1
|
Gao L, Jin N, Ye Z, Ma T, Huang Y, Li H, Du J, Li Z. A possible connection between reactive oxygen species and the unfolded protein response in lens development: From insight to foresight. Front Cell Dev Biol 2022; 10:820949. [PMID: 36211466 PMCID: PMC9535091 DOI: 10.3389/fcell.2022.820949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The lens is a relatively special and simple organ. It has become an ideal model to study the common developmental characteristics among different organic systems. Lens development is a complex process influenced by numerous factors, including signals from the intracellular and extracellular environment. Reactive oxygen species (ROS) are a group of highly reactive and oxygen-containing molecules that can cause endoplasmic reticulum stress in lens cells. As an adaptive response to ER stress, lens cells initiate the unfolded protein response (UPR) to maintain normal protein synthesis by selectively increasing/decreasing protein synthesis and increasing the degradation of misfolded proteins. Generally, the UPR signaling pathways have been well characterized in the context of many pathological conditions. However, recent studies have also confirmed that all three UPR signaling pathways participate in a variety of developmental processes, including those of the lens. In this review, we first briefly summarize the three stages of lens development and present the basic profiles of ROS and the UPR. We then discuss the interconnections between lens development and these two mechanisms. Additionally, the potential adoption of human pluripotent stem-cell-based lentoids in lens development research is proposed to provide a novel perspective on future developmental studies.
Collapse
Affiliation(s)
- Lixiong Gao
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ni Jin
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Endocrinology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, The Chinese PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Huang
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinlin Du
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaohui Li,
| |
Collapse
|
2
|
Tsukano K, Yamamoto T, Watanabe T, Michiue T. Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm. Dev Biol 2022; 488:81-90. [DOI: 10.1016/j.ydbio.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
|
3
|
Compagnucci C, Martinus K, Griffin J, Depew MJ. Programmed Cell Death Not as Sledgehammer but as Chisel: Apoptosis in Normal and Abnormal Craniofacial Patterning and Development. Front Cell Dev Biol 2021; 9:717404. [PMID: 34692678 PMCID: PMC8531503 DOI: 10.3389/fcell.2021.717404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Craniofacial Development, King's College London, London, United Kingdom
| | - Kira Martinus
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany
| | - John Griffin
- Department of Craniofacial Development, King's College London, London, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Michael J Depew
- Institute for Cell and Neurobiology, Center for Anatomy, Charité Universitätsmedizin Berlin, CCO, Berlin, Germany.,Department of Craniofacial Development, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Farnsworth DR, Posner M, Miller AC. Single cell transcriptomics of the developing zebrafish lens and identification of putative controllers of lens development. Exp Eye Res 2021; 206:108535. [PMID: 33705730 PMCID: PMC8092445 DOI: 10.1016/j.exer.2021.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023]
Abstract
The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of β- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.
Collapse
Affiliation(s)
| | - Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
5
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
6
|
Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells. Proc Natl Acad Sci U S A 2017; 115:355-360. [PMID: 29259119 DOI: 10.1073/pnas.1719674115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.
Collapse
|
7
|
Sanchez-Arrones L, Sandonís Á, Cardozo MJ, Bovolenta P. Adenohypophysis placodal precursors exhibit distinctive features within the rostral preplacodal ectoderm. Development 2017; 144:3521-3532. [PMID: 28974641 DOI: 10.1242/dev.149724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/14/2017] [Indexed: 11/20/2022]
Abstract
Placodes are discrete thickenings of the vertebrate cranial ectoderm that generate morpho-functionally distinct structures, such as the adenohypophysis, olfactory epithelium and lens. All placodes arise from a horseshoe-shaped preplacodal ectoderm in which the precursors of individual placodes are intermingled. However, fate-map studies indicated that cells positioned at the preplacodal midline give rise to only the adenohypophyseal placode, suggesting a unique organization of these precursors within the preplacode. To test this possibility, we combined embryological and molecular approaches in chick embryos to show that, at gastrula stage, adenohypophyseal precursors are clustered in the median preplacodal ectoderm, largely segregated from those of the adjacent olfactory placode. Median precursors are elongated, densely packed and, at neurula stage, express a molecular signature that distinguishes them from the remaining preplacodal cells. Olfactory placode precursors and midline neural cells can replace ablated adenohypophyseal precursors up to head-fold stage, although with a more plastic organization. We thus propose that adenohypophyseal placode precursors are unique within the preplacodal ectoderm possibly because they originate the only single placode and the only one with an endocrine character.
