1
|
Besong EE, Akhigbe TM, Obimma JN, Obembe OO, Akhigbe RE. Acetate Abates Arsenic-Induced Male Reproductive Toxicity by Suppressing HDAC and Uric Acid-Driven Oxido-inflammatory NFkB/iNOS/NO Response in Rats. Biol Trace Elem Res 2024; 202:2672-2687. [PMID: 37726447 DOI: 10.1007/s12011-023-03860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Arsenic is associated with male reproductive toxicity through histone deacetylation and oxido-inflammatory injury. Notwithstanding, short-chain fatty acids such as acetate exert anti-oxido-inflammatory activities and inhibit histone deacetylation. This study investigated the impact of acetate on arsenic-induced male reproductive toxicity. Forty eight adult male Wistar rats were allotted into any of these four groups (n = 12 rats per group): vehicle-treated, sodium acetate-treated, arsenic-exposed, and arsenic-exposed + sodium acetate-treated. The results revealed that arsenic exposure prolonged the latencies of mount, intromission, and ejaculation and reduced the frequencies of mount, intromission, and ejaculation, as well as mating and fertility indices, litter size and weight, anogenital distance, anogenital index, and survival rate in male F1 offspring at weaning. Also, arsenic reduced the circulating levels of gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and testosterone and testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase activities. In addition, arsenic reduced the daily and total spermatid production, sperm count, motility, and viability but increased the percentage of sperm cells with abnormal morphology. Furthermore, arsenic increased testicular xanthine oxidase activity, uric acid, and malondialdehyde levels, and reduced glutathione content, superoxide dismutase and catalase activities, total antioxidant capacity, and Nrf2 level. More so, arsenic exposure increased testicular iNOS activity and nitric oxide (NO), TNF-α, IL-1β, IL-6, and NFkB levels as well as Bax, caspase 9, and caspase 3 activities, and reduced Bcl-2. These findings were associated with arsenic-induced increase in testicular arsenic concentration, histone deacetylase activity, and reduced testicular weight. Histopathological examination revealed that arsenic also disrupted testicular histoarchitecture, which was accompanied by altered testicular planimetry and reduced spermatogenic cells. Notwithstanding, sodium acetate alleviated arsenic-induced sexual dysfunction as well as biochemical and histological alterations. These were accompanied acetate-driven downregulation of histone deacetylase (HDAC) activity. Succinctly, acetate attenuated arsenic-induced male reproductive toxicity by suppressing HDAC and uric acid-driven oxido-inflammatory NFkB/iNOS/NO response.
Collapse
Affiliation(s)
- E E Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - J N Obimma
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O O Obembe
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
2
|
Besong EE, Ashonibare PJ, Akhigbe TM, Obimma JN, Akhigbe RE. Sodium acetate abates lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP signaling and activating Nrf2/HO-1 in male Wistar rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1233-1243. [PMID: 37658211 DOI: 10.1007/s00210-023-02696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Oxidative stress has been linked with lead toxicity, including lead-induced sexual dysfunction. On the contrary, sodium acetate has been proven to exert antioxidant activity. However, the effect of sodium acetate on lead-induced sexual dysfunction has not been fully explored. This study investigated the effect of sodium acetate on lead-induced sexual dysfunction, exploring the involvement of testosterone, eNOS/NO/cGMP, and Nrf2/HO-1 signaling. Twenty male Wistar rats with similar weights were randomly assigned into four groups (n = 5 rats/group) after two weeks of acclimatization. Animals were vehicle-treated (0.5 ml/day of distilled water, per os), acetate-treated (200 mg/kg/day, per os), lead-treated (20 mg/kg/day, per os), or lead + acetate-treated. The results revealed that sodium acetate treatment attenuated lead-induced rise in penile lead, malondialdehyde and oxidized glutathione concentrations, and acetylcholinesterase activity. In addition, lead exposure prolonged mount, intromission, and ejaculation latency and reduced mount, intromission, and ejaculation frequency, as well as the motivation to mate and penile reflex, which were improved by acetate treatment. More so, acetate treatment ameliorated lead-induced reductions in absolute and relative penile weight, eNOS, NO, cGMP, luteinizing hormone, follicle-stimulating hormone, testosterone, dopamine, Nrf2, HO-1, and reduced glutathione concentrations, as well as glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase activities. In conclusion, this study demonstrates that sodium acetate attenuated lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP and Nrf2/HO-1 signaling. Despite the compelling data presented in this study, other possible associated mechanisms in the protective role of acetate should be explored.
Collapse
Affiliation(s)
- E E Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P J Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - J N Obimma
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
3
|
Salia S, Martin Y, Burke FF, Myles LA, Jackman L, Halievski K, Bambico FR, Swift-Gallant A. Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain Behav Immun Health 2023; 30:100637. [PMID: 37256194 PMCID: PMC10225889 DOI: 10.1016/j.bbih.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60-85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens' activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens.
Collapse
|
4
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
5
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
6
|
Mating experiences with the same partner enhanced mating activities of naïve male medaka fish. Sci Rep 2022; 12:19665. [PMID: 36385126 PMCID: PMC9668913 DOI: 10.1038/s41598-022-23871-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Mating experience shapes male mating behavior across species, from insects, fish, and birds, to rodents. Here, we investigated the effect of multiple mating experiences on male mating behavior in "naïve" (defined as sexually inexperienced) male medaka fish. The latency to mate with the same female partner significantly decreased after the second encounter, whereas when the partner was changed, the latency to mate was not decreased. These findings suggest that mating experiences enhanced the mating activity of naïve males for the familiar female, but not for an unfamiliar female. In contrast, the mating experiences of "experienced" (defined as those having mated > 7 times) males with the same partner did not influence their latency to mate. Furthermore, we identified 10 highly and differentially expressed genes in the brains of the naïve males after the mating experience and revealed 3 genes that are required for a functional cascade of the thyroid hormone system. Together, these findings suggest that the mating experience of naïve male medaka fish influences their mating behaviors, with neural changes triggered by thyroid hormone activation in the brain.
Collapse
|
7
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
8
|
Garrick SP, Berger PJ, Nold MF, Nold-Petry CA. Murine Double Hit Model for Neonatal Cardiopulmonary Diseases: Bronchopulmonary Dysplasia (BPD) and Pulmonary Hypertension Associated with BPD. Bio Protoc 2022; 12:4669. [PMID: 36816013 PMCID: PMC9926942 DOI: 10.21769/bioprotoc.4669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) and pulmonary hypertension associated with BPD (BPD-PH) are of multifactorial origin and share common risk factors. Most murine models of BPD expose newborn pups to only one of these risk factors-more commonly postnatal hyperoxia-thereby mimicking the vital increased fraction of inspired oxygen (FiO2) that preterm infants in neonatal intensive care units often require. To improve representation of the multifactorial origins of BPD and BPD-PH, we established a double hit model, combining antenatal systemic inflammation followed by postnatal hyperoxia. On embryonic day 14, pups are exposed to systemic maternal inflammation via a single intraperitoneal injection of 150 µg/kg of lipopolysaccharide to the dam. Within 24 h after birth, pups and dams are randomized and exposed to gas with either an FiO2 of 0.21 (room air) or 0.65 (hyperoxia 65%). In our BPD and BPD-PH double hit model, we can obtain multiple readouts from individual pups that include echocardiography, lung histology and immunohistochemistry, ex vivo X-ray micro computed tomography, and pulmonary and plasmatic immunity by RNA, protein, or flow cytometry. This protocol was validated in: Sci Transl Med (2022), DOI: 10.1126/scitranslmed.aaz8454 Graphical abstract Figure 1. Murine double hit model of cardiopulmonary disease. On embryonic day (E)14, pups are exposed to systemic maternal inflammation via a single intraperitoneal injection of 150 µg/kg lipopolysaccharide to the dam. Within 24 h after birth, pups and dams are randomized to be exposed to gas with either a fraction of inspired oxygen (FiO 2 ) of 0.21 (air; 21% O 2 ) or 0.65 (hyperoxia; 65% O 2 ) for a maximum of 28 days. According to the murine stage of lung development ( Schittny, 2017 ), experimental endpoints include postnatal day (D)3, D5, D14, D28, and D60.
