC10 strains. Among the CC10 isolates, the most prevalent serotype was O25:H16 (n = 21, 38.9%), followed by O6:H16 (10, 19.6%). The most dominant ESBL genes were blaCTX-M-15 (n = 31, 55%) and blaCTX-M-14 (n = 15, 27%). Most blaCTXM genes (n = 45, 82.5%) were located on plasmids, and these incompatibility groups were confirmed as IncB/O/K/Z, IncF, IncI1, and IncX1. The mobile elements located upstream and downstream mainly included ISEcp1 (complete or incomplete) and IS903 or orf477. Phylogenetic analysis showed that the CC10 strains were genetically diverse and spread among several distinct lineages. The results of this study show that ESBL-producing pathogenic E. coli CC10 has been consistently isolated, with CTX-M-15-producing E. coli O25:H16 isolates being the major type associated with the distribution of CC10 clones over the past decade. The identification of ESBL-producing pathogenic E. coli CC10 isolates underscores the possible emergence of resistant isolates with epidemic potential within this CC. As a result, continuous monitoring is essential to prevent the further dissemination of resistant ESBL-producing E. coli CC10 strains.
Collapse
Affiliation(s)
- Jungsun Park
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| | - Eunkyung Shin
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| | - Joohyun Han
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| | - Wooju Kang
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| | - Jaeil Yoo
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| | - Jung-Sik Yoo
- Division of Antimicrobial Resistance Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju-si 28159, Republic of Korea
| | - Dong-Hyun Roh
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju-si 28644, Republic of Korea;
| | - Junyoung Kim
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Republic of Korea (E.S.); (J.H.); (W.K.); (J.Y.)
| |
Collapse
|
35
|
Zenebe T, Eguale T, Desalegn Z, Beshah D, Gebre-Selassie S, Mihret A, Abebe T. Distribution of ß-Lactamase Genes Among Multidrug-Resistant and Extended-Spectrum ß-Lactamase-Producing Diarrheagenic Escherichia coli from Under-Five Children in Ethiopia. Infect Drug Resist 2023; 16:7041-7054. [PMID: 37954506 PMCID: PMC10637226 DOI: 10.2147/idr.s432743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose Escherichia coli strains that produce extended-spectrum ß-lactamase (ESBL) and carbapenemase are among the major threats to global health. The objective of the present study was to determine the distribution of ß-lactamase genes among multidrug-resistant (MDR) and ESBL-producing Diarrheagenic E. coli (DEC) pathotypes isolated from under-five children in Ethiopia. Patients and Methods A cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia. It was a health-facility-based study and conducted between December 2020 and August 2021. A total of 476 under-five children participated in the study. DEC pathotypes were detected by conventional Polymerase Chain Reaction (PCR) assay. After evaluating the antimicrobial susceptibility profile of the DEC strains by disk diffusion method, confirmation test was done for ESBL and carbapenemase production. ß-lactamase encoding genes were identified from phenotypically ESBLs and carbapenemase positive DEC strains using PCR assay. Results In total, 183 DEC pathotypes were isolated from the 476 under-five children. Seventy-nine (43%, 79/183) MDR-DEC pathotypes were identified. MDR was common among enteroaggregative E. coli (EAEC) (58%, 44/76), followed by enterotoxigenic E. coli (ETEC) (44%, 17/39)) and enteroinvasive E. coli (EIEC) (30%, 7/23). Phenotypically, a total of 30 MDR-DEC pathotypes (16.4%, 30/183) were tested positive for ESBLs. Few ETEC (5.1%, 2/39) and EAEC (2.6%, 2/76) were carbapenemase producers. The predominant β-lactamase genes identified was blaTEM (80%, 24/30) followed by blaCTX-M (73%, 22/30), blaSHV (60%, 18/30), blaNDM (13%, 4/30), and blaOXA-48 (13%, 4/30). Majority of the ß-lactamase encoding genes were detected in EAEC (50%) and ETEC (20%). Co-existence of different β-lactamase genes was found in the present study. Conclusion The blaTEM, blaCTX-M, blaSHV, blaNDM, and blaOXA-48, that are associated with serious and urgent threats globally, were detected in diarrheagenic E. coli isolates from under-five children in Ethiopia. This study also revealed the coexistence of the β-lactamase genes.