Collapse
Affiliation(s)
- Luisa Sanchez-Arrones
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - África Sandonís
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Marcos Julián Cardozo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/ Nicolás Cabrera 1, Madrid 28049, Spain .,CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Madrid 28049, Spain
| |
Collapse
|
8
|
Ohta S, Schoenwolf GC. Hearing crosstalk: the molecular conversation orchestrating inner ear dorsoventral patterning. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29024472 DOI: 10.1002/wdev.302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022]
Abstract
The inner ear is a structurally and functionally complex organ that functions in balance and hearing. It originates during neurulation as a localized thickened region of rostral ectoderm termed the otic placode, which lies adjacent to the developing caudal hindbrain. Shortly after the otic placode forms, it invaginates to delineate the otic cup, which quickly pinches off of the surface ectoderm to form a hollow spherical vesicle called the otocyst; the latter gives rise dorsally to inner ear vestibular components and ventrally to its auditory component. Morphogenesis of the otocyst is regulated by secreted proteins, such as WNTs, BMPs, and SHH, which determine its dorsoventral polarity to define vestibular and cochlear structures and sensory and nonsensory cell fates. In this review, we focus on the crosstalk that occurs among three families of secreted molecules to progressively polarize and pattern the developing otocyst. WIREs Dev Biol 2018, 7:e302. doi: 10.1002/wdev.302 This article is categorized under: Establishment of Spatial and Temporal Patterns > Gradients Signaling Pathways > Cell Fate Signaling Vertebrate Organogenesis > From a Tubular Primordium: Non-Branched.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, Rétaux S. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 2017; 143:4521-4532. [PMID: 27899509 DOI: 10.1242/dev.141291] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Natural variations in sensory systems constitute adaptive responses to the environment. Here, we compared sensory placode development in the blind cave-adapted morph and the eyed river-dwelling morph of Astyanax mexicanus Focusing on the lens and olfactory placodes, we found a trade-off between these two sensory components in the two morphs: from neural plate stage onwards, cavefish have larger olfactory placodes and smaller lens placodes. In a search for developmental mechanisms underlying cavefish sensory evolution, we analyzed the roles of Shh, Fgf8 and Bmp4 signaling, which are known to be fundamental in patterning the vertebrate head and are subtly modulated in space and time during cavefish embryogenesis. Modulating these signaling systems at the end of gastrulation shifted the balance toward a larger olfactory derivative. Olfactory tests to assess potential behavioral outcomes of such developmental evolution revealed that Astyanax cavefish are able to respond to a 105-fold lower concentration of amino acids than their surface-dwelling counterparts. We suggest that similar evolutionary developmental mechanisms may be used throughout vertebrates to drive adaptive sensory specializations according to lifestyle and habitat.
Collapse
Affiliation(s)
- Hélène Hinaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Lucie Devos
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Maryline Blin
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Yannick Elipot
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Jonathan Bibliowicz
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Alexandre Alié
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| | - Sylvie Rétaux
- DECA group, Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, Avenue de la terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
10
|
Hintze M, Prajapati RS, Tambalo M, Christophorou NAD, Anwar M, Grocott T, Streit A. Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. Development 2017; 144:2810-2823. [PMID: 28684624 PMCID: PMC5560042 DOI: 10.1242/dev.147942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/21/2017] [Indexed: 12/18/2022]
Abstract
In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence.
