1
|
Zhao XH, Tu ZC, Ma YH. Engineering ratchet-based particle separation via extended shortcuts to isothermality. Phys Rev E 2024; 110:034105. [PMID: 39425423 DOI: 10.1103/physreve.110.034105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/09/2024] [Indexed: 10/21/2024]
Abstract
Microscopic particle separation plays a vital role in various scientific and industrial domains. Conventional separation methods relying on external forces or physical barriers inherently exhibit limitations in terms of efficiency, selectivity, and adaptability across diverse particle types. To overcome these limitations, researchers are constantly exploring new separation approaches, among which ratchet-based separation is a noteworthy method. However, in contrast to the extensive numerical studies and experimental investigations on ratchet separation, its theoretical exploration appears weak, particularly lacking in the analysis of energy consumption involved in the separation processes. The latter is of significant importance for achieving energetically efficient separation. In this paper, we propose a nonequilibrium thermodynamic approach, extending the concept of shortcuts to isothermality, to realize controllable separation of overdamped Brownian particles with low energy cost. By utilizing a designed ratchet potential with temporal period τ, we find in the slow-driving regime that the average particle velocity v[over ¯]_{s}∝(1-D/D^{*})τ^{-1}, indicating that particles with different diffusion coefficients D can be guided to move in distinct directions with a preset D^{*}. It is revealed that an inevitable portion of the energy cost in separation depends on the driving dynamics of the ratchet, with an achievable lower bound W_{ex}^{(min)}∝L^{2}|v[over ¯]_{s}|. Here, L is the thermodynamic length of the driving loop in the parametric space. With a sawtooth potential, we numerically test the theoretical findings and illustrate the optimal separation protocol associated with W_{ex}^{(min)}. Finally, for practical considerations, we compare our approach with the conventional ratchets in terms of separation velocity and energy consumption. The scalability of the current framework for separating various particles in two-dimensional space is also demonstrated. This paper bridges the gap between thermodynamic process control and particle separation, paving the way for further thermodynamic optimization in ratchet-based particle separation.
Collapse
Affiliation(s)
| | | | - Yu-Han Ma
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Urbes A, Morel MH, Ramos L, Violleau F, Banc A. Delicate Analysis of Interacting Proteins and Their Assemblies by Flow Field-Flow Fractionation Techniques. Biomacromolecules 2024; 25:3976-3989. [PMID: 38829254 DOI: 10.1021/acs.biomac.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We study the efficiency of several asymmetrical flow field-flow fractionation (AF4) techniques to investigate self-associating wheat gluten proteins. We compare the use of a denaturing buffer including sodium dodecyl sulfate (SDS) and a mild chaotropic solvent, water/ethanol, as the eluent, on a model gluten sample. Through a thorough analysis of the data obtained from coupled light scattering detectors and with the identification of molecular composition of the eluted protein, we evidence coelution events in several conditions. We show that the focus step used in conventional AF4 with the SDS buffer leads to the formation of aggregates that coelute with monomeric proteins. By contrast, a frit-inlet device enables the fractionation of individual wheat proteins in the SDS buffer. Interestingly conventional AF4, using water/ethanol as eluent, is an effective method for fractionating gluten proteins and their complex dynamic assemblies, which involve weak forces and are composed of both monomeric and polymeric proteins.
Collapse
Affiliation(s)
- Aurélien Urbes
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Laboratoire de Chimie Agro-industrielle LCA, Université de Toulouse, INRAE, INP-PURPAN, 31030 Toulouse, France
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 31076 Toulouse, France
| | - Marie-Hélène Morel
- UMR IATE, Université de Montpellier, INRAE, Montpellier SupAgro, 2 pl. Pierre Viala, 34060 Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Frédéric Violleau
- Laboratoire de Chimie Agro-industrielle LCA, Université de Toulouse, INRAE, INP-PURPAN, 31030 Toulouse, France
- Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 31076 Toulouse, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
3
|
Montaño MD, Goodman AJ, Ranville JF. Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods. NANOIMPACT 2024; 35:100518. [PMID: 38906249 DOI: 10.1016/j.impact.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad 'dissolved or particulate' classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.
Collapse
Affiliation(s)
- M D Montaño
- Department of Environmental Sciences, Western Washington University, Bellingham, WA 98225, United States of America
| | - A J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - J F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
4
|
Wang M, Zhang W, Yang L, Li Y, Zheng H, Dou H. Flow field-flow fractionation coupled with multidetector: A robust approach for the separation and characterization of resistant starch. Food Chem X 2024; 22:101267. [PMID: 38468634 PMCID: PMC10926298 DOI: 10.1016/j.fochx.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
The unique properties of resistant starch (RS) have made it applicable in the formulation of a broad range of functional foods. The physicochemical properties of RS play a crucial role in its applications. Recently, flow field-flow fractionation (FlFFF) has attracted increasing interest in the separation and characterization of different categories of RS. In this review, an overview of the theory behind FlFFF is introduced, and the controllable factors, including FlFFF channel design, sample separation conditions, and the choice of detector, are discussed in detail. Furthermore, the applications of FlFFF for the separation and characterization of RS at both the granule and molecule levels are critically reviewed. The aim of this review is to equip readers with a fundamental understanding of the theoretical principle of FlFFF and to highlight the potential for expanding the application of RS through the valuable insights gained from FlFFF coupled with multidetector analysis.
Collapse
Affiliation(s)
- Mu Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Wenhui Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Liu Yang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Yueqiu Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Hailiang Zheng
- Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, College of Basic Medical Sciences, Hebei University, Baoding 071000, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Liu J, Shi L, Du Y, Luo X, Hu P, Wu L, Luo Y, Christie P. Water-dispersible colloids facilitate the release of potentially toxic elements from contaminated soil under simulated long-term acid rain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168682. [PMID: 37996035 DOI: 10.1016/j.scitotenv.2023.168682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The release behaviors of potentially toxic elements (PTEs) associated with water-dispersible colloids (WDCs) in contaminated soils are of considerable public concern. However, little information is available on the size distribution and elemental composition of WDCs and their effects on the release of PTEs in contaminated soils under long-term acid rain. Here, a quantitative accelerated aging leaching test was conducted to evaluate the long-term release risks of PTEs from four contaminated agricultural soil types exposed to acid rain. Asymmetric flow field-flow fractionation (AF4), scanning transmission electron microscopy-energy dispersive spectroscopy (STEM-EDS) and ultrafiltration were used to clarify the size distribution and elemental composition of WDCs containing PTEs. Solution dynamics of successive leaching indicate high release potential for As, Cd, and Pb depending on soil properties under long-term (∼65 years) acid rain. Both ultrafiltration and AF4 analysis show that As in leachate was mainly in the "truly dissolved" fraction, while Pb, Cu, Cd and Fe were predominantly in the colloidal fraction and their percentages increased with increasing extraction time by acid rain. AF4-UV-ICP-MS and STEM-EDS reveal that nanoparticles at 1-7 nm most likely composed of organic matter (OM)-Fe/Al(/Si) oxides composite were the main carriers of Pb, Cu, As and Cd. Lead was also verified in Fe-oxide colloids at 34-450 nm in the first extracts but disappeared in the tenth extracts. This indicates that WDC-bearing PTEs become smaller as leaching proceeds. The study indicates the quantitative description and size-resolved understanding of WDC- and nanoparticle-bound PTEs in leachates of contaminated soils subjected to long-term acid rain.