Collapse
Affiliation(s)
- Tizazu Zenebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University, Global One Health LLC, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Beshah
- Department of Medical Laboratory, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Sampah J, Owusu-Frimpong I, Aboagye FT, Owusu-Ofori A. Prevalence of carbapenem-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae in a teaching hospital in Ghana. PLoS One 2023; 18:e0274156. [PMID: 37903118 PMCID: PMC10615269 DOI: 10.1371/journal.pone.0274156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) and Extended-spectrum beta-lactamase (ESBL) production among Gram-negative Enterobacteriaceae is an increasing global challenge due to the high morbidity and mortality associated with their infections, especially in developing countries where there are little antibiotic treatment options. Despite these challenges, few studies in Ghana have described the burden of CRE. Therefore, this study aimed to determine the prevalence of carbapenem-resistant Enterobacteriaceae isolated from patients at the Cape Coast Teaching Hospital (CCTH) in the Central region of Ghana. METHODOLOGY/PRINCIPAL FINDINGS Enterobacteriaceae isolates were collected from April to July 2019 at the bacteriology unit of CCTH using a consecutive sampling method. Isolates were identified by standard microbiological techniques and confirmed using API 20E. Kirby Bauer disc diffusion method was used to determine the antibiogram of isolates. Isolates were also subjected to ESBL testing using the single-disc combination method. Carbapenem-resistant isolates were identified by the Kirby Bauer disc diffusion method and then examined genotypically for the presence of blaKPC-1, blaIMP-1, blaVIM-1, blaNDM-1, and blaOXA-48 genes via polymerase chain reaction (PCR). Of the 230 isolates comprising E. coli (40.9%), Citrobacter spp. (32.6%), K. pneumoniae (9.1%), P. mirabilis (6.1%), P. vulgaris (5.2%), Enterobacter spp (3.5%)., K. oxytoca (2.2%), and Serratia marcenses (0.4%). Most isolates were from urine 162(70.4%) and wound samples. The isolates showed high resistance to ampicillin 171 (74.3%) and cefuroxime 134(58.3%). The prevalence of MDR was 35.2% (81), with E. coli 40(42.6%) being the majority that exhibited MDR. Of the 230 isolates, 113(49.1%) were ESBL producers, with E. coli 54(57.5%) accounting for the majority, while Serratia marcenses was the least. Of the 13 (5.7%) CRE isolates that showed resistance towards carbapenem in the disc diffusion method, 11 showed the presence of the blaNDM-1 gene, while all isolates showed the presence of the blaOXA-48 gene. CONCLUSION The prevalence of carbapenem resistance and ESBL-producing Enterobacteriaceae pathogens among patients at the Cape Coast Teaching Hospital is high and alarming. Therefore, it is imperative to consider effective infection prevention and control measures should be implemented at the hospital to prevent the rapid spread of these dangerous organisms.
Collapse
Affiliation(s)
- James Sampah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Laboratory Department, St. Patrick’s Hospital, Offinso, Ghana
| | - Isaac Owusu-Frimpong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frank Twum Aboagye
- CSIR-Water Research Institute, Biomedical and Public Health Research Unit, Accra, Ghana
| | - Alex Owusu-Ofori
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Clinical Microbiology Unit, Laboratory Services Directorate Komfo Anokye Teaching Hospital, Kumasi, Ghana
| |
Collapse
|
37
|
Rajkhowa S, Sonowal J, Borthakur U, Pegu SR, Deb R, Das PJ, Sengar GS, Gupta VK. Meta-Analysis of the Prevalence of Porcine Zoonotic Bacterial Pathogens in India: A 13-Year (2010-2023) Study. Pathogens 2023; 12:1266. [PMID: 37887783 PMCID: PMC10610365 DOI: 10.3390/pathogens12101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The presence of bacterial pathogens such as Brucella spp., Clostridium spp., E. coli, Listeria monocytogenes, Salmonella spp., Staphylococcus spp., and Streptococcus suis not only hampers pig production but also carries significant zoonotic implications. The present study aims to conduct a comprehensive meta-analysis spanning over 13 years (2010-2023) to ascertain the prevalence of these zoonotic bacterial pathogens in Indian pig populations. The study seeks to synthesize data from diverse geographic regions within India and underscores the relevance of the One Health framework. A systematic search of electronic databases was meticulously performed. Inclusion criteria encompassed studies detailing zoonotic bacterial pathogen prevalence in pigs within India during the specified timeframe. Pertinent information including authors, publication year, geographical location, sampling techniques, sample sizes, and pathogen-positive case counts were meticulously extracted. The meta-analysis of zoonotic bacterial pathogens in Indian pig populations (2010-2023) unveiled varying prevalence rates: 9% Brucella spp., 22% Clostridium spp., 19% E. coli, 12% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 24% Staphylococcus spp. The application of random effects further revealed additional variability: 6% Brucella spp., 23% Clostridium spp., 24% E. coli, 14% Listeria monocytogenes, 10% Salmonella spp. and Streptococcus suis, and 35% Staphylococcus spp. Notably, the observed heterogeneity (I2) varied significantly from 87% to 99%. The meta-analysis findings underscore the pervasive nature of these diseases throughout India's pig populations, accentuating the substantial impact of these pathogens on pig health and the potential for zoonotic transmission. The present study reinforces the importance of the adoption of a comprehensive One Health approach that acknowledges the intricate interplay between animal, human and environmental health.
