1
|
Xu K, Zhong J, Li J, Cao Y, Wei L. Structure features of Streptococcus pneumoniae FabG and virtual screening of allosteric inhibitors. Front Mol Biosci 2024; 11:1472252. [PMID: 39398278 PMCID: PMC11467476 DOI: 10.3389/fmolb.2024.1472252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Streptococcus pneumoniae, a gram-positive bacterium, is responsible for diverse infections globally, and its antibiotic resistance presents significant challenges to medical advancements. It is imperative to employ various strategies to identify antibiotics. 3-oxoacyl-[acyl-carrier-protein] reductase (FabG) is a key component in the type II fatty acid synthase (FAS II) system, which is a developing target for new anti-streptococcal drugs. We first demonstrated the function of SpFabG in vivo and in vitro and the 2 Å SpFabG structure was elucidated using X-ray diffraction technique. It was observed that the NADPH binding promotes the transformation from tetramers to dimers in solution, suggesting dimers but not tetramer may be the active conformation. By comparing the structures of FabG homologues, we have identified the conserved tetramerization site and further confirmed the mechanism that the tetramerization site mutation leads to a loss of function and destabilization through mutagenesis experiments. Starting from 533,600 compounds, we proceeded with a sequential workflow involving pharmacophore-based virtual screening, molecular docking, and binding energy calculations. Combining all the structural analysis, we identified L1, L2 and L5 as a promising candidate for SpFabG inhibitor, based on the most stable binding mode in comparison to other evaluated inhibitors.
Collapse
Affiliation(s)
- Kaimin Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianliang Zhong
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yulu Cao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Ophthalmology, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
2
|
Zhou J, Zhang L, Wang Y, Song W, Huang Y, Mu Y, Schmitz W, Zhang SY, Lin H, Chen HZ, Ye F, Zhang L. The Molecular Basis of Catalysis by SDR Family Members Ketoacyl-ACP Reductase FabG and Enoyl-ACP Reductase FabI in Type-II Fatty Acid Biosynthesis. Angew Chem Int Ed Engl 2023; 62:e202313109. [PMID: 37779101 DOI: 10.1002/anie.202313109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily members acyl-ACP reductases FabG and FabI are indispensable core enzymatic modules and catalytic orientation controllers in type-II fatty acid biosynthesis. Herein, we report their distinct substrate allosteric recognition and enantioselective reduction mechanisms. FabG achieves allosteric regulation of ACP and NADPH through ACP binding across two adjacent FabG monomers, while FabI follows an irreversible compulsory order of substrate binding in that NADH binding must precede that of ACP on a discrete FabI monomer. Moreover, FabG and FabI utilize a backdoor residue Phe187 or a "rheostat" α8 helix for acyl chain length selection, and their corresponding triad residues Ser142 or Tyr145 recognize the keto- or enoyl-acyl substrates, respectively, facilitating initiation of nucleophilic attack by NAD(P)H. The other two triad residues (Tyr and Lys) mediate subsequent proton transfer and (R)-3-hydroxyacyl- or saturated acyl-ACP production.
Collapse
Affiliation(s)
- Jiashen Zhou
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiran Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Wenyan Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuzhou Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, 97074, Germany
| | - Shu-Yu Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Singh K, Bunzel G, Graf B, Yip KM, Neumann-Schaal M, Stark H, Chari A. Reconstruction of a fatty acid synthesis cycle from acyl carrier protein and cofactor structural snapshots. Cell 2023; 186:5054-5067.e16. [PMID: 37949058 DOI: 10.1016/j.cell.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.
Collapse
Affiliation(s)
- Kashish Singh
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Georg Bunzel
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Graf
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ka Man Yip
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Ashwin Chari
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Li RH, Huang J, Liu CX, Yu K, Guo F, Li Y, Chen ZH, Wang X, Zhao RX, Zhang JY, Liang JJ, Li Y, Lin L, Sun L, Li XY, Li B. Genome-centric metagenomics provides new insights into metabolic pathways of polyhydroxyalkanoates biosynthesis and functional microorganisms subsisting on municipal organic wastes. WATER RESEARCH 2023; 244:120512. [PMID: 37633209 DOI: 10.1016/j.watres.2023.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The microbial community of a sequencing batch reactor operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was characterized through high-throughput sequencing and metagenomic analysis. The fermented food waste and chemically-enhanced primary sludge was fed in this bioreactor. After acclimation, the PHA yield achieved as high as 0.60-0.69 g CODPHA/g CODS. The complete changes of microbial community structure were found during shifts of feedstock. A synthesis of SCL/MCL-PHAs pathway was established for PHA-producing bioreactor in this mixed-culture system. The structure-performance relationship of PHA-producing microbial community and feedstock composition was investigated. The results showed that microbial community tends to be decentralized and prefer team work for PHA synthesis to consume the multiple substrates and digest inevitable non-VFA contents in fermented liquor. This study also discovered unreported potential PHA producers (e.g., genera Tabrizicola, Nannocystis, Ga0077539, Ga0077559, JOSHI-001, SNC69-320 and UBA2334) subsisting on municipal organic wastes and expands the current knowledge about mixed-culture system that the PHA synthesis pathway is widely existed in activated sludge.
Collapse
Affiliation(s)
- Ruo-Hong Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China; School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Jin Huang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Cheng-Xi Liu
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, China
| | - Feng Guo
- School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Xiamen University, Xiamen, China
| | - You Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Zuo-Hong Chen
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Xuan Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ren-Xin Zhao
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Jia-Yu Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Jia-Jin Liang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Yun Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China.
| |
Collapse
|
5
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
6
|
Wang J, Deng Z, Liang J, Wang Z. Structural enzymology of iterative type I polyketide synthases: various routes to catalytic programming. Nat Prod Rep 2023; 40:1498-1520. [PMID: 37581222 DOI: 10.1039/d3np00015j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Time span of literature covered: up to mid-2023Iterative type I polyketide synthases (iPKSs) are outstanding natural chemists: megaenzymes that repeatedly utilize their catalytic domains to synthesize complex natural products with diverse bioactivities. Perhaps the most fascinating but least understood question about type I iPKSs is how they perform the iterative yet programmed reactions in which the usage of domain combinations varies during the synthetic cycle. The programmed patterns are fulfilled by multiple factors, and strongly influence the complexity of the resulting natural products. This article reviews selected reports on the structural enzymology of iPKSs, focusing on the individual domain structures followed by highlighting the representative programming activities that each domain may contribute.
