1
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
3
|
Ebani VV. Staphylococci, Reptiles, Amphibians, and Humans: What Are Their Relations? Pathogens 2024; 13:607. [PMID: 39057833 PMCID: PMC11279482 DOI: 10.3390/pathogens13070607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Reptiles and amphibians are largely present in many environments, including domestic areas when they are kept as pet animals. They often harbor zoonotic pathogens, which can pose a serious risk of infection for humans, mainly immunocompromised individuals, the elderly, children, and pregnant women. Several studies have been carried out to verify the role of cold-blooded animals in the epidemiology of some bacteria, mainly Salmonella, whereas scarce attention has been focused on these animals as a source of staphylococci. These bacteria are often antimicrobial-resistant and they act as opportunistic pathogens, which can cause relevant infections in humans and animals, both domestic and wild. Asymptomatic reptiles and amphibians often harbor staphylococcal strains, such as Staphylococcus aureus and coagulase-negative Staphylococcus spp.; however, these bacteria have been associated with clinical conditions that usually appear in animals under stress conditions. In all cases, greater attention should also be focused on staphylococci in cold-blooded animals due to their implications in human and veterinary medicine.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Li Z, Chen X, Zhao F, Miao M. Genomic insights into the cellular specialization of predation in raptorial protists. BMC Biol 2024; 22:107. [PMID: 38715037 PMCID: PMC11077807 DOI: 10.1186/s12915-024-01904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Predation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited. RESULTS In this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and L-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria. CONCLUSIONS Our results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.
Collapse
Affiliation(s)
- Zaihan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Salama WH, Abd-Rabou AA, Bassuiny RI, El Hakim AE, Shahein YE. Exploration of antimicrobial and anticancer activities of L-amino acid oxidase from Egyptian Naja haje venom. Toxicon 2024; 242:107708. [PMID: 38574827 DOI: 10.1016/j.toxicon.2024.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma and bacterial resistance are major health burdens nowadays. Thus, providing new therapies that overcome that resistance is of great interest, particularly those derived from nature rather than chemotherapeutics to avoid cytotoxicity on normal cells. Venomous animals are among the natural sources that assisted in the discovery of novel therapeutic regimens. L-amino acid oxidase Nh-LAAO (140 kDa), purified from Egyptian Naja haje venom by a successive two-step chromatography protocol, has an optimal pH and temperature of 8 and 37 °C. Under standard assay conditions, Nh-LAAO exhibited the highest specificity toward L-Arg, L-Met and L-Leu, with Km and Vmax values of 3.5 mM and 10.4 μmol/min/ml, respectively. Among the metal ions, Ca+2, Na+, and K+ ions are activators, whereas Fe+2 inhibited LAAO activity. PMSF and EDTA slightly inhibited the Nh-LAAO activity. In addition, Nh-LAAO showed antibacterial and antifungal activities, particularly against Gentamicin-resistant P. aeruginosa and E. coli strains with MIC of 18 ± 2 μg/ml, as well as F. proliferatum and A. parasiticus among the selected human pathogenic strains. Furthermore, Nh-LAAO exhibited anti-proliferative activity against cancer HepG2 and Huh7 cells with IC50 of 79.37 and 60.11 μg/ml, respectively, with no detectable effect on normal WI-38 cells. Consequently, the apoptosis % of the HepG2 and Huh7 cells were 12 ± 1 and 34.5 ± 2.5 %, respectively, upon Nh-LAAO treatment. Further, the Nh-LAAO arrested the HepG2 and Huh7 cell cycles in the G0/G1 phase. Thus, the powerful selective cytotoxicity of L-amino acid oxidase opens up the possibility as a good candidate for clinical cancer therapy.
Collapse
Affiliation(s)
- Walaa H Salama
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt.
| | - Ahmed A Abd-Rabou
- HormonesDepartment, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Roqaya I Bassuiny
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Amr E El Hakim
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, National Research Centre, 12622, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Khan NA, Amorim FG, Dunbar JP, Leonard D, Redureau D, Quinton L, Dugon MM, Boyd A. Inhibition of bacterial biofilms by the snake venom proteome. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00810. [PMID: 37559690 PMCID: PMC10407894 DOI: 10.1016/j.btre.2023.e00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Snake venoms possess a range of pharmacological and toxicological activities. Here we evaluated the antibacterial and anti-biofilm activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MSSA and MRSA) of venoms from the Samar spitting cobra Naja samarensis and the Puff adder Bitis arietans. Both venoms prevented biofilm production by pathogenic S. aureus in a growth-independent manner, with the B. arietans venom being most potent. Fractionation showed the active molecule to be heat-labile and >10 kDa in size. Proteomic profiles of N. samarensis venom revealed neurotoxins and cytotoxins, as well as an abundance of serine proteases and three-finger toxins, while serine proteases, metalloproteinases and C-lectin types were abundant in B. arietans venom. These enzymes may have evolved to prevent bacteria colonising the snake venom gland. From a biomedical biotechnology perspective, they have valuable potential for anti-virulence therapy to fight antibiotic resistant microbes.