Collapse
Affiliation(s)
- Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Udipta Borthakur
- Animal Husbandry and Veterinary Department, Guwahati 781003, Assam, India;
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Gyanendra Singh Sengar
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati 781131, Assam, India; (J.S.); (S.R.P.); (R.D.); (P.J.D.); (G.S.S.); (V.K.G.)
| |
Collapse
|
38
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
39
|
Abdulkareem AH, Alalwani AK, Ahmed MM, Al-Meani SAL, Al-Janaby MS, Al-Qaysi AMK, Edan AI, Lahij HF. Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL- Pseudomonas aeruginosa: An In Vitro Model Study. Pharmaceuticals (Basel) 2023; 16:1383. [PMID: 37895854 PMCID: PMC10609828 DOI: 10.3390/ph16101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing disparity between antimicrobial resistance (AMR) and the development of new antimicrobials continues to pose a significant global health concern. However, plant extracts have shown promise in combating this issue either through their inherent antimicrobial activity or by serving as potential reservoirs of effective antimicrobial compounds. These compounds have the ability to target pathogenic biofilms and inhibit the production of extended-spectrum β -lactamases (ESBLs). However, there is limited research available on the antibacterial properties of goldenrod extract. Thus, the objective of this study was to investigate the impact of S. virgaurea (SV) extract on the viability and ability to form biofilms of ESBL-Pseudomonas aeruginosa (P. aeruginosa). A cross-sectional study was conducted from August 2022 to March 2023. The broth microdilution method was employed to determine the minimum inhibitory concentration (MIC) of the (SV) extract. Subsequently, the minimum bactericidal concentration (MBC) was determined based on the MIC values obtained. The antibiotic susceptibility of bacteria was evaluated using the Kirby disk diffusion assay and an Antimicrobial Susceptibility Testing (AST) card in conjunction with the Vitek-2 compact system. Biofilm formation was evaluated using Congo red and a 96-well Elisa plate, while the presence of extended-spectrum β-lactamases (ESBLs) was estimated by measuring the reduction of nitrocefin at a wavelength of 390 nm. In addition, treatment of biofilm and ESBL activity with SV extract using 96-well Elisa plate and nitrocefin hydrolyzing, respectively. The resistance rates of P. aeruginosa isolates to the tested antibiotics were as follows: Levofloxacin 33%, Ciprofloxacin 40%, Amikacin 49%, Meropenem 50%, Cefepime 70%, Ceftazidime 75%, Cefotaxime 85%, Piperacillin-Tazobactam 90%, Amoxiclav 97%, Ampicillin 99%, Ceftriaxone 100%. The prevalence of MDR-P. aeruginosa, XDR-P. aeruginosa, PDR-P. aeruginosa and non-MDR-PA were 40% (n = 40), 7% (n = 7), 3% (n = 3) and 50% (n = 50), respectively. From the GC-MS results, it was observed that the presence of Octadecane, Clioquinol, Glycerol tricaprylate, hexadecanoic acid, cis-13-octadecenoic acid, oleic acid and Propanamide were the major components in the Solidago extract. In the determination of plant crude extracts, the values ranged between 0.25 and 64 mg/mL against bacteria. The resulting activity of the extract showed a significant statistical relationship at a p-value ≤ 0.01 against ESBL production and biofilm formation in P. aeruginosa. The S. virgaurea extract exhibited effectiveness in inhibiting biofilm formation and combating P. aeruginosa strains that produce extended-spectrum β-lactamases (ESBLs).