Collapse
Affiliation(s)
- Jialiang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Dinh DM, Thomas LM, Karr EA. Crystal structure of a putative 3-hydroxypimelyl-CoA dehydrogenase, Hcd1, from Syntrophus aciditrophicus strain SB at 1.78 Å resolution. Acta Crystallogr F Struct Biol Commun 2023; 79:151-158. [PMID: 37227375 PMCID: PMC10231260 DOI: 10.1107/s2053230x23004399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Syntrophus aciditrophicus strain SB is a model syntroph that degrades benzoate and alicyclic acids. The structure of a putative 3-hydroxypimelyl-CoA dehydrogenase from S. aciditrophicus strain SB (SaHcd1) was resolved at 1.78 Å resolution. SaHcd1 contains sequence motifs and structural features that belong to the short-chain dehydrogenase/reductase (SDR) family of NADPH-dependent oxidoreductases. SaHcd1 is proposed to concomitantly reduce NAD+ or NADP+ to NADH or NADPH, respectively, while converting 3-hydroxypimelyl-CoA to 3-oxopimeyl-CoA. Further enzymatic studies are needed to confirm the function of SaHcd1.
Collapse
Affiliation(s)
- David M. Dinh
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Elizabeth A. Karr
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA
- Price Family Foundation Institute of Structural Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
8
|
Li R, Landfester K, Ferguson CTJ. Temperature- and pH-Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angew Chem Int Ed Engl 2022; 61:e202211132. [PMID: 36112056 PMCID: PMC10099588 DOI: 10.1002/anie.202211132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The emergence of heterogeneous photocatalysis has facilitated redox reactions with high efficiency, without compromising the recyclability of the photocatalyst. Recently, stimuli-responsive heterogeneous photocatalytic materials have emerged as a powerful synthetic tool, with simple and rapid recovery, as well as an enhanced dynamic control over reactions. Stimuli-responsive polymers are often inexpensive and easy to produce. They can be switched from an active "on" state to an inert "off" state in response to external stimuli, allowing the production of photocatalyst with adaptability, recyclability, and orthogonal control on different chemical reactions. Despite this versatility, the application of artificial smart material in the field of heterogeneous photocatalysis has not yet been maximized. In this Minireview, we will examine the recent developments of this emerging class of stimuli-responsive heterogeneous photocatalytic systems. We will discuss the synthesis route of appending photoactive components into different triggerable systems and, in particular, the controlled activation and recovery of the materials.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer ResearchMainzGermany
| | | | - Calum T. J. Ferguson
- Department School of ChemistryUniversity of BirminghamBirminghamUK
- Max Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
9
|
Dai L, Li H, Huang JW, Hu Y, He M, Yang Y, Min J, Guo RT, Chen CC. Structure-based rational design of a short-chain dehydrogenase/reductase for improving activity toward mycotoxin patulin. Int J Biol Macromol 2022; 222:421-428. [PMID: 36176222 DOI: 10.1016/j.ijbiomac.2022.09.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Patulin is a fatal mycotoxin that is widely detected in drinking water and fruit-derived products contaminated by diverse filamentous fungi. CgSDR from Candida guilliermondii represents the first NADPH-dependent short-chain dehydrogenase/reductase that catalyzes the reduction of patulin to the nontoxic E-ascladiol. To elucidate the catalytic mechanism of CgSDR, we solved its crystal structure in complex with cofactor and substrate. Structural analyses indicate that patulin is situated in a hydrophobic pocket adjacent to the cofactor, with the hemiacetal ring orienting toward the nicotinamide moiety of NADPH. In addition, we conducted structure-guided engineering to modify substrate-binding residue V187 and obtained variant V187F, V187K and V187W, whose catalytic activity was elevated by 3.9-, 2.2- and 1.7-fold, respectively. The crystal structures of CgSDR variants suggest that introducing additional aromatic stacking or hydrogen-bonding interactions to bind the lactone ring of patulin might account for the observed enhanced activity. These results illustrate the catalytic mechanism of SDR-mediated patulin detoxification for the first time and provide the upgraded variants that exhibit tremendous potentials in industrial applications.
Collapse
Affiliation(s)
- Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Min He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
10
|
Crystal structure of L-arabinose 1-dehydrogenase as a short-chain reductase/dehydrogenase protein. Biochem Biophys Res Commun 2022; 604:14-21. [DOI: 10.1016/j.bbrc.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
|
11
|
Characterization of subunit interactions in the hetero-oligomeric retinoid oxidoreductase complex. Biochem J 2021; 478:3597-3611. [PMID: 34542554 DOI: 10.1042/bcj20210589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits. The molecular basis for their activation is currently unknown. Here, we applied site-directed mutagenesis to investigate the roles of amino acid residues previously implied in subunit interactions in other SDRs to obtain the first insight into the subunit interactions in the ROC. The results of these studies suggest that the cofactor binding to RDH10 subunit is critical for the activation of DHRS3 subunit and vice versa. The C-terminal residues 317-331 of RDH10 are critical for the activity of RDH10 homo-oligomers but not for the binding to DHRS3. The C-terminal residues 291-295 are required for DHRS3 subunit activity of the ROC. The highly conserved C-terminal cysteines appear to be involved in inter-subunit communications, affecting the affinity of the cofactor binding site in RDH10 homo-oligomers as well as in the ROC. Modeling of the ROC quaternary structure based on other known structures of SDRs suggests that its integral membrane-associated subunits may be inserted in adjacent membranes of the endoplasmic reticulum (ER), making the formation and function of the ROC dependent on the dynamic nature of the tubular ER network.
Collapse
|
12
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Lee WC, Choi S, Jang A, Son K, Kim Y. Structural comparison of Acinetobacter baumannii β-ketoacyl-acyl carrier protein reductases in fatty acid and aryl polyene biosynthesis. Sci Rep 2021; 11:7945. [PMID: 33846444 PMCID: PMC8041823 DOI: 10.1038/s41598-021-86997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Some Gram-negative bacteria harbor lipids with aryl polyene (APE) moieties. Biosynthesis gene clusters (BGCs) for APE biosynthesis exhibit striking similarities with fatty acid synthase (FAS) genes. Despite their broad distribution among pathogenic and symbiotic bacteria, the detailed roles of the metabolic products of APE gene clusters are unclear. Here, we determined the crystal structures of the β-ketoacyl-acyl carrier protein (ACP) reductase ApeQ produced by an APE gene cluster from clinically isolated virulent Acinetobacter baumannii in two states (bound and unbound to NADPH). An in vitro visible absorption spectrum assay of the APE polyene moiety revealed that the β-ketoacyl-ACP reductase FabG from the A. baumannii FAS gene cluster cannot be substituted for ApeQ in APE biosynthesis. Comparison with the FabG structure exhibited distinct surface electrostatic potential profiles for ApeQ, suggesting a positively charged arginine patch as the cognate ACP-binding site. Binding modeling for the aryl group predicted that Leu185 (Phe183 in FabG) in ApeQ is responsible for 4-benzoyl moiety recognition. Isothermal titration and arginine patch mutagenesis experiments corroborated these results. These structure-function insights of a unique reductase in the APE BGC in comparison with FAS provide new directions for elucidating host-pathogen interaction mechanisms and novel antibiotics discovery.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
14
|
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci Rep 2021; 11:7050. [PMID: 33782435 PMCID: PMC8007833 DOI: 10.1038/s41598-021-86400-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.