Collapse
Affiliation(s)
- Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingfeng Shi
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanpei Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
6
|
Li X, Cao Z, Du Y, Zhang Y, Wang J, Ma X, Hu P, Luo Y, Wu L. Multi-metal contaminant mobilizations by natural colloids and nanoparticles in paddy soils during reduction and reoxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132684. [PMID: 37804759 DOI: 10.1016/j.jhazmat.2023.132684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Naturally-occurring colloids and nanoparticles are crucial in transporting heavy metal contaminants in soil-water systems. However, information on particle-bound metals' size distribution and elemental composition in paddy soils under redox-fluctuation is scarce. Here, we investigated the mobilization of Cu, Cd, and Pb-containing nanoparticles and colloids in four contaminated soils with distinctive geochemical properties during reduction and subsequent re-oxidation. Using AF4-UV-ICP-MS and STEM-EDS, we observed that particle-bound metals were primarily associated with two sizes ranges: 0.3-40 kDa (F1) and 130 kDa-450 nm (F2), which mainly consisted of organic matter (OM), iron hydroxide and clay minerals. Cu and Pb were more likely bound to colloid than Cd. Colloidal Cu, Pb and Cd accounted for averages of 83.2%, 72.4% and 19.8% of their total concentration in solution (<0.45 µm) during soil reduction, and decreased during soil re-oxidation. This proportion was also positively correlated with aqueous pH and DOC but negatively correlated with Eh. Further quantitative analysis demonstrated that Cu/Cd positively correlated with OM at nanometric scale (F1). This study provides quantitative insights into the size, composition and abundance of polymetallic pollutant-carrying particles in paddy soils during redox fluctuation, and highlights the importance of nanometric interactions between OM and toxic cationic metals for their release.
Collapse
Affiliation(s)
- Xinyang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhenyu Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanpei Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiajia Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
7
|
Kimijima J, Inagawa A, Uehara N. Incorporation of a Morphologically Controlled Ice Grain Boundary into a Microfluidic Device for Size-Selective Separation of Micro/Nanospheres. Anal Chem 2023; 95:14963-14971. [PMID: 37766381 DOI: 10.1021/acs.analchem.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A frozen aqueous solution was integrated into a microfluidic device as a size-tunable separation field for the size-selective separation of micro/nanospheres. The width of the ice grain boundaries formed in frozen aqueous solutions could be altered by controlling the operating temperature. A freezing chamber was placed adjacent to the microfluidic channel. A sample-dispersing aqueous sucrose solution was injected into the chamber and frozen, allowing the freeze-concentrated solution (FCS) to run vertically to the microfluidic channel, where the eluting solution flows. The operating temperature can be used to control the physical interaction between the ice wall and micro/nanospheres, enabling size-selective migration. The eluted micro/nanospheres in the microchannel were passed through the eluting solution collected from the outlet. We achieved size-selective separation and collection of microspheres and nanospheres. We separated the exosomes and yeast cells to demonstrate their applicability in bioseparation. The present method is suitable not only for size-selective separation but also for evaluating the biological expression of extracellular vesicles under cryogenic conditions.
Collapse
Affiliation(s)
- Junya Kimijima
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Arinori Inagawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Nobuo Uehara
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi 321-8585, Japan
| |
Collapse
|
8
|
Karkee H, Gundlach-Graham A. Characterization and Quantification of Natural and Anthropogenic Titanium-Containing Particles Using Single-Particle ICP-TOFMS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14058-14070. [PMID: 37676008 DOI: 10.1021/acs.est.3c04473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Titanium-containing nanoparticles (NPs) and submicrometer particles (μPs) in the environment can come from natural or anthropogenic sources. In this study, we investigate the use of single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) to measure and classify individual Ti-containing particles as either engineered (Ti-eng) or naturally occurring (Ti-nat) based on elemental composition and multielement mass ratios. We analyze mixtures of four Ti-containing particle types: anthropogenic food-grade TiO2 particles and particles from rutile, ilmenite, and biotite mineral samples. Through characterization of neat particle suspensions, we develop a decision-tree-based classification scheme to distinguish Ti-eng from Ti-nat particles and to classify individual Ti-nat particles by mineral type. Engineered TiO2 and rutile particles have the same major-element composition. To distinguish Ti-eng particles from rutile, we developed particle-type detection limits based on the average crustal abundance ratio of titanium to niobium. For our measurements, the average Ti mass needed to classify Ti-eng particles is 9.3 fg, which corresponds to a diameter of 211 nm for TiO2. From neat suspensions, we demonstrate classification rates of 55%, 32%, 75%, and 72% for Ti-eng, rutile, ilmenite, and biotite particles, respectively. Our classification approach minimizes false-positive classifications, with rates below 5% for all particle types. Individual Ti-eng particles can be accurately classified at the submicron size range, while the Ti-nat particles are classified in the nanoregime (diameter < 100 nm). Efficacy of our classification approach is demonstrated through the analysis of controlled mixtures of Ti-eng and Ti-nat and the analysis of natural streamwater spiked with Ti-eng particles. In control mixtures, Ti-eng particles can be measured and classified at particle-number concentrations (PNCs) 60-times lower than that of Ti-nat particles and across a PNC range of at least 3 orders of magnitude. In the streamwater sample, Ti-eng particles are classified at environmentally relevant PNCs that are 44-times lower than the background Ti-nat PNC and 2850-times lower than the total PNC.
Collapse
Affiliation(s)
- Hark Karkee
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | |
Collapse
|
9
|
Sajid A, Castronovo M, Goycoolea FM. On the Fractionation and Physicochemical Characterisation of Self-Assembled Chitosan-DNA Polyelectrolyte Complexes. Polymers (Basel) 2023; 15:2115. [PMID: 37177260 PMCID: PMC10180698 DOI: 10.3390/polym15092115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chitosan is extensively studied as a carrier for gene delivery and is an attractive non-viral gene vector owing to its polycationic, biodegradable, and biocompatible nature. Thus, it is essential to understand the chemistry of self-assembled chitosan-DNA complexation and their structural and functional properties, enabling the formation of an effective non-viral gene delivery system. In this study, two parent chitosans (samples NAS-032 and NAS-075; Mw range ~118-164 kDa) and their depolymerised derivatives (deploy nas-032 and deploy nas-075; Mw range 6-14 kDa) with degrees of acetylation 43.4 and 4.7%, respectively, were used to form polyelectrolyte complexes (PECs) with DNA at varying [-NH3+]/[-PO4-] (N/P) molar charge ratios. We investigated the formation of the PECs using ζ-potential, asymmetric flow field-flow fractionation (AF4) coupled with multiangle light scattering (MALS), refractive index (RI), ultraviolet (UV) and dynamic light scattering (DLS) detectors, and TEM imaging. PEC formation was confirmed by ζ-potential measurements that shifted from negative to positive values at N/P ratio ~2. The radius of gyration (Rg) was determined for the eluting fractions by AF4-MALS-RI-UV, while the corresponding hydrodynamic radius (Rh), by the DLS data. We studied the influence of different cross-flow rates on AF4 elution patterns for PECs obtained at N/P ratios 5, 10, and 20. The determined rho shape factor (ρ = Rg/Rh) values for the various PECs corresponded with a sphere morphology (ρ ~0.77-0.85), which was consistent with TEM images. The results of this study represent a further step towards the characterisation of chitosan-DNA PECs by the use of multi-detection AF4 as an important tool to fractionate and infer aspects of their morphology.
Collapse
|
10
|
Zhang X, Liu Y, Gong S, Li M, Li S, Hemar Y. Probing the biotoxicity of starch nanoparticles in vivo and their mechanism to desensitize β-lactoglobulin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Loeschner K, Vidmar J, Hartmann NB, Bienfait AM, Velimirovic M. Finding the tiny plastic needle in the haystack: how field flow fractionation can help to analyze nanoplastics in food. Anal Bioanal Chem 2023; 415:7-16. [PMID: 36085421 DOI: 10.1007/s00216-022-04321-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/11/2023]
Abstract
While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.