Collapse
Affiliation(s)
- Ali Hazim Abdulkareem
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Anmar Kamil Alalwani
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Mohammed Mukhles Ahmed
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Safaa Abed Latef Al-Meani
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Mohammed Salih Al-Janaby
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Al-Moghira Khairi Al-Qaysi
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Ali Ibrahim Edan
- Medical Laboratory Technology, Al-Huda University College, Ramadi 31001, Iraq;
| | - Hasan Falah Lahij
- Medical Laboratory Technology, Almaarif University College, Ramadi 31001, Iraq;
| |
Collapse
|
40
|
Aziz T, Imran M, Haider A, Shahzadi A, Ul Abidin MZ, Ul-Hamid A, Nabgan W, Algaradah MM, Fouda AM, Ikram M. Catalytic performance and antibacterial behaviour with molecular docking analysis of silver and polyacrylic acid doped graphene quantum dots. RSC Adv 2023; 13:28008-28020. [PMID: 37746345 PMCID: PMC10517100 DOI: 10.1039/d3ra04741e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
In this research, a fixed concentration (3 wt%) of Ag/PAA and PAA/Ag doped graphene quantum dots (GQDs) were synthesized using the co-precipitation technique. A variety of characterization techniques were employed to synthesize samples to investigate their optical, morphological, structural, and compositional analyses, antimicrobial efficacy, and dye degradation potential with molecular docking analysis. GQDs have high solubility, narrow band gaps, and are suitable for electron acceptors and donors but show less adsorption and catalytic behavior. Incorporating polyacrylic acid (PAA) into GQDs increases the catalytic and antibacterial activities due to the carboxylic group (-COOH). Furthermore, introducing silver (Ag) increased the degradation of dye and microbes as it had a high surface-to-volume ratio. In addition, molecular docking studies were used to decipher the mechanism underlying the bactericidal action of silver and polyacrylic acid-doped graphene quantum dots and revealed inhibition of β-lactamase and DNA gyrase.
Collapse
Affiliation(s)
- Tahreem Aziz
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Punjab Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Zain Ul Abidin
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | | | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| |
Collapse
|
41
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
42
|
Muthupandian S, Meles HN, Gebregergis MW, Arockiaraj J. Multidrug-resistant extended-spectrum β-lactamase–producing bacteria complicate surgical site infection management as an emerging global threat. INTERNATIONAL JOURNAL OF SURGERY: GLOBAL HEALTH 2023; 6. [DOI: 10.1097/gh9.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Saravanan Muthupandian
- Department of Pharmacology, AMR and Nanotherapeutics Laboratory, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai TN, India
| | - Hadush Negash Meles
- Department of Medical Laboratory Sciences, Unit of Medical Microbiology, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Miglas Welay Gebregergis
- Department of Midwifery, Unit of Maternity and Reproductive Health Nursing, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, TN, India
| |
Collapse
|
43
|
Yang JT, Zhang LJ, Lu Y, Zhang RM, Jiang HX. Genomic Insights into Global blaCTX-M-55-Positive Escherichia coli Epidemiology and Transmission Characteristics. Microbiol Spectr 2023; 11:e0108923. [PMID: 37358409 PMCID: PMC10434037 DOI: 10.1128/spectrum.01089-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/10/2023] [Indexed: 06/27/2023] Open
Abstract
In recent years, blaCTX-M-55-positive Escherichia coli has been widely reported in multiple locations with an increasing trend in prevalence, yet few studies have comprehensively analyzed the transmission characteristics and epidemiological patterns of blaCTX-M-55-positive E. coli. Here, we constructed a blaCTX-M-55-positive E. coli global genomic data set as completely as possible and explored the epidemiology and potential impact of blaCTX-M-55-positive E. coli on a global scale by high-resolution bioinformatics methods. The results show that blaCTX-M-55-positive E. coli has spread widely worldwide, especially in Asia, with the rich sequence typing (ST) diversity and high proportion of auxiliary genome occupancy indicating a high degree of openness. The phylogenetic tree suggests that blaCTX-M-55-positive E. coli is frequently clonally transmitted between the three human-animal environments and often cotransmitted with fosA, mcr, blaNDM, and tet(X). The stable presence of InclI1 and InclI2 in different hosts from different