1
|
Wang Y, Dou F, Han J, Liu K, Li J, Zhang H, Chen J. Novel chitosan-oligosaccharide derivatives as fluorescent green corrosion inhibitors for P110 steel. Carbohydr Polym 2024; 343:122475. [PMID: 39174137 DOI: 10.1016/j.carbpol.2024.122475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024]
Abstract
In the exploitation of seawater resources, the transported pipelines are frequently corroded, resulting in economic losses and environmental pollution. The development of corrosion inhibitors is an effective measure to mitigate the corrosion of metals in seawater. In this work, novel chitosan oligosaccharide derivatives (CF) were synthesized as fluorescent eco-friendly corrosion inhibitor by modifying fluorescent monomers. The characterization of CF revealed excellent fluorescence intensity, promising the potential for on-line detection. The inhibition performance of CF on P110 in 3.5 wt% NaCl solution was investigated through experimental evaluation and theoretical analysis. The electrochemical measurements indicated that the corrosion inhibition efficiency was increased from 61.00 % to 91.19 % with the introduction of fluorane. Adsorption isotherm and XPS analysis demonstrated that CF is designed to protect metal by forming the composite film on P110 through physical and chemical adsorption. In addition, theoretical calculations revealed differences in the interaction energies, radial distribution functions and diffusion coefficients of inhibitors on the Fe (110) surface. These theoretical results aligned with the experiments and confirmed the excellent ability of CF in metal corrosion protection from the molecular perspective. This new chitosan derivative provides new possibilities for the development of the green composite inhibitor that allows on-line detection.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Feng Dou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Kaili Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jihui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Huixin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
2
|
Tamil Selvan G, Samson J, Rajasingh P, Li X, Ravi Kumar A, Zhu N, Kuldeep SA, Mosae Selvakumar P, Jun Tang P, Zhang Z. A captivating approach to elevate the detection of Al 3+ ions incorporates the utilization of a tripodal receptor intricately embellishing the surface of zinc oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124339. [PMID: 38696995 DOI: 10.1016/j.saa.2024.124339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
The FDA (Food and Drug Administration, (USA)) lists ZnO as a material that is widely acknowledged to be safe. ZnO NPs with a range of tiny particle sizes were made using the precipitation process. ZnO nanoparticles' surface is embellished with a tripodal sensor containing naphthol units. The assembly with the same receptor decorated on ZnO NPs is contrasted with the cation detection capabilities of the purified tripodal receptor. The UV-visible spectrophotometric analysis was conducted to study the state transitions of the receptor and the decorated ZnO receptor. A positive selectivity to Al3+ cations is determined by the fluorescence study under ideal circumstances. The particle size and surface morphologies are determined by DLS and SEM analysis for the same receptor - TP1 and embellished with a tripodal receptor TP2. Using a fluorescence switch-on Photoinduced Electron Transfer (PET) mechanism, the receptor coated on ZnO detects the presence of Al3+ ions with specificity. The binding constant value was determined using the B-H plot equation. Binding stoichiometry for [TP1-Al3+, TP2-Al3+] showed a 1:1 ratio. The fluorescence switches ON-OFF process of the ZnO surface adorned - TP2 with Tripodal receptor- TP1 was used to create molecular logic gates, which can function as a module for sensors and molecular switches. The addition of Na2EDTA in the solution of the [TP1; TP2 - Al3+] complex resulted in a noticeable reduction in the emission of fluorescence. This finding offers compelling support for the reversibility of the chemosensor. To enable the practical application of this sensor, we have developed a cassette containing receptors TP1 and TP2. Successfully, it can detect Al3+ metal ions. We performed a comprehensive assessment of the dependability and appropriateness of our approach in measuring the concentration of Al3+ ions in wastewater produced by important industrial procedures.
Collapse
Affiliation(s)
- G Tamil Selvan
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Joel Samson
- Department of NanoScience and Technology, KITS, Coimbatore, Tamil Nadu 641114, India
| | - P Rajasingh
- Department of Chemistry, Kamarajar Government Arts College, Surandai, Tamil Nadu 627859, India
| | - Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - A Ravi Kumar
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sweety Angela Kuldeep
- Environmental Science Program, Asian University for Women, Chittagong 4000, Bangladesh
| | | | - P Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310015, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Xi L, Chen Y, Zhang X, Liu M, Li J, Xiao D, Dramou P, He H. Less interference fluorescence analytical strategy: Bridging substance-triggered ratiometric sensor with convenient preparation and application. Talanta 2024; 275:126102. [PMID: 38692043 DOI: 10.1016/j.talanta.2024.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
High interference and narrow application range are key of bottleneck of recent fluorescence analysis methods, which limit their wide application in the sensing field. Therefore, to overcome these disadvantages, a ratiometric fluorescence sensing system utilizing berberine (BER) and silver nanoclusters protected by dihydrolipoic acid (DHLA-AgNCs) was constructed for the first time in this work, to achieve determination of BER and daunorubicin (Dau). BER aqueous solution (non-planar conformation) has no fluorescence emission. When it was mixed with DHLA-AgNCs, the conformation of BER became planar, producing fluorescence emission at 515 nm besides the fluorescence emission peak of DHLA-AgNCs at 653 nm. With the increase of BER concentration added in system, the fluorescence intensity of BER (planar conformation) at 515 nm increased obviously and the fluorescence intensity of DHLA-AgNCs decreased slightly. Therefore, the dual emission fluorescence sensing system was constructed based on a fluorescence substance and non fluorescence substance, to achieve determination of BER. Meanwhile, based on the bridging effect of BER and fluorescence resonance energy transfer effect from Dau, the altering of two peaks intensity was utilized to achieve determination of Dau. Thus, this dual emission sensing system can not only be used for fluorescence analysis of BER and its analogues, but also based on the bridging effect of BER, allowing the determination of Dau and its analogues that could not be directly measured with silver nanoclusters, expanding the application range of traditional dual emission detection systems. Meanwhile, this system has strong anti-interference ability and low toxicity to the human body and less pollution to the sample and environment. This provides a new direction and universal research strategy for the construction of new fluorescence sensing systems in the future for the analysis of target substances that cannot be directly detected with conventional fluorescence analysis methods.