Collapse
|
15
|
Bartholow TG, Sztain T, Patel A, Lee DJ, Young MA, Abagyan R, Burkart MD. Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis. Commun Biol 2021; 4:340. [PMID: 33727677 PMCID: PMC7966745 DOI: 10.1038/s42003-021-01838-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This technique describes and compares the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways.
Collapse
Affiliation(s)
- Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Terra Sztain
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Megan A Young
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes. J Biol Chem 2021; 296:100365. [PMID: 33545175 PMCID: PMC7973133 DOI: 10.1016/j.jbc.2021.100365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022] Open
Abstract
The FabG 3-ketoacyl-acyl carrier protein (ACP) reductase of Escherichia coli has long been thought to be a classical member of the short-chain alcohol dehydrogenase/reductase (SDR) family. FabG catalyzes the essential 3-ketoacyl-ACP reduction step in the FAS II fatty acid synthesis pathway. Site-directed mutagenesis studies of several other SDR enzymes has identified three highly conserved amino acid residues, Ser, Tyr, and Lys, as the catalytic triad. Structural analyses of E. coli FabG suggested the triad S138-Y151-K155 to form a catalytically competent active site. To test this hypothesis, we constructed a series of E. coli FabG mutants and tested their 3-ketoacyl-ACP reductase activities both in vivo and in vitro. Our data show that plasmid-borne FabG mutants, including the double and triple mutants, restored growth of E. coli and Salmonella enterica fabG temperature-sensitive mutant strains under nonpermissive conditions. In vitro assays demonstrated that all of the purified FabG mutant proteins maintained fatty acid synthetic ability, although the activities of the single mutant proteins were 20% to 50% lower than that of wildtype FabG. The S138A, Y151F, and K155A residue substitutions were confirmed by tandem mass spectral sequencing of peptides that spanned all three residues. We conclude that FabG is not a classical short-chain alcohol dehydrogenase/reductase, suggesting that an alternative mode of 3-ketoacyl-ACP reduction awaits discovery.
Collapse
|
17
|
Yoshiwara K, Watanabe S, Watanabe Y. Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria. FEBS Lett 2021; 595:637-646. [PMID: 33482017 DOI: 10.1002/1873-3468.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/05/2022]
Abstract
Several microorganisms can utilize l-rhamnose as a carbon and energy source through the nonphosphorylative metabolic pathway, in which l-rhamnose 1-dehydrogenase (RhaDH) catalyzes the NAD(P)+ -dependent oxidization of l-rhamnose to l-rhamnono-1,4-lactone. We herein investigated the crystal structures of RhaDH from Azotobacter vinelandii in ligand-free, NAD+ -bound, NADP+ -bound, and l-rhamnose- and NAD+ -bound forms at 1.9, 2.1, 2.4, and 1.6 Å resolution, respectively. The significant interactions with the 2'-phosphate group of NADP+ , but not the 2'-hydroxyl group of NAD+ , were consistent with a preference for NADP+ over NAD+ . The C5-OH and C6-methyl groups of l-rhamnose were recognized by specific residues of RhaDH through hydrogen bonds and hydrophobic contact, respectively, which contribute to the different substrate specificities from other aldose 1-dehydrogenases in the short-chain dehydrogenase/reductase superfamily.
Collapse
Affiliation(s)
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Japan.,Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Yasunori Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Japan.,Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Faculty of Science, Yamagata University, Japan
| |
Collapse
|
18
|
Xiao X, Elsayed SS, Wu C, van der Heul HU, Metsä-Ketelä M, Du C, Prota AE, Chen CC, Liu W, Guo RT, Abrahams JP, van Wezel GP. Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway. ACS Chem Biol 2020; 15:2529-2538. [PMID: 32840360 PMCID: PMC7506943 DOI: 10.1021/acschembio.0c00564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Angucyclines are
a structurally diverse class of actinobacterial
natural products defined by their varied polycyclic ring systems,
which display a wide range of biological activities. We recently discovered
lugdunomycin (1), a highly rearranged polyketide antibiotic
derived from the angucycline backbone that is synthesized via several
yet unexplained enzymatic reactions. Here, we show via in
vivo, in vitro, and structural analysis
that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented
C1 ketoreduction. This then sets the stage for the subsequent C-ring
cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand
8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme
were resolved, which revealed a canonical Rossman fold and a remarkable
conformational change during substrate capture and release. Mutational
analysis uncovered key residues for substrate access, position, and
catalysis as well as specific determinants that control its dual functionality.
The insights obtained in this work hold promise for the discovery
and engineering of other promiscuous reductases that may be harnessed
for the generation of novel biocatalysts for chemoenzymatic applications.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Somayah S. Elsayed
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Helga U. van der Heul
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Mikko Metsä-Ketelä
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | - Chao Du
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Andrea E. Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Weidong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 43420, P. R. China
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
- Bio-nano diffraction Biozentrum, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P. van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
19
|
Kim SH, Khan R, Choi K, Lee SW, Rhee S. A triclosan-resistance protein from the soil metagenome is a novel enoyl-acyl carrier protein reductase: Structure-guided functional analysis. FEBS J 2020; 287:4710-4728. [PMID: 32112503 DOI: 10.1111/febs.15267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 11/28/2022]
Abstract
The synthetic biocide triclosan targets enoyl-acyl carrier protein reductase(s) (ENR) in bacterial type II fatty acid biosynthesis. Screening and sequence analyses of the triclosan resistome from the soil metagenome identified a variety of triclosan-resistance ENRs. Interestingly, the mode of triclosan resistance by one hypothetical protein was elusive, mainly due to a lack of sequence similarity with other proteins that mediate triclosan resistance. Here, we carried out a structure-based function prediction of the hypothetical protein, herein referred to as FabMG, and in vivo and in vitro functional analyses. The crystal structure of FabMG showed limited structural homology with FabG and FabI, which are also involved in type II fatty acid synthesis. In vivo complementation and in vitro activity assays indicated that FabMG is functionally a FabI-type ENR that employs NADH as a coenzyme. Variations in the sequence and structure of FabMG are likely responsible for inefficient binding of triclosan, resulting in triclosan resistance. These data unravel a previously uncharacterized FabMG, which is prevalent in various microbes in triclosan-contaminated environments and provide mechanistic insight into triclosan resistance.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Korea
| | - Raees Khan
- Department of Applied Bioscience, Dong-A University, Busan, Korea.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Kihyuck Choi
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Korea
| |
Collapse
|
20
|
Charov K, Burkart MD. A Single Tool to Monitor Multiple Protein-Protein Interactions of the Escherichia coli Acyl Carrier Protein. ACS Infect Dis 2019; 5:1518-1523. [PMID: 31317739 DOI: 10.1021/acsinfecdis.9b00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein-protein interactions are ubiquitous to all domains of life and have gained recent interest as drug targets. However, many current methods to study protein-protein interactions can be costly and are low-throughput. Here, we demonstrate a solvatochromic tool based on the natural post-translational modification of the Escherichia coli acyl carrier protein (EcACP) used to visualize protein-protein interactions between EcACP and 13 different partner enzymes from several biosynthetic pathways. We use this tool to confirm proposed interactions between EcACP and both catalytic and regulatory proteins. We also show the utility of this method toward detecting allosteric changes to partner enzyme structure and the validation of active site inhibitors. We anticipate the future adaptation of this assay into a high-throughput screen for antibiotic discovery.