Collapse
Affiliation(s)
- Neyaz A. Khan
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
| | | | - John P. Dunbar
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Dayle Leonard
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys RU, University of Liège, Belgium
| | - Michel M. Dugon
- Venom Systems & Proteomics Lab, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, School of Natural Sciences, University of Galway, Ireland
| |
Collapse
|
7
|
Singkham-In U, Thaveekarn W, Noiphrom J, Khow O, Ponwaranon S, Issara-Amphorn J, Sitprija V, Leelahavanichkul A. Hydrogen peroxide from L-amino acid oxidase of king cobra (Ophiophagus hannah) venom attenuates Pseudomonas biofilms. Sci Rep 2023; 13:11304. [PMID: 37438396 DOI: 10.1038/s41598-023-37914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Because of the high incidence of Pseudomonas aeruginosa biofilms-related nosocomial infections, venoms from common Thai snakes were tested. Although venoms from king cobra (Ophiophagus hannah; OH) and green pit viper (Trimeresurus albolabris) showed the broadest antibacterial spectrum, OH venom demonstrated more profound anti-biofilm activities against P. aeruginosa. Additionally, purified L-amino acid oxidase from OH venom (OH-LAAO), using a three-step chromatography and protein identification, reduced biofilm mass as indicated by the downregulation of several genes, including the genes for biofilm synthesis (algD and pslB) and biofilm regulators (algU, gacA, and siaD). Moreover, OH-LAAO disrupted Pseudomonas-preformed biofilms via upregulation of several genes for biofilm dispersion (nbdA, bdlA, and dipA) and biofilm degradation (endA and pslG), resulting in a reduction of the biofilm biomass. Due to the antimicrobial effects and anti-biofilm activities (reduced production plus increased dispersion) neutralized by catalase, a hydrogen peroxide (H2O2)-degrading enzyme, the enhanced H2O2 by OH venom might be one of the anti-biofilm mechanisms. Hence, OH-LAAO was proposed as a novel agent against Pseudomonas biofilms for either treatment or prevention. More studies are interesting.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Translational Research in Inflammatory and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wichit Thaveekarn
- Queen Saovabha Memorial Institute, Thai Red Cross Society, 1871 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Jureeporn Noiphrom
- Queen Saovabha Memorial Institute, Thai Red Cross Society, 1871 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Orawan Khow
- Queen Saovabha Memorial Institute, Thai Red Cross Society, 1871 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Surada Ponwaranon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Translational Research in Inflammatory and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, Thai Red Cross Society, 1871 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence in Translational Research in Inflammatory and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
de Melo Fernandes TA, Teixeira SC, Costa TR, Rosini AM, de Souza G, Polloni L, Barbosa BDF, Silva MJB, Ferro EAV, Ávila VDMR. BjussuLAAO-II, an l-amino acid oxidase from Bothrops jararacussu snake venom, impairs Toxoplasma gondii infection in human trophoblast cells and villous explants from the third trimester of pregnancy. Microbes Infect 2023; 25:105123. [PMID: 36870599 DOI: 10.1016/j.micinf.2023.105123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
One-third of the world's population is estimated to be affected by toxoplasmosis. Pregnancy-related Toxoplasma gondii infection can cause vertical transmission, infect the fetus, and cause miscarriage, stillbirth, and fetal death. The current study showed that both human trophoblast cells (BeWo lineage) and human explant villous were resistant to T. gondii infection after incubation with BjussuLAAO-II, an l-amino acid oxidase isolated from Bothrops jararacussu. Almost 90% of the parasite's ability to proliferate in BeWo cells was decreased by the toxin at 1.56 μg/mL and showed an irreversible anti-T. gondii effect. Also, BjussuLAAO-II impaired the key events of adhesion and invasion of T. gondii tachyzoites in BeWo cells. BjussuLAAO-II antiparasitic properties were associated with the intracellular production of reactive oxygen species and hydrogen peroxide, since the presence of catalase restored the parasite's growth and invasion. In addition, T. gondii growth in human villous explants was decreased to approximately 51% by the toxin treatment at 12.5 μg/mL. Furthermore, BjussuLAAO-II treatment altered IL-6, IL-8, IL-10 and MIF cytokines levels, assuming a pro-inflammatory profile in the control of T. gondii infection. This study contributes to the potential use of a snake venom l-amino acid oxidase for the development of agents against congenital toxoplasmosis and the discovery of new targets in parasites and host cells.
Collapse
Affiliation(s)
- Thales Alves de Melo Fernandes
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Acre s/n, 38402-902, Uberlândia, MG, Brazil.
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Tássia Rafaela Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Acre s/n, 38402-902, Uberlândia, MG, Brazil.
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Acre s/n, 38402-902, Uberlândia, MG, Brazil.
| | - Bellisa de Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Para, 1720, 38400-239, Uberlândia, MG, Brazil.
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, St. Acre s/n, 38402-902, Uberlândia, MG, Brazil.
| |
Collapse
|
9
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
11
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
12
|
Zhou K, Luo W, Liu T, Ni Y, Qin Z. Neurotoxins Acting at Synaptic Sites: A Brief Review on Mechanisms and Clinical Applications. Toxins (Basel) 2022; 15:18. [PMID: 36668838 PMCID: PMC9865788 DOI: 10.3390/toxins15010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotoxins generally inhibit or promote the release of neurotransmitters or bind to receptors that are located in the pre- or post-synaptic membranes, thereby affecting physiological functions of synapses and affecting biological processes. With more and more research on the toxins of various origins, many neurotoxins are now widely used in clinical treatment and have demonstrated good therapeutic outcomes. This review summarizes the structural properties and potential pharmacological effects of neurotoxins acting on different components of the synapse, as well as their important clinical applications, thus could be a useful reference for researchers and clinicians in the study of neurotoxins.
Collapse
Affiliation(s)
- Kunming Zhou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Yong Ni
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
14
|
Costa MN, Silva RN. Cytotoxic activity of l-lysine alpha-oxidase against leukemia cells. Semin Cancer Biol 2022; 86:590-599. [PMID: 34606983 DOI: 10.1016/j.semcancer.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/27/2023]
Abstract
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Collapse
Affiliation(s)
- Mariana N Costa
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
15
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021; 10:pathogens10121632. [PMID: 34959587 PMCID: PMC8707848 DOI: 10.3390/pathogens10121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Protozoal infection is a lingering public health issue of great concern, despite efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure these infections. This study collated the existing literature to examine the antiprotozoal effect of snake venoms and their fractions. Methods: We conducted a systematic review following the PRISMA guidelines. The PubMed and Embase databases were searched from their inception until 13 October 2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were obtained through the manual search process. Results: We identified 331 studies via the electronic database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms and their components were included in the review. Around 38% of studies examined the effect of whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies of metalloproteinase, serine protease and three-finger toxins, although these venom components have been identified as significant components of the dominant venom families. Conclusion: This study highlights the impact of snake venoms and their fractions on controlling protozoal infections and suggests the need to examine further the effectiveness of other venom components, such as metalloproteinase, serine protease and three-finger toxins. Future research questions in this field must be redirected toward synergism in snake venom components, based on pharmacological usage and in the context of toxicology. Ascertaining the effects of snake venoms and their components on other protozoal species that have not yet been studied is imperative.
Collapse
|
18
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Nikpour S, Tabatabaie F, Sharifi I, Mostafavi M, Oliaee RT, Sharifi F, Babaei Z, Jafari E, Salarkia E, Shahbazzadeh D. The Fraction of the Snake Venom, Its Leishmanicidal Effect, and the Stimulation of an Anti- Leishmania Response in Infected Macrophages. Endocr Metab Immune Disord Drug Targets 2021; 21:1115-1124. [PMID: 33176669 DOI: 10.2174/1871530320999201110211222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Due to the lack of an effective vaccine and complexity of the control measures against vectors and reservoir hosts, the control of leishmaniasis depends primarily on chemotherapy. This study was aimed to assess the snake venom, Naja naja oxiana fraction 11(NNOVF11) on Leishmania infantum and its broad mode of action. METHODS A wide range of in vitro advanced assays including high-performance liquid chromatography (HPLC), MTT (3-[4, 5-Dimethylthiazol-2-yl]-2, 5diphenyltetrazolium bromide; Thiazolyl blue), macrophage assays, quantitative real-time polymerase chain reaction (qPCR), flow cytometry and enzyme- linked immunosorbent assay (ELISA) on L. infantum promastigote and amastigote stages were used. IC50 values of L. infantum stages, CC50 value, and apoptosis were also analyzed. RESULTS The NNOV-F11 demonstrated strong antileishmanial activity against L. infantum stages in a dose-dependent manner compared to the untreated control group. Interleukin (IL)-12, TNF-α, and iNOS genes expression as the indicators of T helper(h)1 response significantly increased; in contrast, the expression level of IL-10, as the representative of Th2 response significantly decreased (p < 0.001). Reactive oxygen species (ROS) detection showed a significant increase (p < 0.001) after treatment with different concentrations of NNOV-F11, unlike arginase (ARG) activity, which displayed a significant reduction (p < 0.001). CONCLUSION NNOV-F11 possessed a potent inhibitory effect on L. infantum stages with the multifunctional and broad mode of actions, which promoted the immunomodulatory role, induced ROS production, stimulated apoptotic-like mechanisms, and inhibited L-ARG activity, which collectively led to the parasite death. Further studies are crucial to assess the effect of the NNOV-F11 on animal models or clinical settings.