Collapse
Affiliation(s)
- Liping Xi
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Chen
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoni Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Meiru Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianhui Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Deli Xiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Li C, Zhao J. Organoplatinum Complex Exhibiting Aggregation-Enhanced Emission (AEE) and Dual-Channel Ion-Sensing Properties by Terminating the Molecular Configuration Transformation (MCT) and Excited-State Intramolecular Proton Transfer (ESIPT). Inorg Chem 2024; 63:11757-11767. [PMID: 38866593 DOI: 10.1021/acs.inorgchem.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Emitters produce weak emissions when they undergo structural changes such as molecular configuration transformation (MCT) or excited-state intramolecular proton transfer (ESIPT) but give out strong emissions after terminating these distortions. Herein, an organoplatinum complex, Pt-ppy-ABP, carrying a salicylaldehyde-based Schiff base unit is synthesized. It exhibits weak emission in dilute solutions but shows bright emission at the aggregated state or after interacting with F- and Zn2+. This suggests that it has an aggregation-enhanced emission (AEE) property and holds potential in ion detection. Supported by theoretical calculations and femtosecond transient absorption results, this complex suffers excited-state structural changes including MCT from a square-planar configuration to a tetrahedral one, as well as intramolecular rotation of a monodentate ligand and ESIPT, showing weak emission in its solutions. At the aggregated state, it releases strong yellow emissions because of the restraints of MCT and ligand rotation. Upon interacting with F- or Zn2+, it emits bright-red or -green emissions, achieving detection limits of 10-7 M. The sensing mechanism is concluded as deprotonation- and coordination-induced ESIPT terminations, respectively. Given its AEE property and ion-responsive emissions, its application in information encryption is also explored. Finally, these findings should provide valuable clues for the developments of chemosensors with dual-channel recognition abilities.
Collapse
Affiliation(s)
- Chencheng Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiang Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
5
|
Khalifa Z, Abo Oura MF, Hathoot A, Azzem MA. Voltammetric determination of hydrogen peroxide at decorated palladium nanoparticles/poly 1,5-diaminonaphthalene modified carbon-paste electrode. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231894. [PMID: 39100189 PMCID: PMC11296075 DOI: 10.1098/rsos.231894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/27/2024] [Indexed: 08/06/2024]
Abstract
In this work, palladium nanoparticles (PdNPs)/p1,5-DAN/ carbon paste electrode (CPE) and p1,5-DAN/CPE sensors have been developed for determination of hydrogen peroxide. Both sensors showed a highly sensitive and selective electrochemical behaviour, which were derived from a large specific area of poly 1,5 DAN and super excellent electroconductibility of PdNPs. PdNPs/p1,5-DAN/CPE exhibited excellent performance over p1,5-DAN/CPE. Thus, it was used for detecting hydrogen peroxide (H2O2) with linear ranges of 0.1 to 250 µM and 0.2 to 300 µM as well as detection limits (S/N = 3) of 1.0 and 5.0 nM for square wave voltammetry (SWV) and cyclic voltammetry (C.V) techniques, respectively. The modified CPE has good reproducibility, adequate catalytic activity, simple synthesis and stability of peak response during H2O2 oxidation on long run that exceeds many probes. Both reproducibility and stability for H2O2 detection are attributable to the PdNPs immobilized on the surface of p1,5-DAN/CPE. The modified CPE was used for determining H2O2 in real specimens with good stability, sensitivity, and reproducibility.
Collapse
Affiliation(s)
- Ziad Khalifa
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt, El Sherouk City 11837, Egypt
| | - Mohamed Fathi Abo Oura
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Abla Hathoot
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| | - Magdi Abdel Azzem
- Electrochemistry Laboratory, Chemistry Department, Faculty of Science, Menoufia University 32512, Egypt
| |
Collapse
|
6
|
Lalitha R, Velmathi S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 2024; 34:15-118. [PMID: 37212978 DOI: 10.1007/s10895-023-03231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
7
|
Sheng TP, Sun CZ, Dai FR. Triphenylamine-Functionalized Coordination Cage as a Supramolecular Fluorescence Sensor for Sequential Detection of Aluminum Ions and Nitrofurantoin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294737 DOI: 10.1021/acsami.3c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (Ni-NTB), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. Ni-NTB exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al3+ and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of Ni-NTB on test strips enabled a quick naked-eye sequential sensing of Al3+ and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.
Collapse
Affiliation(s)
- Tian-Pu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Zhe Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ma Y, Xia Y, Wang X, Ma G, Zhang F, Jiang T, Zhu Y, Li X. Perylene tetra-(alkoxycarbonyl) derivative and its copper chelate for selective sensing of fluoride ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122790. [PMID: 37148661 DOI: 10.1016/j.saa.2023.122790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Two novel fluoride ion fluorescent probes (P1 and P2) containing perylene tetra-(alkoxycarbonyl) derivative (PTAC) and its copper chelate were designed and synthesized. The identification properties of the probes were studied by absorption and fluorescence methods. The results showed that the probes were highly selective and sensitive to fluoride ions. 1H NMR titration confirmed that the sensing mechanism involved the formation of H-bond between the O-H moiety and fluoride ions, and the coordination of copper ion could enhance the H-bond donor capacity of the receptor unit (O-H). The corresponding orbital electron distributions were calculated by density functional theory (DFT). In addition, fluoride ion can be easily detected by probe-coated Whatman filter paper without the need for expensive equipment. Until now, there have been few reports of such probes enhancing the capacity of the H-bond donor based on metal ion chelation. This study will contribute to the design and synthesis of novel sensitive perylene fluoride probes.