Collapse
Affiliation(s)
- Steven P. Garrick
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia
,
Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3128, Australia
| | - Philip J. Berger
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia
,
Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3128, Australia
| | - Marcel F. Nold
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia
,
Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3128, Australia
,
Monash Newborn, Monash Children’s Hospital, Melbourne, Victoria 3168, Australia
| | - Claudia A. Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, Victoria 3168, Australia
,
Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria 3128, Australia
,
*For correspondence:
| |
Collapse
|
9
|
Ameliorative Sexual Behavior and Phosphodiesterase-5 Inhibitory Effects of Spondias mangifera Fruit Extract in Rodents: In Silico, In Vitro, and In Vivo Study. J Clin Med 2022; 11:jcm11133732. [PMID: 35807028 PMCID: PMC9267661 DOI: 10.3390/jcm11133732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
The ethanolic extracts of Spondias mangifera fruit (SMFE) were evaluated for aphrodisiac activity. The in-vitro phosphodiesterase-5 (PDE-5) inhibition was assessed based on in-silico molecular docking and simulation studies. In addition, the in-vivo sexual behavior was analyzed in the form of mount (MF, ML), intromission (IF, IL), and ejaculation (EF, EL) frequencies and latencies to validate the in-vitro results. Some biochemical parameters, including PDE-5, nitric oxide, and testosterone, were also observed. The above extract constituted β-amyrin, β-sitosterol, and oleanolic acid and showed tremendous binding with phosphodiesterase-5 and sildenafil. Both the sildenafil and ethanolic extracts (200 and 400 mg/kg/d bodyweight) significantly (p < 0.1, p < 0.05) increased MF, IF, and EF, respectively. In contrast, ML and IL significantly (p < 0.1) decreased, and EL significantly (p < 0.1) increased compared with a normal group of animals. The ethanolic extracts (200 and 400 mg/kg/d bodyweight) and sildenafil further significantly (p < 0.05, p < 0.1) diminished PDE-5 activity significantly (p < 0.05, p < 0.1) and enhanced nitric oxide and testosterone levels, as compared with normal rodents. Therefore, the S. mangifera ethanolic extract might be a valuable alternate aphrodisiac for erectile dysfunction.
Collapse
|
10
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
11
|
Hicks KL, Roche E, Wilkerson JD, Lindstrom KE. Effects of Maternal Fenbendazole on Litter Size, Survival Rate, and Weaning Weight in C57BL/6J Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:630-636. [PMID: 34753534 DOI: 10.30802/aalas-jaalas-21-000056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fenbendazole is a broad-spectrum benzimidazole commonly used in laboratory animal medicine as an anthelmintic for elimination of pinworms. This drug is generally regarded as safe, with minimal side effects. Some data in rodent species indicate multiple physiologic effects of fenbendazole, including changes in immune parameters and behavior, but no studies to date have evaluated possible effects on reproduction in mice. The purpose of the current study was to determine the effects of several treatment regimens of fenbendazole on reproductive parameters in C57BL/6J mice. Uninfected mice were given fenbendazole-treated feed continuously or every other week until pups were born or weaned. This treatment also was combined with environmental decontamination. No significant differences in litter size, survival rate, or weaning weight were detected between groups. Under the conditions of this study, fenbendazole treatment does not affect reproduction in C57BL/6J mice.
Collapse
Affiliation(s)
- Kristina L Hicks
- Laboratory Animal Resource Center, University of California, San Francisco, California
| | - Elysia Roche
- Laboratory Animal Resource Center, University of California, San Francisco, California
| | - James D Wilkerson
- Laboratory Animal Resource Center, University of California, San Francisco, California
| | - Krista E Lindstrom
- Laboratory Animal Resource Center, University of California, San Francisco, California
| |
Collapse
|
12
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
13
|
Sakata JT, Catalano I, Woolley SC. Mechanisms, development, and comparative perspectives on experience-dependent plasticity in social behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:35-49. [PMID: 34516724 DOI: 10.1002/jez.2539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
Revealing the mechanisms underlying experience-dependent plasticity is a hallmark of behavioral neuroscience. While the study of social behavior has focused primarily on the neuroendocrine and neural control of social behaviors, the plasticity of these innate behaviors has received relatively less attention. Here, we review studies on mating-dependent changes to social behavior and neural circuitry across mammals, birds, and reptiles. We provide an overview of species similarities and differences in the effects of mating experiences on motivational and performative aspects of sexual behaviors, on sensory processing and preferences, and on the experience-dependent consolidation of sexual behavior. We also discuss recent insights into the neural mechanisms of and developmental influences on mating-dependent changes and outline promising approaches to investigate evolutionary parallels and divergences in experience-dependent plasticity.
Collapse
Affiliation(s)
- Jon T Sakata
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| | - Isabella Catalano
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
14
|
Zhang SX, Lutas A, Yang S, Diaz A, Fluhr H, Nagel G, Gao S, Andermann ML. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature 2021; 597:245-249. [PMID: 34433964 DOI: 10.1038/s41586-021-03845-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.
Collapse
Affiliation(s)
- Stephen X Zhang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shang Yang
- Institute of Physiology, Department of Neurophysiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Adriana Diaz
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hugo Fluhr
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Nurdiana N, Chania P, Nurvitasari R, Nisa A, Diana SW, Rochmah EI, Mayangsari E, Rahardjo B, Indrawan W, Khotimah H, Mintaroem K, Irnandi DF. The Effect of Soy Milk on Mounting Latency, Mounting Frequency, and Reproductive Development in Male Wistar Rats (Rattus Norvegicus). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This research aims to examine the effects of soy milk on mounting latency (ML), mounting frequency (MF), estrogen levels, androgen-binding protein (ABP) expression, and spermatogenesis in male rats (Rattus norvegicus).
METHODS: Twenty-four male wistar rats (Rattus norvegicus) aged 4 weeks were divided into four groups. Control group (given a normal diet), P1; P2; P3 (given the normal diet and soy milk powder at doses of 7.1; 14.2; 21.3 g/KgBW/day, respectively) for 6 weeks. Observation of ML and MF were performed at 9 weeks 5 days of age, and rat surgery was performed at 10 weeks of age. Analysis of estrogen hormone levels was conducted by enzyme-linked immunosorbent assay (ELISA), ABP staining was using immunohistochemistry method, testicular spermatogenesis was observed using histopathological methods, and observation of spermatozoa was performed under the microscope.