Collapse
Affiliation(s)
- Saeideh Nikpour
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh T Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Delavar Shahbazzadeh
- Laboratory of Venom and Biotherapeutics Molecules, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Lafnoune A, Lee SY, Heo JY, Gourja I, Darkaoui B, Abdelkafi-Koubaa Z, Chgoury F, Daoudi K, Chakir S, Cadi R, Mounaji K, Srairi-Abid N, Marrakchi N, Shum D, Seo HR, Oukkache N. Anti-Cancer Effect of Moroccan Cobra Naja haje Venom and Its Fractions against Hepatocellular Carcinoma in 3D Cell Culture. Toxins (Basel) 2021; 13:toxins13060402. [PMID: 34199838 PMCID: PMC8229680 DOI: 10.3390/toxins13060402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in adults, the fifth most common malignancy worldwide and the third leading cause of cancer related death. An alternative to the surgical treatments and drugs, such as sorafenib, commonly used in medicine is necessary to overcome this public health problem. In this study, we determine the anticancer effect on HCC of Moroccan cobra Naja haje venom and its fraction obtained by gel filtration chromatography against Huh7.5 cancer cell line. Cells were grown together with WI38 human fibroblast cells, LX2 human hepatic stellate cell line, and human endothelial cells (HUVEC) in MCTS (multi-cellular tumor spheroids) models. The hepatotoxicity of venom and its fractions were also evaluated using the normal hepatocytes cell line (Fa2N-4 cells). Our results showed that an anti HCC activity of Moroccan cobra Naja haje venom and, more specifically, the F7 fraction of gel filtration chromatography exhibited the greatest anti-hepatocellular carcinoma effect by decreasing the size of MCTS. This effect is associated with a low toxicity against normal hepatocytes. These results strongly suggest that the F7 fraction of Moroccan cobra Naja haje venom obtained by gel filtration chromatography possesses the ability to inhibit cancer cells proliferation. More research is needed to identify the specific molecule(s) responsible for the anticancer effect and investigate their mechanism of action.
Collapse
Affiliation(s)
- Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Su-Yeon Lee
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Jin-Yeong Heo
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Imane Gourja
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Bouchra Darkaoui
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Zaineb Abdelkafi-Koubaa
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Fatima Chgoury
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Khadija Daoudi
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Salma Chakir
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
| | - Rachida Cadi
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Khadija Mounaji
- Laboratoire Physiopathologie, Génétique Moléculaire & Biotechnologie, Faculté des Sciences Ain-Chock, Hassan II University of Casablanca, B.P 5366 Maarif, Casablanca 20000, Morocco; (R.C.); (K.M.)
| | - Najet Srairi-Abid
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia; (Z.A.-K.); (N.S.-A.); (N.M.)
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (J.-Y.H.); (D.S.)
| | - Haeng-Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil Bundang-gu, Seong-nam-si 13488, Gyeonggi-do, Korea; (S.-Y.L.); (H.-R.S.)
| | - Naoual Oukkache
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur du Maroc, 1, Place Louis Pasteur, Casablanca 20360, Morocco; (A.L.); (I.G.); (B.D.); (F.C.); (K.D.); (S.C.)
- Correspondence:
| |
Collapse
|
21
|
Katz S, Barbiéri CL, Soler FPM, Soares AM, Chavantes MC, Zamuner SR. Effect of Isolated Proteins from Crotalus Durissus Terrificus Venom on Leishmania (Leishmania) Amazonensis-Infected Macrophages. Protein Pept Lett 2021; 27:718-724. [PMID: 31994997 DOI: 10.2174/0929866527666200129152954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-β from the treated macrophages were studied. RESULTS AND DISCUSSION Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 μg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 μg/mL). In addition, TGF-β was significantly reduced after the treatment with all toxins evaluated. CONCLUSION The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simone Katz
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Clara Lúcia Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda Paula Martins Soler
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | | | - Maria Cristina Chavantes
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| | - Stella Regina Zamuner
- Department of Medicine, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235, 01504-000, Sao Paulo, SP, Brazil
| |
Collapse
|
22
|
Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins (Basel) 2020; 12:toxins12090606. [PMID: 32962193 PMCID: PMC7551604 DOI: 10.3390/toxins12090606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: Bacterial resistance is a worldwide public health problem, requiring new therapeutic options. An alternative approach to this problem is the use of animal toxins isolated from snake venom, such as phospholipases A2 (PLA2), which have important antimicrobial activities. Bothropserythromelas is one of the snake species in the northeast of Brazil that attracts great medical-scientific interest. Here, we aimed to purify and characterize a PLA2 from B. erythromelas, searching for heterologous activities against bacterial biofilms. Methods: Venom extraction and quantification were followed by reverse-phase high-performance liquid chromatography (RP-HPLC) in C18 column, matrix-assisted ionization time-of-flight (MALDI-ToF) mass spectrometry, and sequencing by Edman degradation. All experiments were monitored by specific activity using a 4-nitro-3-(octanoyloxy) benzoic acid (4N3OBA) substrate. In addition, hemolytic tests and antibacterial tests including action against Escherichiacoli, Staphylococcusaureus, and Acinetobacterbaumannii were carried out. Moreover, tests of antibiofilm action against A. baumannii were also performed. Results: PLA2, after one purification step, presented 31 N-terminal amino acid residues and a molecular weight of 13.6564 Da, with enzymatic activity confirmed in 0.06 µM concentration. Antibacterial activity against S. aureus (IC50 = 30.2 µM) and antibiofilm activity against A. baumannii (IC50 = 1.1 µM) were observed. Conclusions: This is the first time that PLA2 purified from B. erythromelas venom has appeared as an alternative candidate in studies of new antibacterial medicines.