Collapse
Affiliation(s)
- Yongshan Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Yanzhao Xia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Xiaodi Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Guangxiang Ma
- Shandong Society for Environmental Sciences, Jinan, 250101, P. R. China
| | - Fengxia Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China.
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Yanyan Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, P. R. China
| |
Collapse
|
9
|
Khairy GM, Amin AS, Moalla SMN, Medhat A, Hassan N. Sensitive ratiometric sensor for Al(III) detection in water samples using luminescence or eye-vision. ANAL SCI 2023:10.1007/s44211-023-00340-6. [PMID: 37071307 PMCID: PMC10359221 DOI: 10.1007/s44211-023-00340-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/02/2023] [Indexed: 04/19/2023]
Abstract
A facile, quick, and sensitive ratiometric luminescence sensor is designed for detection aluminum ions in water samples using luminescence or eye-vision. This approach relies on the emission change of the europium(III) complex with 3-(2-naphthoyl)-1,1,1,-trifluoro acetone (3-NTA) after interaction with various concentration of aluminum ions. The addition of aluminum ions suppressed the Eu(III) emission at 615 nm under 333 nm excitation, while simultaneously enhancing the ligand emission at 480 nm. Optimum detection was obtained in methanol. The quantification of aluminum ions using ratiometric method was determined by plotting the luminescence ratio (F480nm/F615nm) versus aluminum ions concentration. The calibration plot was obtained within the range 0.1-100 µM with LOD = 0.27 µM. Additionally, the concentration of aluminum ions can be estimated semi-quantitatively by visually observing the luminescence colour change of the probe from red to light green and then to dark green after being excited by a UV lamp with 365 nm. As far as we are aware, this is the first luminescent lanthanide complex-based ratiometric probe for the detection of aluminum ions. The probe showed remarkable aluminum ions selectivity relative to that of other metal ions. The suggested sensor was used effectively to identify aluminum ions in water samples with good results.
Collapse
Affiliation(s)
- Gasser M Khairy
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Alaa S Amin
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Sayed M N Moalla
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Ayman Medhat
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| | - Nader Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, 42526, Egypt
| |
Collapse
|
10
|
Impedimetric sensing platform based on copper oxide with activated carbon for sensitive detection of amoxicillin. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Aribuga H, Ertugral U, Alcay Y, Yavuz O, Yildirim MS, Ozdemir E, Kaya K, Sert ABO, Kok FN, Tuzun NŞ, Yilmaz I. A new Fe 3+-selective, sensitive, and dual-channel turn-on probe based on rhodamine carrying thiophenecarboxaldehyde: Smartphone application and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122060. [PMID: 36395583 DOI: 10.1016/j.saa.2022.122060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A new dual-channel probe based on rhodamine B derivative (MSB) was successfully designed, synthesized, characterized by Nuclear Magnetic Resonance (NMR) Spectroscopy, Fourier Transform Infrared Spectrophotometer (FTIR), Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), X-ray Photoelectron Spectroscopy (XPS), and Single Crystal X-rayDiffraction, and the sensing abilities toward Fe3+ cation have been demonstrated and the probe was successfully utilized for fluorescence imaging of Fe3+ in living cells. The probe demonstrated quite fast, sensitive, and selective response to Fe3+ by causing an extreme enhancement in UV-vis and fluorescence spectroscopy techniques in the buffered aqueous media which makes MSB a dual-channel probe. While the color of MSB solution was initially light yellow, it turned pink in the presence of Fe3+, which provided highly selective naked-eye determination among several ions as alkaline, alkaline-earth, and transition metal ions. After that, the probe was easily applied to paper strips and real samples such as drinking waters and supplementary iron tablets for sensing Fe3+ in an aqueous solution. The detection limit (LOD) and the response time of the probe were determined as 4.85x10-9 M and 4 min, respectively, which are quite lower compared with other rhodamine based Fe3+ sensors in the literature. According to Job's plot, 1H NMR titration, MALDI-TOF MS, XPS, and DFT study techniques, the complexation ratio between MSB and Fe3+ was found as 1:1. Moreover, the spectral response was reversible with alternately addition of Fe3+ or Na2EDTA to the MSB solution. In addition, fluorescence imaging in NIH/3T3 mouse fibroblast cells and studies in real samples with a quite high recovery rate exhibited that the probe is qualified for detection of Fe3+ ion with multiple practical usages.