RESULTS: The results showed no significant reduction of ML and MF, estrogen levels, and ABP expression (p ≤ 0.256; 0.865; 0.959, respectively) in male rat, but there was a significant decrease in the number, morphology, motility of spermatozoa, and testicular histophatology, (p ≤ 0.000, 0.003, 0.008, 0.000, respectively).
CONCLUSION: The administrassion of soy milk in various doses (7.1;14.2;21.3 g/KgBW/day) in male Wistar rats (Rattus norvegicus) had showed significantly difference on histopathological evaluation using Johnson’s scoring system, sperm quantity and quality, while on mounting latency and frequency, estrogen levels, and ABP expressions did not show significantly difference between groups. That describe of isoflavone in soy milk can affect several aspects related to male endocrine and reproductive development.
Collapse
|
16
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
17
|
El-Gindy YM. Improvement in quality and storage ability of rabbit semen by using black or thyme seed as dietary supplementation. J Anim Physiol Anim Nutr (Berl) 2021; 106:642-654. [PMID: 34160098 DOI: 10.1111/jpn.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
The quality of incubated or chilled rabbit semen is quickly lowered with time due to high-rate production of reactive oxygen species (ROS). Black seed (BS) and thyme (THY) are rich sources of natural antioxidants, which may be able to control ROS production and improve semen quality for use in artificial insemination. In this study, V-line rabbit bucks, seven months old, were fed diets supplemented with 50 or 100 g of BS or THY for 60 days. Semen was collected twice weekly. The quality of fresh sperm was measured, and diluted sperm was incubated for up to 12 h. Chilled, diluted sperm, stored at 4℃ for up to 3 days, was evaluated. The results indicated that BS and THY increased rabbit libido, decreased abnormal sperm and non-viable sperm percentages and significantly lowered total bacteria counts of diluted sperm. In conclusion, bucks fed a diet supplemented with BS or THY had enhanced semen quality and storage life, because of the antioxidant properties of BS and THY. The best incubation results were obtained with the THY100 treatment, whereas the best-chilled results were obtained with the BS100 group.
Collapse
Affiliation(s)
- Yassmine Moemen El-Gindy
- Faculty of Agriculture (Saba Basha), Department of Animal and Fish Production, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
18
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
19
|
Androgen Affects the Inhibitory Avoidance Memory by Primarily Acting on Androgen Receptor in the Brain in Adolescent Male Rats. Brain Sci 2021; 11:brainsci11020239. [PMID: 33672867 PMCID: PMC7918178 DOI: 10.3390/brainsci11020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.
Collapse
|
20
|
Sexual excitation induces courtship ultrasonic vocalizations and cataplexy-like behavior in orexin neuron-ablated male mice. Commun Biol 2021; 4:165. [PMID: 33547399 PMCID: PMC7864915 DOI: 10.1038/s42003-021-01696-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Cataplexy is triggered by laughter in humans and palatable food in mice. To further evaluate mice’s cataplexy, we examined courtship behavior in orexin neuron-ablated mice (ORX-AB), one of the animal models of narcolepsy/cataplexy. Wild-type female mice were placed into the home cage of male ORX-AB and cataplexy-like behavior was observed along with ultrasonic vocalizations (USVs), also known as the “love song”. ORX-AB with a female encounter showed cataplexy-like behavior both during the dark and light periods, whereas ORX-AB with chocolate predominantly showed it during the dark period. During the light period observation, more than 85% of cataplexy-like bouts were preceded by USVs. A strong positive correlation was observed between the number of USVs and cataplexy-like bouts. Cataplexy-like behavior in narcoleptic mice is a good behavioral measure to study the brain mechanisms behind positive emotion because they can be induced by different kinds of positive stimuli, including chocolate and female courtship. Kuwaki and Kanno examine courtship behavior in orexin neuron-ablated mice (ORX-AB), which are a model of narcolepsy/cataplexy. They find that ORX-AB mice showed cataplexy-like behavior during both dark and light periods in response to a female encounter, however this behavior was predominantly present during dark periods when exposed to chocolate. Studying cataplexy-like behavior in narcoleptic mice is useful for understanding mechanisms behind positive emotions, such as those associated with chocolate and courtship.
Collapse
|
21
|
Oluwole DT, Akhigbe RE, Ajayi AF. Rohypnol-induced sexual dysfunction is via suppression of hypothalamic-pituitary-testicular axis: An experimental study in rats. Andrologia 2020; 53:e13931. [PMID: 33378084 DOI: 10.1111/and.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022] Open
Abstract
Sexual activity is an essential part of reproductive functions and needed for the maintenance of fertility. Drugs, particularly substances of abuse, impair male reproductive function either by interrupting hormonal functions or through the nonhormonal pathways. This study evaluated the impact of Rohypnol use in sexual behaviour. Materials and methods: Thirty adult male Wistar rats of comparable weights (180-200 g) were randomly allocated into three groups, the control and low-dose and high-dose Rohypnol-treated groups. The control group received 0.5 ml of distilled water, while the low- and high-dose Rohypnol-treated groups received 2 mg/kg b.w and 4 mg/kg b.w of Rohypnol via oral lavage once daily for 28 days. Rohypnol significantly increased mount latency, intromission latency, ejaculation latency and post-ejaculatory interval, as well as lowered mount frequency, intromission frequency and ejaculation frequency. Rohypnol-induced sexual dysfunction was found to be associated with significant suppression of circulatory follicle-stimulating hormone, luteinising hormone, testosterone and oestrogen. The present study reveals that Rohypnol induces sexual dysfunction through suppression of hypothalamic-pituitary-testicular axis. It also implicates Rohypnol as a potential candidate for drug-induced infertility.
Collapse
Affiliation(s)
- David Tolulope Oluwole
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.,Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Nigeria.,Department of Chemical Sciences, Kings University, Odeomu, Nigeria
| | - Ayodeji Folorunsho Ajayi
- Department of Physiology, College of Medicine, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
22
|
Zala SM, Nicolakis D, Marconi MA, Noll A, Ruf T, Balazs P, Penn DJ. Primed to vocalize: Wild-derived male house mice increase vocalization rate and diversity after a previous encounter with a female. PLoS One 2020; 15:e0242959. [PMID: 33296411 PMCID: PMC7725367 DOI: 10.1371/journal.pone.0242959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/13/2020] [Indexed: 01/21/2023] Open
Abstract
Males in a wide variety of taxa, including insects, birds and mammals, produce vocalizations to attract females. Male house mice emit ultrasonic vocalizations (USVs), especially during courtship and mating, which are surprising complex. It is often suggested that male mice vocalize at higher rates after interacting with a female, but the evidence is mixed depending upon the strain of mice. We conducted a study with wild-derived house mice (Mus musculus musculus) to test whether male courtship vocalizations (i.e., vocalizations emitted in a sexual context) are influenced by a prior direct interaction with a female, and if so, determine how long the effect lasts. We allowed sexually naïve males to directly interact with a female for five minutes (sexual priming), and then we recorded males'vocalizations either 1, 10, 20, or 30 days later when presented with an unfamiliar female (separated by a perforated partition) and female scent. We automatically detected USVs and processed recordings using the Automatic Mouse Ultrasound Detector (A-MUD version 3.2), and we describe our improved version of this tool and tests of its performance. We measured vocalization rate and spectro-temporal features and we manually classified USVs into 15 types to investigate priming effects on vocal repertoire diversity and composition. After sexual priming, males emitted nearly three times as many USVs, they had a larger repertoire diversity, and their vocalizations had different spectro-temporal features (USV length, slope and variability in USV frequency) compared to unprimed controls. Unprimed control males had the most distinctive repertoire composition compared to the primed groups. Most of the effects were found when comparing unprimed to all primed males (treatment models), irrespective of the time since priming. Timepoint models showed that USV length increased 1 day after priming, that repertoire diversity increased 1 and 20 days after priming, and that the variability of USV frequencies was lower 20 and 30 days after priming. Our results show that wild-derived male mice increased the number and diversity of courtship vocalizations if they previously interacted with a female. Thus, the USVs of house mice are not only context-dependent, they depend upon previous social experience and perhaps the contexts of these experiences. The effect of sexual priming on male courtship vocalizations is likely mediated by neuro-endocrine-mechanisms, which may function to advertise males' sexual arousal and facilitate social recognition.