sources suggests that this part of the plasmid drives the widespread transmission of blaCTX-M-55-positive E. coli. We inductively clustered all blaCTX-M-55 flanking environmental gene structures and obtained five types. Notably, "ISEcp1-blaCTX-M-55-orf477-(Tn2)" and "IS26(IS15DI)-hp-hp-blaCTX-M-55-orf477-hp-blaTEM-IS26-hp-IS26-Tn2" are dominant in "humans" and in "animals and related foods," respectively. Overall, our findings highlight the importance of whole-genome sequencing-based surveillance in exploring the transmission and evolution of blaCTX-M-55-positive E. coli in the context of "One Health," and they serve as a reminder to strengthen the surveillance of blaCTX-M-55-positive E. coli in order to address the potential risk of future large outbreaks. IMPORTANCE CTX-M-55 was first discovered in Thailand in 2004, and today, this enzyme is the most common CTX-M subtype in E. coli of animal origin in China. Thus, blaCTX-M-55-positive E. coli getting widely spread is a growing public health problem. Although prevalence surveys of blaCTX-M-55-positive E. coli in different hosts have been widely reported in recent years, they remain insufficient in "One Health" context and from a global comprehensive perspective. Here, we constructed a genomic database of 2144 blaCTX-M-55-positive E. coli and used bioinformatics methods to resolve the spread and evolution of blaCTX-M-55-positive E. coli. The results suggest a potential risk of rapid transmission of blaCTX-M-55-positive E. coli and that long-term continuous surveillance of blaCTX-M-55-positive E. coli should be emphasized.
Collapse
Affiliation(s)
- Jin-Tao Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Juan Zhang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong-Min Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong-Xia Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Galarce N, Arriagada G, Sánchez F, Escobar B, Miranda M, Matus S, Vilches R, Varela C, Zelaya C, Peralta J, Paredes-Osses E, González-Rocha G, Lapierre L. Phenotypic and genotypic antimicrobial resistance in Escherichia coli strains isolated from household dogs in Chile. Front Vet Sci 2023; 10:1233127. [PMID: 37655259 PMCID: PMC10467275 DOI: 10.3389/fvets.2023.1233127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a major threat to animal and public health worldwide; consequently, several AMR surveillances programs have been implemented internationally in both human and veterinary medicine, including indicator bacteria such as Escherichia coli. However, companion animals are not typically included in these surveillance programs. Nevertheless, there have been reports of increasing levels of antimicrobial resistance in E. coli strains isolated from dogs worldwide. In Chile, there is limited information available on AMR in E. coli isolated from companion animals, which prevents the establishment of objective prevention and control measures. Methods For this reason, the aim of this study was to characterize the phenotypic and genotypic AMR of E. coli strains isolated from healthy household dogs in Chile. For this purpose, a multi-stage sampling was carried out in the Metropolitan Region of Chile, obtaining samples from 600 healthy dogs. These samples were processed using traditional bacteriology and molecular techniques to isolate E. coli strains. We assessed the minimal inhibitory concentration of 17 antimicrobials and conducted a search of six antimicrobial resistance genes, as well as class 1 and 2 integrons, in the isolated strains. Results Two-hundred and twenty-four strains of E. coli were recovered, and 96.9% (n = 217) showed resistance to at least one drug and only 3.1% (n = 7) were susceptible to all analyzed antimicrobials. Most strains were resistant to cefalexin (91.5%, n = 205, 1st-generation cephalosporin), followed by ampicillin (68.3%, n = 153) and cefpodoxime (31.3%, n = 70, 3rd-generation cephalosporin). Moreover, 24.1% (n = 54) tested positive for extended-spectrum-β-lactamases and 34.4% (n = 77) were multidrug resistant. As for the AMR genes, the most detected was qnrB (28.1%, n = 63), followed by blaCTX-M (22.3%, n = 50), and blaTEM-1 (19.6%, n = 44). Additionally, 16.1% (n = 36) harbored class 1 integrons. Our study shows that E. coli strains isolated from healthy household dogs exhibit resistance to several relevant drugs and also antimicrobial resistance genes considered critical for human health. These results can be used as a starting point for the prevention and control of antimicrobial resistance from companion animals. This background should be considered when formulating future resistance surveillance programs or control plans in which companion animals must be included.