Collapse
Affiliation(s)
- Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kemitorvet 201, 2800, Kgs. Lyngby, Denmark.
| | - Janja Vidmar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800, Kgs. Lyngby, Denmark
| | | | - Milica Velimirovic
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium.,Department of Chemistry, Atomic & Mass Spectrometry - A&MS research group, Ghent University, Campus Sterre, Krijgslaan 281-S12, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Wen S, Zhao Y, Wang M, Yuan H, Xu H. Micro(nano)plastics in food system: potential health impacts on human intestinal system. Crit Rev Food Sci Nutr 2022; 64:1429-1447. [PMID: 36066327 DOI: 10.1080/10408398.2022.2116559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Micro(nano)plastics (MNPs) in human food system have been broadly recognized by researchers and have drawn an increasing public attention to their potential health risks, particularly the risk to the intestinal system regarding the long-term exposure to MNPs through food consumption. This study aims to review the environmental properties (formation and composition) of MNPs and MNPs pollution in human food system following the order of food production, food processing and food consumption. The current analytic and identical technologies utilized by researchers are also summarized in this review. In fact, parts of commonly consumed food raw materials, processed food and the way to take in food all become the possible sources for human MNPs ingestion. In addition, the available literatures investigating MNPs-induced intestinal adverse effect are discussed from in vitro models and in vivo mammalian experiments, respectively. Particle translocation, cytotoxicity, damaged gut barrier, intestinal inflammation as well as microbial alteration are mostly reported. Moreover, the practical remediation strategies for MNPs pollution are also illustrated in the last section. This review is expected to provide a research insight for foodborne MNPs and arouse more public awareness of MNPs pollution in food and potential risk for human intestinal health.
Collapse
Affiliation(s)
- Siyue Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Cao J, Yang Q, Jiang J, Dalu T, Kadushkin A, Singh J, Fakhrullin R, Wang F, Cai X, Li R. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part Fibre Toxicol 2022; 19:55. [PMID: 35933442 PMCID: PMC9356472 DOI: 10.1186/s12989-022-00492-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.
Collapse
Affiliation(s)
- Jiayu Cao
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Aliaksei Kadushkin
- Department of Biological Chemistry, Belarusian State Medical University, 220116, Minsk, Belarus
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rawil Fakhrullin
- Kazan Federal University, Institute of Fundamental Medicine & Biology, Kreml Uramı 18, Kazan, Republic of Tatarstan, Russian Federation, 420008
| | - Fangjun Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, Liaoning, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
14
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
15
|
Abdollahzadeh L, Seyfi Mazraeno M, Hosseini SN, Fazlali A, Khatami M. Application of a 3D printed miniaturized hydrocyclone in biopharmaceutical industry-numerical and experimental studies of yeast separation from fermentation culture media. Prep Biochem Biotechnol 2022; 53:31-39. [PMID: 35225162 DOI: 10.1080/10826068.2022.2035746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various industries ranging from water purification to pharmaceutical production have experienced multi separation steps that impose more process time and contamination possibility by batch operation. We propose a developed microfluidic particle sorter (miniaturized hydrocyclone) that adopts centrifugal force as it has ability to decline the number of separation steps and the risk of extrinsic contamination in continuous process. While biological industries have not relied on mini hydrocyclones considerably because of low efficiency and microfabrication difficulties, current work has been planned to conquer these obstacles. In this research, biomass separation from fermentation broth by 3 mm hydrocyclones was investigated. The effect of apex size, feed flow rate, hydrocyclone geometry were analyzed numerically in four mini-hydrocyclones. The most efficient mini-hydrocyclone was chosen to be made by elegant additive manufacturing technology and studied experimentally. The separation efficiency was achieved up to 90% while the concentration ratio of heavy stream (apex) to dilute stream (vortex finder) was reached more than twofold. The mini hydrocyclone performance in view of energy target was studied by Euler-Reynolds-Efficiency plots. The 4 μm cut size was achieved that is promising high throughput separation for biological particles.
Collapse
Affiliation(s)
- Laleh Abdollahzadeh
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Nezamedin Hosseini
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Fazlali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Maryam Khatami
- Department of Hepatitis B Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Ventouri IK, Loeber S, Somsen GW, Schoenmakers PJ, Astefanei A. Field-flow fractionation for molecular-interaction studies of labile and complex systems: A critical review. Anal Chim Acta 2022; 1193:339396. [DOI: 10.1016/j.aca.2021.339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
17
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
18
|
Wang F, Chen Z, Wang Y, Yin Y, Ma C, Song M, Jiang G. Characterization of nanoparticles using coupled gel immobilization and label-free optical imaging. Chem Commun (Camb) 2021; 57:13016-13019. [PMID: 34806729 DOI: 10.1039/d1cc05896g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accurate quantification of number concentration of nanoparticles (NPs) is critical for their biomedical and catalytic applications. We developed a novel NP analysis platform based on coupled gel immobilization and a three-dimensional (3D) scattered light imaging (SLI) platform. This imaging-based technique enables high-throughput analysis of silver nanoparticles (AgNPs) at single-particle level without the need for particle labeling or modification. This is a well-established quantitative characterization technique that can simultaneously measure the number concentration and size distribution of AgNPs. It also demonstrates the visualization and quantification of the size and 3D morphology of AgNP agglomerates in solution.
Collapse
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Diseases Control and Prevention, Beijing, 100050, China
| | - Yongguang Yin
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
New Analytical Approaches for Effective Quantification and Identification of Nanoplastics in Environmental Samples. Processes (Basel) 2021. [DOI: 10.3390/pr9112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nanoplastics (NPs) are a rapidly developing subject that is relevant in environmental and food research, as well as in human toxicity, among other fields. NPs have recently been recognized as one of the least studied types of marine litter, but potentially one of the most hazardous. Several studies are now being reported on NPs in the environment including surface water and coast, snow, soil and in personal care products. However, the extent of contamination remains largely unknown due to fundamental challenges associated with isolation and analysis, and therefore, a methodological gap exists. This article summarizes the progress in environmental NPs analysis and makes a critical assessment of whether methods from nanoparticles analysis could be adopted to bridge the methodological gap. This review discussed the sample preparation and preconcentration protocol for NPs analysis and also examines the most appropriate approaches available at the moment, ranging from physical to chemical. This study also discusses the difficulties associated with improving existing methods and developing new ones. Although microscopical techniques are one of the most often used ways for imaging and thus quantification, they have the drawback of producing partial findings as they can be easily mixed up as biomolecules. At the moment, the combination of chemical analysis (i.e., spectroscopy) and newly developed alternative methods overcomes this limitation. In general, multiple analytical methods used in combination are likely to be needed to correctly detect and fully quantify NPs in environmental samples.
Collapse
|
20
|
Plavchak CL, Smith WC, Bria CRM, Williams SKR. New Advances and Applications in Field-Flow Fractionation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:257-279. [PMID: 33770457 DOI: 10.1146/annurev-anchem-091520-052742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Field-flow fractionation (FFF) is a family of techniques that was created especially for separating and characterizing macromolecules, nanoparticles, and micrometer-sized analytes. It is coming of age as new nanomaterials, polymers, composites, and biohybrids with remarkable properties are introduced and new analytical challenges arise due to synthesis heterogeneities and the motivation to correlate analyte properties with observed performance. Appreciation of the complexity of biological, pharmaceutical, and food systems and the need to monitor multiple components across many size scales have also contributed to FFF's growth. This review highlights recent advances in FFF capabilities, instrumentation, and applications that feature the unique characteristics of different FFF techniques in determining a variety of information, such as averages and distributions in size, composition, shape, architecture, and microstructure and in investigating transformations and function.