Collapse
Affiliation(s)
- Sarah M. Zala
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Doris Nicolakis
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | | - Anton Noll
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Ruf
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Balazs
- Acoustic Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Dustin J. Penn
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
23
|
Chiang VSC, Park JH. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters, and Steroid Independence. Front Behav Neurosci 2020; 14:589882. [PMID: 33328921 PMCID: PMC7732465 DOI: 10.3389/fnbeh.2020.589882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
The survival of animal species predicates on the success of sexual reproduction. Neurotransmitters play an integral role in the expression of these sexual behaviors in the brain. Here, we review the role of glutamate in sexual behavior in rodents and non-rodent species for both males and females. These encompass the release of glutamate and correlations with glutamate receptor expression during sexual behavior. We then present the effects of glutamate on sexual behavior, as well as the effects of antagonists and agonists on different glutamate transporters and receptors. Following that, we discuss the potential role of glutamate on steroid-independent sexual behavior. Finally, we demonstrate the interaction of glutamate with other neurotransmitters to impact sexual behavior. These sexual behavior studies are crucial in the development of novel treatments of sexual dysfunction and in furthering our understanding of the complexity of sexual diversity. In the past decade, we have witnessed the burgeoning of novel techniques to study and manipulate neuron activity, to decode molecular events at the single-cell level, and to analyze behavioral data. They pose exciting avenues to gain further insight into future sexual behavior research. Taken together, this work conveys the essential role of glutamate in sexual behavior.
Collapse
Affiliation(s)
- Vic Shao-Chih Chiang
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Jin Ho Park
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
24
|
Islam MN, Sakimoto Y, Jahan MR, Ishida M, Tarif AMM, Nozaki K, Masumoto KH, Yanai A, Mitsushima D, Shinoda K. Androgen Affects the Dynamics of Intrinsic Plasticity of Pyramidal Neurons in the CA1 Hippocampal Subfield in Adolescent Male Rats. Neuroscience 2020; 440:15-29. [PMID: 32450298 DOI: 10.1016/j.neuroscience.2020.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is abundantly expressed in the preoptico-hypothalamic area, bed nucleus of stria terminalis, and medial amygdala of the brain where androgen plays an important role in regulating male sociosexual, emotional and aggressive behaviors. In addition to these brain regions, AR is also highly expressed in the hippocampus, suggesting that the hippocampus is another major target of androgenic modulation. It is known that androgen can modulate synaptic plasticity in the CA1 hippocampal subfield. However, to date, the effects of androgen on the intrinsic plasticity of hippocampal neurons have not been clearly elucidated. In this study, the effects of androgen on the expression of AR in the hippocampus and on the dynamics of intrinsic plasticity of CA1 pyramidal neurons were examined using immunohistochemistry, Western blotting and whole-cell current-clamp recording in unoperated, sham-operated, orchiectomized (OCX), OCX + testosterone (T) or OCX + dihydrotestosterone (DHT)-primed adolescent male rats. Orchiectomy significantly decreased AR-immunoreactivity, resting membrane potential, action potential numbers, afterhyperpolarization amplitude and membrane resistance, whereas it significantly increased action potential threshold and membrane capacitance. These effects were successfully reversed by treatment with either aromatizable androgen T or non-aromatizable androgen DHT. Furthermore, administration of the AR-antagonist flutamide in intact rats showed similar changes to those in OCX rats, suggesting that androgens affect the excitability of CA1 pyramidal neurons possibly by acting on the AR. Our current study potentially clarifies the role of androgen in enhancing the basal excitability of the CA1 pyramidal neurons, which may influence selective neuronal excitation/activation to modulate certain hippocampal functions.
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Yuya Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mako Ishida
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan.
| |
Collapse
|
25
|
Cabej NR. A neural mechanism of nuclear receptor expression and regionalization. Dev Dyn 2020; 249:1172-1181. [PMID: 32406963 DOI: 10.1002/dvdy.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 11/07/2022] Open
Abstract
Spatially restricted expression of genes by global circulating inducers (hormones, secreted proteins, growth factors, neuromodulators, etc.) was a prerequisite for the evolution of animals. Far from a random occurrence, it is a systematically occurring, certain event, implying that specific information is invested for it to happen. In this minireview, we show for the first time that the expression and regionalization takes place at the level of receptors via a neural mechanism and make an attempt to reconstruct the causal chain from neural signaling to expression of nuclear receptors.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
26
|
Bialy M, Bogacki-Rychlik W, Przybylski J, Zera T. The Sexual Motivation of Male Rats as a Tool in Animal Models of Human Health Disorders. Front Behav Neurosci 2019; 13:257. [PMID: 31956302 PMCID: PMC6947634 DOI: 10.3389/fnbeh.2019.00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
Normal or dysfunctional sexual behavior seems to be an important indicator of health or disease. Many health disorders in male patients affect sexual activity by directly causing erectile dysfunction, affecting sexual motivation, or both. Clinical evidence indicates that many diseases strongly disrupt sexual motivation and sexual performance in patients with depression, addiction, diabetes mellitus and other metabolic disturbances with obesity and diet-related factors, kidney and liver failure, circadian rhythm disorders, sleep disturbances including obstructive sleep apnea syndrome, developmental and hormonal disorders, brain damages, cardiovascular diseases, and peripheral neuropathies. Preclinical studies of these conditions often require appropriate experimental paradigms, including animal models. Male sexual behavior and motivation have been intensively investigated over the last 80 years in animal rat model. Sexual motivation can be examined using such parameters as: anticipatory behavior and 50-kHz ultrasonic vocalizations reflecting the emotional state of rats, initiation of copulation, efficiency of copulation, or techniques of classical (pavlovian) and instrumental conditioning. In this review article, we analyze the behavioral parameters that describe the sexual motivation and sexual performance of male rats in the context of animal experimental models of human health disorders. Based on analysis of the parameters describing the heterogeneous and complex structure of sexual behavior in laboratory rodents, we propose an approach that is useful for delineating distinct mechanisms affecting sexual motivation and sexual performance in selected disease states and the efficacy of therapy in preclinical investigations.