Collapse
Affiliation(s)
- Hulya Aribuga
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Utku Ertugral
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Yusuf Alcay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ozgur Yavuz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | | | - Emre Ozdemir
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ayse Buse Ozdabak Sert
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Fatma Nese Kok
- Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, MOBGAM, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Molecular Biology and Genetics Department, 34469 Maslak, Istanbul, Turkey
| | - Nurcan Şenyurt Tuzun
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ismail Yilmaz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
12
|
Abdollahi-Moghadam M, Keypour H, Azadbakht R, Koolivand M. An experimental and theoretical study of a new sensitive and selective Al3+ Schiff base fluorescent chemosensor bearing a homopiperazine moiety. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kalavathi A, Saravana Kumar P, Satheeshkumar K, Vennila K, Ciattini S, Chelazzi L, Elango KP. Spectroscopic and TD-DFT studies on sequential fluorescent detection of Cu(II) and HS- ions in an aqueous solution. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Kumar A, Mohan B, Parikh J, Modi K. The spectroscopic and computational study of anthracene based chemosensor - Ag + interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121889. [PMID: 36150260 DOI: 10.1016/j.saa.2022.121889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Here in, we demonstrate a selective detection of Ag+ ion by the anthracene-based schiff base sensor AMC. The recognition event among sensor AMC and Ag+ ion was investigated by enhanced absorption band, red-shifted quenched emission spectra, electrochemical studies and DFT computational studies. The presence of Ag+ ion to solution of AMC quenched almost 50 % emission intensity of the ligand band. Data from high-resolution electrospray ionization mass spectrometry (ESI-HRMS), Ag+ titrations, and Job's plot studies all show that Ag+ binds to AMC in a 1:1 stoichiometric ratio.The quantitative parameters of sensor for silver ion are determined as the limit of detection (LOD) 5.95 × 10-7 M, and limit of quantitation (LOQ) 1.98 × 10-8 M in the linear range 3.48-20.31 × 10-6 M with good association affinity of 5.030 × 103 M-1. LMCT phenomenon from insilico studies, is in good agreement with the results obtained from other performed spectroscopic techniques. In addition, this sensor AMC was also successfully applied to real water samples for the identification and measurement of Ag+ ions.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra 136119, India.
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Jaymin Parikh
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana 382740, Gujarat, India.
| |
Collapse
|
15
|
Wang R, Zhang H, Wang S, Meng F, Sun J, Lou D, Su Z. A ratiometric fluorescent probe based on a dual-ligand lanthanide metal–organic framework (MOF) for sensitive detection of aluminium and fluoride ions in river and tap water. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02554j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A dual-emission fluorescent probe towards Al3+ and F− using a Ln-MOF material Eu-BDC-NH2/TDA is employed with exceptional sensitivity, high selectivity, low LOD, excellent anti-interference characteristics and direct visual observation.
Collapse
Affiliation(s)
- Runnan Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Sibo Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Fanxu Meng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of chemical Technology, Key Laboratory of Fine Chemicals of Jilin Province, Jilin, 132022, PR China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry, Changchun, 130022, People’s Republic of China
| |
Collapse
|
16
|
Tamizhselvi R, Arumugam Napoleon A. Ninhydrin and isatin appended 2-Hydrazinobenzothiazole based simple Schiff bases for colorimetric selective detection of Cr3+ and Pb2+ ions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Mohan B, Noushija MK, Shanmugaraju S. Amino-1,8-naphthalimide-based fluorescent chemosensors for Zn(II) ion. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Mahato M, Mardanya S, Rahman Z, Tohora N, Pramanik P, Ghanta S, Chowdhury AA, Kumar Shaw T, Kumar Das S. A Coumarin Coupled Electron Donor-Acceptor Dyad for Cascade Detection of Aluminium Ions and Explosive Nitroaromatic Compounds. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
A novel colorimetric and ratiometric fluorescent probe for fluoride anions based on perylene tetra-(alkoxycarbonyl) derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Satheeshkumar K, Saravana Kumar P, Nandhini C, Shanmugapriya R, Vennila K, Elango KP. A simple metal ion displacement-type turn-on fluorescent probe for the detection of halide ions in 100% water – Spectroscopic and TD-DFT investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Sawminathan S, Kulathu Iyer S. Phenanthridine based rapid "turn-on" fluorescent sensor for selective detection of Th 4+ ion and its real-time application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120403. [PMID: 34562860 DOI: 10.1016/j.saa.2021.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A new and highly sensitive and selective phenanthridine based sensor, 9-(7,8,13,14-tetrahydrodibenzo[a,i]phenanthridin-5-yl)benzo[h]quinolin-10-ol (PHBQ), was developed for the fluorescent ''turn-on'' detection of Th4+ ion in acetonitrile: water (8:2) medium. The fluorescence intensity of PHBQ diminished in the region of pH 1 to 3 and could be recovered by adjusting the pH to above 4. The sensor PHBQ showed distinct spectral changes in response to Th4+ ion over other competitive metal ions. The fluorescence displayed good linearity with the Th4+ concentration in the equivalence of 0-0.5 equivalents. The detection limit was calculated to be as low as 99 nM, which was less than that of previously reported sensors. The recognizing mechanism of PHBQ towards Th4+ was investigated in detail using HR-MS, NMR, and IR spectroscopy. The economically viable Whatman filter paper was fabricated with PHBQ to develop a paper-based fluorescence kit to detect the Th4+ in an aqueous medium efficiently. Furthermore, the application of sensor ligand in fluorescence imaging was studied in E-coli cells due to its minimal cytotoxicity and good optical properties. The obtained data suggest that the ligand PHBQ can be used as a fluorescent sensor for tracking Th4+ in multiple applications.