Collapse
Affiliation(s)
- Christine L Plavchak
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | - William C Smith
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| | | | - S Kim Ratanathanawongs Williams
- Laboratory for Advanced Separation Technologies, Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA;
| |
Collapse
|
21
|
Tan Z, Chen Q, Yin Y, Liu Y, Lin Y, Bai Q, Wu M, Yao W, Xu S, Liu J. Tracking the dissolution behavior of zinc oxide nanoparticles in skimmed milk powder solutions. Food Chem 2021; 365:130520. [PMID: 34252623 DOI: 10.1016/j.foodchem.2021.130520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are recently recommended as food additives owing to their outstanding nutritive function. Therefore, understanding their comprehensive information and stability in food samples is highly necessitated. However, the characterization of ZnO NPs in the complex food matrices remains a great challenge, limiting an in-depth understanding of their transformation during food storage. In this study, the hollow fiber flow field-flow fractionation was combined with UV-Vis absorption spectroscopy and inductively coupled plasma optical emission spectroscopy to assess the dissolution behaviors of ZnO NPs in skimmed milk powder solutions by monitoring the changes in the residual ZnO NPs and the amount of dissolved Zn(II) ions. The simultaneous characterization of these two Zn species in skimmed milk powder solutions was achieved without the need for tedious sample pretreatments, and the dissolution of ZnO NPs in skimmed milk powder solutions had time- and temperature-dependent behaviors.
Collapse
Affiliation(s)
- Zhiqiang Tan
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Yaohui Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingsheng Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengxin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China.
| | - Jingfu Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, Tufenkji N, Feng S, Wiesner M. Nanoplastics are neither microplastics nor engineered nanoparticles. NATURE NANOTECHNOLOGY 2021; 16:501-507. [PMID: 33927364 DOI: 10.1038/s41565-021-00886-4] [Citation(s) in RCA: 329] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/03/2021] [Indexed: 05/13/2023]
Abstract
Increasing concern and research on the subject of plastic pollution has engaged the community of scientists working on the environmental health and safety of nanomaterials. While many of the methods developed in nano environment, health and safety work have general applicability to the study of particulate plastics, the nanometric size range has important consequences for both the analytical challenges of studying nanoscale plastics and the environmental implications of these incidental nanomaterials. Related to their size, nanoplastics are distinguished from microplastics with respect to their transport properties, interactions with light and natural colloids, a high fraction of particle molecules on the surface, bioavailability and diffusion times for the release of plastic additives. Moreover, they are distinguished from engineered nanomaterials because of their high particle heterogeneity and their potential for rapid further fragmentation in the environment. These characteristics impact environmental fate, potential effects on biota and human health, sampling and analysis. Like microplastics, incidentally produced nanoplastics exhibit a diversity of compositions and morphologies and a heterogeneity that is typically absent from engineered nanomaterials. Therefore, nanoscale plastics must be considered as distinct from both microplastics and engineered nanomaterials.
Collapse
Affiliation(s)
- Julien Gigault
- TAKUVIK, IRL3376 CNRS/Université Laval, Quebec City, QC, Canada.
| | - Hind El Hadri
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Brian Nguyen
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Bruno Grassl
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Laura Rowenczyk
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
| | - Siyuan Feng
- Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC, USA
| | - Mark Wiesner
- Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Biagioni V, Sow AL, Adrover A, Cerbelli S. Brownian Sieving Effect for Boosting the Performance of Microcapillary Hydrodynamic Chromatography. Proof of Concept. Anal Chem 2021; 93:6808-6816. [PMID: 33890769 PMCID: PMC8253478 DOI: 10.1021/acs.analchem.1c00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microcapillary hydrodynamic chromatography (MHDC) is a well-established technique for the size-based separation of suspensions and colloids, where the characteristic size of the dispersed phase ranges from tens of nanometers to micrometers. It is based on hindrance effects which prevent relatively large particles from experiencing the low velocity region near the walls of a pressure-driven laminar flow through an empty microchannel. An improved device design is here proposed, where the relative extent of the low velocity region is made tunable by exploiting a two-channel annular geometry. The geometry is designed so that the core and the annular channel are characterized by different average flow velocities when subject to one and the same pressure drop. The channels communicate through openings of assigned cut-off length, say A. As they move downstream the channel, particles of size bigger than A are confined to the core region, whereas smaller particles can diffuse through the openings and spread throughout the entire cross section, therein attaining a spatially uniform distribution. By using a classical excluded-volume approach for modeling particle transport, we perform Lagrangian-stochastic simulations of particle dynamics and compare the separation performance of the two-channel and the standard (single-channel) MHDC. Results suggest that a quantitative (up to thirtyfold) performance enhancement can be obtained at operating conditions and values of the transport parameters commonly encountered in practical implementations of MHDC. The separation principle can readily be extended to a multistage geometry when the efficient fractionation of an arbitrary size distribution of the suspension is sought.
Collapse
Affiliation(s)
- Valentina Biagioni
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy
| | - Alpha L Sow
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy
| | - Alessandra Adrover
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy
| | - Stefano Cerbelli
- Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy
| |
Collapse
|
24
|
Hallan SS, Sguizzato M, Esposito E, Cortesi R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13040549. [PMID: 33919859 PMCID: PMC8070758 DOI: 10.3390/pharmaceutics13040549] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking into consideration their composition, properties, and physical parameters. However, designing suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some important techniques are compared and discussed in this report. Particularly, a comparison between different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM, and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement, is described. In addition, an amperometric tool in order to investigate antioxidant activity and the response of nanomaterials towards the skin membrane has been presented.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
25
|
Zhou P, Guo M, Cui X. Effect of food on orally-ingested titanium dioxide and zinc oxide nanoparticle behaviors in simulated digestive tract. CHEMOSPHERE 2021; 268:128843. [PMID: 33172667 DOI: 10.1016/j.chemosphere.2020.128843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials have been widely utilized in human daily life. The interaction between nanoparticles (NPs) and food matrices through oral ingestion is important for fate and potential toxicity of NPs. In this study, the interaction between NPs (i.e., titanium dioxide (TiO2) and zinc oxide (ZnO)) and food matrices (namely sucrose, protein powder, and corn oil) was investigated by use of an in vitro physiological model. Measurement using asymmetrical flow field-flow fractionation (AF4) showed that particle size of TiO2 NPs in saliva fluid decreased from 102 ± 6.21 nm (control) to 69.2 ± 6.90 and 81.9 ± 4.30 nm in protein powder and corn oil. Similar trend was also observed for ZnO. Compared with gastric fluid, micelles formed by corn oil in intestinal fluid further dispersed NPs, as indicated by approximately 11.1% and 13.2% decrease in particle size of TiO2 and ZnO NPs, respectively. Characterization of TEM, FTIR and AFM showed that a layer of biological corona was attached on surface of NPs in protein and oil. The XPS demonstrated that oil bound with NPs through forming covalent bonds, while protein bound with NPs through van der Waals force and electrostatic force for TiO2 and ZnO NPs, respectively. The result here demonstrated the importance of considering food effect when investigating the morphology and behavior of NPs after oral ingestion. This understanding was valuable in assessment of environmental fate and biological effects of NPs.
Collapse
Affiliation(s)
- Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mengfan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Li B, Chua SL, Yu D, Chan SH, Li A. Separation and size characterization of highly polydisperse titanium dioxide nanoparticles (E171) in powdered beverages by using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry. J Chromatogr A 2021; 1643:462059. [PMID: 33780882 DOI: 10.1016/j.chroma.2021.462059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The application of titanium dioxide as E171 food additive has become an issue of debate due to numerous reports that titanium dioxide nanoparticles (TiO2 NPs) inside the products may pose risks to human health. However, there is still a lack of an official standardized methodology for the detection and size characterization of TiO2 particles in foods containing E171. In this study, a method was presented for size characterization of TiO2 particles with various independent verifications in coffee creamer and instant drink powders, using Asymmetric Flow Field-Flow Fractionation hyphenated with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-MALS-ICP-MS). TiO2 particles from these products were well extracted, followed by their optimized AF4 separation using anionic surfactant Sodium Dodecyl Sulfate (SDS) (0.05%, pH 9) and mixed surfactant NovaChem (0.2%), respectively. Size determination of TiO2 NPs was conducted based on AF4 calibration with polystyrene nanospheres and verification with TiO2 NPs standard suspension of 100 nm under two different AF4 conditions. The TiO2 particle sizes detected ranged from 24.4 - 544.3 nm for coffee creamer and 27.7 - 574.3 nm for instant drink powders, with the TiO2 NPs detection recoveries of 75% and 92%, respectively. Hydrodynamic diameters from AF4 size calibration could be independently validated by the gyration diameters from online MALS measurement. The established approach was demonstrated to be reliable and pragmatic for size profiling of highly polydisperse TiO2 particles and thus useful for monitoring E171 in similar foodstuffs.
