1
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Woo SJ, Han JY. Epigenetic programming of chicken germ cells: a comparative review. Poult Sci 2024; 103:103977. [PMID: 38970845 PMCID: PMC11269908 DOI: 10.1016/j.psj.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
Chicken embryos serve as an important model for investigating germ cells due to their ease of accessibility and manipulation within the egg. Understanding the development of germ cells is particularly crucial, as they are the only cell types capable of transmitting genetic information to the next generation. Therefore, gene expression regulation in germ cells is important for genomic function. Epigenetic programming is a crucial biological process for the regulation of gene expression without altering the genome sequence. Although epigenetic programming is evolutionarily conserved, several differences between chickens and mammals have been revealed. In this review, we compared the epigenetic regulation of germ cells in chickens and mammals (mainly mice as a representative species). In mammals, migrating primordial germ cells (precursors for germ cells [PGCs]) undergo global DNA demethylation and persist until sexual differentiation, while in chickens, DNA is demethylated until reaching the gonad but remethylated when sexually differentiated. Prospermatogonia is methylated at the onset of mitotic arrest in mammals, while DNA is demethylated at mitotic arrest in chickens. Furthermore, genomic imprinting and inactivation of sex chromosomes are differentially regulated through DNA methylation in chickens and mammals. Chickens and mammals exhibit different patterns of histone modifications during germ cell development, and non-coding RNA, which is not involved in PGC differentiation in mice, plays an important role in chicken PGC development. Additionally, several chicken-specific non-coding RNAs have been identified. In conclusion, we summarized current knowledge of epigenetic gene regulation of chicken germ cells, comparing that of mammals, and highlighted notable differences between them.
Collapse
Affiliation(s)
- Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Tang S, Wu H, Chen Q, Tang T, Li J, An H, Zhu S, Han L, Sun H, Ge J, Qian X, Wang X, Wang Q. Maternal Obesity Induces the Meiotic Defects and Epigenetic Alterations During Fetal Oocyte Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309184. [PMID: 38868907 PMCID: PMC11321662 DOI: 10.1002/advs.202309184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/23/2024] [Indexed: 06/14/2024]
Abstract
It has been widely reported that obesity adversely impacts reproductive performance of females. However, the effects of maternal obesity on fetal germ cells remain poorly understood. In the present study, by employing a high-fat diet (HFD)-based mouse model, it is discovered that maternal obesity disrupts the chromosomal synapsis and homologous recombination during fetal oogenesis. Moreover, transcriptomic profiling reveales the potential molecular network controlling this process. Of note, the global hypermethylation of genomic DNA in fetal oocytes from obese mouse is detected. Importantly, time-restricted feeding (TRF) of obese mice not only ameliorate the meiotic defects, but also partly restore the epigenetic remodeling in fetal oocytes. In sum, the evidence are provided showing the deficit fetal oogenesis in obese mother, implicating a mechanism underlying the intergenerational effects of environmental insults. TRF may represent a potentially effective approach for mitigating fertility issues in obese patients.
Collapse
Affiliation(s)
- Shoubin Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
- Department of Nutrition and Food HygieneSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Huihua Wu
- Suzhou Municipal HospitalNanjing Medical UniversityNanjing211166China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Tao Tang
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Hongzheng Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Xu Qian
- Department of Nutrition and Food HygieneSchool of Public HealthNanjing Medical UniversityNanjing211166China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthChangzhou Maternity and Child Health Care HospitalChangzhou Medical CenterNanjing Medical UniversityNanjing211166China
| |
Collapse
|
4
|
Kress C, Jouneau L, Pain B. Reinforcement of repressive marks in the chicken primordial germ cell epigenetic signature: divergence from basal state resetting in mammals. Epigenetics Chromatin 2024; 17:11. [PMID: 38671530 PMCID: PMC11046797 DOI: 10.1186/s13072-024-00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5‑hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.
Collapse
Affiliation(s)
- Clémence Kress
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
5
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
6
|
Toriyama K, Au Yeung WK, Inoue A, Kurimoto K, Yabuta Y, Saitou M, Nakamura T, Nakano T, Sasaki H. DPPA3 facilitates genome-wide DNA demethylation in mouse primordial germ cells. BMC Genomics 2024; 25:344. [PMID: 38580899 PMCID: PMC10996186 DOI: 10.1186/s12864-024-10192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.
Collapse
Affiliation(s)
- Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, Riken Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan
- Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe- cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Animal Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
| | - Toru Nakano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Uneme Y, Maeda R, Nakayama G, Narita H, Takeda N, Hiramatsu R, Nishihara H, Nakato R, Kanai Y, Araki K, Siomi MC, Yamanaka S. Morc1 reestablishes H3K9me3 heterochromatin on piRNA-targeted transposons in gonocytes. Proc Natl Acad Sci U S A 2024; 121:e2317095121. [PMID: 38502704 PMCID: PMC10990106 DOI: 10.1073/pnas.2317095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 03/21/2024] Open
Abstract
To maintain fertility, male mice re-repress transposable elements (TEs) that were de-silenced in the early gonocytes before their differentiation into spermatogonia. However, the mechanism of TE silencing re-establishment remains unknown. Here, we found that the DNA-binding protein Morc1, in cooperation with the methyltransferase SetDB1, deposits the repressive histone mark H3K9me3 on a large fraction of activated TEs, leading to heterochromatin. Morc1 also triggers DNA methylation, but TEs targeted by Morc1-driven DNA methylation only slightly overlapped with those repressed by Morc1/SetDB1-dependent heterochromatin formation, suggesting that Morc1 silences TEs in two different manners. In contrast, TEs regulated by Morc1 and Miwi2, the nuclear PIWI-family protein, almost overlapped. Miwi2 binds to PIWI-interacting RNAs (piRNAs) that base-pair with TE mRNAs via sequence complementarity, while Morc1 DNA binding is not sequence specific, suggesting that Miwi2 selects its targets, and then, Morc1 acts to repress them with cofactors. A high-ordered mechanism of TE repression in gonocytes has been identified.