Collapse
Affiliation(s)
- Sathish Sawminathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
22
|
Thakuri A, Banerjee M, Chatterjee A. Sulfonate‐Functionalized AIEgens: Strategic Approaches Beyond Water Solubility for Sensing and Imaging Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Mainak Banerjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Amrita Chatterjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
23
|
Kassahun GS, Griveau S, Bedioui F, Slim C. Input of Electroanalytical Methods for the Determination of Diclofenac: A Review of Recent Trends and Developments. ChemElectroChem 2021. [DOI: 10.1002/celc.202100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Getnet Sewnet Kassahun
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Sophie Griveau
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Fethi Bedioui
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| | - Cyrine Slim
- Chimie ParisTech PSL Research University iCLeHS, CNRS, UMR 8060 11 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
24
|
Ma Y, Xia Y, Zhu Y, Zhang F, Cui J, Jiang T, Jia X, Li X. A novel colorimetric and fluorescent probe based on a core-extended perylene tetra-(alkoxycarbonyl) derivative for the selective sensing of fluoride ions. RSC Adv 2021; 12:475-482. [PMID: 35424503 PMCID: PMC8978696 DOI: 10.1039/d1ra07596a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022] Open
Abstract
A novel fluoride (F-) colorimetric and fluorescent probe (P1) based on a core-extended perylene tetra-(alkoxycarbonyl) (PTAC) derivative was developed. The probe exhibited high sensitivity and selectivity for distinguishing F- from other common anions through significant changes of the UV-Vis and fluorescence spectra. Job's plot analysis revealed that the stoichiometry of the P1-F- interaction is 1 : 1. The association constant between P1 and F- was estimated to be 9.7 × 102 M-1 and the detection limit of F- was about 0.97 μM. An approximately 76 nm red-shift in the absorption and fluorescent quenching response was observed when F- was associated with P1. The emission intensity (I 574) decreased linearly along with the F- concentration from 3 × 10-5 M to 2 × 10-4 M. The mechanism of intermolecular proton transfer (IPT) was deduced based on the changes in the absorption, fluorescence, electrochemistry, and 1H NMR titration spectra. The density functional theory (DFT) theoretical results of the P1-F- complex are in good agreement with the experimental results. The rapid detection of F- ions in the solid state and living cells was also studied.
Collapse
Affiliation(s)
- Yongshan Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Yanzhao Xia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Yanyan Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Fengxia Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Xiangfeng Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| | - Xuemei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 Shandong China
| |
Collapse
|
25
|
Virender, Mohan B, Kumar S, Modi K, Deshmukh AH, Kumar A. 2-((E)-1-((E)-(2-methoxybenzylidene)hydrazono)ethyl)phenol based cost-effective sensor for the selective detection of Eu3+ ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Riaz MT, Yaqub M, Javed S, Hussain D, Ashiq MN, Shafiq Z. In situ evaluation of the biological active poly functionalized novel amino-1,8-naphthyridine derivatives as DNA-electrochemical biosensor. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1991718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shumaila Javed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Dilshad Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
27
|
Endjala PT, Naimhwaka J, Uahengo V. Investigation of fluorenyl-thioic-based ditopic as a functional colorimetric probe for heavy metal cations and anions with higher selectivity towards Cu2+ followed by Zn2+, displaying logic functions: Experimental and computational studies. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01736-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Hamukwaya E, Naimhwaka J, Uahengo V. A multi-colorimetric probe to discriminate between heavy metal cations and anions in DMSO-H 2O with high selectivity for Cu 2+ and CN -: study of logic functions and its application in real samples. RSC Adv 2021; 11:29466-29485. [PMID: 35479545 PMCID: PMC9040645 DOI: 10.1039/d1ra04734e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
A ditopic multi-colorimetric probe based on the phenylpridyl-thioic moiety (EN) was synthesized via a Schiff base reaction mechanism and characterized using 1H NMR and UV-vis spectroscopy. The colorimetric analyses carried out revealed that EN was capable of discriminating between a number of heavy metal cations via coordination induced charge transfer, as well as between anions through hydrogen bonding induced charge transfer, in DMSO–H2O (9 : 1). In particular, the ditopic probe could spectrally and colorimetrically recognize the most toxic heavy metal cations of Cd2+, Pb2+ and Hg2+, among others, in DMSO–H2O. Additionally, EN was selective and sensitive to the presence of CN−, F−, AcO− and H2PO4− in the same solvent system as cations. The reversibility and reproducibility studies showed that EN exhibited complementary IMP/INH logic functions, based on colour and spectral switching (ON/OFF), modulated by F−/Al3+. The real time application of the probe was tested on food grade products to detect the presence of F− in toothpastes and mouthwash dissolved in water, as well as cations in underground water (normally saline), which displayed substantial responses. Thus, EN displayed an excellent scope of response and can thus be developed for real time sensing kits, which could be used instantly in on-field analysis. Theoretical studies were conducted to complement the experimental work. A ditopic multi-colorimetric probe based on the phenylpridyl-thioic moiety (EN) was synthesized via a Schiff base reaction mechanism and characterized using 1H NMR and UV-vis spectroscopy.![]()
Collapse
Affiliation(s)
- Eunike Hamukwaya
- Department of Chemistry and Biochemistry, University of Namibia 340 Mandume Ndemufayo Avenue Windhoek 9000 Namibia +264 61 206 3465
| | - Johannes Naimhwaka
- Department of Chemistry and Biochemistry, University of Namibia 340 Mandume Ndemufayo Avenue Windhoek 9000 Namibia +264 61 206 3465
| | - Veikko Uahengo
- Department of Chemistry and Biochemistry, University of Namibia 340 Mandume Ndemufayo Avenue Windhoek 9000 Namibia +264 61 206 3465
| |
Collapse
|
29
|
Khalil S, El-Beltagy A, El-Sharnouby M. Potent Acrylamide Determination in Food Products Using Ion-Selective Electrode Technique. MEMBRANES 2021; 11:membranes11080645. [PMID: 34436408 PMCID: PMC8398482 DOI: 10.3390/membranes11080645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022]
Abstract
A potent selective acrylamide liquid sensor based on the reaction of acrylamide with 2-(5-Bromo-2-pyridylazo)-5-[N-n-Propyl-N-(3-Sulfopropyl) amino] aniline reagent is successfully designed. The characteristics slope (52.33 mV/decade), linearity usable range from 1.0 × 10−7–1.0 × 10−1 molar, limit of detection (1.6 × 10−8) molar, selectivity attitude to several inorganic cations, amino acids and sugars, time of response (8 s), lifetime (four months), pH effect on the electrode potential and the basic validation parameters were studied. The desirable pH applicable range was 3.0–6.5, and the restraint of the developed sensor is independent on this working pH range. The deployed electrode was effectively applied for rapid inexpensive analysis of acrylamide cations in food products with comparison to high-performance liquid chromatographic method and the results were agreeable with each other. The obtained data by the suggested electrode were treated statistically and compared with the various recently published acrylamide sensors.