Collapse
Affiliation(s)
- Katherine Charov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
21
|
Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii. Biochem Biophys Res Commun 2019; 518:465-471. [PMID: 31443964 DOI: 10.1016/j.bbrc.2019.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a clinically relevant, highly drug-resistant pathogen of global concern. An attractive approach to drug design is to specifically target the type II fatty acid synthesis (FASII) pathway which is critical in Gram negative bacteria and is significantly different to the type I fatty acid synthesis (FASI) pathway found in mammals. Enzymes involved in FASII include members of the short-chain dehydrogenase/reductase (SDR) superfamily. SDRs are capable of performing a diverse range of biochemical reactions against a broad spectrum of substrates whilst maintaining conserved structural features and sequence motifs. Here, we use X-ray crystallography to describe the structure of an SDR from the multi-drug resistant bacteria A. baumannii, previously annotated as a putative FASII FabG enzyme. The protein was recombinantly expressed, purified, and crystallized. The protein crystals diffracted to 2.0 Å and the structure revealed a FabG-like fold. Functional assays revealed, however, that the protein was not active against the FabG substrate, acetoacetyl-CoA. This study highlights that database annotations may show the necessary structural hallmarks of such proteins, however, they may not be able to cleave substrates that are typical of FabG enzymes. These results are important for the selection of target enzymes in future drug development.
Collapse
|
22
|
Shanati T, Lockie C, Beloti L, Grogan G, Ansorge-Schumacher MB. Two Enantiocomplementary Ephedrine Dehydrogenases from Arthrobacter sp. TS-15 with Broad Substrate Specificity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tarek Shanati
- Department of Molecular Biotechnology, Technische Universität Dresden, Dresden 01062, Germany
| | - Cameron Lockie
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Lilian Beloti
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | |
Collapse
|
23
|
Dodge GJ, Maloney FP, Smith JL. Protein-protein interactions in "cis-AT" polyketide synthases. Nat Prod Rep 2018; 35:1082-1096. [PMID: 30188553 PMCID: PMC6207950 DOI: 10.1039/c8np00058a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2018 Polyketides are a valuable source of bioactive and clinically important molecules. The biosynthesis of these chemically complex molecules has led to the discovery of equally complex polyketide synthase (PKS) pathways. Crystallography has yielded snapshots of individual catalytic domains, di-domains, and multi-domains from a variety of PKS megasynthases, and cryo-EM studies have provided initial views of a PKS module in a series of defined biochemical states. Here, we review the structural and biochemical results that shed light on the protein-protein interactions critical to catalysis by PKS systems with an embedded acyltransferase. Interactions include those that occur both within and between PKS modules, as well as with accessory enzymes.
Collapse
Affiliation(s)
- Greg J Dodge
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA 48109.
| | | | | |
Collapse
|
24
|
Tsai SC(S. The Structural Enzymology of Iterative Aromatic Polyketide Synthases: A Critical Comparison with Fatty Acid Synthases. Annu Rev Biochem 2018; 87:503-531. [DOI: 10.1146/annurev-biochem-063011-164509] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.
Collapse
Affiliation(s)
- Shiou-Chuan (Sheryl) Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697, USA
| |
Collapse
|
25
|
Novel Xanthomonas campestris Long-Chain-Specific 3-Oxoacyl-Acyl Carrier Protein Reductase Involved in Diffusible Signal Factor Synthesis. mBio 2018; 9:mBio.00596-18. [PMID: 29739899 PMCID: PMC5941067 DOI: 10.1128/mbio.00596-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The precursors of the diffusible signal factor (DSF) family signals of Xanthomonas campestris pv. campestris are 3-hydroxyacyl-acyl carrier protein (3-hydroxyacyl-ACP) thioesters having acyl chains of 12 to 13 carbon atoms produced by the fatty acid biosynthetic pathway. We report a novel 3-oxoacyl-ACP reductase encoded by the X. campestris pv. campestris XCC0416 gene (fabG2), which is unable to participate in the initial steps of fatty acyl synthesis. This was shown by the failure of FabG2 expression to allow growth at the nonpermissive temperature of an Escherichia colifabG temperature-sensitive strain. However, when transformed into the E. coli strain together with a plasmid bearing the Vibrio harveyi acyl-ACP synthetase gene (aasS), growth proceeded, but only when the medium contained octanoic acid. In vitro assays showed that FabG2 catalyzes the reduction of long-chain (≥C8) 3-oxoacyl-ACPs to 3-hydroxyacyl-ACPs but is only weakly active with shorter-chain (C4, C6) substrates. FabG1, the housekeeping 3-oxoacyl-ACP reductase encoded within the fatty acid synthesis gene cluster, could be deleted in a strain that overexpressed fabG2 but only in octanoic acid-supplemented media. Growth of the X. campestris pv. campestris ΔfabG1 strain overexpressing fabG2 required fabH for growth with octanoic acid, indicating that octanoyl coenzyme A is elongated by X. campestris pv. campestrisfabH. Deletion of fabG2 reduced DSF family signal production, whereas overproduction of either FabG1 or FabG2 in the ΔfabG2 strain restored DSF family signal levels. Quorum sensing mediated by DSF signaling molecules regulates pathogenesis in several different phytopathogenic bacteria, including Xanthomonas campestris pv. campestris. DSF signaling also plays a key role in infection by the human pathogen Burkholderia cepacia. The acyl chains of the DSF molecules are diverted and remodeled from a key intermediate of the fatty acid synthesis pathway. We report a Xanthomonas campestris pv. campestris fatty acid synthesis enzyme, FabG2, of novel specificity that seems tailored to provide DSF signaling molecule precursors.