Collapse
Affiliation(s)
- Mark Hintze
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Ravindra Singh Prajapati
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Nicolas A D Christophorou
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Maryam Anwar
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Timothy Grocott
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| | - Andrea Streit
- Department of Craniofacial Development & Stem Cell Biology, King's College London, Dental Institute, London SE1 9RT, UK
| |
Collapse
|
11
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Ladher RK. Changing shape and shaping change: Inducing the inner ear. Semin Cell Dev Biol 2017; 65:39-46. [DOI: 10.1016/j.semcdb.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
13
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
14
|
Shigetani Y, Wakamatsu Y, Tachibana T, Okabe M. Conversion of neural plate explants to pre-placodal ectoderm-like tissue in vitro. Biochem Biophys Res Commun 2016; 477:807-813. [PMID: 27369078 DOI: 10.1016/j.bbrc.2016.06.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Neural crest and cranial sensory placodes arise from ectodermal epithelium lying between the neural plate and non-neural ectoderm (neural border). BMP signaling is important for both an induction of the neural border and a subsequent induction of the neural crest within the neural border. In contrast, FGF signaling is important for the neural border induction and the following induction of the pre-placodal ectoderm (PPE), which later gives rise to the cranial sensory placodes. While previous studies have demonstrated that the neural plate explants could be converted to the neural crest cells by adding BMP4 in a culture medium, there is no report showing a similar conversion of the neural plate to the PPE. We therefore examined the effect of FGF2 along with BMP4 on the rostral neural plate explants and found that the explants became the simple squamous epithelia, which were characterized by the desmosomes/tonofilaments in membranes of adjacent cells. Such epithelia expressed sets of neural border markers and the PPE genes, suggesting that the neural plate explants were converted to a PPE-like tissue. This method will be useful for further studying mechanisms of PPE induction and subsequent specifications of the cranial placodes.
Collapse
Affiliation(s)
- Yasuyo Shigetani
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan.
| | - Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advance Research and Translational Medicine, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Toshiaki Tachibana
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-0003, Japan
| |
Collapse
|
15
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
16
|
Birol O, Ohyama T, Edlund RK, Drakou K, Georgiades P, Groves AK. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes. Dev Biol 2015; 409:139-151. [PMID: 26550799 DOI: 10.1016/j.ydbio.2015.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
The inner ear develops from the otic placode, one of the cranial placodes that arise from a region of ectoderm adjacent to the anterior neural plate called the pre-placodal domain. We have identified a Forkhead family transcription factor, Foxi3, that is expressed in the pre-placodal domain and down-regulated when the otic placode is induced. We now show that Foxi3 mutant mice do not form otic placodes as evidenced by expression changes in early molecular markers and the lack of thickened placodal ectoderm, an otic cup or otocyst. Some preplacodal genes downstream of Foxi3-Gata3, Six1 and Eya1-are not expressed in the ectoderm of Foxi3 mutant mice, and the ectoderm exhibits signs of increased apoptosis. We also show that Fgf signals from the hindbrain and cranial mesoderm, which are necessary for otic placode induction, are received by pre-placodal ectoderm in Foxi3 mutants, but do not initiate otic induction. Finally, we show that the epibranchial placodes that develop in close proximity to the otic placode and the mandibular division of the trigeminal ganglion are missing in Foxi3 mutants. Our data suggest that Foxi3 is necessary to prime pre-placodal ectoderm for the correct interpretation of inductive signals for the otic and epibranchial placodes.