Collapse
Affiliation(s)
- Nicolás Galarce
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Fernando Sánchez
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mauricio Miranda
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sofía Matus
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rocío Vilches
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camila Varela
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Carlos Zelaya
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Josefa Peralta
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Esteban Paredes-Osses
- Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Santiago, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Providencia, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Gudra D, Silamikelis I, Pjalkovskis J, Danenberga I, Pupola D, Skenders G, Ustinova M, Megnis K, Leja M, Vangravs R, Fridmanis D. Abundance and prevalence of ESBL coding genes in patients undergoing first line eradication therapy for Helicobacter pylori. PLoS One 2023; 18:e0289879. [PMID: 37561723 PMCID: PMC10414638 DOI: 10.1371/journal.pone.0289879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The spread of extended-spectrum beta-lactamases (ESBLs) in nosocomial and community-acquired enterobacteria is an important challenge for clinicians due to the limited therapeutic options for infections that are caused by these organisms. Here, we developed a panel of ESBL coding genes, evaluated the abundance and prevalence of ESBL encoding genes in patients undergoing H. pylori eradication therapy, and summarized the effects of eradication therapy on functional profiles of the gut microbiome. To assess the repertoire of known beta lactamase (BL) genes, they were divided into clusters according to their evolutionary relation. Primers were designed for amplification of cluster marker regions, and the efficiency of this amplification panel was assessed in 120 fecal samples acquired from 60 patients undergoing H. pylori eradication therapy. In addition, fecal samples from an additional 30 patients were used to validate the detection efficiency of the developed ESBL panel. The presence for majority of targeted clusters was confirmed by NGS of amplification products. Metagenomic sequencing revealed that the abundance of ESBL genes within the pool of microorganisms was very low. The global relative abundances of the ESBL-coding gene clusters did not differ significantly among treatment states. However, at the level of each cluster, classical ESBL producers such as Klebsiella sp. for blaOXY (p = 0.0076), Acinetobacter sp. for blaADC (p = 0.02297) and others, differed significantly with a tendency to decrease compared to the pre- and post-eradication states. Only 13 clusters were common across all three datasets, suggesting a patient-specific distribution profile of ESBL-coding genes. The number of AMR genes detected in the post-eradication state was higher than that in the pre-eradication state, which could be attributed, at least in part, to the therapy. This study demonstrated that the ESBL screening panel was effective in targeting ESBL-coding gene clusters from bacterial DNA and that minor differences exist in the abundance and prevalence of ESBL-coding gene levels before and after eradication therapy.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Darta Pupola
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Girts Skenders
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | | |
Collapse
|
46
|
Kasanga M, Kwenda G, Wu J, Kasanga M, Mwikisa MJ, Chanda R, Mupila Z, Yankonde B, Sikazwe M, Mwila E, Shempela DM, Solochi BB, Phiri C, Mudenda S, Chanda D. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms 2023; 11:1951. [PMID: 37630511 PMCID: PMC10459584 DOI: 10.3390/microorganisms11081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a public health problem threatening human, animal, and environmental safety. This study assessed the AMR profiles and risk factors associated with Escherichia coli in hospital and environmental settings in Lusaka, Zambia. This cross-sectional study was conducted from April 2022 to August 2022 using 980 samples collected from clinical and environmental settings. Antimicrobial susceptibility testing was conducted using BD PhoenixTM 100. The data were analysed using SPSS version 26.0. Of the 980 samples, 51% were from environmental sources. Overall, 64.5% of the samples tested positive for E. coli, of which 52.5% were from clinical sources. Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the 632 isolates, 48.3% were MDR. Most clinical isolates were resistant to ampicillin (83.4%), sulfamethoxazole/trimethoprim (73.8%), and ciprofloxacin (65.7%) while all environmental isolates were resistant to sulfamethoxazole/trimethoprim (100%) and some were resistant to levofloxacin (30.6%). The drivers of MDR in the tested isolates included pus (AOR = 4.6, CI: 1.9-11.3), male sex (AOR = 2.1, CI: 1.2-3.9), and water (AOR = 2.6, CI: 1.2-5.8). This study found that E. coli isolates were resistant to common antibiotics used in humans. The presence of MDR isolates is a public health concern and calls for vigorous infection prevention measures and surveillance to reduce AMR and its burdens.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Jian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Maika Kasanga