Collapse
Affiliation(s)
- Sabry Khalil
- Department of Food Nutrition Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: or
| | - Alaa El-Beltagy
- Department of Food Nutrition Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed El-Sharnouby
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| |
Collapse
|
30
|
A basket-type fluorescent sensor based calix[4]azacrown ether for multi-analytes: Practicability in living cells and real sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Wang H, Wang L, Xiu Y, Zhang S, Wang S, Niu X. Penicillin biosensor based on rhombus-shaped porous carbon/hematoxylin/penicillinase. J Food Sci 2021; 86:3505-3516. [PMID: 34287896 DOI: 10.1111/1750-3841.15841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
In this experiment, we designed an electrochemical sensor using penicillinase (Pen X)-rhombus porous carbon (RPC) as the detection element and hematoxylin as the indicator to detect low concentrations of penicillin sodium (Pen G). A differential pulse voltammetry (DPV) method was used to detect Pen G in the concentration range of 10-8 -10-5 mg·mL-1 under optimal experimental conditions. The results showed that the peak current value and the logarithm of Pen G concentration showed a good linear relationship (R2 = 0.9915), and the LOD was 2.68 × 10-7 mg·mL-1 (S/N = 3). The actual milk samples were detected by the addition method and compared with the high-performance liquid phase method; no significant difference was found in the detection results. The working electrode prepared by cross-linking method not only extends the service life of the sensor, but also improves the sensitivity and reproducibility of the sensor. It can also be used to detect the Pen G residue in the actual milk samples repeatedly. PRACTICAL APPLICATION: In this study, an electrochemical sensor for the rapid detection of penicillin sodium in milk was prepared, which has good sensitivity and fast detection speed.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yi Xiu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shaoqi Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
32
|
Zohreh Ghazanfari, Sarhadi H, Tajik S. Determination of Sudan I and Bisphenol A in Tap Water and Food Samples Using Electrochemical Nanosensor. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Electrode material fabricated by doping holmium in nickel oxide and its application in electrochemical sensor for flutamide determination as a prostate cancer drug. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Seo Y, Park S, Kim G, Lee M, Kim C. A naphthyl thiourea-based effective chemosensor for fluorescence detection of Ag + and Zn 2. LUMINESCENCE 2021; 36:1725-1732. [PMID: 34213083 DOI: 10.1002/bio.4114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 11/11/2022]
Abstract
A naphthyl thiourea-based effective chemosensor HNC, (E)-2-(2-hydroxy-3-methoxybenzylidene)-N-(naphthalen-1-yl)hydrazine-1-carbothioamide, was synthesized. HNC showed quick responses toward Ag+ and Zn2+ through marked fluorescence turn-on in different solvent conditions, respectively. Binding proportions of HNC to Ag+ and Zn2+ were found to be 2:1 and 1:1, respectively. Detection limits of HNC for Ag+ and Zn2+ were calculated as 3.82 and 0.21 μM. Binding processes of HNC for Ag+ and Zn2+ were represented using Job's plot, DFT, 1 H NMR titration, and ESI-MS.
Collapse
Affiliation(s)
- Yuna Seo
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, South Korea
| | - Soyoung Park
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, South Korea
| | - Gyeongjin Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, South Korea
| | - Minji Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, South Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology (SNUT), Seoul, South Korea
| |
Collapse
|
35
|
Yang Y, Zou T, Zhao R, Kong Y, Su L, Ma D, Xiao X, Wang Y. Fluorescence 'turn-on' probe for Al 3+ detection in water based on ZnS/ZnO quantum dots with excellent selectivity and stability. NANOTECHNOLOGY 2021; 32:375001. [PMID: 34102626 DOI: 10.1088/1361-6528/ac0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
In this work, an efficient and stable fluorescent probe for Al3+was established. The fluorescent probe based on the fluorescence 'turn-on' mode of zinc sulfide crystal composite zinc oxide quantum dots (ZnS/ZnO QDs). The ZnS/ZnO QDs were synthesized via two-step method using L-Cysteine (L-Cys) as a sulfur source and stabilizer. In the synthesis of ZnS/ZnO QDs, the fluorescence of zinc oxide quantum dots (ZnO QDs) decreased and its stability increased in aqueous solution after the addition of L-Cys. In addition, the as-synthesized ZnS/ZnO QDs shows fluorescent enhancement to Al3+. The ZnS/ZnO QDs based fluorescence 'turn-on' probe presented wide linear ranges (1 nM-8μM and 8-100μM). The availability of as-established sensing probe was also estimated by real water sample tests. Furthermore, the fluorescent enhancing mechanism was carried out by recording the fluorescent lifetime of samples, which might be related to the QDs dispersion and charge transfer weaken.