Collapse
Affiliation(s)
- Yuta Uneme
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Ryu Maeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Gen Nakayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Haruka Narita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Naoki Takeda
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto860-0811, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo113-8657, Japan
| | - Hidenori Nishihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara631-8505, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo113-0032, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo113-8657, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto860-0811, Japan
- Faculty of Life Sciences, Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo, Kumamoto860-8556, Japan
| | - Mikiko C. Siomi
- Department of Biophysics and Biochemistry, Faculty of Science, The University of Tokyo, Tokyo113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo113-0032, Japan
| |
Collapse
|
9
|
Pohler KG, Oliveira Filho RV. Impact of the Sire on Pregnancy Loss. Vet Clin North Am Food Anim Pract 2024; 40:121-129. [PMID: 37884437 DOI: 10.1016/j.cvfa.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
For over a century, scientists have attempted to develop techniques to accurately predict the fertility potential of a male's semen sample. In most livestock species, the sire is responsible for multiple pregnancies per year and up to hundreds of thousands of pregnancies if used for artificial insemination. Use of subfertile or infertile sires can have devastating impacts in regard to the reproductive efficiency of a cow herd. Despite the rapid expansion of fertility studies through advancements in molecular, genomic, and computer techniques, our understanding of male fertility is still far from complete. This article will provide an overview of the impact of the sire in pregnancy loss.
Collapse
Affiliation(s)
- Ky G Pohler
- Department of Animal Science, Pregnancy and Developmental Programming Area of Excellence, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA.
| | - Ramiro Vander Oliveira Filho
- Department of Animal Science, Pregnancy and Developmental Programming Area of Excellence, Texas A&M University, 2471 TAMU, College Station, TX 77843, USA
| |
Collapse
|
10
|
Lin YH, Lehle JD, McCarrey JR. Source cell-type epigenetic memory persists in induced pluripotent cells but is lost in subsequently derived germline cells. Front Cell Dev Biol 2024; 12:1306530. [PMID: 38410371 PMCID: PMC10895008 DOI: 10.3389/fcell.2024.1306530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: Retention of source cell-type epigenetic memory may mitigate the potential for induced pluripotent stem cells (iPSCs) to fully achieve transitions in cell fate in vitro. While this may not preclude the use of iPSC-derived somatic cell types for therapeutic applications, it becomes a major concern impacting the potential use of iPSC-derived germline cell types for reproductive applications. The transition from a source somatic cell type to iPSCs and then on to germ-cell like cells (GCLCs) recapitulates two major epigenetic reprogramming events that normally occur during development in vivo-embryonic reprogramming in the epiblast and germline reprogramming in primordial germ cells (PGCs). We examined the extent of epigenetic and transcriptomic memory persisting first during the transition from differentiated source cell types to iPSCs, and then during the transition from iPSCs to PGC-like cells (PGCLCs). Methods: We derived iPSCs from four differentiated mouse cell types including two somatic and two germ cell types and tested the extent to which each resulting iPSC line resembled a) a validated ES cell reference line, and b) their respective source cell types, on the basis of genome-wide gene expression and DNA methylation patterns. We then induced each iPSC line to form PGCLCs, and assessed epigenomic and transcriptomic memory in each compared to endogenous PGCs/M-prospermatogonia. Results: In each iPSC line, we found residual gene expression and epigenetic programming patterns characteristic of the corresponding source differentiated cell type from which each was derived. However, upon deriving PGCLCs, we found very little evidence of lingering epigenetic or transcriptomic memory of the original source cell type. Discussion: This result indicates that derivation of iPSCs and then GCLCs from differentiated source cell types in vitro recapitulates the two-phase epigenetic reprogramming that normally occurs in vivo, and that, to a significant extent, germline cell types derived in vitro from pluripotent cells accurately recapitulate epigenetic programming and gene expression patterns corresponding to equivalent endogenous germ cell types, suggesting that they have the potential to form the basis of in vitro gametogenesis as a useful therapeutic strategy for treatment of infertility.
Collapse
Affiliation(s)
- Yu-Huey Lin
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jake D Lehle
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Wang P, Su J, Wang J, Xie Y, Chen W, Zhong J, Wang Y. NRF1 promotes primordial germ cell development, proliferation and survival. Cell Prolif 2024; 57:e13533. [PMID: 37539637 PMCID: PMC10771101 DOI: 10.1111/cpr.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Primordial germ cells (PGCs) are the germline precursors that give rise to oocytes and sperm, ensuring the continuation of life. While the PGC specification is extensively studied, it remains elusive how the PGC population is sustained and expanded after they migrate to embryonic gonads before birth. This study demonstrates that NRF1, a known regulator for mitochondrial metabolism, plays critical roles in post-migrating PGC development. We show that NRF1 protein level gradually increases in post-migrating PGCs during embryonic development. Conditional Nrf1 knockout from embryonic germ cells leads to impaired PGC proliferation and survival. In addition, NRF1 may also actively drive PGC derivation from pluripotent stem cells. Using whole genome transcriptome profiling and ChIP-seq analyses, we further reveal that NRF1 directly regulates key signalling molecules in PGC formation, transcription factors in proliferation and cell cycle and enzymes in mitochondrial metabolism. Overall, our findings highlight an essential requirement of NRF1 in regulating a broad transcriptional network to support post-migrating PGC development both in vitro and in vivo.
Collapse
Affiliation(s)
- Pengxiang Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jun Su
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Junpeng Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Yilin Xie
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Wei Chen
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| | - Jinhai Zhong
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
12
|
Aizawa E, Ozonov EA, Kawamura YK, Dumeau C, Nagaoka S, Kitajima TS, Saitou M, Peters AHFM, Wutz A. Epigenetic regulation limits competence of pluripotent stem cell-derived oocytes. EMBO J 2023; 42:e113955. [PMID: 37850882 PMCID: PMC10690455 DOI: 10.15252/embj.2023113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
- RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charles‐Etienne Dumeau
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| | - So Nagaoka
- Department of EmbryologyNara Medical UniversityNaraJapan
| | | | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Antoine HFM Peters
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| |
Collapse
|
13
|
Hayashi Y, Tando Y, Ito‐Matsuoka Y, Ikuta K, Takehara A, Morino K, Maegawa H, Matsui Y. Nutritional and metabolic control of germ cell fate through O-GlcNAc regulation. EMBO Rep 2023; 24:e56845. [PMID: 37842859 PMCID: PMC10626443 DOI: 10.15252/embr.202356845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Fate determination of primordial germ cells (PGCs) is regulated in a multi-layered manner, involving signaling pathways, epigenetic mechanisms, and transcriptional control. Chemical modification of macromolecules, including epigenetics, is expected to be closely related with metabolic mechanisms but the detailed molecular machinery linking these two layers remains poorly understood. Here, we show that the hexosamine biosynthetic pathway controls PGC fate determination via O-linked β-N-acetylglucosamine (O-GlcNAc) modification. Consistent with this model, reduction of carbohydrate metabolism via a maternal ketogenic diet that decreases O-GlcNAcylation levels causes repression of PGC formation in vivo. Moreover, maternal ketogenic diet intake until mid-gestation affects the number of ovarian germ cells in newborn pups. Taken together, we show that nutritional and metabolic mechanisms play a previously unappreciated role in PGC fate determination.