Collapse
Affiliation(s)
- Bin Li
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Sew Lay Chua
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore.
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore 718837, Singapore
| |
Collapse
|
27
|
Wang Y, Yang C, Nie Y, Li Y, Tian X. Reinjection flow field-flow fractionation method for nanoparticle quantitative analysis in unknown and complex samples. J Chromatogr A 2021; 1638:461897. [PMID: 33485028 DOI: 10.1016/j.chroma.2021.461897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
An analytical challenge that arises in environmental and food analysis is to quantify heterogeneous nanoparticles especially in polydisperse and complex samples. The method stated herein based on the reinjection asymmetrical flow field-flow fractionation (AF4 × AF4) coupled with inductively coupled plasma-mass spectrometer (ICP-MS) and statistical deconvolution allowed for identifying the molecular weight (Mw) and selenium abundance of the low Mw protein fractions (ca. < 132 kDa) in an unknown and complex sample (e.g., selenium-rich soybean protein isolates (Se-SPI)). A non-linear decay crossflow program was also developed to get better resolution and shorter elution time for both low and high Mw components. The concept of the reinjection method was based on the excellent ability for reducing sample complexity regarding the size fractionation, and peak reproducibility under the identical conditions of AF4 system. The standard protein mixture was used as a proof-of-principle sample. The results showed the underlying peaks predicted by the reinjection method were agreed with the separation result using the standard mixture (the relative standard deviation of peak locations < 1%), which indicated the reinjection method could provide an accurate assessment of the underlying peak number and location, and was promising to minimize the overfitting problem for statistic deconvolution. Interestingly, significant differences of Se abundance in protein fractions were observed in the low Mw range for Se-SPI, ranging from 0.28 to 1.66 cps/V with the Mw ranging from 13.75 kDa to 104.17 kDa, which indicated significant differences in the ability of binding Se for these selenium-rich proteins in Se-SPI.
Collapse
Affiliation(s)
- Yu Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
28
|
Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ. Microfluidic Isolation and Enrichment of Nanoparticles. ACS NANO 2020; 14:16220-16240. [PMID: 33252215 PMCID: PMC8164652 DOI: 10.1021/acsnano.0c06336] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the past decades, nanoparticles have increased in implementation to a variety of applications ranging from high-efficiency electronics to targeted drug delivery. Recently, microfluidic techniques have become an important tool to isolate and enrich populations of nanoparticles with uniform properties (e.g., size, shape, charge) due to their precision, versatility, and scalability. However, due to the large number of microfluidic techniques available, it can be challenging to identify the most suitable approach for isolating or enriching a nanoparticle of interest. In this review article, we survey microfluidic methods for nanoparticle isolation and enrichment based on their underlying mechanisms, including acoustofluidics, dielectrophoresis, filtration, deterministic lateral displacement, inertial microfluidics, optofluidics, electrophoresis, and affinity-based methods. We discuss the principles, applications, advantages, and limitations of each method. We also provide comparisons with bulk methods, perspectives for future developments and commercialization, and next-generation applications in chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
29
|
Laycock A, Wright MD, Römer I, Buckley A, Smith R. Characterisation of particles within and aerosols produced by nano-containing consumer spray products. ATMOSPHERIC ENVIRONMENT: X 2020; 8:100079. [PMID: 33392499 PMCID: PMC7770152 DOI: 10.1016/j.aeaoa.2020.100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticles have been incorporated into a range of consumer spray products, providing the potential for inadvertent inhalation by users and bystanders. The levels and characteristics of nanoparticle inhalation exposures arising from the use of such products are important inputs to risk assessments and informing dose regimes for in vitro and in vivo studies investigating hazard potentials. To date, only a small number of studies have been undertaken to explore both the aerosols generated from such products and the metal nanoparticles within them. The objective of the current study was to add to the limited data in this field by investigating a range of nano-containing spray products available within the UK. Six products were selected and the nanoparticles characterised using a combination of techniques, including: inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX) and single particle ICP-MS (spICP-MS). The aerosol produced by these products, when sprayed within a glovebox, was characterised by scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). A cascade impactor with thirteen stages (NanoMOUDI) was used with one product to generate information on the size specific nanoparticle elemental distribution within the aerosol. The results demonstrated the presence of solid nanoparticles (silver, gold or silica) in each of the products at low concentrations (<13 ppm). TEM and (sp)ICP-MS provided reliable information on nanoparticle size, shape, number and mass, while the light scattering methods were less effective due to the complex matrices of the products and their lack of chemical specificity. The aerosols varied significantly across products, with particle and mass concentrations spanning 5 orders of magnitude (10 - 106 cm-3 and 0.3-7600 μg m-3, respectively). The NanoMOUDI results clearly indicated non-uniform distribution of silver within different aerosol particle size ranges.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Matthew D. Wright
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Isabella Römer
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Alison Buckley
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| |
Collapse
|
30
|
Ojeda D, Sánchez P, Bolea E, Laborda F, Castillo JR. How the use of a short channel can improve the separation efficiency of nanoparticles in asymmetrical flow field-flow fractionation. J Chromatogr A 2020; 1635:461759. [PMID: 33278672 DOI: 10.1016/j.chroma.2020.461759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
The use of a commercially available short length channel (14 cm length) is proposed to improve the efficiency associated to the separation by asymmetrical flow field-flow fractionation of particles in the nanometer range respect to a standard channel (27 cm length). The effect of channel length on elution times, separation efficiency and resolution have been studied. Polystyrene particles between 50 and 500 nm in size have been used to compare the behavior of both channels. Theoretical aspects based on the different contributions on particle diffusion inside the channel during the separation process have been considered to justify the results obtained. Non-equilibrium diffusion contribution to the efficiency has shown to be the most relevant aspect to be controlled during the separation. The increment of the field strength applied through the cross-flow velocityallows the reduction of diffusion while keep elution times constant. The use of the same cross-flow in a channel with a smaller area is the key factor that justifies the better efficiencies observed along the whole size range studied (improvements that reach factors up to 4.7 in experimental efficiency respect to the standard channel were achieved). The separation of polystyrene particles of 100 and 200 nm was achieved with a resolution of 1.20, whereas a 0.66 value was obtained with the standard channel at the same elution times. Channel recoveries have been also compared under optimized conditions to ensure that no side effects are produced, including the separation of mixtures of TiO2 nanoparticles. Similar or even better values were obtained with the short length channel, with recoveries higher than 85% for all the polystyrene particles tested and 75% recovery for the TiO2 nanoparticle mixture, which justifies its use for the separation of nanoparticles, providing better resolutions without compromise elution times or recoveries.
Collapse
Affiliation(s)
- David Ojeda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Pablo Sánchez
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Eduardo Bolea
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain.
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| | - Juan R Castillo
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna, 12., 50009, Zaragoza, Spain
| |
Collapse
|
31
|
Chen X, Zhang W, Dou Y, Song T, Shen S, Dou H. Applications of asymmetrical flow field-flow fractionation for separation and characterization of polysaccharides: A review. J Chromatogr A 2020; 1635:461726. [PMID: 33250160 DOI: 10.1016/j.chroma.2020.461726] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
Polysaccharides are the most abundant natural biopolymers on the earth and are widely used in food, medicine, materials, cosmetics, and other fields. The physicochemical properties of polysaccharides such as particle size and molecular weight often affect their practical applications. In recent years, asymmetrical flow field-flow fractionation (AF4) has been widely used in the separation and characterization of polysaccharides because it has no stationary phases or packing materials, which reduces the risk of shear degradation of polysaccharides. In this review, the principle of AF4 was introduced briefly. The operation conditions of AF4 for the analysis of polysaccharides were discussed. The applications of AF4 for the separation and characterization of polysaccharides from different sources (plants, animals, and microorganisms) over the last decade were critically reviewed.