Collapse
Affiliation(s)
- Michal Bialy
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wiktor Bogacki-Rychlik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Przybylski
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Ajayi AF, Akhigbe RE. Assessment of sexual behaviour and fertility indices in male rabbits following chronic codeine use. Andrology 2019; 8:509-515. [DOI: 10.1111/andr.12717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/06/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- A. F. Ajayi
- Department of Physiology College of Medicine Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - R. E. Akhigbe
- Department of Physiology College of Medicine Ladoke Akintola University of Technology Ogbomoso Nigeria
| |
Collapse
|
28
|
Semple E, Shalabi F, Hill JW. Oxytocin Neurons Enable Melanocortin Regulation of Male Sexual Function in Mice. Mol Neurobiol 2019; 56:6310-6323. [PMID: 30756300 PMCID: PMC6684847 DOI: 10.1007/s12035-019-1514-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The melanocortin pathway has been implicated in both metabolism and sexual function. When the melanocortin 4 receptor (MC4R) is knocked out globally, male mice display obesity, low sexual desire, and copulatory difficulties; however, it is unclear whether these phenotypes are interdependent. To elucidate the neuronal circuitry involved in sexual dysfunction in MC4R knockouts, we re-expressed the MC4R in these mice exclusively on Sim1 neurons (tbMC4RSim1 mice) or on a subset of Sim1 neurons, namely oxytocin neurons (tbMC4Roxt mice). The groups were matched at young ages to control for the effects of obesity. Interestingly, young MC4R null mice had no deficits in sexual motivation or erectile function. However, MC4R null mice were found to have an increased latency to reach ejaculation compared to control mice, which was restored in both tbMC4RSim1 and tbMC4Roxt mice. These results indicate that melanocortin signaling via the MC4R on oxytocin neurons is important for normal ejaculation independent of the male's metabolic health.
Collapse
Affiliation(s)
- Erin Semple
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Firas Shalabi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, 3000 Arlington Ave., Toledo, OH, 43614, USA.
| |
Collapse
|
29
|
Sexual experience has no effect on male mating or reproductive success in house mice. Sci Rep 2019; 9:12145. [PMID: 31434936 PMCID: PMC6704153 DOI: 10.1038/s41598-019-48392-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
The ability to learn from experience can improve Darwinian fitness, but few studies have tested whether sexual experience enhances reproductive success. We conducted a study with wild-derived house mice (Mus musculus musculus) in which we manipulated male sexual experience and allowed females to choose between (1) a sexually experienced versus a virgin male, (2) two sexually experienced males, or (3) two virgin males (n = 60 females and 120 males). This design allowed us to test whether females are more likely to mate multiply when they encounter more virgin males, which are known to be infanticidal. We recorded females’ preference and mating behaviours, and conducted genetic paternity analyses to determine male reproductive success. We found no evidence that sexual experience influenced male mating or reproductive success, and no evidence that the number of virgin males influenced female multiple mating. Females always copulated with both males and 58% of the litters were multiple-sired. Females’ initial attraction to a male correlated with their social preferences, but neither of these preference behaviours predicted male reproductive success – raising caveats for using mating preferences as surrogates for mate choice. Male reproductive success was predicted by mating order, but unexpectedly, males that copulated first sired fewer offspring.
Collapse
|
30
|
Turner JM, Will RG, Harvey EA, Hattori T, Tobiansky DJ, Nutsch VL, Martz JR, Dominguez JM. Copulation induces expression of the immediate early gene Arc in mating-relevant brain regions of the male rat. Behav Brain Res 2019; 372:112006. [PMID: 31170433 DOI: 10.1016/j.bbr.2019.112006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/28/2023]
Abstract
The medial amygdala (MeA), bed nucleus of the stria terminalis (BNST), and medial preoptic area (mPOA) are important for the regulation of male sexual behavior. Sexual experience facilitates sexual behaviors and influences activity in these regions. The goal of this study was to determine whether sexual experience or copulation induces plasticity in the MeA, BNST, or mPOA of male rats, as indicated by changes in levels of Arc, which is indicative of activity-dependent synaptic plasticity in the brain. To this end, sexually naïve or experienced males were placed in mating arenas either alone, with an inaccessible estrus female, or with an accessible estrus female. Arc protein levels were then quantified in these three regions using immunohistochemistry. As expected, sexual experience facilitated copulation, as evidenced by a reduction in latencies to mount, intromit, and ejaculate. Copulation also increased the number of Arc-positive cells in the MeA, anterior BNST, posterior BNST, and the posterior mPOA, but not in the central-rostral region of the mPOA. Surprisingly, prior sexual experience did not impact levels of Arc, suggesting that copulation-induced Arc occurs in both sexually naïve and experienced males.
Collapse
Affiliation(s)
- Jonathan M Turner
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Eric A Harvey
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Tomoko Hattori
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Victoria L Nutsch
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Julia R Martz
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Juan M Dominguez
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States; Department of Psychology, The University of Texas at Austin, Austin, TX, United States; Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
31
|
Kanno K, Kikusui T. Effect of Sociosexual Experience and Aging on Number of Courtship Ultrasonic Vocalizations in Male Mice. Zoolog Sci 2019; 35:208-214. [PMID: 29882498 DOI: 10.2108/zs170175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sexual behaviors are instinctually exhibited without prior training, but they are modulated by experience. One of the precopulatory behaviors in adult male mice, courtship ultrasonic vocalizations (USVs), has attracted considerable academic attention recently. Male mice emit ultrasounds as courtship behavior when encountering females. However, the modulatory effects of experience on USVs remain unclear. In the present study, we aimed to clarify the effects of sociosexual experience and aging on adult male vocalizations. First, we examined the effect of aging. The number of USVs decreased in an age-dependent manner. Following this, young adult male mice were co-housed for two weeks with normal female mice or ovariectomized (OVX) female mice, or housed without female mice, and the number of courtship USVs before and after co-housing were compared. In males housed with normal or OVX females, USVs increased significantly after co-housing. In contrast, males housed without females did not exhibit a significant increase of USVs. A facilitative effect of co-housing with female mice on vocalizations was also observed in aged males. In addition, females used as co-housing partners became pregnant, and the reproductive rate may be related to the vocal activity observed in the partnered males. These results indicate that sociosexual experience and aging affect vocalization activity, which may be related to courtship and/or reproductive function.
Collapse
Affiliation(s)
- Kouta Kanno
- 1 Companion Animal Research, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoh-ku, Sagamihara, Kanagawa 252-5201, Japan.,2 Laboratory of Neuroscience, Course of Psychology, Department of Humanities, Faculty of Law, Economics and the Humanities, Kagoshima University, Korimoto 1-21-30, Kagoshima City, Kagoshima 890-0065, Japan
| | - Takefumi Kikusui
- 1 Companion Animal Research, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoh-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
32
|
Maejima S, Abe Y, Yamaguchi S, Musatov S, Ogawa S, Kondo Y, Tsukahara S. VGF in the Medial Preoptic Nucleus Increases Sexual Activity Following Sexual Arousal Induction in Male Rats. Endocrinology 2018; 159:3993-4005. [PMID: 30371765 DOI: 10.1210/en.2018-00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
The central part of the medial preoptic nucleus (MPNc) is associated with sexual arousal induction in male rats. However, it is largely unclear how males are sexually aroused and achieve their first copulation. We previously reported that more MPNc neurons activate during the first copulation than the second copulation. In this study, to explore the molecules responsible for sexual arousal induction, we performed DNA microarray of the MPNc in sexually naive males and males after they copulated for their first and second times. We then performed quantitative PCR analyses to validate the results of the DNA microarray. Six genes were identified. Their expression increased following copulation and was higher in males after they copulated for the first time than after the second time. The genes encode transcription factors (Fos, Nfil3, and Nr4a3), a serine/threonine kinase (Sik1), an antioxidant protein (Srxn1), and a neuropeptide precursor VGF (Vgf), which may be the candidate genes responsible for sexual arousal induction. We examined the effects of Vgf knockdown in the MPNc on sexual partner preference and sexual behavior in sexually inexperienced and experienced males to determine the role of VGF in sexual arousal induction. A preference for estrous female rats was reinforced, and the latency of mount and intromission became short after sexually inexperienced males copulated for the first time. However, Vgf knockdown disrupted these phenomena. Vgf knockdown did not have any significant effect in sexually experienced males. VGF-derived neuropeptides presumably serve as an effector molecule to increase sexual activity following sexual arousal induction.