Collapse
Affiliation(s)
- Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yumi Ito‐Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kaho Ikuta
- School of MedicineTohoku UniversitySendaiJapan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Katsutaro Morino
- Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Hiroshi Maegawa
- Department of MedicineShiga University of Medical ScienceOtsuJapan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
- Graduate School of MedicineTohoku UniversitySendaiJapan
| |
Collapse
|
14
|
Pang LY, DeLuca S, Zhu H, Urban JM, Spradling AC. Chromatin and gene expression changes during female Drosophila germline stem cell development illuminate the biology of highly potent stem cells. eLife 2023; 12:RP90509. [PMID: 37831064 PMCID: PMC10575629 DOI: 10.7554/elife.90509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Highly potent animal stem cells either self renew or launch complex differentiation programs, using mechanisms that are only partly understood. Drosophila female germline stem cells (GSCs) perpetuate without change over evolutionary time and generate cystoblast daughters that develop into nurse cells and oocytes. Cystoblasts initiate differentiation by generating a transient syncytial state, the germline cyst, and by increasing pericentromeric H3K9me3 modification, actions likely to suppress transposable element activity. Relatively open GSC chromatin is further restricted by Polycomb repression of testis or somatic cell-expressed genes briefly active in early female germ cells. Subsequently, Neijre/CBP and Myc help upregulate growth and reprogram GSC metabolism by altering mitochondrial transmembrane transport, gluconeogenesis, and other processes. In all these respects GSC differentiation resembles development of the totipotent zygote. We propose that the totipotent stem cell state was shaped by the need to resist transposon activity over evolutionary timescales.
Collapse
Affiliation(s)
- Liang-Yu Pang
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Steven DeLuca
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Haolong Zhu
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - John M Urban
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
15
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
16
|
Cooke CB, Barrington C, Baillie-Benson P, Nichols J, Moris N. Gastruloid-derived primordial germ cell-like cells develop dynamically within integrated tissues. Development 2023; 150:dev201790. [PMID: 37526602 PMCID: PMC10508693 DOI: 10.1242/dev.201790] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.
Collapse
Affiliation(s)
- Christopher B. Cooke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Abcam, Discovery Drive, Cambridge Biomedical Campus, Cambridge CB2 0AX, UK
| | | | - Peter Baillie-Benson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – MRC Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
17
|
Jorge AS, Recchia K, Glória MH, de Souza AF, Pessôa LVDF, Fantinato Neto P, Martins DDS, de Andrade AFC, Martins SMMK, Bressan FF, Pieri NCG. Porcine Germ Cells Phenotype during Embryonic and Adult Development. Animals (Basel) 2023; 13:2520. [PMID: 37570330 PMCID: PMC10417053 DOI: 10.3390/ani13152520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Primordial germ cells (PGCs) are the precursors of gametes. Due to their importance for the formation and reproduction of an organism, understanding the mechanisms and pathways of PGCs and the differences between males and females is essential. However, there is little research in domestic animals, e.g., swine, regarding the epigenetic and pluripotency profiles of PGCs during development. This study analyzed the expression of epigenetic and various pluripotent and germline markers associated with the development and differentiation of PGCs in porcine (pPGCs), aiming to understand the different gene expression profiles between the genders. The analysis of gonads at different gestational periods (from 24 to 35 days post fertilization (dpf) and in adults) was evaluated by immunofluorescence and RT-qPCR and showed phenotypic differences between the gonads of male and female embryos. In addition, the pPGCs were positive for OCT4 and VASA; some cells were H3k27me3 positive in male embryos and adult testes. In adults, the cells of the testes were positive for germline markers, as confirmed by gene expression analysis. The results may contribute to understanding the pPGC pathways during reproductive development, while also contributing to the knowledge needed to generate mature gametes in vitro.
Collapse
Affiliation(s)
- Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Mayra Hirakawa Glória
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laís Vicari de Figueirêdo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| | | | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil
| |
Collapse
|
18
|
Hsu FM, Wu QY, Fabyanic EB, Wei A, Wu H, Clark AT. TET1 facilitates specification of early human lineages including germ cells. iScience 2023; 26:107191. [PMID: 37456839 PMCID: PMC10345126 DOI: 10.1016/j.isci.2023.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Ten Eleven Translocation 1 (TET1) is a regulator of localized DNA demethylation through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). To examine DNA demethylation in human primordial germ cell-like cells (hPGCLCs) induced from human embryonic stem cells (hESCs), we performed bisulfite-assisted APOBEC coupled epigenetic sequencing (bACEseq) followed by integrated genomics analysis. Our data indicates that 5hmC enriches at hPGCLC-specific NANOG, SOX17 or TFAP2C binding sites on hPGCLC induction, and this is accompanied by localized DNA demethylation. Using CRISPR-Cas9, we show that deleting the catalytic domain of TET1 reduces hPGCLC competency when starting with hESC cultured on mouse embryonic fibroblasts, and this phenotype can be rescued after transitioning hESCs to defined media and a recombinant substrate. Taken together, our study demonstrates the importance of 5hmC in facilitating hPGCLC competency, and the role of hESC culture conditions in modulating this effect.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily B. Fabyanic
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Singh A, Rappolee DA, Ruden DM. Epigenetic Reprogramming in Mice and Humans: From Fertilization to Primordial Germ Cell Development. Cells 2023; 12:1874. [PMID: 37508536 PMCID: PMC10377882 DOI: 10.3390/cells12141874] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and human embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications. Global epigenetic reprogramming occurs in mammals at two stages: post-fertilization and during the development of primordial germ cells (PGC). Epigenetic reprogramming after fertilization involves rapid demethylation of the paternal genome mediated through active and passive DNA demethylation, and gradual demethylation in the maternal genome through passive DNA demethylation. The de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b, restore DNA methylation beginning from the blastocyst stage until the formation of the gastrula, and DNA maintenance methyltransferase, Dnmt1, maintains methylation in the somatic cells. The PGC undergo a second round of global demethylation after allocation during the formative pluripotent stage before gastrulation, where the imprints and the methylation marks on the transposable elements known as retrotransposons, including long interspersed nuclear elements (LINE-1) and intracisternal A-particle (IAP) elements are demethylated as well. Finally, DNA methylation is restored in the PGC at the implantation stage including sex-specific imprints corresponding to the sex of the embryo. This review introduces a novel perspective by uncovering how toxicants and stress stimuli impact the critical period of allocation during formative pluripotency, potentially influencing both the quantity and quality of PGCs. Furthermore, the comprehensive comparison of epigenetic events between mice and humans breaks new ground, empowering researchers to make informed decisions regarding the suitability of mouse models for their experiments.