Collapse
Affiliation(s)
- Xue Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Wenhui Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yuwei Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China
| | - Tiange Song
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haiyang Dou
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Disease of Hebei Province, School of Basic Medical Sciences, Hebei University, Baoding 071000, China; Affiliated Hospital of Hebei University, Baoding 071000, China.
| |
Collapse
|
32
|
Laughton S, Laycock A, Bland G, von der Kammer F, Hofmann T, Casman EA, Lowry GV. Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS. Anal Bioanal Chem 2020; 413:299-314. [PMID: 33123761 DOI: 10.1007/s00216-020-03014-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022]
Abstract
The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.
Collapse
Affiliation(s)
- Stephanie Laughton
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam Laycock
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Garret Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, 1090, Vienna, Austria
| | - Elizabeth A Casman
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
33
|
Velimirovic M, Wagner S, Monikh FA, Uusimäki T, Kaegi R, Hofmann T, Kammer FVD. Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. Talanta 2020; 215:120921. [DOI: 10.1016/j.talanta.2020.120921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
34
|
Li B, Chua SL, Ch'ng AL, Yu D, Koh SP, Phang H, Chiew PKT. An effective approach for size characterization and mass quantification of silica nanoparticles in coffee creamer by AF4-ICP-MS. Anal Bioanal Chem 2020; 412:5499-5512. [PMID: 32621094 DOI: 10.1007/s00216-020-02770-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022]
Abstract
Silicon dioxide (SiO2) has been used as a food additive (E551) for decades. However, some safety concerns have been raised recently due to the detection of silica nanoparticles (SiO2 NPs) in a variety of foodstuffs and their unknown long-term health risk to humans. In order for risk assessment to be conducted, it is essential to establish a reliable, valid, and pragmatic method for analysis of SiO2 NPs in foods for estimation of exposure. This paper presents an effective approach for both size characterization and mass quantification of SiO2 NPs in commercial high-fat coffee creamer using asymmetric flow field-flow fractionation (AF4) coupled to inductively coupled plasma mass spectrometry (ICP-MS). SiO2 NPs from coffee creamer were well extracted after cleanup with hexane in a two-phase (hexane vs. water) aqueous environment. Size determination of SiO2 NPs was performed by on-line AF4-ICP-MS based on calibration with monodispersed standards. The dominant primary size of SiO2 NPs in the studied sample was 36.5 nm. The mass percentages of SiO2 NPs (vs. total SiO2) were 18.6% for the dominant primary nano-silica particles by prechannel calibration and 35.7% for total SiO2 NPs (≤ 100 nm) by postchannel calibration, with recoveries of 89-96% for the former and 75% for the latter. The established approach was demonstrated to be efficient and practical for routine analysis of polydispersed SiO2 NPs with wide nano-size distribution in coffee creamer. This method may be extended to monitor the presence of SiO2 NPs in other similar complex food matrices. Graphical abstract.
Collapse
Affiliation(s)
- Bin Li
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore
| | - Sew Lay Chua
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore
| | - Ai Lee Ch'ng
- Veterinary Public Health Laboratory, Agri-Food and Veterinary Authority of Singapor, 10 Perahu Road, Singapore, 718837, Singapore
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore
| | - Shoo Peng Koh
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore.
| | - Helen Phang
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore
| | - Paul K T Chiew
- National Centre for Food Science, Singapore Food Agency, 10 Perahu Road, Singapore, 718837, Singapore
| |
Collapse
|
35
|
Yu Z, Gao G, Wang H, Ke L, Zhou J, Rao P, Chen T, Peng Z, Zou J, Luo S. Identification of protein-polysaccharide nanoparticles carrying hepatoprotective bioactives in freshwater clam (Corbicula fluminea Muller) soup. Int J Biol Macromol 2020; 151:781-786. [PMID: 32061848 DOI: 10.1016/j.ijbiomac.2020.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
Abstract
Bioactives can impact food function either by their dosage or by their forms of dispersion, though the latter remains mostly neglected. Here we report the incidental nanoparticles (iNPs) carrying hepatoprotective bioactives identified in freshwater clam (Corbicula fluminea Muller) soup, which is a folk remedy for liver conditions in East Asia. The soup was fractionated into two iNPs containing fractions with high yield (95.8%) in 35 min by gel chromatography. With hydrodynamic diameter (Dh) range from 40 nm to 149 nm, iNPs were mainly constituted by carbohydrates and proteins. Notably, the majority of bioactives, e.g. taurine (63.2%), ornithine (68.1%) and phytosterols (60.0%), was determined to be carried by the iNPs. It suggested a possible mechanism of elevated delivery and absorption of bioactives, explaining why the clam soup can work at the bioactive concentrations way lower than the individual compound. These iNPs have great potential to be developed into a functional food with most potent nutraceutical effects.
Collapse
Affiliation(s)
- Zhaoshuo Yu
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Guanzhen Gao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huiqin Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, UK
| | - Zhangwen Peng
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China; Institute of Food Science, Jishou University, Jishou 416000, Hunan, China
| | - Jianqiao Zou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China; Institute of Food Science, Jishou University, Jishou 416000, Hunan, China
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou 310012, China; Institute of Food Science, Jishou University, Jishou 416000, Hunan, China
| |
Collapse
|
36
|
Abdolahpur Monikh F, Grundschober N, Romeijn S, Arenas-Lago D, Vijver MG, Jiskoot W, Peijnenburg WJGM. Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113304. [PMID: 31586909 DOI: 10.1016/j.envpol.2019.113304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
Suitable methods and fit-for-purpose techniques are required to allow characterization of carbon-based nanomaterials (CB-NMs) in complex matrices. In this study, two methods were developed; a method for extraction and characterization of CB-NMs in biological media and a method for fractionation of natural organic matter (NOM) coated CB-NMs in environmental matrices. The former method was developed by extracting carbon nanotubes (CNTs: sized 0.75 × 3000 nm) and nanoplastics (sized 60, 200 and 600 nm) from eggshells and characterizing the extracted CB-NMs in terms of particle size distribution using asymmetrical flow field-flow fractionation (AF4) coupled with multi-angle light scattering (MALS). The latter method was developed using AF4-MALS to fraction NOM-coated CNT (sized 0.75 × 3000 nm) and nanoplastics (sized 60, 200 and 300 nm) in a simulated natural surface water and provide information about the size distribution of the CB-NM-NOM complexes. The developed AF4-MALS method successfully fractioned the CB-NM-NOM complexes based on hydrodynamic size and provided the size distribution of the complexes. The NOM corona did not shift significantly the median size of the CB-NMs. It influenced however the size distribution of the nanoplastics and CNTs. The sample preparation method failed to extract the CNTs (recovery < 20%) from the matrices of the eggshells while being successful for extracting the nanoplastics (recoveries > 60%). The AF4-MALS fractogram showed that the extraction method did not significantly influence the size distribution of the nanoplastics of 60 and 200 nm size, whereas the peak of 600 nm nanoplastics shifted towards a smaller hydrodynamic size. In conclusion, the developed sample preparation method followed by the developed AF4-MALS method can be applied for extraction, separation and characterization of CB-NMs in biological and environmental matrices. Thus, the methods have a high potential to be methods of choice to investigate CB-NMs in future studies.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands.