Collapse
Affiliation(s)
- Sho Maejima
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yuta Abe
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Yamaguchi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sergei Musatov
- Laboratory of Molecular Neurosurgery, Weill Cornell University Medical College, New York, New York
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Japan
| | - Shinji Tsukahara
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
33
|
Luo J, Yang Y, Zhang T, Su Z, Yu D, Lin Q, Chen H, Zhang Q, Xiang Q, Xue W, Ge R, Huang Y. Nasal delivery of nerve growth factor rescue hypogonadism by up-regulating GnRH and testosterone in aging male mice. EBioMedicine 2018; 35:295-306. [PMID: 30131307 PMCID: PMC6161474 DOI: 10.1016/j.ebiom.2018.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Nerve growth factor (NGF) plays essential roles in regulating the development and maintenance of central sympathetic and sensory neurons. However, the effects of NGF on hypogonadism remain unexplored. METHODS To assess the effects of NGF on hypogonadism, we established a convenient and noninvasive way to deliver NGF to the hypothalamus by spraying liposome-encapsulated NGF into the nasal cavity. The ten-month-old aging male senescence accelerate mouse P8 (SAMP8) mice with age-related hypogonadotrophic hypogonadism were used to study the role of NGF in hypogonadism. The age-matched accelerated senescence-resistant mouse R1 (SAMR1) served as a control. The ten-month-old SAMP8 mice were treated with NGF twice per week for 12 weeks. Sexual hormones, sexual behaviors, and fertility were analyzed after NGF treatment. And the mechanisms of NGF in sex hormones sexual function were also studied. FINDINGS NGF could enhance the sexual function, improve the quality of the sperm, and restore the fertility of aging male SAMP8 mice with age-related hypogonadism by activating gonadotropin-releasing hormone (GnRH) neuron and regulating secretion of GnRH. And NGF regulated the GnRH release through the PKC/p-ERK1/2/p-CREB signal pathway. INTERPRETATION These results suggest that NGF treatment could alleviate various age-related hypogonadism symptoms in male SAMP8 and may be usefulness for age-related hypogonadotrophic hypogonadism and its related subfertility. FUND: National Natural Science Foundation of China, Natural Science Foundation of Guangdong Province, the Science and Technology Plan Project of Guangzhou, Wenzhou Science & Technology Bureau, Guangdong Province Pearl River Scholar Fund, Guangdong province science and technology innovation leading Scholar Fund.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Tiantian Zhang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Dan Yu
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Qilian Lin
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Haolin Chen
- Center of Scientific Research, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qihao Zhang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, Guangzhou 510632, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Renshan Ge
- Center of Scientific Research, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Department of Pharmacology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Zancan M, Cunha RSR, Schroeder F, Xavier LL, Rasia‐Filho AA. Remodeling of the number and structure of dendritic spines in the medial amygdala: From prepubertal sexual dimorphism to puberty and effect of sexual experience in male rats. Eur J Neurosci 2018; 48:1851-1865. [DOI: 10.1111/ejn.14052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/18/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mariana Zancan
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rick Shandler R. Cunha
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
| | - Francielle Schroeder
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Léder L. Xavier
- Laboratory of Tissue BiologyFaculty of BiosciencesPontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre Brazil
| | - Alberto A. Rasia‐Filho
- Department of Basic Sciences/PhysiologyFederal University of Health Sciences Porto Alegre Brazil
- Graduation Program in NeuroscienceFederal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
35
|
Kamishima M, Hattori T, Suzuki G, Matsukami H, Komine C, Horii Y, Watanabe G, Oti T, Sakamoto H, Soga T, Parhar IS, Kondo Y, Takigami H, Kawaguchi M. Early-life exposure to Tris(1,3-dichloroisopropyl) phosphate induces dose-dependent suppression of sexual behavior in male rats. J Appl Toxicol 2017; 38:649-655. [DOI: 10.1002/jat.3569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Manami Kamishima
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture; Meiji University; Kanagawa 214-8571 Japan
| | - Tatsuya Hattori
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture; Meiji University; Kanagawa 214-8571 Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties (OSRI); Meiji University; Tokyo 101-8301 Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research; National Institute for Environmental Studies; Tsukuba 305-8506 Japan
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research; National Institute for Environmental Studies; Tsukuba 305-8506 Japan
| | - Chiaki Komine
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture; Meiji University; Kanagawa 214-8571 Japan
| | - Yasuyuki Horii
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture; Meiji University; Kanagawa 214-8571 Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine; Tokyo University of Agriculture and Technology; Tokyo 183-0054 Japan
| | - Takumi Oti
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology; Okayama University; Okayama 701-4303 Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology; Okayama University; Okayama 701-4303 Japan
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences; Monash University; PJ 46150 Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences; Monash University; PJ 46150 Malaysia
| | - Yasuhiko Kondo
- Laboratory of Animal Physiology, Department of Animal Sciences; Teikyo University of Science; Yamanashi 409-0193 Japan
| | - Hidetaka Takigami
- Center for Material Cycles and Waste Management Research; National Institute for Environmental Studies; Tsukuba 305-8506 Japan
| | - Maiko Kawaguchi
- Laboratory of Animal Behavior and Environmental Science, School of Agriculture; Meiji University; Kanagawa 214-8571 Japan
| |
Collapse
|
36
|
Jean A, Bonnet P, Liere P, Mhaouty-Kodja S, Hardin-Pouzet H. Revisiting medial preoptic area plasticity induced in male mice by sexual experience. Sci Rep 2017; 7:17846. [PMID: 29259324 PMCID: PMC5736590 DOI: 10.1038/s41598-017-18248-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023] Open
Abstract
Sexual experience in male rodents, induced by a first exposure to a receptive female, improves efficiency of following copulations. In mice, the mechanisms supporting this improvement are poorly understood. We characterized molecular modifications of the mouse hypothalamic medial preoptic area (mPOA), the main integrative structure for male sexual behaviour, after a single mating event. This paradigm induced long-lasting behavioural improvements and mPOA morphological changes, evidenced by dendritic spine maturation and an increase in the acetylated and tri-methylated forms of histone H3. Ejaculation affected testosterone, progesterone and corticosterone levels in both naive and experienced mice, but sexual experience did not modify basal plasma or hypothalamic levels of steroids. In contrast to studies carried out in rats, no changes were observed, either in the nitrergic system, or in sex steroid receptor levels. However, levels of glutamate- and calcium-associated proteins, including PSD-95, calbindin and the GluN1 subunit of the NMDA receptor, were increased in sexually experienced male mice. The Iba-1 microglial marker was up-regulated in these animals suggesting multicellular interactions induced within the mPOA by sexual experience. In conclusion, plasticity mechanisms induced by sexual experience differ between rat and mouse, even if in both cases they converge to potentiation of the mPOA network.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Pauline Bonnet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Philippe Liere
- U1195 INSERM and Université Paris Sud and Université Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Helene Hardin-Pouzet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
37
|
Formaldehyde Inhibits Sexual Behavior and Expression of Steroidogenic Enzymes in the Testes of Mice. J Sex Med 2017; 14:1297-1306. [DOI: 10.1016/j.jsxm.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023]
|
38
|
Selective deletion of the oxytocin gene remodels the number and shape of dendritic spines in the medial amygdala of males with and without sexual experience. Neurosci Lett 2017; 660:155-159. [DOI: 10.1016/j.neulet.2017.08.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/18/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
|
39
|
Nutsch VL, Will RG, Tobiansky DJ, Reilly MP, Gore AC, Dominguez JM. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm Behav 2017; 96:4-12. [PMID: 28882473 PMCID: PMC5722693 DOI: 10.1016/j.yhbeh.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/07/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4-5months) and aged (12-13months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Michael P Reilly
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
40
|
Hay-Schmidt A, Finkielman OTE, Jensen BAH, Høgsbro CF, Bak Holm J, Johansen KH, Jensen TK, Andrade AM, Swan SH, Bornehag CG, Brunak S, Jegou B, Kristiansen K, Kristensen DM. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour. Reproduction 2017; 154:145-152. [DOI: 10.1530/rep-17-0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022]
Abstract
Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women.