Collapse
|
23
|
Pulido-Méndez MM, Azuaje E, Rodríguez-Acosta A. Immunotoxicological effects triggered by the rattlesnake Crotalus durissus cumanensis, mapanare ( Bothrops colombiensis) venoms and its purified fractions on spleen and lymph nodes cells. Immunopharmacol Immunotoxicol 2020; 42:484-492. [PMID: 32806962 DOI: 10.1080/08923973.2020.1810272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: The snakes in Venezuela vary in their different venom composition amid the species. In this sense, studies have been carried out elucidating mechanisms related to their immunostimulatory and/or immunosuppressive effects in vitro, measuring inhibition or stimulation on the mice spleen and lymph nodes lymphocytes under the rattlesnake (Crotalus durissus cumanensis) (Cdc) and mapanare (Bothrops colombiensis) crude venoms actions, and also its purified fraction crotoxin (CTX) (Cdc) and a semi-purified fraction (SPF) (Bc) activities. Material and methods: The stimulation of lymphocyte proliferation was carried out in the presence or absence of Concanavalin A (ConA) and lipopolysaccharides (LPS). Results: The lymphocyte response was measured by the Alamar Blue® (Resazurin) assay, observing that the Crotalus crude venom increased basal proliferation in the spleen and lymph nodes, being also increased with ConA and LPS. CTX slightly decreased the proliferative response in the presence of mitogens. Both Bc venom and its SPF fraction had no significant effect on basal proliferation in the spleen and lymph nodes, but a decrease in the response with ConA was observed. These results suggest that CTX has an inhibitory action on lymphocyte proliferation, while Cdc crude venom has a stimulatory action on T and B cell populations. Bothrops colombiensis venom had no effect on these two types of cell populations. As it is known, lymphocytes are cells of enormous flexibility and can operate in diverse aspects, warranting that the correct immune response persists controlled. Conclusions: These results suggested that these different toxins can modulate lymphocyte functional activation toward an inhibitory or stimulatory state.
Collapse
Affiliation(s)
- María M Pulido-Méndez
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Elvia Azuaje
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Alexis Rodríguez-Acosta
- Immunochemistry and Ultrastructural Laboratory, Anatomical Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| |
Collapse
|
24
|
Kuna E, Bocian A, Hus KK, Petrilla V, Petrillova M, Legath J, Lewinska A, Wnuk M. Evaluation of Antifungal Activity of Naja pallida and Naja mossambica Venoms against Three Candida Species. Toxins (Basel) 2020; 12:toxins12080500. [PMID: 32759763 PMCID: PMC7472363 DOI: 10.3390/toxins12080500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.
Collapse
Affiliation(s)
- Ewelina Kuna
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Vladimir Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
- Zoological Department, Zoological Garden Kosice, 040 06 Kosice, Slovak Republic
| | - Monika Petrillova
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
| | - Jaroslav Legath
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| |
Collapse
|
25
|
Yacoub T, Rima M, Karam M, Sabatier JM, Fajloun Z. Antimicrobials from Venomous Animals: An Overview. Molecules 2020; 25:molecules25102402. [PMID: 32455792 PMCID: PMC7287856 DOI: 10.3390/molecules25102402] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
The inappropriate or excessive use of antimicrobial agents caused an emerging public health problem due to the resulting resistance developed by microbes. Therefore, there is an urgent need to develop effective antimicrobial strategies relying on natural agents with different mechanisms of action. Nature has been known to offer many bioactive compounds, in the form of animal venoms, algae, and plant extracts that were used for decades in traditional medicine. Animal venoms and secretions have been deeply studied for their wealth in pharmaceutically promising molecules. As such, they were reported to exhibit many biological activities of interest, such as antibacterial, antiviral, anticancer, and anti-inflammatory activities. In this review, we summarize recent findings on the antimicrobial activities of crude animal venoms/secretions, and describe the peptides that are responsible of these activities.
Collapse
Affiliation(s)
- Tania Yacoub
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS U7104, Université de Strasbourg, 67400 Illkirch, France;
| | - Marc Karam
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut de NeuroPhysiopathologie, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille CEDEX 15, France
- Correspondence: (J.-M.S.); (Z.F.)
| | - Ziad Fajloun
- Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, El Mittein Street, 1300 Tripoli, Lebanon
- Correspondence: (J.-M.S.); (Z.F.)
| |
Collapse
|
26
|
Ullah A. Structure-Function Studies and Mechanism of Action of Snake Venom L-Amino Acid Oxidases. Front Pharmacol 2020; 11:110. [PMID: 32158389 PMCID: PMC7052187 DOI: 10.3389/fphar.2020.00110] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Snake venom L-amino acid oxidases (SV-LAAOs) are the least studied venom enzymes. These enzymes catalyze the stereospecific oxidation of an L-amino acid to their corresponding α-keto acid with the liberation of hydrogen peroxide (H2O2) and ammonia (NH3). They display various pathological and physiological activities including induction of apoptosis, edema, platelet aggregation/inhibition, hemorrhagic, and anticoagulant activities. They also show antibacterial, antiviral and leishmanicidal activity and have been used as therapeutic agents in some disease conditions like cancer and anti-HIV drugs. Although the crystal structures of six SV-LAAOs are present in the Protein Data Bank (PDB), there is no single article that describes all of them in particular. To better understand their structural properties and correlate it with their function, the current work describes structure characterization, structure-based mechanism of catalysis, inhibition and substrate specificity of SV-LAAOs. Sequence analysis indicates a high sequence identity (>84%) among SV-LAAOs, comparatively lower sequence identity with Pig kidney D-amino acid oxidase (<50%) and very low sequence identity (<24%) with bacterial LAAOs, Fugal (L-lysine oxidase), and Zea mays Polyamine oxidase (PAAO). The three-dimensional structure of these enzymes are composed of three-domains, a FAD-binding domain, a substrate-binding domain and a helical domain. The sequence and structural analysis indicate that the amino acid residues in the loops vary in length and composition due to which the surface charge distribution also varies that may impart variable substrate specificity to these enzymes. The active site cavity volume and its average depth also vary in these enzymes. The inhibition of these enzymes by synthetic inhibitors will lead to the production of more potent antivenoms against snakebite envenomation.
Collapse
Affiliation(s)
- Anwar Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
27
|
Antimicrobial Activity of Protein Fraction from Naja ashei Venom Against Staphylococcus epidermidis. Molecules 2020; 25:molecules25020293. [PMID: 31936872 PMCID: PMC7024148 DOI: 10.3390/molecules25020293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023] Open
Abstract
One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.