| | - Nadine Grundschober
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden University, Leiden, the Netherlands
| | - Daniel Arenas-Lago
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden University, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
37
|
Marioli M, Kavurt ÜB, Stamatialis D, Kok WT. Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation. J Chromatogr A 2019; 1605:360347. [DOI: 10.1016/j.chroma.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022]
|
38
|
Nwoko KC, Raab A, Cheyne L, Dawson D, Krupp E, Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: Characterisation with TEM, AF4-UV-MALS-ICP-MS/MS and spICP-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:356-365. [DOI: 10.1016/j.jchromb.2019.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/29/2019] [Accepted: 06/23/2019] [Indexed: 01/19/2023]
|
39
|
Characterization of TiO2 Nanoparticles in Food Additives by Asymmetric-Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry—a Pilot Study. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01543-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Yu K, Sun C, Zhang B, Hassan M, He Y. Size-dependent adsorption of antibiotics onto nanoparticles in a field-scale wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1079-1087. [PMID: 31091640 DOI: 10.1016/j.envpol.2019.02.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
This work present aims to evaluate the effect of a conventional wastewater treatment process on the number of nanoparticles, and the role of nanoparticles as a carrier of antibiotics. A set of methods based on asymmetrical flow field flow fractionation coupled with multi-angle light scattering to separate and quantify nanoparticles in real wastewater was established. The characterization of nanoparticles was conducted by transmission electron microscopy, energy dispersive spectrometer, UV-visible spectrophotometer and three-dimensional excitation-emission matrix fluorescence spectroscopy. The adsorption of different sizes of nanoparticles separated from the real wastewater for four targeted antibiotics (sulfadiazine, ofloxacin, tylosin and tetracycline) was studied. The results show that the number of nanoparticles were increased in the wastewater treatment process and the size range between 60 and 80 nm was predominant in wastewater samples. The nanoparticles were mainly composed of O, Si, Al and Ca elements and organic components were in the size range of 0-10 nm. Targeted antibiotics were dominantly adsorbed onto nanoparticles with 60-80 nm size range at each stage. The concentrations of tetracycline adsorbed on nanoparticles were surprisingly increased in the end of the treatment process, while ofloxacin and tylosin had the completely opposite phenomenon to tetracycline. The pH and ionic strength definitely affected the aggregation of nanoparticles and interaction with the antibiotics. It is of great significance to give insights into nanoparticle-antibiotic assemblages for the effective treatment and avoiding the water risks due to nanoparticles' ubiquitous and their risks of carrying antibiotics.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chi Sun
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Muhammad Hassan
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
41
|
Abdolahpur Monikh F, Chupani L, Vijver MG, Vancová M, Peijnenburg WJGM. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1283-1293. [PMID: 30743923 DOI: 10.1016/j.scitotenv.2019.01.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
To promote the safer by design strategy and assess environmental risks of engineered nanoparticles (ENPs), it is essential to understand the fate of ENPs within organisms. This understanding in living organisms is limited by challenges in characterizing and quantifying ENPs in biological media. Relevant literature in this area is scattered across research from the past decade or so, and it consists mostly of medically oriented studies. This review first introduces those modern techniques and methods that can be used to extract, characterize, and quantify ENPs in biological matrices for (eco)toxicological purposes. It then summarizes recent research developments within those areas most relevant to the context and field that are the subject of this review paper. These comprise numerous in-situ techniques and some ex-situ techniques. The former group includes techniques allowing to observe specimens in their natural hydrated state (e.g., scanning electron microscopy working in cryo mode and high-pressure freezing) and microscopy equipped with elemental microanalysis (e.g., energy-dispersive X-ray spectroscopy); two-photon laser and coherent anti-Stokes Raman scattering microscopy; absorption-edge synchrotron X-ray computed microtomography; and laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). The latter group includes asymmetric flow field flow fractionation coupled with ICP-MS and single particle-ICP-MS. Our review found that most of the evidence gathered for ENPs actually focused on a few metal-based ENPs and carbon nanotube and points to total mass concentration but no other particles properties, such as size and number. Based on the obtained knowledge, we developed and presented a decision scheme and analytical toolbox to help orient scientists toward selecting appropriate ways for investigating the (eco)toxicity of ENPs that are consistent with their properties.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands.
| | - Latifeh Chupani
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands
| | - Marie Vancová
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| |
Collapse
|
42
|
Loosli F, Wang J, Rothenberg S, Bizimis M, Winkler C, Borovinskaya O, Flamigni L, Baalousha M. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. ENVIRONMENTAL SCIENCE. NANO 2019; 6:763-777. [PMID: 31853367 PMCID: PMC6919659 DOI: 10.1039/c8en01376d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sanitary sewer overflows (SSOs) are a common problem across the United States. An estimated 23,000-75,000 SSOs occurred annually in 2004 discharging between 11 and 38 billion liters of untreated wastewater to receiving waters. SSOs release many contaminants, including engineered nanomaterials (ENMs), to receiving water bodies. Measuring ENM concentrations in environmental samples remains a key challenge in environmental nanotechnology and requires the distinction between natural and engineered particles. This distinction between natural and engineered particles is often hampered by the similarities in the intrinsic properties of natural and engineered particles such as particle size, composition, density, surface chemistry, and by the limitations of the available nanometrology tools. To overcome these challenges, we applied a multi-method approach to measure the concentrations and properties of TiO2 engineered particles (e.g., ENMs and pigments) including 1) multi-element single particle-inductively coupled plasma-mass spectrometry (ME-SP-ICP-MS) to identify elemental associations and to determine elemental ratios in natural particles, 2) total elemental concentrations and ratios calculated from total metal concentrations measured following total sample digestion to estimate engineered particle concentrations, and 3) transmission electron microscopy (TEM) to characterize engineered particle size and morphology. ME-SP-ICP-MS analysis revealed that natural TiO2 particles are often associated with at least one of the following elements Al, Fe, Ce, Si, La, Zr, Nb, Pb, Ba, Th, Ta, W and U, and that elemental ratios of Ti to these elements is typical of riverine particulates and the average crustal ratios, except for Pb likely due to anthropogenic Pb contamination. High TiO2 engineered particle concentrations up to 100 μg L-1 were found in SSOs-impacted surface waters. TEM analysis demonstrated the presence of regular-shape TiO2 particles in SSOs-impacted surface waters. This study provides a comprehensive approach for measuring TiO2 engineered particle concentrations in surface waters. The quantitative data produced in this work can be used as input for modeling studies and pave the road toward routine monitoring of ENMs in environmental systems, validation of ENM fate models, and more accurate ENM exposure and risk assessment.
Collapse
Affiliation(s)
- Frederic Loosli
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Jingjing Wang
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Sarah Rothenberg
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Michael Bizimis
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, United States
| | - Christopher Winkler
- Virginia Tech National Center for Earth and Environmental Nanotechnology (NanoEarth), 1991 Kraft Dr, Blacksburg, VA24061, USA
| | | | | | - Mohammed Baalousha
- Department of Environmental Health Sciences, Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
43
|
Miernicki M, Hofmann T, Eisenberger I, von der Kammer F, Praetorius A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. NATURE NANOTECHNOLOGY 2019; 14:208-216. [PMID: 30837754 DOI: 10.1038/s41565-019-0396-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/28/2019] [Indexed: 05/24/2023]
Abstract
The European Union (EU) has adopted nano-specific provisions for cosmetics, food and biocides, among others, which include binding definitions of the term "nanomaterial". Here we take an interdisciplinary approach to analyse the respective definitions from a legal and practical perspective. Our assessment reveals that the definitions contain several ill-defined terms such as "insoluble" or "characteristic properties" and/or are missing thresholds. Furthermore, the definitions pose major and so far unsolved analytical challenges that, in practice, make it nearly impossible to classify nanomaterials according to EU regulatory requirements. An important purpose of the regulations, the protection of human health and the environment, may remain unfulfilled and the development of innovative applications of nanomaterials may be facing a path full of (legal) uncertainties. Based on our findings, we provide five recommendations for a more coherent and practical approach towards the regulation of nanomaterials.