Collapse
|
26
|
Negi A, Bhandari N, Shyamlal BRK, Chaudhary S. Inverse docking based screening and identification of protein targets for Cassiarin alkaloids against Plasmodium falciparum. Saudi Pharm J 2018; 26:546-567. [PMID: 29844728 PMCID: PMC5961758 DOI: 10.1016/j.jsps.2018.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Various reports have shown Cassiarin alkaloids, selective in vitro activities against various strains of Plasmodium falciparum with low cytotoxicity, which indicates their possible candidature as antimalarial drug. However, poor recognition of their protein targets and molecular binding behaviour, certainly limits their exploration as antimalarial drug candidature. To address this, we utilises inverse screening, based on three different docking methodologies in order to find their most putative protein targets. In our study, we screened 1047 protein structures from protein data bank, which belongs to 147 different proteins. Our investigation identified 16 protein targets for Cassiarins. In few cases of identified protein targets, the binding site was poorly studied, which encouraged us to perform comparative sequence and structural studies with their homologous proteins, like as in case of Kelch motif associated protein, Armadillo repeats only protein and Methionine aminopeptidase 1b. In our study, we also found Tryptophanyl-tRNA synthetase and 1-Deoxy-D-Xylose-5-phosphate reductoisomerase proteins are the most common targets for Cassiarins.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland, University Road, Galway H91 TK33, Ireland
| | - Nitisha Bhandari
- School of Biotechnology, Graphic Era University, Dehradun, Bell Road, Society Area, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Bharti Rajesh Kumar Shyamlal
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, National Institute of Technology Jaipur, Jawaharlal Nehru Marg, Jaipur 302017, India
| |
Collapse
|
27
|
Liu C, Qi J, Shan B, Ma Y. Tachyplesin Causes Membrane Instability That Kills Multidrug-Resistant Bacteria by Inhibiting the 3-Ketoacyl Carrier Protein Reductase FabG. Front Microbiol 2018; 9:825. [PMID: 29765362 PMCID: PMC5938390 DOI: 10.3389/fmicb.2018.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
Tachyplesin is a type of cationic β-hairpin antimicrobial peptide discovered in horseshoe crab approximately 30 years ago that is well known for both its potential antimicrobial activities against multidrug-resistant bacteria and its cytotoxicity to mammalian cells. Though its physical interactions with artificial membranes have been well studied, details of its physiological mechanism of action the physiological consequences of its action remain limited. By using the DNA-binding fluorescent dye propidium iodide to monitor membrane integrity, confocal microscopy to assess the intracellular location of FITC-tagged tachyplesin, and RNA sequencing of the differentially expressed genes in four Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) treated with lethal or sublethal concentrations of tachyplesin, we found that compared with levofloxacin-treated bacteria, tachyplesin-treated bacteria showed significant effects on the pathways underlying unsaturated fatty acid biosynthesis. Notably, RNA levels of the conserved and essential 3-ketoacyl carrier protein reductase in this pathway (gene FabG) were elevated in all of the four bacteria after tachyplesin treatment. In vitro tests including surface plasmon resonance and enzyme activity assays showed that tachyplesin could bind and inhibit 3-ketoacyl carrier protein reductase, which was consistent with molecular docking prediction results. As unsaturated fatty acids are important for membrane fluidity, our results provided one possible mechanism to explain how tachyplesin kills bacteria and causes cytotoxicity by targeting membranes, which may be helpful for designing more specific and safer antibiotics based on the function of tachyplesin.
Collapse
Affiliation(s)
- Cunbao Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
28
|
Küssau T, Flipo M, Van Wyk N, Viljoen A, Olieric V, Kremer L, Blaise M. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:383-393. [PMID: 29717709 DOI: 10.1107/s2059798318002917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
Abstract
In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Marion Flipo
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, 59000 Lille, France
| | - Niel Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, 34293 Montpellier, France
| |
Collapse
|
29
|
Domain swapping between FabGs deciphers the structural determinant for in-solution oligomerization and substrate binding. Biophys Chem 2018; 237:9-21. [PMID: 29625337 DOI: 10.1016/j.bpc.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
|
30
|
Medina FE, Neves RPP, Ramos MJ, Fernandes PA. A QM/MM study of the reaction mechanism of human β-ketoacyl reductase. Phys Chem Chem Phys 2018; 19:347-355. [PMID: 27905606 DOI: 10.1039/c6cp07014k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human fatty acid synthase (hFAS) is a multifunctional enzyme involved in a wide diversity of biological functions. For instance, it is a precursor of phospholipids and other complex processes such as the de novo synthesis of long chain fatty acid. Human FAS is also a component of biological membranes and it is implicated in the overexpression of several types of cancers. In this work, we describe the catalytic mechanism of β-ketoreductase (KR), which is a catalytic domain of the hFAS enzyme that catalyzes the reduction of β-ketoacyl to β-hydroxyacyl with the concomitant oxidation of the NADPH cofactor. The catalysis by KR is an intermediate step in the cycle of reactions that elongate the substrate's carbon chain until the final product is obtained. We study and propose the catalytic mechanism of the KR domain determined using the hybrid QM/MM methodology, at the ONIOM(B3LYP/6-311+G(2d,2p):AMBER) level of theory. The results indicate that the reaction mechanism occurs in two stages: (i) nucleophilic attack by a NADPH hydride to the β-carbon of the substrate, together with an asynchronous deprotonation of the Tyr2034 by the oxygen of the β-alkoxide to hold the final alcohol product; and (ii) an asynchronous deprotonation of the hydroxyl in the NADP+'s ribose by Tyr2034, and of the Lys1995 by the resulting alkoxide in the former ribose to restore the protonation state of Tyr2034. The reduction step occurs with a Gibbs energy barrier of 11.7 kcal mol-1 and a Gibbs reaction energy of -10.6 kcal mol-1. These results have provided an understanding of the catalytic mechanism of the KR hFAS domain, a piece of the heavy hFAS biosynthetic machinery.