Collapse
|
28
|
Soares TG, Santos JLD, Alvarenga VGD, Santos JSC, Leclercq SY, Faria CD, Oliveira MAA, Bemquerer MP, Sanchez EOF, de Lima ME, Figueiredo SG, Borges MH. Biochemical and functional properties of a new l-amino acid oxidase (LAAO) from Micrurus lemniscatus snake venom. Int J Biol Macromol 2019; 154:1517-1527. [PMID: 31759013 DOI: 10.1016/j.ijbiomac.2019.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022]
Abstract
This study reports the purification of ML-LAAO, a new LAAO from the venom of Micrurus lemniscatus snake (ML-V), using size exclusion chromatography. ML-LAAO is a 69-kDa glycoprotein that represents ~2.0% of total venom proteins. This enzyme exhibited optimal activity at pH 8.5, displaying high specificity toward hydrophobic l-amino acids. MALDI TOF/TOF and Blast analysis identified internal segments in ML-LAAO that share high sequence identity with homologous snake venom LAAOs. Western blot analysis on two-dimensional SDS-PAGE of ML-V, using anti-LAAO revealed the presence of ML-LAAO isoforms (pI 6.3-8.9). ML-LAAO blocked aggregation induced by collagen on washed platelets in a rather weak manner, it did not, however, inhibit platelet aggregation induced by ADP on platelet-rich plasma. In addition, this enzyme displayed in vitro antibacterial activity against Staphylococcus aureus (MIC/MBC of 0.39 μg/mL) and in vitro leishmanicidal action against Leishmania amazonensis and L. chagasi (IC50 values of 0.14 and 0.039 μg/mL, respectively). These activities were significantly reduced by catalase, suggesting that hydrogen peroxide production is involved in some way. The data presented here revealed that ML-LAAO has bactericidal and leishmanicidal effects, suggesting that it may have therapeutic potential.
Collapse
Affiliation(s)
- Thiago Geraldo Soares
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Jaqueline Leal Dos Santos
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil
| | | | - Janete Soares Coelho Santos
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil
| | - Sophie Yvette Leclercq
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil
| | - Carmem Dolores Faria
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Porto Bemquerer
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Av. W5 Norte (final), Asa Norte, 70770-917 Brasília, Distrito Federal, Brazil
| | | | - Maria Elena de Lima
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Rua Domingos Vieira, 590. Santa Efigência, 30150-240 Belo Horizonte, Minas Gerais, Brazil
| | - Suely Gomes Figueiredo
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900 Vitória, Espiríto Santo, Brazil
| | - Márcia Helena Borges
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
29
|
Khedrinia M, Aryapour H, Mianabadi M. Prediction of novel inhibitors for Crotalus adamanteus l-amino acid oxidase by repurposing FDA-approved drugs: a virtual screening and molecular dynamics simulation investigation. Drug Chem Toxicol 2019; 44:470-479. [PMID: 31668098 DOI: 10.1080/01480545.2019.1614022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the deadliest enzymes in the snake venom is l-amino acid oxidase (LAAO) which plays an important role in the pathophysiological effects during snake envenomation. Some effects of this enzyme on the human body are apoptosis, platelet aggregation, edema, hemorrhage, and cytotoxicity. Hence, inhibiting the enzyme activity to reduce its degradation effects is of great medical and pharmacological importance. On the other hand, drug repurposing is a process to find the new existing drug for a new medical indication. Since Crotalus adamanteus LAAO has no crystal structure in the protein data bank, first, its 3D structure was constructed by homology modeling using 1REO as the template and then modeled structure was evaluated by several algorithms. We screened the FDA-approved drugs by structure-based virtual screening, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) to identify new inhibitors for the snake venom LAAO. Interestingly, docking results revealed that half of the hits belong to the propionic acid derivatives drugs. In addition, MD simulation was performed to assess the interaction profile of the docked protein-hits complexes. Meanwhile, Arg88, Gln112, Lys345, Trp356 form consistent hydrogen bond interactions with Dexketoprofen, Flurbiprofen, Ketoprofen, Morphine, and Citric acid during simulation. According to the results, each of the four compounds can be an appropriate inhibitor of LAAO and since our study was based on drug repurposing could be evaluated in phase II clinical trials.
Collapse
Affiliation(s)
- Mostafa Khedrinia
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Manijeh Mianabadi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| |
Collapse
|
30
|
Alfonso JJ, Kayano AM, Garay AFG, Simões-Silva R, Sobrinho JC, Vourliotis S, Soares AM, Calderon LA, Gómez MCV. Isolation, Biochemical Characterization and Antiparasitic Activity of BmatTX-IV, A Basic Lys49-Phospholipase A2 from the Venom of Bothrops mattogrossensis from Paraguay. Curr Top Med Chem 2019; 19:2041-2048. [DOI: 10.2174/1568026619666190723154756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Background:Functional and structural diversity of proteins of snake venoms is coupled with a wide repertoire of pharmacological effects. Snake venoms are targets of studies linked to searching molecules with biotechnological potential.Methods:A homologue phospholipase A2 (BmatTX-IV) was obtained using two chromatographic techniques. Mass spectrometry and two-dimensional gel electrophoresis were used to determine the molecular mass and isoelectric point, respectively. By means of Edman degradation chemistry, it was possible to obtain the partial sequence of amino acids that comprise the isolated toxin. Trypanocidal, leishmanicidal and cytoxic activity against Trypanosoma cruzi, Leishmania infantum and murine fibrobasts was determinated.Results:Combination of both chromatographic steps used in this study demonstrated efficacy to obtain the PLA2-Lys49. BmatTX-IV showed molecular mass and isoelectric point of 13.55 kDa and 9.3, respectively. Amino acid sequence of N-terminal region (51 residues) shows the presence of Lys49 residue at position 49, a distinctive trait of enzymatically inactive PLA2. Bothrops mattogrossensis snake venom showed IC50 values of 11.9 μg/mL against Leishmania infantum promastigotes and of 13.8 μg/mL against Trypanosoma cruzi epimastigotes, respectively. On the other hand, the venom showed a high cytotoxic activity (IC50 value of 16.7 μg/mL) against murine fibroblasts, whereas the BmatTX-IV showed IC50 value of 81.2 μg/mL.Conclusion:Physicochemical and biological characterization of snake venoms components is critically important, since these complex mixtures provide a source of molecules with antiparasitic potential, making further studies necessary to identify and characterize components with higher efficacy and selectivity.
Collapse
Affiliation(s)
- Jorge Javier Alfonso
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Anderson M. Kayano
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Ana Fidelina Gómez Garay
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Rodrigo Simões-Silva
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | | | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, FIOCRUZ, Fiocruz Rondônia, Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil
| | | |
Collapse
|
31
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
32
|
Abstract
Abstract
An increasing problem in the field of health protection is the emergence of drug-resistant and multi-drug-resistant bacterial strains. They cause a number of infections, including hospital infections, which currently available antibiotics are unable to fight. Therefore, many studies are devoted to the search for new therapeutic agents with bactericidal and bacteriostatic properties. One of the latest concepts is to search for this type of substances among toxins produced by venomous animals. In this approach, however, special attention is paid to snake venom because it contains molecules with antibacterial properties. Thorough investigations have shown that the phospholipases A2 (PLA2) and l-amino acids oxidases (LAAO), as well as fragments of these enzymes, are mainly responsible for the bactericidal properties of snake venoms. Some preliminary research studies also suggest that fragments of three-finger toxins (3FTx) are bactericidal. It has also been proven that some snakes produce antibacterial peptides (AMP) homologous to human defensins and cathelicidins. The presence of these proteins and peptides means that snake venoms continue to be an interesting material for researchers and can be perceived as a promising source of antibacterial agents.