Collapse
Affiliation(s)
- Martin Miernicki
- University of Vienna, Department of Environmental Geosciences, Vienna, Austria
- University of Vienna, Department of Business Law, Vienna, Austria
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences, Vienna, Austria.
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria.
| | - Iris Eisenberger
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Institute of Law, Vienna, Austria
| | | | - Antonia Praetorius
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria.
| |
Collapse
|
44
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Hwang JY, Youn S, Yang IH. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field. Anal Chim Acta 2019; 1047:238-247. [DOI: 10.1016/j.aca.2018.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
|
46
|
López-Sanz S, Fariñas NR, Martín-Doimeadios RDCR, Ríos Á. Analytical strategy based on asymmetric flow field flow fractionation hyphenated to ICP-MS and complementary techniques to study gold nanoparticles transformations in cell culture medium. Anal Chim Acta 2018; 1053:178-185. [PMID: 30712564 DOI: 10.1016/j.aca.2018.11.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022]
Abstract
An analytical methodology based on asymmetric flow field flow fractionation (AF4) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) has been developed to study gold nanoparticles (AuNPs) in cell culture medium (Dulbecco's Modified Eagle Medium, DMEM, containing 10% fetal bovine serum, FBS, and antibiotics) used for in vitro toxicological studies. AF4-ICP-MS separation of AuNPs was performed using a regenerated cellulose membrane (molecular weight cut-off, MWCO, of 10 kDa). The carrier composition and the AF4 separation program were optimized. Under the optimum conditions, AuNPs of different types, i.e. phosphate buffered saline (PBS) and citrate stabilized, and sizes (10, 30 and 40 nm), without and with cell culture medium could be separated. The developed method allowed to detect transformations in AuNPs and dissolved gold species (Au3+) induced by this medium, such as an increase in the hydrodynamic volume and oxidation. Centrifugal ultrafiltration (CU), transmission electron microscopy (TEM) and Ultraviolet-visible (UV-vis) absorption spectrophotometry have been used as complementary techniques to study these processes. This information is of major interest to have a correct interpretation of the in vitro toxicological studies of NPs, which are more and more demanded due to the increasing concerns about the safe use of these materials and their impacts. This work demonstrates the potential of hyphenated techniques based on AF4 to achieve this relevant information.
Collapse
Affiliation(s)
- Sara López-Sanz
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez Fariñas
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Rosa Del Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
47
|
Challenges in Determining the Size Distribution of Nanoparticles in Consumer Products by Asymmetric Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry: The Example of Al2O3, TiO2, and SiO2 Nanoparticles in Toothpaste. SEPARATIONS 2018. [DOI: 10.3390/separations5040056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
According to the current European regulation on cosmetics, any ingredient present as a nanomaterial should be indicated in the ingredient list. There is a need for analytical methods capable of determining the size of the relevant ingredients and thus assessing if these are nanomaterials or not. An analytical method based on asymmetric flow field-flow fractionation (AF4) and inductively coupled plasma-mass spectrometry (ICP-MS) was developed to determine the size of particles present in a commercial toothpaste. Multi-angle light scattering (MALS) was used for on-line size determination. The number-based particle size distributions (PSDs) of the particles were retrieved upon mathematical conversion of the mass-based PSDs recovered from the AF4-ICP-MS fractograms. AF4-ICP-MS allowed to separate and detect Al2O3 and TiO2 particles in the toothpaste and to retrieve a correct TiO2 number-based PSD. The potential presence of particles in the lower size range of the Al2O3 mass-based PSD had a strong impact on sizing and nanomaterial classification upon conversion. AF4 coupled with ICP-MS and MALS was found to be a powerful approach for characterization of different particles in a multiple-particle system such as toothpaste. Confirmation of particle size by a secondary method such as single particle ICP-MS or hydrodynamic chromatography was crucial.
Collapse
|
48
|
Cuss CW, Donner MW, Grant-Weaver I, Noernberg T, Pelletier R, Sinnatamby RN, Shotyk W. Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1242-1251. [PMID: 30045505 DOI: 10.1016/j.scitotenv.2018.06.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Organic and inorganic colloids play important roles governing the speciation, transport, and bioaccessibility of trace elements in aquatic systems. These carriers are especially important in the boreal zone, where rivers that contain high concentrations of iron and organic matter are prevalent. The distribution of trace elements amongst different colloidal species (or "speciation profile") can therefore be useful as a fingerprint to detect different trace element sources and for tracking colloid transformations, with implications for bioaccessibility. Asymmetrical flow field-flow fractionation coupled to an inductively coupled plasma mass spectrometer was applied to detect the source of trace elements based on their speciation profile along a 125-km stretch of a large river in the Canadian boreal forest. Both the concentration and proportion of bound trace elements were increased by tributary inputs: bound As, Co, Fe, Mn, Pb, U, and Zn increased monotonically from upstream to downstream, increasingly resembling the speciation profile of tributaries. Principal component (PC) analysis also revealed tributary contributions of bound Cu, Ni, Th, V, and Y reflecting their higher concentrations in tributaries, and PC scores also increased monotonically from upstream-downstream. Monotonically decreasing concentrations of mainly ionic and small (i.e. <ca. 300 Da) As, Ba, Mo, and U species were also observed from upstream-downstream.
Collapse
Affiliation(s)
- C W Cuss
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - M W Donner
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - I Grant-Weaver
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - T Noernberg
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - R Pelletier
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - R N Sinnatamby
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - W Shotyk
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
49
|
Missong A, Holzmann S, Bol R, Nischwitz V, Puhlmann H, V Wilpert K, Siemens J, Klumpp E. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:305-315. [PMID: 29627554 DOI: 10.1016/j.scitotenv.2018.03.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; Corg: 3-17%; Al: <4%; Si, Ca, Mn: all <2%). The proportion of colloid-associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies.
Collapse
Affiliation(s)
- Anna Missong
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany; Institute for Environmental Research, Biology 5, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany.
| | - Stefan Holzmann
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestraße 4, 79100 Freiburg i.Br., Germany
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Volker Nischwitz
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Jülich, Wilhelm-Johnen Str., 52425 Jülich, Germany
| | - Heike Puhlmann
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestraße 4, 79100 Freiburg i.Br., Germany
| | - Klaus V Wilpert
- Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Wonnhaldestraße 4, 79100 Freiburg i.Br., Germany
| | - Jan Siemens
- Institute for Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| |
Collapse
|
50
|
Tsagkaris AS, Tzegkas SG, Danezis GP. Nanomaterials in food packaging: state of the art and analysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:2862-2870. [PMID: 30065395 PMCID: PMC6046014 DOI: 10.1007/s13197-018-3266-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022]
Abstract
It is less than 20 years since nanotechnology found applications in food packaging. The new packaging materials have featured various improved characteristics such as antimicrobial activity and active packaging. However, there is a great controversy about the production cost, safety and suitability of nanocomposite materials to come in contact with foodstuffs. To this end, we critically summarize the literature in order to provide the overview of the current status in the field. A scientometric evaluation is presented for the first time in order to illustrate the state of the art. The USA and the Asian countries are the leaders, while the EU countries follow. Additionally, as the analysis of nanomaterials in food matrices is still in early stage, there is an emerging demand to review the analytical techniques which are capable for the monitoring of nanomaterials. Microscopy, spectroscopy, separation and mass spectrometry techniques show advantages and drawbacks which are discussed. FFF-ICP-MS and sp-ICP-MS have the greatest potential for the detection of inorganic nanoparticles in food. In conclusion, the difficulty of analyzing nanoparticles is increased by the lack of standard solutions, reference materials, standard methods and the limited number of available inter-laboratory proficiency tests.
Collapse
Affiliation(s)
- Aristeidis S. Tsagkaris
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
- Laboratory of Chemistry, Agricultural University of Athens, Athens, Greece
| | - Spyros G. Tzegkas
- Laboratory of Chemistry, Agricultural University of Athens, Athens, Greece
| | | |
Collapse
|