Collapse
Affiliation(s)
- Fabiola E Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Rui P P Neves
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
31
|
Chang HC, Kung CCH, Chang TT, Jao SC, Hsu YT, Li WS. Investigation of the proton relay system operative in human cystosolic aminopeptidase P. PLoS One 2018; 13:e0190816. [PMID: 29351301 PMCID: PMC5774706 DOI: 10.1371/journal.pone.0190816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Aminopeptidase P, a metalloprotease, targets Xaa-Proline peptides for cleavage [1-4]. There are two forms of human AMPP, a membrane-bound form (hmAMPP) and a soluble cytosolic form (hcAMPP)[5]. Similar to the angiotensin-I-converting enzyme, AMPP plays an important role in the catabolism of inflammatory and vasoactive peptides, known as kinins. The plasma kinin, bradykinin, was used as the substrate to conduct enzymatic activity analyses and to determine the Michaelis constant (Km) of 174 μM and the catalytic rate constant (kcat) of 10.8 s-1 for hcAMPP. Significant differences were observed in the activities of Y527F and R535A hcAMPP mutants, which displayed a 6-fold and 13.5-fold for decrease in turnover rate, respectively. Guanidine hydrochloride restored the activity of R535A hcAMPP, increasing the kcat/Km 20-fold, yet it had no impact on the activities of the wild-type or Y527F mutant hcAMPPs. Activity restoration by guanidine derivatives followed the order guanidine hydrochloride >> methyl-guanidine > amino-guanidine > N-ethyl-guanidine. Overall, the results indicate the participation of R535 in the hydrogen bond network that forms a proton relay system. The quaternary structure of hcAMPP was determined by using analytical ultracentrifugation (AUC). The results show that alanine replacement of Arg535 destabilizes the hcAMPP dimer and that guanidine hydrochloride restores the native monomer-dimer equilibrium. It is proposed that Arg535 plays an important role in hcAMMP catalysis and in stabilization of the catalytically active dimeric state.
Collapse
Affiliation(s)
| | | | | | - Shu-Chuan Jao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Hsu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
32
|
An Eight-Residue Deletion in Escherichia coli FabG Causes Temperature-Sensitive Growth and Lipid Synthesis Plus Resistance to the Calmodulin Inhibitor Trifluoperazine. J Bacteriol 2017; 199:JB.00074-17. [PMID: 28264990 DOI: 10.1128/jb.00074-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/24/2017] [Indexed: 11/20/2022] Open
Abstract
FabG performs the NADPH-dependent reduction of β-keto acyl-acyl carrier protein substrates in the elongation cycle of fatty acid synthesis. We report the characterization of a temperature-sensitive mutation (fabGΔ8) in Escherichia colifabG that results from an in-frame 8-amino-acid residue deletion in the α6/α7 subdomain. This region forms part of one of the two dimerization interfaces of this tetrameric enzyme and is reported to undergo significant conformational changes upon cofactor binding, which define the entrance to the active-site cleft. The activity of the mutant enzyme is extremely thermolabile and is deficient in forming homodimers at nonpermissive temperatures with a corresponding decrease in fatty acid synthesis both in vivo and in vitro Surprisingly, the fabGΔ8 strain reverts to temperature resistance at a rate reminiscent of that of a point mutant with intragenic pseudorevertants located either on the 2-fold axes of symmetry or at the mouth of the active-site cleft. The fabGΔ8 mutation also confers resistance to the calmodulin inhibitor trifluoperazine and renders the enzyme extremely sensitive to Ca2+in vitro We also observed a significant alteration in the lipid A fatty acid composition of fabGΔ8 strains but only in an lpxC background, probably due to alterations in the permeability of the outer membrane. These observations provide insights into the structural dynamics of FabG and hint at yet another point of regulation between fatty acid and lipid A biosynthesis.IMPORTANCE Membrane lipid homeostasis and its plasticity in a variety of environments are essential for bacterial survival. Since lipid biosynthesis in bacteria and plants is fundamentally distinct from that in animals, it is an ideal target for the development of antibacterial therapeutics. FabG, the subject of this study, catalyzes the first cofactor-dependent reduction in this pathway and is active only as a tetramer. This study examines the interactions responsible for tetramerization through the biochemical characterization of a novel temperature-sensitive mutation caused by a short deletion in an important helix-turn-helix motif. The mutant strain has altered phospholipid and lipid A compositions and is resistant to trifluoperazine, an inhibitor of mammalian calmodulin. Understanding its structural dynamics and its influence on lipid A synthesis also allows us to explore lipid homeostasis as a mechanism for antibiotic resistance.
Collapse
|
33
|
Binding of NADP + triggers an open-to-closed transition in a mycobacterial FabG β-ketoacyl-ACP reductase. Biochem J 2017; 474:907-921. [PMID: 28126742 DOI: 10.1042/bcj20161052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 02/07/2023]
Abstract
The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of β-ketoacyl-ACP substrates to β-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP+-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors.
Collapse
|
34
|
Abstract
Most of the stereocenters of polyketide natural products are established during assembly line biosynthesis. The body of knowledge for how stereocenters are set is now large enough to begin constructing physical models of key reactions. Interactions between stereocenter-forming enzymes and polyketide intermediates are examined here at atomic resolution, drawing from the most current structural and functional information of ketosynthases (KSs), ketoreductases (KRs), dehydratases (DHs), enoylreductases (ERs), and related enzymes. While many details remain to be experimentally determined, our understanding of the chemical and physical mechanisms utilized by the chirality-molding enzymes of modular PKSs is rapidly advancing.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA. and Department of Chemistry, The University of Texas at Austin, 105 E 24th St. Stop A5300, Austin, TX 78712, USA
| |
Collapse
|
35
|
Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae. J Bacteriol 2015; 198:463-76. [PMID: 26553852 DOI: 10.1128/jb.00360-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED β-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the α4/α5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop β4-α4 and loop β5-α5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
Collapse
|
36
|
Nanson JD, Forwood JK. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis. PLoS One 2015; 10:e0141543. [PMID: 26539719 PMCID: PMC4635001 DOI: 10.1371/journal.pone.0141543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/10/2015] [Indexed: 01/14/2023] Open
Abstract
Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections.