Collapse
|
33
|
Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019; 163:33-49. [DOI: 10.1016/j.biochi.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023]
|
34
|
de Andrade CM, Rey FM, Bianchini FJ, Sampaio SV, Torqueti MR. Crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, as a potential tool against thrombosis development. Int J Biol Macromol 2019; 134:653-659. [DOI: 10.1016/j.ijbiomac.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 11/28/2022]
|
35
|
Antiparasitic effect of (-)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn Microbiol Infect Dis 2019; 95:114860. [PMID: 31353066 DOI: 10.1016/j.diagmicrobio.2019.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Chagas disease is caused by Trypanosoma cruzi and affects about 7 million people worldwide. Benznidazole and nifurtimox have low efficacy and high toxicity. The present study was designed to identify the trypanocidal effect of (-)-α-Bisabolol (BIS) and investigate its mechanism. Epimastigotes and trypomastigotes were cultured with BIS and the viable cells were counted. BIS antiamastigote effect was evaluated using infected LLC-MK2 cells. MTT assay was performed to evaluate BIS cytotoxicity. Growth recovery was assessed to evaluate BIS effect after short times of exposure. BIS mechanism was investigated through flow cytometry, with 7-AAD and Annexin V-PE. DCFH-DA, rhodamine 123 (Rho123) and acridine orange (AO). Finally, enzymatic and computational assays were performed to identify BIS interaction with T. cruzi GAPDH (tcGAPDH). BIS showed an inhibitory effect on epimastigotes after all tested periods, as well on trypomastigotes. It caused cytotoxicity on LLC-MK2 cells at higher concentrations, with selectivity index (SeI) = 26.5. After treatment, infected cells showed a decrease in infected cells, the number of amastigotes per infected cell and the survival index (SuI). Growth recovery demonstrated that BIS effect causes rapid death of T. cruzi. Flow cytometry showed that BIS biological effect is associated with apoptosis induction, increase in cytoplasmic ROS and mitochondrial transmembrane potential, while reservosome swelling was observed at a late stage. Also, BIS action mechanism may be associated to tcGAPDH inhibition. Altogether, the results demonstrate that BIS causes cell death in Trypanosoma cruzi Y strain forms, with the involvement of apoptosis and oxidative stress and enzymatic inhibition.
Collapse
|
36
|
Dietz JDC, Almeida DAD, Cintra LC, Oliveira BFRD, Magalhães MR, Jesuíno RSA. EVALUATION OF THE ANTIBACTERIAL ACTIVITY OF Crotalus durissus terrificus CRUDE VENOM. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-51322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract Snake venoms are recognized as a promising source of pharmacologically active substances and are potentially useful for the development of new antimicrobial drugs. This study aimed to investigate the antimicrobial activity of the venom from the rattlesnake Crotalus durissus terrificus against several bacteria. Antibacterial activity was determined by using the plate microdilution method and the activity on the bacterial envelope structure was screened by using the crystal violet assay. The proteins in crude venom were separated by electrophoresis and characterized regarding their proteolytic activity. C. d. terrificus venom exhibited antimicrobial action against gram-positive and gram-negative bacteria. MIC values were defined for Pseudomonas aeruginosa ATCC 27853 (62.5 µg/mL), Staphylococcus aureus ATCC 25923 (125 µg/mL), and Micrococcus luteus ATCC 9341 (≤500 µg/mL). For Salmonella enterica serovar typhimurium ATCC 14028 and Corynebacterium glutamicum ATCC 13032, the decrease in bacterial growth was not detected visually, but was statistically significant. The crystal violet assay demonstrated that the crude venom increased bacterial cell permeability and the secreted protein profile agreed with previous reports. The results suggest that the proteins with lytic activity against bacteria in C. d. terrificus venom deserve further characterization as they may offer reinforcements to the weak therapeutic arsenal used to fight microbial multidrug resistance.
Collapse
|
37
|
Lewinska A, Bocian A, Petrilla V, Adamczyk-Grochala J, Szymura K, Hendzel W, Kaleniuk E, Hus KK, Petrillova M, Wnuk M. Snake venoms promote stress-induced senescence in human fibroblasts. J Cell Physiol 2018; 234:6147-6160. [PMID: 30317566 DOI: 10.1002/jcp.27382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
Snake venoms are widely studied in terms of their systemic toxicity and proteolytic, hemotoxic, neurotoxic, and cytotoxic activities. However, little is known about snake-venom-mediated effects when used at low, noncytotoxic concentrations. In the current study, two human fibroblast cell lines of different origin, namely WI-38 fetal lung fibroblasts and BJ foreskin fibroblasts were used to investigate snake-venom-induced adaptive response at a relatively noncytotoxic concentration (0.01 µg/ml). The venoms of Indochinese spitting cobra ( Naja siamensis), western green mamba ( Dendroaspis viridis), forest cobra ( Naja melanoleuca), and southern copperhead ( Agkistrodon contortrix) were considered. Snake venoms promoted FOXO3a-mediated oxidative stress response and to a lesser extent DNA damage response, which lead to changes in cell cycle regulators both at messenger RNA and protein levels, limited cell proliferation and migration, and induced cellular senescence. Taken together, we have shown for the first time that selected snake venoms may also exert adverse effects when used at relatively noncytotoxic concentrations.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Vladimir Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic.,Zoological Department, Zoological Garden Kosice, Kosice, Slovak Republic
| | - Jagoda Adamczyk-Grochala
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Karolina Szymura
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Wiktoria Hendzel
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Edyta Kaleniuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Konrad K Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Monika Petrillova
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, Kosice, Slovak Republic
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
38
|
Allane D, Oussedik-Oumehdi H, Harrat Z, Seve M, Laraba-Djebari F. Isolation and characterization of an anti-leishmanial disintegrin fromCerastes cerastesvenom. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Dihia Allane
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers 16111 Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers 16111 Algeria
| | - Zoubir Harrat
- Institut Pasteur d'Algérie; Service d'Eco-Epidémiologie Parasitaire; Dely Ibrahim Algiers 16 047 Algeria
| | - Michel Seve
- CHU Grenoble Alpes, Institut de Biologie et de Pathologie; Promethee Proteomic Platform; Grenoble France
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers 16111 Algeria
| |
Collapse
|
39
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
40
|
Grabner AN, Alfonso J, Kayano AM, Moreira-Dill LS, dos Santos APDA, Caldeira CA, Sobrinho JC, Gómez A, Grabner FP, Cardoso FF, Zuliani JP, Fontes MR, Pimenta DC, Gómez CV, Teles CB, Soares AM, Calderon LA. BmajPLA 2 -II, a basic Lys49-phospholipase A 2 homologue from Bothrops marajoensis snake venom with parasiticidal potential. Int J Biol Macromol 2017; 102:571-581. [DOI: 10.1016/j.ijbiomac.2017.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023]
|
41
|
Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection. Parasitology 2017. [DOI: 10.1017/s0031182017000944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYAmerican tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage – Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL−1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.