Collapse
Affiliation(s)
- Yue Yang
- Department of Physics, Yunnan University, 650091 Kunming, People's Republic of China
| | - Tong Zou
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Rongjun Zhao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yulin Kong
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Linfeng Su
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Dian Ma
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Xuechun Xiao
- School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan University, 650091 Kunming, People's Republic of China
| |
Collapse
|
36
|
Peng T, Li S, Zhou Y, Liu R, Qu J. Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells. Talanta 2021; 234:122615. [PMID: 34364424 DOI: 10.1016/j.talanta.2021.122615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Cyanide detection methods are urgently needed due to the highly lethal to human beings. Herein, we report two fluorescence probes (Probe 1 and Probe 2) based on cyanoethylene group for cyanide anion (CN-) detection. The selective recognition for CN- was confirmed by the completely opposite green fluorescence of Probe 1 and red fluorescence of Probe 2 observed by fluorescence spectra and naked eyes. The probes take advantages of the large Stokes shift (~160 nm), rapid response (30 s), anti-interference performance and low detection limit (Probe 1: 12.4 nM, Probe 2: 101 nM). The sensing mechanism is certificated to the nucleophilic attack of CN- to electron-deficient cyanoethylene group of probes, which was demonstrated by 1H NMR titration, HR-MS, Job's plot and IR spectroscopy. Density functional theory (DFT) calculations were carried out to analyze the mechanism in theory. Further, practical applications were studied. Easy-to-use test strips treated with Probe 1 or Probe 2 are capable of CN- detection in pure drinking water. The good biocompatibility and membrane penetrability have achieved the bioimaging capability of Probe 1 and Probe 2 in living HepG-2 cells, making the probes promising for use in real lives.
Collapse
Affiliation(s)
- Ting Peng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Shining Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yuping Zhou
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Ruiyuan Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| |
Collapse
|
37
|
Qian J, Lu Q, Xu F, Chen L, Xia J. Two-dimensional nano-layered materials as multi-responsive chemosensors constructed by carbazole- and fluorene-based polyaniline-like derivatives. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124544. [PMID: 33246818 DOI: 10.1016/j.jhazmat.2020.124544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The development of multi-responsive chemosensors has a bright application prospect in environmental monitoring and biological diagnosis. In this paper, we report two kinds of fluorescent polyaniline-like derivatives containing of carbazole or fluorene moieties with two-dimensional (2D) nano-layered structure and their applications in the detection of Al3+, Fe3+, Cu2+ and HCl in different environments. Through the analysis of the structure and properties of these two 2D materials, we find that the prepared (Poly(9,9'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(9H-carbazol-3-amine))) PDFCA material performs excellent sensing properties for above analytes. Relevant density functional theory (DFT) calculation further confirms the potential application of 2D nano-layered PDFCA material in sensing field. This study presents that 2D nano-layered PDFCA material is considerably competitive in the development of multi-responsive chemosensors, and it will greatly accelerate the research of 2D polymer materials.
Collapse
Affiliation(s)
- Junning Qian
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qingyi Lu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Feng Xu
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ling Chen
- Hubei Institute of Quality Supervision and Inspection, Wuhan 430072, People's Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
38
|
A chromo-fluorogenic HMT sensor for Ag + and the resultant HMT-Ag complex turn-off probe for F - in DMSO: experimental and theoretical studies. Heliyon 2021; 7:e06956. [PMID: 34027164 PMCID: PMC8121966 DOI: 10.1016/j.heliyon.2021.e06956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
The photophysical properties of Hexamethylenetetramine (HMT) were investigated through physical methods and spectroscopically in dimethyl sulfoxide (DMSO) at ambient temperature. Evidently, HMT turned out as a sensor, selective and sensitive to silver ion (Ag+) only, among other cations, through colorimetric and fluorometric activities (observable by naked eye) and spectrally, both by UV-Vis and fluorescence spectroscopy. The resulting complex pedant (HMT-Ag) is highly responsive to the presence of fluoride ion (F−) in aqueous soluble DMSO, evidenced by changes in absorption spectra as well as fluorescence quenching, upon addition of the respective ions. Consequently, spectral changes induced by the addition of these ions, were consistently concomitant with colour changes, from colourless to light brown (HMT-Ag) to dark brown (HMT-Ag-F) in daylight condition, while bright light blue colour (HMT) to dark blue brownish (HMT-Ag) under UV-light conditions. The experimental results were complimented by theoretical studies, which are well within agreement of one another.
Collapse
|
39
|
Mohan B, Virender, Kumar S, Modi K, Kumar Sharma H, Kumar A. 5-Bromo-1H-indol based flexible molecular receptor possessing spectroscopic characteristics for detection of Sm(III) and Dy(III) ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Zhu JL, Zhu P, Mei J, Xie J, Guan J, Zhang KL. Proton conduction and luminescent sensing property of two newly constructed positional isomer-dependent redox-active Mn(II)-organic frameworks. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ramezanpour S, Barzinmehr H, Shiri P, Meier C, Ayatollahi SA, Mehrazar M. Highly selective fluorescent peptide-based chemosensors for aluminium ions in aqueous solution. Anal Bioanal Chem 2021; 413:3881-3891. [PMID: 33928405 DOI: 10.1007/s00216-021-03339-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Two novel fluorescent peptide-based chemosensors, including A (2-amino-benzoyl-Ser-Glu-Glu-NH2) and B (2-amino-benzoyl-Ala-Glu-Pro-Glu-Ala-Glu-Pro-NH2) were synthesized and characterized by nuclear magnetic resonance (NMR) spectra. These fluorescent probes exhibited excellent selective and sensitive responses to Al3+ ions over other metal ions in aqueous buffered solutions. The limits of detection for both chemosensors towards the Al3+ ions were in the order of ∼10-7 M (A: 155 nM and B: 195 nM), which clearly indicates that these probes have significant potential for biological applications. They also displayed high binding affinity (1.3029 × 104 M-1 and 1.7586 × 104 M-1 relevant to A and B respectively). These two chemosensors are great analytical probes that produce turn-on responses upon binding to Al3+ ions through an intramolecular charge transfer (ICT) mechanism. In addition, the application of both chemosensors was examined over a wide range of pH. The fluorescent peptide-based probes and Al3+ form a 1:1 coordination complex according to the ESI-MS and Job's plot analysis. Notably, upon addition of Al3+ to these chemosensors, a fluorescence enhancement of approximately 8-fold was observed and the binding mode was determined using NMR titration and fluorescence emission data.