Collapse
Affiliation(s)
- Jeffrey D. Nanson
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- * E-mail:
| |
Collapse
|
37
|
Feng SX, Ma JC, Yang J, Hu Z, Zhu L, Bi HK, Sun YR, Wang HH. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol 2015; 15:223. [PMID: 26490537 PMCID: PMC4618531 DOI: 10.1186/s12866-015-0554-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
Background FabG is the only known enzyme that catalyzes reduction of the 3-ketoacyl-ACP intermediates of bacterial fatty acid synthetic pathways. However, there are two Ralstonia solanacearum genes, RSc1052 (fabG1) and RSp0359 (fabG2), annotated as encoding putative 3-ketoacyl-ACP reductases. Both FabG homologues possess the conserved catalytic triad and the N-terminal cofactor binding sequence of the short chain dehydrogenase/reductase (SDR) family. Thus, it seems reasonable to hypothesize that RsfabG1 and RsfabG2 both encode functional 3-ketoacyl-ACP reductases and play important roles in R. solanacearum fatty acid synthesis and growth. Methods Complementation of Escherichia colifabG temperature-sensitive mutant with R. solanacearum fabGs encoded plasmids was carried out to test the function of RsfabGs in fatty acid biosynthesis. RsFabGs proteins were purified by nickel chelate chromatography and fatty acid biosynthetic reaction was reconstituted to investigate the 3-ketoacyl-ACP reductase activity of RsFabGs in vitro. Disruption of both RsfabG genes was done via DNA homologous recombination to test the function of both RsfabG in vivo. And more we also carried out pathogenicity tests on tomato plants using RsfabG mutant strains. Results We report that expression of either of the two proteins (RsFabG1 and RsFabG2) restores growth of the E. coli fabG temperature-sensitive mutant CL104 under non-permissive conditions. In vitro assays demonstrate that both proteins restore fatty acid synthetic ability to extracts of the E. coli strain. The RsfabG1 gene carried on the R. solanacearum chromosome is essential for growth of the bacterium, as is the case for fabG in E. coli. In contrast, the null mutant strain with the megaplasmid-encoded RsfabG2 gene is viable but has a fatty acid composition that differs significantly from that of the wild type strain. Our study also shows that RsFabG2 plays a role in adaptation to high salt concentration and low pH, and in pathogenesis of disease in tomato plants. Conclusion R. solanacearum encodes two 3-ketoacyl-ACP reductases that both have functions in fatty acid synthesis. We supply the first evidence that, like other enzymes in the bacterial fatty acid biosynthetic pathway, one bacterium may simultaneously possess two or more 3-oxoacyl-ACP reductase isozymes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0554-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sai-Xiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe, Guangzhou, 510642, P. R. China.
| | - Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe, Guangzhou, 510642, P. R. China.
| | - Ji Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe, Guangzhou, 510642, P. R. China.
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe, Guangzhou, 510642, P. R. China.
| | - Lei Zhu
- Departments of Microbiology and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hong-Kai Bi
- Department of Pathogenic Biology, Jiangsu Key Laboratory of Pathogenic Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Yi-Rong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe, Guangzhou, 510642, P. R. China.
| |
Collapse
|
38
|
Mutti FG, Knaus T, Scrutton NS, Breuer M, Turner NJ. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science 2015; 349:1525-9. [PMID: 26404833 DOI: 10.1126/science.aac9283] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product.
Collapse
Affiliation(s)
- Francesco G Mutti
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester M1 7DN, UK. Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK.
| | - Tanja Knaus
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Michael Breuer
- BASF SE, White Biotechnology Research, GBW/B-A030, 67056 Ludwigshafen, Germany
| | - Nicholas J Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, Manchester M1 7DN, UK.
| |
Collapse
|
39
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
40
|
Maruyama Y, Oiki S, Takase R, Mikami B, Murata K, Hashimoto W. Metabolic fate of unsaturated glucuronic/iduronic acids from glycosaminoglycans: molecular identification and structure determination of streptococcal isomerase and dehydrogenase. J Biol Chem 2015; 290:6281-92. [PMID: 25605731 DOI: 10.1074/jbc.m114.604546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycans in mammalian extracellular matrices are degraded to their constituents, unsaturated uronic (glucuronic/iduronic) acids and amino sugars, through successive reactions of bacterial polysaccharide lyase and unsaturated glucuronyl hydrolase. Genes coding for glycosaminoglycan-acting lyase, unsaturated glucuronyl hydrolase, and the phosphotransferase system are assembled into a cluster in the genome of pathogenic bacteria, such as streptococci and clostridia. Here, we studied the streptococcal metabolic pathway of unsaturated uronic acids and the structure/function relationship of its relevant isomerase and dehydrogenase. Two proteins (gbs1892 and gbs1891) of Streptococcus agalactiae strain NEM316 were overexpressed in Escherichia coli, purified, and characterized. 4-Deoxy-l-threo-5-hexosulose-uronate (Dhu) nonenzymatically generated from unsaturated uronic acids was converted to 2-keto-3-deoxy-d-gluconate via 3-deoxy-d-glycero-2,5-hexodiulosonate through successive reactions of gbs1892 isomerase (DhuI) and gbs1891 NADH-dependent reductase/dehydrogenase (DhuD). DhuI and DhuD enzymatically corresponded to 4-deoxy-l-threo-5-hexosulose-uronate ketol-isomerase (KduI) and 2-keto-3-deoxy-d-gluconate dehydrogenase (KduD), respectively, involved in pectin metabolism, although no or low sequence identity was observed between DhuI and KduI or between DhuD and KduD, respectively. Genes for DhuI and DhuD were found to be included in the streptococcal genetic cluster, whereas KduI and KduD are encoded in clostridia. Tertiary and quaternary structures of DhuI and DhuD were determined by x-ray crystallography. Distinct from KduI β-barrels, DhuI adopts an α/β/α-barrel structure as a basic scaffold similar to that of ribose 5-phosphate isomerase. The structure of DhuD is unable to accommodate the substrate/cofactor, suggesting that conformational changes are essential to trigger enzyme catalysis. This is the first report on the bacterial metabolism of glycosaminoglycan-derived unsaturated uronic acids by isomerase and dehydrogenase.
Collapse
Affiliation(s)
- Yukie Maruyama
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| | - Sayoko Oiki
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| | - Ryuichi Takase
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, and
| |
Collapse
|
41
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
42
|
Venkatesan R, Sah-Teli SK, Awoniyi LO, Jiang G, Prus P, Kastaniotis AJ, Hiltunen JK, Wierenga RK, Chen Z. Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase. Nat Commun 2014; 5:4805. [DOI: 10.1038/ncomms5805] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022] Open
|
43
|
Haque AS, Patel KD, Deshmukh MV, Chhabra A, Gokhale RS, Sankaranarayanan R. Delineating the reaction mechanism of reductase domains of Nonribosomal Peptide Synthetases from mycobacteria. J Struct Biol 2014; 187:207-214. [PMID: 25108240 DOI: 10.1016/j.jsb.2014.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
Substrate binding to enzymes often follows a precise order where catalysis is accomplished through programmed conformational changes. Short-chain dehydrogenase/reductase (SDR) enzymes follow sequential order 'bi-bi' reaction kinetics. The mechanistic study of a SDR homolog, reductase (R) domain, from multifunctional enzymes, e.g. Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) has revealed that it reductively releases 4'-phosphopantetheinyl arm-tethered peptidyl product. We report that the R-domains of NRPSs from Mycobacterium tuberculosis (RNRP) and Mycobacterium smegmatis (RGPL) do not strictly adhere to the obligatory mode of catalysis performed by SDRs, but instead can carry out reductive catalysis of substrate following random bi-bi reaction mechanism as deciphered by NMR and SAXS studies. The crucial conformational change associated with NADPH binding necessary to achieve catalytically competent conformation is also delineated by SAXS studies. Using ITC, we have demonstrated that mutation of catalytic tyrosine to phenylalanine in R-domains results in 3-4-fold decrease in affinity for NADPH and attribute this phenomenon to loss of the noncovalent cation-π interactions present between the tyrosine and nicotinamide ring. We propose that the adaptation to an alternative theme of bi-bi catalytic mechanism enables the R-domains to process the substrates transferred by upstream domains and maintain assembly-line enzymology.