- Department of Pharmacy, University Teaching Hospital, Lusaka 50110, Zambia;
| | - Mark J. Mwikisa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Raphael Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| | - Zachariah Mupila
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Baron Yankonde
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Mutemwa Sikazwe
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Enock Mwila
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Doreen M. Shempela
- Churches Health Association of Zambia, Lusaka 34511, Zambia
- Department of Laboratory and Research, Central University of Nicaragua, Managua 12104, Nicaragua
| | - Benjamin B. Solochi
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Christabel Phiri
- Department of Microbiology, School of Public Health, University of Zambia, Lusaka 10101, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Research and Surveillance Technical Working Group, Zambia National Public Health Institute, Lusaka 10101, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| |
Collapse
|
47
|
Kaur H, Modgil V, Chaudhary N, Mohan B, Taneja N. Computational Guided Drug Targets Identification against Extended-Spectrum Beta-Lactamase-Producing Multi-Drug Resistant Uropathogenic Escherichia coli. Biomedicines 2023; 11:2028. [PMID: 37509666 PMCID: PMC10377140 DOI: 10.3390/biomedicines11072028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance that hinders the antimicrobial treatment of UTIs caused by UPEC and poses a substantial danger to the arsenal of antibiotics now in use. As bacteria have several methods to counteract the effects of antibiotics, identifying new potential drug targets may help in the design of new antimicrobial agents, and in the control of the rising trend of antimicrobial resistance (AMR). The public availability of the entire genome sequences of humans and many disease-causing organisms has accelerated the hunt for viable therapeutic targets. Using a unique, hierarchical, in silico technique using computational tools, we discovered and described potential therapeutic drug targets against the ESBL-producing UPEC strain NA114. Three different sets of proteins (chokepoint, virulence, and resistance genes) were explored in phase 1. In phase 2, proteins shortlisted from phase 1 were analyzed for their essentiality, non-homology to the human genome, and gut flora. In phase 3, the further shortlisted putative drug targets were qualitatively characterized, including their subcellular location, broad-spectrum potential, and druggability evaluations. We found seven distinct targets for the pathogen that showed no similarity to the human proteome. Thus, possibilities for cross-reactivity between a target-specific antibacterial and human proteins were minimized. The subcellular locations of two targets, ECNA114_0085 and ECNA114_1060, were predicted as cytoplasmic and periplasmic, respectively. These proteins play an important role in bacterial peptidoglycan biosynthesis and inositol phosphate metabolism, and can be used in the design of drugs against these bacteria. Inhibition of these proteins will be helpful to combat infections caused by MDR UPEC.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Modgil
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naveen Chaudhary
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
48
|
Abu-Aqil G, Suleiman M, Sharaha U, Nesher L, Lapidot I, Salman A, Huleihel M. Detection of extended-spectrum β-lactamase-producing bacteria isolated directly from urine by infrared spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122634. [PMID: 36944279 DOI: 10.1016/j.saa.2023.122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Resistant bacteria have become one of the leading health threats in the last decades. Extended-spectrum β-lactamase (ESBL) producing bacteria, including Escherichia (E.) coli and Klebsiella (K.) pneumoniae (the most frequent ones), are a significant class out of all resistant infecting bacteria. Due to the widespread and ongoing development of ESBL-producing (ESBL+) resistant bacteria, many routinely used antibiotics are no longer effective against them. However, an early and reliable ESBL+ bacteria detection method will improve the efficiency of treatment and limit their spread. In this work, we investigated the capability of infrared (IR) spectroscopy based machine learning tools [principal component analysis (PCA) and Random Forest (RF) classifier] for the rapid detection of ESBL+ bacteria isolated directly from patients' urine. For that, we examined 1881 E. coli samples (416 ESBL+ and 1465 ESBL-) and 609 K. pneumoniae samples (237 ESBL+ and 372 ESBL-). All samples were isolated directly from the urine of midstream patients. This study revealed that within 40 min of receiving the patient urine it is possible to determine the infecting bacterium as E. coli or K. pneumoniae with 95% success rate while it was possible to determine the ESBL+E. coli and ESBL+K. pneumoniae with 83% and 78% accuracy rates, respectively.