Collapse
Affiliation(s)
- Aditi Singh
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Daniel A. Rappolee
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Reproductive Stress Measurement, Mechanisms and Management, Corp., 135 Lake Shore Rd., Grosse Pointe Farms, MI 48236, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Douglas M. Ruden
- CS Mott Center, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (A.S.); (D.A.R.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
20
|
Ribeiro J, Crossan GP. GCNA is a histone binding protein required for spermatogonial stem cell maintenance. Nucleic Acids Res 2023; 51:4791-4813. [PMID: 36919611 PMCID: PMC10250205 DOI: 10.1093/nar/gkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Recycling and de-novo deposition of histones during DNA replication is a critical challenge faced by eukaryotic cells and is coordinated by histone chaperones. Spermatogenesis is highly regulated sophisticated process necessitating not only histone modification but loading of testis specific histone variants. Here, we show that Germ Cell Nuclear Acidic protein (GCNA), a germ cell specific protein in adult mice, can bind histones and purified GCNA exhibits histone chaperone activity. GCNA associates with the DNA replication machinery and supports progression through S-phase in murine undifferentiated spermatogonia (USGs). Whilst GCNA is dispensable for embryonic germ cell development, it is required for the maintenance of the USG pool and for long-term production of sperm. Our work describes the role of a germ cell specific histone chaperone in USGs maintenance in mice. These findings provide a mechanistic basis for the male infertility observed in patients carrying GCNA mutations.
Collapse
|
21
|
Lee J, Lee S, Park K, Shin SY, Frost JM, Hsieh PH, Shin C, Fischer RL, Hsieh TF, Choi Y. Distinct regulatory pathways contribute to dynamic CHH methylation patterns in transposable elements throughout Arabidopsis embryogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1204279. [PMID: 37360705 PMCID: PMC10285158 DOI: 10.3389/fpls.2023.1204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
CHH methylation (mCHH) increases gradually during embryogenesis across dicotyledonous plants, indicating conserved mechanisms of targeting and conferral. Although it is suggested that methylation increase during embryogenesis enhances transposable element silencing, the detailed epigenetic pathways underlying this process remain unclear. In Arabidopsis, mCHH is regulated by both small RNA-dependent DNA methylation (RdDM) and RNA-independent Chromomethylase 2 (CMT2) pathways. Here, we conducted DNA methylome profiling at five stages of Arabidopsis embryogenesis, and classified mCHH regions into groups based on their dependency on different methylation pathways. Our analysis revealed that the gradual increase in mCHH in embryos coincided with the expansion of small RNA expression and regional mCHH spreading to nearby sites at numerous loci. We identified distinct methylation dynamics in different groups of mCHH targets, which vary according to transposon length, location, and cytosine frequency. Finally, we highlight the characteristics of transposable element loci that are targeted by different mCHH machinery, showing that short, heterochromatic TEs with lower mCHG levels are enriched in loci that switch from CMT2 regulation in leaves, to RdDM regulation during embryogenesis. Our findings highlight the interplay between the length, location, and cytosine frequency of transposons and the mCHH machinery in modulating mCHH dynamics during embryogenesis.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| | - Kyunghyuk Park
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Yoon Shin
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jennifer M. Frost
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Ping-Hung Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Chanseok Shin
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
23
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
Sasaki K, Sangrithi M. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Mol Cell Endocrinol 2023:111949. [PMID: 37201564 DOI: 10.1016/j.mce.2023.111949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Male and female germ cells undergo genome-wide reprogramming during their development, and execute sex-specific programs to complete meiosis and successfully generate healthy gametes. While sexually dimorphic germ cell development is fundamental, similarities and differences exist in the basic processes governing normal gametogenesis. At the simplest level, male gamete generation in mammals is centred on the activity of spermatogonial stem cells (SSCs), and an equivalent cell state is not present in females. Maintaining this unique SSC epigenetic state, while keeping to germ cell-intrinsic developmental programs, poses challenges for the correct completion of spermatogenesis. In this review, we highlight the origins of spermatogonia, comparing and contrasting them with female germline development to emphasize specific developmental processes that are required for their function as germline stem cells. We identify gaps in our current knowledge about human SSCs and further discuss the impact of the unique regulation of the sex chromosomes during spermatogenesis, and the roles of X-linked genes in SSCs.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, United States.
| | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
25
|
Barchi M, Guida E, Dolci S, Rossi P, Grimaldi P. Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer. VITAMINS AND HORMONES 2023; 122:75-106. [PMID: 36863802 DOI: 10.1016/bs.vh.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.