Collapse
|
42
|
Borges IP, Castanheira LE, Barbosa BF, de Souza DLN, da Silva RJ, Mineo JR, Tudini KAY, Rodrigues RS, Ferro EAV, de Melo Rodrigues V. Anti-parasitic effect on Toxoplasma gondii induced by BnSP-7, a Lys49-phospholipase A2 homologue from Bothrops pauloensis venom. Toxicon 2016; 119:84-91. [DOI: 10.1016/j.toxicon.2016.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
|
43
|
Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 2016; 120:128-32. [DOI: 10.1016/j.toxicon.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022]
|
44
|
Teixeira TL, Oliveira Silva VA, da Cunha DB, Polettini FL, Thomaz CD, Pianca AA, Zambom FL, da Silva Leitão Mazzi DP, Reis RM, Mazzi MV. Isolation, characterization and screening of the in vitro cytotoxic activity of a novel L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom on human cancer cell lines. Toxicon 2016; 119:203-17. [PMID: 27317870 DOI: 10.1016/j.toxicon.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/09/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
Abstract
An L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom was purified to homogeneity in a two-step procedure using molecular exclusion on Sephadex G-75, followed by Phenyl Sepharose FF chromatography. The molecular mass of the purified enzyme was 113 kDa, as determined by SDS-PAGE under reducing conditions. LAAOcdt showed amino acid homology to other L-amino acid oxidases isolated from different snake venoms. The comparative analysis of the internal peptide sequences of the NNPGILEYPVKPSEEGK fragments by LC-MS/MS spectrometry revealed 100% identity with C. durissus cumanensis LAAO. The purified protein catalyzed the oxidative deamination of L-amino acids, and the most specific substrates were L-Tyr and L-Phe. The enzyme presented optimum activity at pH 7.4 and at 44 °C. LAAOcdt also showed hemolytic activity (0.6-20 μg/μL) and induced both the formation plasma clots (5-100 μg/μL) and platelet aggregation (2.5 × 10(-3), 5.0 × 10(-3) and 10 × 10(-3) μg/mL), as well as bactericidal activity (2.5-10 μg/μL) against Staphylococcus aureus. Moreover, LAAOcdt exhibited cytotoxicity in distinct cancer cell lines, which presented a heterogeneous response profile. The mean IC50 value was 10.5 μg/mL. Glioma and pancreatic carcinoma cells were the most sensitive cell lines; they showed mean IC50 values of 7.2 μg/mL and 7.4 μg/mL, respectively. The exposure of the drug-sensitive cells to LAAOcdt for 24 h upregulated activated p-H2AX and efficiently decreased P42/P44 (ERK) activation in glioma cells (HCB151), which suggested an anti-proliferative effect. In addition, increased p21 expression was observed in SiHa cells, which showed a resistant phenotype. On the other hand, the flow cytometry and immunoblotting analyses showed that the enzyme did not induce cancer cell apoptosis. These results suggest that another cell death mechanism might contribute to the LAAOcdt-induced cytotoxicity. Taken together, this work may help to elucidate the function and structure of LAAOcdt by providing the basis for further investigations on its efficacy in cancer treatment.
Collapse
Affiliation(s)
- Tuila Leveghim Teixeira
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | | | - Daniel Batista da Cunha
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | - Flávia Lino Polettini
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | - Camila Daniele Thomaz
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | - Ariana Aparecida Pianca
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | - Fabiana Letícia Zambom
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil; Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| |
Collapse
|
45
|
de Menezes RRPPB, Mello CP, Lima DB, Tessarolo LD, Sampaio TL, Paes LCF, Alves NTQ, Assis Junior EM, Lima Junior RCP, Toyama MH, Martins AMC. Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro. PLoS One 2016; 11:e0151029. [PMID: 26974665 PMCID: PMC4790960 DOI: 10.1371/journal.pone.0151029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/23/2016] [Indexed: 11/30/2022] Open
Abstract
Viperidae venom has several local and systemic effects, such as pain, edema, inflammation, kidney failure and coagulopathy. Additionally, bothropic venom and its isolated components directly interfere on cellular metabolism, causing alterations such as cell death and proliferation. Inflammatory cells are particularly involved in pathological envenomation mechanisms due to their capacity of releasing many mediators, such as nitric oxide (NO). NO has many effects on cell viability and it is associated to the development of inflammation and tissue damage caused by Bothrops and Bothropoides venom. Bothropoides insularis is a snake found only in Queimada Grande Island, which has markedly toxic venom. Thus, the aim of this work was to evaluate the biological effects of Bothropoides insularis venom (BiV) on RAW 264.7 cells and assess NO involvement. The venom was submitted to colorimetric assays to identify the presence of some enzymatic components. We observed that BiV induced H2O2 production and showed proteolytic and phospholipasic activities. RAW 264.7 murine macrophages were incubated with different concentrations of BiV and then cell viability was assessed by MTT reduction assay after 2, 6, 12 and 24 hours of incubation. A time- and concentration-dependent effect was observed, with a tendency to cell proliferation at lower BiV concentrations and cell death at higher concentrations. The cytotoxic effect was confirmed after lactate dehydrogenase (LDH) measurement in the supernatant from the experimental groups. Flow cytometry analyses revealed that necrosis is the main cell death pathway caused by BiV. Also, BiV induced NO release. The inhibition of both proliferative and cytotoxic effects with L-NAME were demonstrated, indicating that NO is important for these effects. Finally, BiV induced an increase in iNOS expression. Altogether, these results demonstrate that B. insularis venom have proliferative and cytotoxic effects on macrophages, with necrosis participation. We also suggest that BiV acts by inducing iNOS expression and causing NO release.