Collapse
|
41
|
Zimmermann-Peruzatto JM, Lazzari VM, Agnes G, Becker RO, de Moura AC, Guedes RP, Lucion AB, Almeida S, Giovenardi M. The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice. Cell Mol Neurobiol 2017; 37:803-815. [PMID: 27558735 DOI: 10.1007/s10571-016-0419-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V1aR), and dopamine (D2R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The CDNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2-ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V1aR in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D2R of OTKO. However, OTKO showed an increased gene expression of V1aR in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V1aR), and these changes may contribute to the decreased sexual behavior observed in OTKO females.
Collapse
Affiliation(s)
- Josi Maria Zimmermann-Peruzatto
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Virgínia Meneghini Lazzari
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Grasiela Agnes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Roberta Oriques Becker
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Aldo Bolten Lucion
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245/308C, 90050-170, Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245/308C, 90050-170, Porto Alegre, Brazil.
| |
Collapse
|
42
|
Jean A, Trouillet AC, Andrianarivelo NA, Mhaouty-Kodja S, Hardin-Pouzet H. Phospho-ERK and sex steroids in the mPOA: involvement in male mouse sexual behaviour. J Endocrinol 2017; 233:257-267. [PMID: 28356400 DOI: 10.1530/joe-17-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
This paper aimed to investigate the mechanisms triggering ERK phosphorylation and its functional role in male sexual behaviour. ERK1/2-phosphorylated form was detected in the medial preoptic area of the hypothalamus (mPOA) during the sexual stimulation of naive and sexually experienced males who were killed 5 min after the first intromission. This mating-induced ERK phosphorylation was increased in sexually experienced males compared to that in naive mice. The functional role of the ERK1/2 pathway activation during sexual behaviour was explored with the administration of a MEK inhibitor, SL-327 (30 mg/kg, i.p.), 45 min before the contact with a receptive female. Inhibition of ERK phosphorylation was found to decrease sexual motivation in both naive and experienced males without altering their copulatory ability. The mechanisms potentially involved in this rapid ERK1/2 pathway activation were specified ex vivo on hypothalamic slices. A thirty-minute incubation with 100 nM of testosterone (T), dihydrotestosterone (DHT) or oestradiol (E2) led to ERK phosphorylation. No changes were observed after incubation with testosterone 3-(O-carboxymethyl)oxime-BSA (T-BSA), an impermeable to the plasma membrane form of testosterone. All these results indicate that ERK phosphorylation within the mPOA could be a key player in the motivational signalling pathway and considered as an index of sexual motivation. They also demonstrate the involvement of oestrogen receptor (ER) and androgen receptor (AR) transduction pathways in steroid-dependent ERK activation.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Njiva Andry Andrianarivelo
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne UniversitésUPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
43
|
Beny Y, Kimchi T. Conditioned odor aversion induces social anxiety towards females in wild-type and TrpC2 knockout male mice. GENES BRAIN AND BEHAVIOR 2016; 15:722-732. [PMID: 27535696 DOI: 10.1111/gbb.12320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023]
Abstract
Female-emitted pheromonal inputs possess an intrinsic rewarding value for conspecific males, promoting approach and investigation of the potential mating partner. In mice these inputs are detected mainly by the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). We investigated the role of VNO-mediated inputs in experience-dependent plasticity of reproductive responses. We applied a sex-specific conditioned odor aversion (COA) paradigm on adult, wild-type (WT) male mice and on male mice impaired in VNO-mediated signal transduction (TrpC2-/- ). We found that WT males, which underwent COA to female-soiled bedding, lost their innate preference to female odors and presented lower motivation to approach a sexually receptive female. COA also abolished the testosterone surge normally seen following exposure to female odors. Moreover, the conditioned males displayed impairments in copulatory behaviors, which lasted for several weeks. Surprisingly, these males also exhibited phobic behaviors towards receptive females, including freezing and fleeing responses. In contrast, WT males which underwent COA specifically to male pheromones showed no change in olfactory preference and only a marginally significant elevation in intermale aggression. Finally, we show that TrpC2-/- males were able to acquire aversion to female-soiled bedding and presented similar behavioral alterations following COA in their responses to female cues. Our results demonstrate that the intrinsic rewarding value of female pheromones can be overridden through associative olfactory learning, which occurs independently of VNO inputs, probably through MOE signaling.
Collapse
Affiliation(s)
- Y Beny
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - T Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
44
|
Zhang F, Wang J, Jiao Y, Zhang L, Zhang H, Sheng X, Han Y, Yuan Z, Weng Q. Seasonal changes of androgen receptor, estrogen receptors and aromatase expression in the medial preoptic area of the wild male ground squirrels (Citellus dauricus Brandt). Eur J Histochem 2016; 60:2621. [PMID: 27349316 PMCID: PMC4933827 DOI: 10.4081/ejh.2016.2621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
The wild ground squirrel is a typical seasonal breeder. In this study, using RT-PCR, western blot and immunohistochemistry, we investigated the mRNA and protein expressions of androgen receptor (AR), estrogen receptors a and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) in the medial preoptic area (MPOA) of hypothalamus of the wild male ground squirrel during the breeding season (April), the non-breeding season (June) and pre-hibernation (September). AR, ERα, ERβ and P450arom protein/mRNA were present in the MPOA of all seasons detected. The immunostaining of AR and ERα showed no significant changes in different periods, whereas ERβ and P450arom had higher immunoreactivities during the breeding season and pre-hibernation when compared to those of the non-breeding season. Consistently, both the protein and mRNA levels of P450arom and ERβ were higher in the MPOA of pre-hibernation and the breeding season than in the non-breeding season, whereas no significant difference amongst the three periods was observed for AR and ERα levels. These findings suggested that the MPOA of hypothalamus may be a direct target of androgen and estrogen. Androgen may play important regulatory roles through its receptor and/or the aromatized estrogen in the MPOA of hypothalamus of the wild male ground squirrels.