Collapse
Affiliation(s)
- Marco Barchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
Ruthig VA, Hatkevich T, Hardy J, Friedersdorf MB, Mayère C, Nef S, Keene JD, Capel B. The RNA binding protein DND1 is elevated in a subpopulation of pro-spermatogonia and targets chromatin modifiers and translational machinery during late gestation. PLoS Genet 2023; 19:e1010656. [PMID: 36857387 PMCID: PMC10010562 DOI: 10.1371/journal.pgen.1010656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/13/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
DND1 is essential to maintain germ cell identity. Loss of Dnd1 function results in germ cell differentiation to teratomas in some inbred strains of mice or to somatic fates in zebrafish. Using our knock-in mouse line in which a functional fusion protein between DND1 and GFP is expressed from the endogenous locus (Dnd1GFP), we distinguished two male germ cell (MGC) populations during late gestation cell cycle arrest (G0), consistent with recent reports of heterogeneity among MGCs. Most MGCs express lower levels of DND1-GFP (DND1-GFP-lo), but some MGCs express elevated levels of DND1-GFP (DND1-GFP-hi). A RNA-seq time course confirmed high Dnd1 transcript levels in DND1-GFP-hi cells along with 5-10-fold higher levels for multiple epigenetic regulators. Using antibodies against DND1-GFP for RNA immunoprecipitation (RIP)-sequencing, we identified multiple epigenetic and translational regulators that are binding targets of DND1 during G0 including DNA methyltransferases (Dnmts), histone deacetylases (Hdacs), Tudor domain proteins (Tdrds), actin dependent regulators (Smarcs), and a group of ribosomal and Golgi proteins. These data suggest that in DND1-GFP-hi cells, DND1 hosts coordinating mRNA regulons that consist of functionally related and localized groups of epigenetic enzymes and translational components.
Collapse
Affiliation(s)
- Victor A. Ruthig
- Sexual Medicine Lab, Department of Urology, Weill Cornell Medicine, New York, New York, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew B. Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Jack D. Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
27
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
28
|
Resetting histone modifications during human prenatal germline development. Cell Discov 2023; 9:14. [PMID: 36737434 PMCID: PMC9898496 DOI: 10.1038/s41421-023-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Histone modifications play critical roles in regulating gene expression and present dynamic changes during early embryo development. However, how they are reprogrammed during human prenatal germline development has not yet been elucidated. Here, we map the genome-wide profiles of three key histone modifications in human primordial germ cells (hPGCs) from weeks 8 to 23 of gestation for the first time by performing ULI-NChIP-seq. Notably, H3K4me3 exhibits a canonical promoter-enriched pattern, though with relatively lower enrichment, and is positively correlated with gene expression in globally hypomethylated hPGCs. In addition, H3K27me3 presents very low enrichment but plays an important role in not only dynamically governing specific bivalent promoters but also impeding complete X chromosome reactivation in female hPGCs. Given the activation effects of both global DNA demethylation and H3K4me3 signals, repressive H3K9me3 and H3K27me3 marks are jointly responsible for the paradoxical regulation of demethylation-resistant regions in hPGCs. Collectively, our results provide a unique roadmap of three core histone modifications during hPGC development, which helps to elucidate the architecture of germ cell reprogramming in an extremely hypomethylated DNA environment.
Collapse
|
29
|
Demond H, Hanna CW, Castillo-Fernandez J, Santos F, Papachristou EK, Segonds-Pichon A, Kishore K, Andrews S, D'Santos CS, Kelsey G. Multi-omics analyses demonstrate a critical role for EHMT1 methyltransferase in transcriptional repression during oogenesis. Genome Res 2023; 33:18-31. [PMID: 36690445 PMCID: PMC9977154 DOI: 10.1101/gr.277046.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023]
Abstract
EHMT1 (also known as GLP) is a multifunctional protein, best known for its role as an H3K9me1 and H3K9me2 methyltransferase through its reportedly obligatory dimerization with EHMT2 (also known as G9A). Here, we investigated the role of EHMT1 in the oocyte in comparison to EHMT2 using oocyte-specific conditional knockout mouse models (Ehmt2 cKO, Ehmt1 cKO, Ehmt1/2 cDKO), with ablation from the early phase of oocyte growth. Loss of EHMT1 in Ehmt1 cKO and Ehmt1/2 cDKO oocytes recapitulated meiotic defects observed in the Ehmt2 cKO; however, there was a significant impairment in oocyte maturation and developmental competence in Ehmt1 cKO and Ehmt1/2 cDKO oocytes beyond that observed in the Ehmt2 cKO. Consequently, loss of EHMT1 in oogenesis results, upon fertilization, in mid-gestation embryonic lethality. To identify H3K9 methylation and other meaningful biological changes in each mutant to explore the molecular functions of EHMT1 and EHMT2, we performed immunofluorescence imaging, multi-omics sequencing, and mass spectrometry (MS)-based proteome analyses in cKO oocytes. Although H3K9me1 was depleted only upon loss of EHMT1, H3K9me2 was decreased, and H3K9me2-enriched domains were eliminated equally upon loss of EHMT1 or EHMT2. Furthermore, there were more significant changes in the transcriptome, DNA methylome, and proteome in Ehmt1/2 cDKO than Ehmt2 cKO oocytes, with transcriptional derepression leading to increased protein abundance and local changes in genic DNA methylation in Ehmt1/2 cDKO oocytes. Together, our findings suggest that EHMT1 contributes to local transcriptional repression in the oocyte, partially independent of EHMT2, and is critical for oogenesis and oocyte developmental competence.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, 4810296, Temuco, Chile
| | - Courtney W. Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom;,Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | | | - Fátima Santos
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Evangelia K. Papachristou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Anne Segonds-Pichon
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Clive S. D'Santos
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom;,Wellcome-MRC Institute of Metabolic Science–Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
30
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
31
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
32
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
33
|
Hou C, Ye Z, Yang S, Jiang Z, Wang J, Wang E. Lysine demethylase 1B (Kdm1b) enhances somatic reprogramming through inducing pluripotent gene expression and promoting cell proliferation. Exp Cell Res 2022; 420:113339. [PMID: 36075448 DOI: 10.1016/j.yexcr.2022.113339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Lysine demethylase 1B (Kdm1b) is known as an epigenetic modifier with demethylase activity against H3K4 and H3K9 histones and plays an important role in tumor progression and tumor stem cell enrichment. In this study, we attempted to elucidate the role of Kdm1b in somatic cell reprogramming. We found that exogenous expression of Kdm1b in human dermal fibroblasts (HDFs) can influence the epigenetic modifications of histones. Subsequent analysis further suggests that the overexpression of Kdm1b can promote cell proliferation, reprogram metabolism and inhibit cell apoptosis. In addition, a series of multipotent factors including Sox2 and Nanog, and several epigenetic factors that may reduce epigenetic barriers were upregulated to varying degrees. More importantly, HDFs transfected with the combination of Oct4 (POU5F1), Sox2, Klf4 and c-Myc and Kdm1b (OSKMK) achieved higher reprogramming efficiency. Therefore, we suggest that Kdm1b is an important epigenetic factor associated with pluripotency.