Collapse
Affiliation(s)
- Ramon R. P. P. B. de Menezes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Clarissa P. Mello
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Dânya B. Lima
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Louise D. Tessarolo
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Tiago Lima Sampaio
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lívia C. F. Paes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natacha T. Q. Alves
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Roberto C. P. Lima Junior
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos H. Toyama
- São Vicente Unit, Paulista Coastal Campus, São Paulo State University (UNESP), São Paulo, Brazil
| | - Alice M. C. Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
46
|
Zhao L, Jiang J, Zhu Z, Liao Z, Yao X, Yang Y, Cao Y, Jiang Y. Lysine enhances the effect of amphotericin B against Candida albicans in vitro. Acta Biochim Biophys Sin (Shanghai) 2016; 48:182-93. [PMID: 26711896 DOI: 10.1093/abbs/gmv125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/18/2015] [Indexed: 01/11/2023] Open
Abstract
Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus and has been used for >50 years in the treatment of acute systemic fungal infections. In the present study, we demonstrated that lysine, an essential amino acid, could enhance the effect of AmB against Candida albicans in vitro, although lysine itself did not exert a fungicidal effect. In addition, the combination of AmB with lysine could provide an enhanced action against Candida parapsilosis and Cryptococcus neoformans compared with AmB alone. Lysine could also enhance the antifungal effect of caspofungin or nystatin. An enhanced effect of the combination of lysine with AmB was observed for the prevention of biofilm and hypha formation. Furthermore, our results demonstrated that lysine-mediated oxidative damage, such as the generation of endogenous reactive oxygen species, may be the mechanism underlying the enhancing effect of lysine on AmB. Our results also showed that CaMCA1 gene plays an important role in increasing the sensitivity of C. albicans cells upon AmB treatment. Using AmB together with lysine may be a promising strategy for the therapy of disseminated candidiasis.
Collapse
Affiliation(s)
- Liuya Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China Pharmacy Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchen Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zebin Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiangwen Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yingying Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
47
|
Prinholato da Silva C, Costa TR, Paiva RMA, Cintra ACO, Menaldo DL, Antunes LMG, Sampaio SV. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis 2015; 21:44. [PMID: 26539212 PMCID: PMC4632473 DOI: 10.1186/s40409-015-0044-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Background Phospholipases A2 (PLA2s) are abundant components of snake venoms that have been extensively studied due to their pharmacological and pathophysiological effects on living organisms. This study aimed to assess the antitumor potential of BthTX-I, a basic myotoxic PLA2 isolated from Bothrops jararacussu venom, by evaluating in vitro processes of cytotoxicity, modulation of the cell cycle and induction of apoptosis in human (HL-60 and HepG2) and murine (PC-12 and B16F10) tumor cell lines. Methods The cytotoxic effects of BthTX-I were evaluated on the tumor cell lines HL-60 (promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), PC-12 (murine pheochromocytoma) and B16F10 (murine melanoma) using the MTT method. Flow cytometry technique was used for the analysis of cell cycle alterations and death mechanisms (apoptosis and/or necrosis) induced in tumor cells after treatment with BthTX-I. Results It was observed that BthTX-I was cytotoxic to all evaluated tumor cell lines, reducing their viability in 40 to 50 %. The myotoxin showed modulating effects on the cell cycle of PC-12 and B16F10 cells, promoting delay in the G0/G1 phase. Additionally, flow cytometry analysis indicated cell death mainly by apoptosis. B16F10 was more susceptible to the effects of BthTX-I, with ~40 % of the cells analyzed in apoptosis, followed by HepG2 (~35 %), PC-12 (~25 %) and HL-60 (~4 %). Conclusions These results suggest that BthTX-I presents antitumor properties that may be useful for developing new therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Cássio Prinholato da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Tássia R Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Raquel M Alves Paiva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Adélia C O Cintra
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Danilo L Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Lusânia M Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
48
|
Kasai K, Ishikawa T, Nakamura T, Miura T. Antibacterial properties of L-amino acid oxidase: mechanisms of action and perspectives for therapeutic applications. Appl Microbiol Biotechnol 2015; 99:7847-57. [PMID: 26243056 DOI: 10.1007/s00253-015-6844-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 11/24/2022]
Abstract
Venom, the mucus layer covering the body surface, ink glands, mammary glands, milk, and various animal secretory functions as both a physical and chemical defense barrier against bacteria and virus infections. Previously, several studies reported that L-amino acid oxidases (LAAOs) present in animal secretary fluids have strong antimicrobial activities and selective cytotoxic activities against Gram-positive and Gram-negative bacteria, various pathogenic bacteria, viruses, and parasite species. These LAAOs catalyze oxidative deamination of an L-amino acid substrate with the generation of hydrogen peroxide. The antibacterial activity of LAAOs is completely inhibited by catalase; thus, LAAOs kill bacteria by the hydrogen peroxide generated from the oxidation of L-amino acid substrates. This review focuses on the selective, specific, and local antibacterial actions of various LAAOs that may be used as novel therapeutic agents against infectious diseases. LAAOs that are suitable leads for combating multidrug-resistant bacterial infections are also studied.
Collapse
Affiliation(s)
- Kosuke Kasai
- Department of Pathologic Analysis, Division of Medical Life Sciences, Graduate School of Health Sciences, Hirosaki University, Aomori, Japan
| | | | | | | |
Collapse
|
49
|
Ozen MO, İğci N, Yalçin HT, Goçmen B, Nalbantsoy A. Screening of cytotoxic and antimicrobial activity potential of AnatolianMacrovipera lebetina obtusa(Ophidia: Viperidae) crude venom. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1055862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
50
|
Novak Zobiole N, Caon T, Wildgrube Bertol J, Pereira CADS, Okubo BM, Moreno SE, Cardozo FTGDS. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom. PHARMACEUTICAL BIOLOGY 2015; 53:930-934. [PMID: 25430737 DOI: 10.3109/13880209.2014.950385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Bothrops moojeni Hoge (Viperidae) venom is a complex mixture of compounds with therapeutic potential that has been included in the research and development of new drugs. Along with the biological activity, the pharmaceutical applicability of this venom depends on its toxicological profile. OBJECTIVE This study evaluates the cytotoxicity and genotoxicity of the Bothrops moojeni venom (BMV). MATERIAL AND METHODS The in vitro cytotoxicity and genotoxicity of a pooled sample of BMV was assessed by the MTT and Comet assay, respectively. Genotoxicity was also evaluated in vivo through the micronucleus assay. RESULTS BMV displayed a 50% cytotoxic concentration (CC50) on Vero cells of 4.09 µg/mL. Vero cells treated with 4 µg/mL for 90 min and 6 h presented significant (p < 0.05, ANOVA/Newman-Keuls test) higher DNA damage than the negative control in the Comet assay. The lower DNA damage found after 6 h compared with the 90 min treatment suggests a DNA repair effect. Mice intraperitoneally treated with BMV at 10, 30, or 80 µg/animal presented significant genotoxicity (p < 0.05, ANOVA/Newman-Keuls test) in relation to the negative control after 24 h of treatment. Contrary to the in vitro results, no DNA repair seemed to occur in vivo up to 96 h post-venom inoculation at a dose of 30 µg/animal. DISCUSSION AND CONCLUSION The results show that BMV presents cyto- and genotoxicity depending on the concentration/dose used. These findings emphasize the importance of toxicological studies, including assessment of genotoxicity, in the biological activity research of BMV and/or in the development of BMV-derived products.
Collapse
|