Collapse
Affiliation(s)
- F Zhang
- Beijing Forestry University.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nutsch VL, Will RG, Robison CL, Martz JR, Tobiansky DJ, Dominguez JM. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience. Front Behav Neurosci 2016; 10:75. [PMID: 27147996 PMCID: PMC4834303 DOI: 10.3389/fnbeh.2016.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/01/2016] [Indexed: 01/23/2023] Open
Abstract
Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | | | - Julia R Martz
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at AustinAustin, TX, USA; Department of Psychology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
46
|
Fouche G, Afolayan AJ, Wintola OA, Khorombi TE, Senabe J. Effect of the aqueous extract of the aerial parts of Monsonia angustifolia E. Mey. Ex A. Rich., on the sexual behaviour of male Wistar rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:343. [PMID: 26432276 PMCID: PMC4592562 DOI: 10.1186/s12906-015-0880-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
Background Monsonia angustifolia (Geraniaceae) is a medicinal plant traditionally used in South Africa to increase libido and to treat erectile dysfunction. Methods In-vivo aphrodisiac activities of the crude extracts of the plant prepared in water at 3, 30 and 300 mg/kg body weight were evaluated for 7 days using sildenafil citrate (Viagra) and 1 % ethanol in distilled water as positive and negative controls respectively. Male rats were selected and monitored in each group for sexual behaviour by exposing them to sexually receptive females on days 1, 3 and 7 for 60 minutes each between 7:00 pm and 3:00 am. The following male sexual parameters were observed: Mount Frequency (MF), Intromission Frequency (IF), Mount Latency (ML), Intromission Latency (IL), Ejaculation Frequency (EF), Ejaculatory Latency (EL) and Post-Ejaculatory Interval (PEI). Results The administration of the extract resulted in significant increase (p < 0.05) in mount frequency, intromission frequency, ejaculation frequency, ejaculation latency and serum hormone concentrations. The computed indices of sexual behaviour such as erection, quick flips, long flips and total penile reflexes were also increased. However, the mount latency, intromission latency and post ejaculation interval were significantly decreased throughout the experimental period. The administration of 300 mg/kg body weight of the aqueous extract produced the best effects in all the parameters. Conclusion Generally, the extract of Monsonia angustifolia produced pro-sexual stimulatory effects in the male rats especially when administered at 300 mg/kg body weight. The results validate the use of the plant by the indigenous people to increase libido and treat premature ejaculation and erectile dysfunction in males.
Collapse
|
47
|
Jahan MR, Kokubu K, Islam MN, Matsuo C, Yanai A, Wroblewski G, Fujinaga R, Shinoda K. Species differences in androgen receptor expression in the medial preoptic and anterior hypothalamic areas of adult male and female rodents. Neuroscience 2014; 284:943-961. [PMID: 25446364 DOI: 10.1016/j.neuroscience.2014.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 11/25/2022]
Abstract
The medial preoptic and anterior hypothalamic areas (MPO/AH) are important androgen targets regulating homeostasis, neuroendocrinology and circadian rhythm as well as instinctive and sociosexual behaviors. Although species differences between rats and mice have been pointed out in terms of morphology and physiology, detailed distributions of androgen receptor (AR) have never been compared between the two rodents. In the present study, AR distribution was examined immunohistochemically in serial sections of the MPO/AH and compared for adult rats and mice. Western blotting and immunohistochemistry clearly demonstrated that AR expression in the brain was stronger in mice than in rats and was stronger in males than in females. In addition, we found (1) an "obliquely elongated calbindin-ir cell island" in mice medial preoptic nucleus (MPN) expressed AR intensely, as well as the sexually dimorphic nucleus in the MPN (SDN-MPN) in rats, strongly supporting a "putative SDN-MPN" previously proposed in mice; (2) AR expression in the suprachiasmatic nucleus (SCN) was much more prominent in mice than in rats and differed in localization between the two species; (3) a mouse-specific AR-ir cell cluster was newly identified as the "tear drop nucleus (TDN)", with male-dominant sexual dimorphism; and (4) two rat-specific AR-ir cell clusters were also newly identified as the "rostral and caudal nebular islands", with male-dominant sexual dimorphism. The present results may provide basic morphological evidence underlying species differences in androgen-modified psychological, physiological and endocrinergic responses. Above all, the findings of the mouse-specific TDN and differing AR expression in the SCN might explain not only species difference in gonadal modification of circadian rhythm, but also distinct structural bases in the context of transduction of SCN oscillation. The current study could also serve as a caution that data on androgen-sensitive functions obtained from one species should not always be directly applied to others among rodents.
Collapse
Affiliation(s)
- M R Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - K Kokubu
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Md N Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - C Matsuo
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - A Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - G Wroblewski
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - R Fujinaga
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - K Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
48
|
Pharmacological profiling of Argemone mexicana for its aphrodisiac potentials in male Wistar rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Sexual behavior and dendritic spine density of posterodorsal medial amygdala neurons in oxytocin knockout female mice. Behav Brain Res 2013; 256:95-100. [DOI: 10.1016/j.bbr.2013.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/17/2013] [Accepted: 07/21/2013] [Indexed: 12/26/2022]
|
50
|
Uphouse L, Hiegel C, Adams S, Murillo V, Martinez M. Prior hormonal treatment, but not sexual experience, reduces the negative effects of restraint on female sexual behavior. Behav Brain Res 2013; 259:35-40. [PMID: 24172220 DOI: 10.1016/j.bbr.2013.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/16/2022]
Abstract
These experiments were designed to determine if prior sexual experience reduced the negative effect of mild stress on female sexual behavior. In the first experiment, ovariectomized rats were hormonally primed with estradiol benzoate and progesterone for 3 consecutive weeks during which they received six mating experiences in a male's home cage or received no sexual experience. The next week, females were primed with 10 μg estradiol benzoate two days before a 5 min restraint. Both groups were resistant to the negative effects of the stressor. In the second experiment, females received 0, 1, 2, or 3 weeks of 10 μg estradiol benzoate and were restrained on the fourth week after priming with 10 μg estradiol benzoate. Rats without prior hormonal priming showed a decline in lordosis behavior after restraint but prior priming with estradiol benzoate reduced this effect. In the third experiment, rats received 3 weeks of hormonal priming with estradiol benzoate and progesterone with or without sexual experience. An additional group received no sexual experience or hormonal priming. Females were then given a 3-week hormone vacation before testing in the restraint paradigm. All groups showed a decline in lordosis behavior after restraint. The fourth experiment was identical to the third except that sexual experience in the male's cage and in a pacing apparatus were compared. There was no effect of either type of sexual experience on the response to restraint. Possible mechanisms responsible for effects of prior hormonal priming are presented and the absence of an effect of sexual experience is discussed in comparison to findings in male rats.
Collapse
Affiliation(s)
- Lynda Uphouse
- Department of Biology Texas Woman's University, Denton, TX 76204, USA.
| | - Cindy Hiegel
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| | - Sarah Adams
- Department of Biology Texas Woman's University, Denton, TX 76204, USA.
| | - Vanessa Murillo
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| | - Monique Martinez
- Department of Biology Texas Woman's University, Denton, TX 76204, USA
| |
Collapse
|