Collapse
Affiliation(s)
- Cuicui Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Songqin Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, United States.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; College of Chemistry, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
34
|
Lowe MG, Yen MR, Hsu FM, Hosohama L, Hu Z, Chitiashvili T, Hunt TJ, Gorgy I, Bernard M, Wamaitha SE, Chen PY, Clark AT. EED is required for mouse primordial germ cell differentiation in the embryonic gonad. Dev Cell 2022; 57:1482-1495.e5. [PMID: 35679863 DOI: 10.1016/j.devcel.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/14/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Development of primordial germ cells (PGCs) is required for reproduction. During PGC development in mammals, major epigenetic remodeling occurs, which is hypothesized to establish an epigenetic landscape for sex-specific germ cell differentiation and gametogenesis. In order to address the role of embryonic ectoderm development (EED) and histone 3 lysine 27 trimethylation (H3K27me3) in this process, we created an EED conditional knockout mouse and show that EED is essential for regulating the timing of sex-specific PGC differentiation in both ovaries and testes, as well as X chromosome dosage decompensation in testes. Integrating chromatin and whole genome bisulfite sequencing of epiblast and PGCs, we identified a poised repressive signature of H3K27me3/DNA methylation that we propose is established in the epiblast where EED and DNMT1 interact. Thus, EED joins DNMT1 in regulating the timing of sex-specific PGC differentiation during the critical window when the gonadal niche cells specialize into an ovary or testis.
Collapse
Affiliation(s)
- Matthew G Lowe
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fei-Man Hsu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Linzi Hosohama
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Zhongxun Hu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA
| | - Timothy J Hunt
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Isaac Gorgy
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Matthew Bernard
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Choi HJ, Jung KM, Rengaraj D, Lee KY, Yoo E, Kim TH, Han JY. Single-cell RNA sequencing of mitotic-arrested prospermatogonia with DAZL::GFP chickens and revealing unique epigenetic reprogramming of chickens. J Anim Sci Biotechnol 2022; 13:64. [PMID: 35659766 PMCID: PMC9169296 DOI: 10.1186/s40104-022-00712-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Germ cell mitotic arrest is conserved in many vertebrates, including birds, although the time of entry or exit into quiescence phase differs. Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch. However, mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage. Results We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens. Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages (E12, E16, and hatch), we found that metabolic and signaling pathways were regulated, and that the epigenome was reprogrammed during mitotic arrest. In particular, we found that histone H3K9 and H3K14 acetylation (by HDAC2) and DNA demethylation (by DNMT3B and HELLS) led to a transcriptionally permissive chromatin state. Furthermore, we found that global DNA demethylation occurred gradually after the onset of mitotic arrest, indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome. DNA hypomethylation persisted after hatching, and methylation was slowly re-established 3 weeks later. Conclusions We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching. This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described. Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00712-4.
Collapse
Affiliation(s)
- Hyeon Jeong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tae Hyun Kim
- Department of Animal Science, Pennsylvania State University, State College, PA, 16801, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
36
|
Shirane K. The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Gene 2022; 97:3-14. [PMID: 35431282 DOI: 10.1266/ggs.21-00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.
Collapse
Affiliation(s)
- Kenjiro Shirane
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
37
|
Phan TP, Boatwright CA, Drown CG, Skinner MW, Strong MA, Jordan PW, Holland AJ. Upstream open reading frames control PLK4 translation and centriole duplication in primordial germ cells. Genes Dev 2022; 36:718-736. [PMID: 35772791 PMCID: PMC9296005 DOI: 10.1101/gad.349604.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Centrosomes are microtubule-organizing centers comprised of a pair of centrioles and the surrounding pericentriolar material. Abnormalities in centriole number are associated with cell division errors and can contribute to diseases such as cancer. Centriole duplication is limited to once per cell cycle and is controlled by the dosage-sensitive Polo-like kinase 4 (PLK4). Here, we show that PLK4 abundance is translationally controlled through conserved upstream open reading frames (uORFs) in the 5' UTR of the mRNA. Plk4 uORFs suppress Plk4 translation and prevent excess protein synthesis. Mice with homozygous knockout of Plk4 uORFs (Plk4 Δu/Δu ) are viable but display dramatically reduced fertility because of a significant depletion of primordial germ cells (PGCs). The remaining PGCs in Plk4 Δu/Δu mice contain extra centrioles and display evidence of increased mitotic errors. PGCs undergo hypertranscription and have substantially more Plk4 mRNA than somatic cells. Reducing Plk4 mRNA levels in mice lacking Plk4 uORFs restored PGC numbers and fully rescued fertility. Together, our data uncover a specific requirement for uORF-dependent control of PLK4 translation in counterbalancing the increased Plk4 transcription in PGCs. Thus, uORF-mediated translational suppression of PLK4 has a critical role in preventing centriole amplification and preserving the genomic integrity of future gametes.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christina A Boatwright
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
38
|
Severino J, Bauer M, Mattimoe T, Arecco N, Cozzuto L, Lorden P, Hamada N, Nosaka Y, Nagaoka SI, Audergon P, Tarruell A, Heyn H, Hayashi K, Saitou M, Payer B. Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells. EMBO J 2022; 41:e109457. [PMID: 35603814 PMCID: PMC9194795 DOI: 10.15252/embj.2021109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.