Collapse
Affiliation(s)
- George Abu-Aqil
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Manal Suleiman
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uraib Sharaha
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; Department of Biology, Science and Technology College, Hebron University, Hebron P760, Palestine
| | - Lior Nesher
- Infectious Disease Institute, Soroka University Medical Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itshak Lapidot
- Department of Electrical and Electronics Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Tel-Aviv 69107, Israel; LIA Avignon Université, 339 Chemin des Meinajaries, 84000 Avignon, France
| | - Ahmad Salman
- Department of Physics, SCE - Shamoon College of Engineering, Beer-Sheva 84100, Israel.
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
49
|
Hamwi AM, Salem-Sokhn E. High frequency and molecular characterization of ESBL-producing Enterobacteriaceae isolated from wound infections in North Lebanon. Expert Rev Anti Infect Ther 2023; 21:901-909. [PMID: 37409395 DOI: 10.1080/14787210.2023.2234082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBL-PE) represent a major problem in wound infections. Here, we investigated the prevalence and molecular characterization of ESBL-PE associated with wound infections in North Lebanon. RESEARCH DESIGN AND METHODS A total of 103 non-duplicated E. coli and K. pneumoniae strains isolated from 103 patients with wound infections, were collected from seven hospitals in North Lebanon. ESBL-producing isolates were detected using a double-disk synergy test. In addition, multiplex polymerase chain reaction (PCR) was used for the molecular detection of ESBLs genes. RESULTS E. coli was the predominant bacteria (77.6%), followed by K. pneumoniae (22.3%). The overall prevalence of ESBL-PE was 49%, with a significantly higher rate among females and elderly patients. K. pneumoniae was the common MDR and ESBL-producer bacteria (86.95% and 52.17%) compared to E. coli (77.5% and 47.5%). Most of the isolated ESBL producers harbored multiple resistant genes (88%), where blaCTX-M was the most predominant gene (92%), followed by blaTEM (86%), blaSHV (64%), and blaOXA genes (28%). CONCLUSIONS This is the first data on the ESBL-PE prevalence associated with wound infections in Lebanon, showing the emergence of multidrug-resistant ESBL-PE, the dominance of multiple gene producers, and the widespread dissemination of blaCTX-M and blaTEM genes.
Collapse
Affiliation(s)
- Afnan M Hamwi
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Elie Salem-Sokhn
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
50
|
Wu Y, Huang S, Zhang D, Ji H, Ni Y, Zhang X, Dong J, Li B. Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli Derived from Food and Humans in Northern Xinjiang, China. Foodborne Pathog Dis 2023; 20:270-278. [PMID: 37379472 DOI: 10.1089/fpd.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
This study aimed to investigate the drug resistance, molecular characteristics, and genetic relationship of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from food and human stool samples in northern Xinjiang. From 2015 to 2016, a total of 431 samples (meats and vegetables) were collected from retail markets and supermarkets located in the regions of Urumqi, Shihezi, and Kuitun in Xinjiang, China, and 20 human stool samples from the Shihezi Hospital. The PCR method was used to detect E. coli, and the presence of ESBL-producing E. coli was confirmed using the K-B disk diffusion confirmatory method. The susceptibility to ESBL-producing E. coli was tested by the microdilution broth method, and the minimum inhibitory concentration was determined. PCR was used to detect the resistance and virulence genes of ESBL-producing E. coli, and phylogenetics, plasmid replicon typing, screening of three integrons, and multilocus sequence typing (MLST) were performed. The results showed that 127 E. coli strains (15 human stool and 112 food samples) were isolated. Out of the 127 E. coli strains, 38 strains (6 human stool and 32 food 34 samples) of ESBL-producing E. coli were identified through screening. These 38 strains showed resistance to cefotaxime (94.74%) and cefepime (94.74%), and were sensitive to meropenem (0.00%). The most detected resistance genes were blaTEM (47.37%), and the most detected virulence genes were fimH (97.73%), ompA (97.73%), hlyE (97.73%), and crl (97.37%). The isolates belonged to phylogroups B1 (42.11%), C (23.68%), and A (21.05%). Among the plasmid replicon subtypes, IncFIB was the main type (42.11%). The integrons detected were of the first type (47.37%) and the third type (26.32%). The 38 E. coli strains had 19 different sequence-type (ST) strains. These 38 strains of ESBL-producing E. coli were analyzed using MLST and STs are varied.
Collapse
Affiliation(s)
- Yushuang Wu
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Shudi Huang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Donglai Zhang
- Department of Chemistry Engineering, Hebei Petroleum Vocational and Technical University, Hebei, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|