Collapse
Affiliation(s)
- Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Hamed Barzinmehr
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Pezhman Shiri
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Chris Meier
- University of Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | | | - Mehrdad Mehrazar
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
42
|
Ganesh PS, Shimoga G, Lee SH, Kim SY, Ebenso EE. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.
Methods
The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques.
Results
The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon.
Conclusions
The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.
Graphical abstract
Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.
Collapse
|
43
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
44
|
Mavaei M, Chahardoli A, Fattahi A, Khoshroo A. A Simple Method for Developing a Hand-Drawn Paper-Based Sensor for Mercury; Using Green Synthesized Silver Nanoparticles and Smartphone as a Hand-Held-Device for Colorimetric Assay. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000099. [PMID: 33854790 PMCID: PMC8025396 DOI: 10.1002/gch2.202000099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Mercury ions are highly toxic at trace levels, and its pollution has posed a significant threat to the environment and public health, where current detection methods mainly require laborious operation and expensive instrumentation. Herein, a simple, cost-effective, instrument-free approach for selective detection of Hg2+ based on a hand-drawn paper-based naked-eye colorimetric device is developed. To develop a hand-drawn paper-based device, a crayon is used to build hydrophobic barriers and a paper puncher is applied to obtain patterns as a sensing zone. A green method for the synthesis of silver nanoparticles (AgNPs) is applied using Achillea Wilhelmsii (Aw) extract. The sensing ability of Aw-AgNPs toward Hg2+ is investigated in both solution-phase and paper substrate loaded with Aw-AgNPs using colorimetric methods. For the paper-based sensor, the quantification of the target relies on the visual readout of a color-changed sensing zone modified with Aw-AgNPs. Under optimal conditions, the color of Aw-AgNPs in aqueous solution and on the coated paper substrate can change from brown to colorless upon addition of target, with a detection limit of 28 × 10-9 m and 0.30 × 10-6 m, respectively. In conclusion, the present study indicates the potential of this hand-drawn eco-friendly paper-based sensor for monitoring of mercury.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research CenterHealth instituteKermanshah University of Medical SciencesKermanshah6715847141Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research CenterHealth instituteKermanshah University of Medical SciencesKermanshah6715847141Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research CenterHealth instituteKermanshah University of Medical SciencesKermanshah6715847141Iran
- Medical Biology Research CenterKermanshah University of Medical SciencesKermanshah6715847141Iran
- Present address:
Center for Applied NanoBioscience and MedicineCollege of Medicine PhoenixUniversity of ArizonaPhoenixAZUnited States
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research CenterHealth instituteKermanshah University of Medical SciencesKermanshah6715847141Iran
| |
Collapse
|
45
|
Dey N, Kumari N, Bhattacharya S. FRET-based ‘ratiometric’ molecular switch for multiple ions with efficacy towards real-time sampling and logic gate applications. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Synthesis and physicochemical characterization of Schiff bases used as optical sensor for metals detection in water. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Hengameh Zabolestani, Sarhadi H, Beitollahi H. Electrochemical Sensor Based on Modified Screen Printed Electrode for Vitamin B6 Detection. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521020149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Tran VK, Gupta PK, Park Y, Son SE, Hur W, Lee HB, Park JY, Kim SN, Seong GH. Functionalized bimetallic IrPt alloy nanoparticles: Multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Re-usable colorimetric polymeric gel for visual and facile detection of multiple metal ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Tang J, Qiu Z, Tang H, Wang H, Sima W, Liang C, Liao Y, Li Z, Wan S, Dong J. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115975. [PMID: 33168374 DOI: 10.1016/j.envpol.2020.115975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, the novel technology was used to remove heavy metal from sludge. The coupled with biodegradable ethylenediamine disuccinic acid (EDDS) and approaching anode electrokinetic (AA-EK) technique was used to enhance heavy metal removing from sludge. Electric current, sludge and electrolyte characteristics, heavy metal removal efficiency and residual content distribution, and heavy metal fractions percentage of variation were evaluated during the electrokinetic remediation process. Results demonstrated that the coupled with EDDS and AA-EK technique obtain a predominant heavy metal removal efficiency, and promote electric current increasing during the enhanced electrokinetic remediation process. The catholyte electrical conductivity was higher than the anolyte, and electrical conductivity of near the cathode sludge achieved a higher value than anode sludge during the coupled with EDDS and AA-EK remediation process. AA-EK technique can produce a great number of H+, which caused the sludge acidification and pH decrease. Cu, Zn, Cr, Pb, Ni and Mn obtain the highest extraction efficiency after the coupled with EDDS and AA-EK remediation, which were 52.2 ± 2.57%, 56.8 ± 3.62%, 60.4 ± 3.62%, 47.2 ± 2.35%, 53.0 ± 3.48%, 54.2 ± 3.43%, respectively. Also, heavy metal fractions analysis demonstrated that the oxidizable fraction percentage decreased slowly after the coupled with EDDS and AA-EK remediation.
Collapse
Affiliation(s)
- Jian Tang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hengjun Tang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Haiyue Wang
- Students of Affairs Division, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Weiping Sima
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Chao Liang
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Yi Liao
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Zhihua Li
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Shan Wan
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Jianwei Dong
- School of Civil Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| |
Collapse
|