Collapse
Affiliation(s)
- Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patricia Lorden
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - So I Nagaoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Pauline Audergon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Tarruell
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
39
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this manuscript is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analysed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analysed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.) and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical pharmaceutical Research & Development
| | - A Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | |
Collapse
|
40
|
Qian J, Guo F. De novo programming: establishment of epigenome in mammalian oocytes. Biol Reprod 2022; 107:40-53. [PMID: 35552602 DOI: 10.1093/biolre/ioac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
Innovations in ultrasensitive and single-cell measurements enable us to study layers of genome regulation in the view of cellular and regulatory heterogeneity. Genome-scale mapping allows to evaluate epigenetic features and dynamics in different genomic contexts, including genebodies, CGIs, ICRs, promoters, PMDs, and repetitive elements. The epigenome of early embryos, fetal germ cells, and sperm has been extensively studied for the past decade, while oocytes remain less clear. Emerging evidence now supports the notion that transcription and chromatin accessibility precede de novo DNA methylation in both human and mouse oocytes. Recent studies also start to chart correlations among different histone modifications and DNA methylation. We discussed the potential mechanistic hierarchy by which shapes oocyte DNA methylome, also provided insights into the convergent and divergent features between human and mice.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Spiller C, Bowles J. Instructing Mouse Germ Cells to Adopt a Female Fate. Sex Dev 2022:1-13. [PMID: 35320803 DOI: 10.1159/000523763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germ cells are critical for the survival of our species. They are the only cells that undergo meiosis - the reductive form of cell division that is necessary for genetic reassortment of chromosomes and production of the haploid gametes, the sperm and eggs. Remarkably, the initial female/male fate decision in fetal germ cells does not depend on whether they are chromosomally XX or XY; rather, initial sexual fate is imposed by influences from the surrounding tissue. In mammals, the female germline is particularly precious: despite recent suggestions that germline stem cells exist in the ovary, it is still generally accepted that the ovarian reserve is finite, and its size is dependant on germ cells of the fetal ovary initiating meiosis in a timely manner. SUMMARY Prior to 2006, evidence suggested that gonadal germ cells initiate meiotic prophase I by default, but more recent data support a key role for the signalling molecule retinoic acid (RA) in instructing female germ cell fate. Newer findings also support a key meiosis-inducing role for another signalling molecule, bone morphogenic protein (BMP). Nonetheless, many questions remain. KEY MESSAGES Here, we review knowledge thus far regarding extrinsic and intrinsic determinants of a female germ cell fate, focusing on the mouse model.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Hayashi Y, Matsui Y. Metabolic Control of Germline Formation and Differentiation in Mammals. Sex Dev 2022:1-16. [PMID: 35086109 PMCID: PMC10389803 DOI: 10.1159/000520662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The germ cell lineage involves dynamic epigenetic changes during its formation and differentiation that are completely different from those of the somatic cell lineage. Metabolites and metabolic pathways have been reported as key factors related to the regulation of epigenetics as cofactors and substrates. However, our knowledge about the metabolic characteristics of germ cells, especially during the fetal stage, and their transition during differentiation is quite limited due to the rarity of the cells. Nevertheless, recent developments in omics technologies have made it possible to extract comprehensive metabolomic features of germ cells. SUMMARY In this review, we present the latest researches on the metabolic properties of germ cells in 4 stages: primordial germ cell specification, fetal germ cell differentiation, spermatogenesis, and oogenesis. At every stage, extensive published data has been accumulated on energy metabolism, and it is possible to describe its changes during germ cell differentiation in detail. As pluripotent stem cells differentiate into germ cells, energy metabolism shifts from glycolysis to oxidative phosphorylation; however, in spermatogenesis, glycolytic pathways are also temporarily dominant in spermatogonial stem cells. Although the significance of metabolic pathways other than energy metabolism in germ cell differentiation is largely unknown, the relation of the pentose phosphate pathway and Ser-Gly-one-carbon metabolism with germ cell properties has been suggested at various stages. We further discuss the relationship between these characteristic metabolic pathways and epigenetic regulation during germ cell specification and differentiation. Finally, the relevance of dietary and supplemental interventions on germ cell function and epigenomic regulation is also discussed. Key Messages: Comprehensive elucidation of metabolic features and metabolism-epigenome crosstalk in germ cells is important to reveal how the characteristic metabolic pathways are involved in the germ cell regulation. The accumulation of such insights would lead to suggestions for optimal diets and supplements to maintain reproductive health through modulating metabolic and epigenetic status of germ cells.
Collapse
Affiliation(s)
- Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Luo Y, Yu Y. Research Advances in Gametogenesis and Embryogenesis Using Pluripotent Stem Cells. Front Cell Dev Biol 2022; 9:801468. [PMID: 35127717 PMCID: PMC8810640 DOI: 10.3389/fcell.2021.801468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The previous studies of human gametogenesis and embryogenesis have left many unanswered questions, which hinders the understanding of the physiology of these two vital processes and the development of diagnosis and treatment strategies for related diseases. Although many results have been obtained from animal studies, particularly mouse research, the results cannot be fully applied to humans due to species differences in physiology and pathology. However, due to ethical and material limitations, the direct study of human gametes and embryos is very difficult. The emergence and rapid development of organoids allow the construction of organoid systems that simulate gametogenesis and embryogenesis in vitro, and many studies have successfully established organoid systems for some parts of or even the entire processes of gametogenesis and embryogenesis. These studies typically start with the establishment of mouse models and then modify these models to obtain human organoid models. These organoid models can be used to obtain a better understanding of the signaling pathways, molecular mechanisms, genetics, and epigenetic changes involved in gametogenesis and embryogenesis and could also be applied to clinical applications, such as drug screening. Here, we discuss the formation of primordial stem cell-like cells (PGCLCs), and in vitro-induced gametes and embryoids using pluripotent stem cells (PSCs). We also analyze their applications and limitations.
Collapse
Affiliation(s)
- Yuxin Luo
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Yang Yu,
| |
Collapse
|
44
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Colonnetta MM, Goyal Y, Johnson HE, Syal S, Schedl P, Deshpande G. Preformation and epigenesis converge to specify primordial germ cell fate in the early Drosophila embryo. PLoS Genet 2022; 18:e1010002. [PMID: 34986144 PMCID: PMC8765614 DOI: 10.1371/journal.pgen.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate. Proper specification of primordial germ cells (PGCs) is crucial as PGCs serve as the precursors of germline stem cells. To specify PGC fate, invertebrates rely upon cell autonomous preformation involving maternally deposited germ plasm. In Drosophila melanogaster, to insulate newly formed PGCs from the adverse effects of the cell-cell signaling pathways, germ plasm determinants silence transcription and attenuate the cell cycle. However, our data on the BMP signaling pathway challenge this long-held view of PGC specification and suggest that appropriate specification of embryonic PGCs is sensitive to the BMP ligand, decapentaplegic (dpp), and its cognate receptor, thickveins. We find that PGCs are not only capable of responding to BMP signals from the soma, but also that these signals impact the proper determination of the germ cells. Based on these unanticipated similarities between mammals and flies, we propose a model integrating contribution of both the cell-autonomous (preformation) and non-autonomous (epigenesis) pathways during PGC determination. Consistent with the model, we have observed dominant genetic interactions between, oskar, the maternal determinant of PGC fate, and the BMP pathway ligand dpp.