Collapse
Affiliation(s)
- Asfarul S Haque
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ketan D Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Mandar V Deshmukh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Arush Chhabra
- National Institute of Immunology, New Delhi 110067, India
| | - Rajesh S Gokhale
- National Institute of Immunology, New Delhi 110067, India; CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | |
Collapse
|
44
|
Hardwicke MA, Rendina AR, Williams SP, Moore ML, Wang L, Krueger JA, Plant RN, Totoritis RD, Zhang G, Briand J, Burkhart WA, Brown KK, Parrish CA. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat Chem Biol 2014; 10:774-9. [DOI: 10.1038/nchembio.1603] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 06/27/2014] [Indexed: 01/19/2023]
|
45
|
Wang H, Zhang H, Zou Y, Mi Y, Lin S, Xie Z, Yan Y, Zhang H. Structural Insight into the Tetramerization of an Iterative Ketoreductase SiaM through Aromatic Residues in the Interfaces. PLoS One 2014; 9:e97996. [PMID: 24901639 PMCID: PMC4046962 DOI: 10.1371/journal.pone.0097996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hua Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaidong Zhang
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Mi
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
46
|
Cukier CD, Hope AG, Elamin AA, Moynie L, Schnell R, Schach S, Kneuper H, Singh M, Naismith JH, Lindqvist Y, Gray DW, Schneider G. Discovery of an allosteric inhibitor binding site in 3-Oxo-acyl-ACP reductase from Pseudomonas aeruginosa. ACS Chem Biol 2013; 8:2518-27. [PMID: 24015914 PMCID: PMC3833349 DOI: 10.1021/cb4005063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.
Collapse
Affiliation(s)
- Cyprian D. Cukier
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Lucile Moynie
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Schach
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - James H. Naismith
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Ylva Lindqvist
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Gunter Schneider
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
47
|
Biochemical and structural studies of NADH-dependent FabG used to increase the bacterial production of fatty acids under anaerobic conditions. Appl Environ Microbiol 2013; 80:497-505. [PMID: 24212572 DOI: 10.1128/aem.03194-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major efforts in bioenergy research have focused on producing fuels that can directly replace petroleum-derived gasoline and diesel fuel through metabolic engineering of microbial fatty acid biosynthetic pathways. Typically, growth and pathway induction are conducted under aerobic conditions, but for operational efficiency in an industrial context, anaerobic culture conditions would be preferred to obviate the need to maintain specific dissolved oxygen concentrations and to maximize the proportion of reducing equivalents directed to biofuel biosynthesis rather than ATP production. A major concern with fermentative growth conditions is elevated NADH levels, which can adversely affect cell physiology. The purpose of this study was to identify homologs of Escherichia coli FabG, an essential reductase involved in fatty acid biosynthesis, that display a higher preference for NADH than for NADPH as a cofactor. Four potential NADH-dependent FabG variants were identified through bioinformatic analyses supported by crystallographic structure determination (1.3- to 2.0-Å resolution). In vitro assays of cofactor (NADH/NADPH) preference in the four variants showed up to ≈ 35-fold preference for NADH, which was observed with the Cupriavidus taiwanensis FabG variant. In addition, FabG homologs were overexpressed in fatty acid- and methyl ketone-overproducing E. coli host strains under anaerobic conditions, and the C. taiwanensis variant led to a 60% higher free fatty acid titer and 75% higher methyl ketone titer relative to the titers of the control strains. With further engineering, this work could serve as a starting point for establishing a microbial host strain for production of fatty acid-derived biofuels (e.g., methyl ketones) under anaerobic conditions.
Collapse
|
48
|
Kim J, Chang JH, Kim EJ, Kim KJ. Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Biochem Biophys Res Commun 2013; 443:783-8. [PMID: 24211201 DOI: 10.1016/j.bbrc.2013.10.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 11/15/2022]
Abstract
(R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha H16 (RePhaB) is an enzyme that catalyzes the NADPH-dependent reduction of acetoacetyl-CoA, an intermediate of polyhydroxyalkanoates (PHA) synthetic pathways. Polymeric PHA is used to make bioplastics, implant biomaterials, and biofuels. Here, we report the crystal structures of RePhaB apoenzyme and in complex with either NADP(+) or acetoacetyl-CoA, which provide the catalytic mechanism of the protein. RePhaB contains a Rossmann fold and a Clamp domain for binding of NADP(+) and acetoacetyl-CoA, respectively. The NADP(+)-bound form of RePhaB structure reveals that the protein has a unique cofactor binding mode. Interestingly, in the RePhaB structure in complex with acetoacetyl-CoA, the conformation of the Clamp domain, especially the Clamp-lid, undergoes a large structural change about 4.6 Å leading to formation of the substrate pocket. These structural observations, along with the biochemical experiments, suggest that movement of the Clamp-lid enables the substrate binding and ensures the acetoacetyl moiety is located near to the nicotinamide ring of NADP(+).
Collapse
Affiliation(s)
- Jieun Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology, Teachers College, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Eun-Jung Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea
| | - Kyung-Jin Kim
- Structural and Molecular Biology Laboratory, School of Life Sciences and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea.
| |
Collapse
|
49
|
Shafreen RB, Pandian SK. Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes. J Mol Graph Model 2013; 45:1-12. [DOI: 10.1016/j.jmgm.2013.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
|
50
|
Directed evolution and structural analysis of NADPH-dependent Acetoacetyl Coenzyme A (Acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics. Appl Environ Microbiol 2013; 79:6134-9. [PMID: 23913421 DOI: 10.1128/aem.01768-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.
Collapse
|