Collapse
Affiliation(s)
- Megan M. Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yogesh Goyal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sapna Syal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
46
|
Matsui Y, Hayashi Y. Metabolic pathways regulating the development and non-genomic heritable traits of germ cells. J Reprod Dev 2021; 68:96-103. [PMID: 34955463 PMCID: PMC8979796 DOI: 10.1262/jrd.2021-137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolism is an important cellular process necessary not only for producing energy and building blocks for cells, but also for regulating various cell functions, including intracellular
signaling, epigenomic effects, and transcription. The regulatory roles of metabolism have been extensively studied in somatic cells, including stem cells and cancer cells, but data regarding
germ cells are limited. Because germ cells produce individuals of subsequent generations, understanding the role of metabolism and its regulatory functions in germ cells is important.
Although limited information concerning the specific role of metabolism in germ cells is available, recent advances in related research have revealed specific metabolic states of
undifferentiated germ cells in embryos as well as in germ cells undergoing oogenesis and spermatogenesis. Studies have also elucidated the functions of some metabolic pathways associated
with germ cell development and the non-genomic heritable machinery of germ cells. In this review, we summarized all the available knowledge on the characteristic metabolic pathways in germ
cells, focusing on their regulatory functions, while discussing the issues that need to be addressed to enhance the understanding of germ cell metabolism.
Collapse
Affiliation(s)
- Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi 980-8575, Japan.,Graduate School of Life Sciences, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Miyagi 980-8575, Japan.,Graduate School of Life Sciences, Tohoku University, Miyagi 980-8577, Japan.,Graduate School of Medicine, Tohoku University, Miyagi 980-8575, Japan
| |
Collapse
|
47
|
Dunislawska A, Pietrzak E, Wishna Kadawarage R, Beldowska A, Siwek M. Pre-hatching and post-hatching environmental factors related to epigenetic mechanisms in poultry. J Anim Sci 2021; 100:6473202. [PMID: 34932113 DOI: 10.1093/jas/skab370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications are phenotypic changes unrelated to the modification of the DNA sequence. These modifications are essential for regulating cellular differentiation and organism development. In this case, epigenetics controls how the animal's genetic potential is used. The main epigenetic mechanisms are microRNA activity, DNA methylation and histone modification. The literature has repeatedly shown that environmental modulation has a significant influence on the regulation of epigenetic mechanisms in poultry. The aim of this review is to give an overview of the current state of the knowledge in poultry epigenetics in terms of issues relevant to overall poultry production and the improvement of the health status in chickens and other poultry species. One of the main differences between birds and mammals is the stage of embryonic development. The bird's embryo develops outside its mother, so an optimal environment of egg incubation before hatching is crucial for development. It is also the moment when many factors influence the activation of epigenetic mechanisms, i.e., incubation temperature, humidity, light, as well as in ovo treatments. Epigenome of the adult birds, might be modulated by: nutrition, supplementation and treatment, as well as modification of the intestinal microbiota. In addition, the activation of epigenetic mechanisms is influenced by pathogens (i.e., pathogenic bacteria, toxins, viruses and fungi) as well as, the maintenance conditions. Farm animal epigenetics is still a big challenge for scientists. This is a research area with many open questions. Modern methods of epigenetic analysis can serve both in the analysis of biological mechanisms and in the research and applied to production system, poultry health and welfare.
Collapse
Affiliation(s)
- A Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - E Pietrzak
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - R Wishna Kadawarage
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - A Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| | - M Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka , Bydgoszcz, Poland
| |
Collapse
|
48
|
Sánchez OF, Lin LF, Xie J, Freeman JL, Yuan C. Lead exposure induces dysregulation of constitutive heterochromatin hallmarks in live cells. Curr Res Toxicol 2021; 3:100061. [PMID: 35005634 PMCID: PMC8717252 DOI: 10.1016/j.crtox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Lead (Pb) is a heavy metal contaminant commonly found in air, soil, and drinking water due to legacy uses. Excretion of ingested Pb can result in extensive kidney damages due to elevated oxidative stress. Epigenetic alterations induced by exposure to Pb have also been implied but remain poorly understood. In this work, we assessed changes in repressive epigenetic marks, namely DNA methylation (meCpG) and histone 3 lysine 9 tri-methylation (H3K9me3) after exposure to Pb. Live cell epigenetic probes coupled to bimolecular fluorescence complementation (BiFC) were used to monitor changes in the selected epigenetic marks. Exposure to Pb significantly lowered meCpG and H3K9me3 levels in HEK293T cells suggesting global changes in constitutive heterochromatin. A heterodimeric pair of probes that tags chromatin regions enriched in both meCpG and H3K9me3 further confirmed our findings. The observed epigenetic changes can be partially attributed to aberrant transcriptional changes induced by Pb, such as overexpression of TET1 after Pb exposure. Lastly, we monitored changes in selected heterochromatin marks after removal of Pb and found that changes in these markers do not immediately recover to their original level suggesting potential long-term damages to chromatin structure.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Li F. Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center of Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
49
|
Abstract
Primordial germ cells (PGCs) form early in embryo development and are crucial precursors to functioning gamete cells. Considerable research has focussed on identifying the transcriptional characteristics and signalling pathway requirements that confer PGC specification and development, enabling the derivation of PGC-like cells (PGCLCs) in vitro using specific signalling cocktails. However, full maturation to germ cells still relies on co-culture with supporting cell types, implicating an additional requirement for cellular- and tissue-level regulation. Here, we discuss the experimental evidence that highlights the nature of intercellular interactions between PGCs and neighbouring cell populations during mouse PGC development. We posit that the role that tissue interactions play on PGCs is not limited solely to signalling-based induction but extends to coordination of development by robust regulation of the proportions and position of the cells and tissues within the embryo, which is crucial for functional germ cell maturation. Such tissue co-development provides a dynamic, contextual niche for PGC development. We argue that there is evidence for a clear role for inter-tissue dependence of mouse PGCs, with potential implications for generating mammalian PGCLCs in vitro.
Collapse
Affiliation(s)
- Christopher B Cooke
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.,Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge, CB2 0AX, UK.,The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
50
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|