Collapse
Affiliation(s)
- Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Takahiro Ohyama
- USC Caruso Department of Otolaryngology - Head & Neck Surgery, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA; Zilkha Neurogenetic Institute, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Katerina Drakou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Pantelis Georgiades
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neurosc ience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Park BY. Sox9 regulates development of neural crest and otic placode in a time- and dose-dependent fashion. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.1.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Sai X, Ladher RK. Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol 2015; 6:19. [PMID: 25713536 PMCID: PMC4322616 DOI: 10.3389/fphar.2015.00019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
Various cellular replacement therapies using in vitro generated cells to replace damaged tissue have been proposed as strategies to alleviate hearing loss. All such therapies must involve a complete understanding of the earliest steps in inner ear development; its induction as a thickened plate of cells in the non-neural, surface ectoderm of the embryo, to its internalization as an otocyst embedded in the head mesenchyme of the embryo. Such knowledge informs researchers addressing the feasibility of the proposed strategy and present alternatives if needed. In this review we describe the mechanisms of inner ear induction, concentrating on the factors that steer the fate of ectoderm into precursors of the inner ear. Induction then leads to inner ear morphogenesis and we describe the cellular changes that occur as the inner ear is converted from a superficial placode to an internalized otocyst, and how they are coordinated with a particular emphasis on how the signaling environment surrounding the inner ear influences these processes.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology Kobe, Japan
| |
Collapse
|
19
|
Abstract
Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development.
Collapse
|
20
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
21
|
Edlund RK, Birol O, Groves AK. The role of foxi family transcription factors in the development of the ear and jaw. Curr Top Dev Biol 2015; 111:461-95. [PMID: 25662269 DOI: 10.1016/bs.ctdb.2014.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian outer, middle, and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this chapter, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm.
Collapse
Affiliation(s)
- Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
22
|
Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 2014; 244:181-210. [PMID: 25403746 DOI: 10.1002/dvdy.24229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites, and kidney. Although Six1 mutations cause one form of branchio-otic syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. RESULTS We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. A total of 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related branchio-otic-renal (BOR) syndrome. We also identified the chick homologues of five genes and show that they have conserved expression patterns. CONCLUSIONS Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients.
Collapse
Affiliation(s)
- Bo Yan
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | | | | | | | | | | |
Collapse
|
23
|
Yao D, Zhao F, Wu Y, Wang J, Dong W, Zhao J, Zhu Z, Liu D. Dissecting the differentiation process of the preplacodal ectoderm in zebrafish. Dev Dyn 2014; 243:1338-51. [DOI: 10.1002/dvdy.24160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 01/13/2023] Open
Affiliation(s)
- Di Yao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Feng Zhao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Ying Wu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Jialiang Wang
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Wei Dong
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Jue Zhao
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Zuoyan Zhu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| | - Dong Liu
- The Education Ministry Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Bio-membrane and Membrane Bio-engineering; School of Life Sciences; Peking University; Beijing China
| |
Collapse
|
24
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
25
|
Wu W, Ren Z, Li P, Yu D, Chen J, Huang R, Liu H. Six1: A critical transcription factor in tumorigenesis. Int J Cancer 2014; 136:1245-53. [DOI: 10.1002/ijc.28755] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Huaian Academy of Nanjing Agricultural University; Huaian Jiangsu China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding; Ministry of Agriculture; Key Lab of Agriculture Animal Genetics; Breeding and Reproduction; Ministry of Education; College of Animal Science; Huazhong Agricultural University; Wuhan Hubei China
| | - Pinghua Li
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Debing Yu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Jie Chen
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Ruihua Huang
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Honglin Liu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
26
|
Setting appropriate boundaries: fate, patterning and competence at the neural plate border. Dev Biol 2013; 389:2-12. [PMID: 24321819 DOI: 10.1016/j.ydbio.2013.11.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/20/2022]
Abstract
The neural crest and craniofacial placodes are two distinct progenitor populations that arise at the border of the vertebrate neural plate. This border region develops through a series of inductive interactions that begins before gastrulation and progressively divide embryonic ectoderm into neural and non-neural regions, followed by the emergence of neural crest and placodal progenitors. In this review, we describe how a limited repertoire of inductive signals-principally FGFs, Wnts and BMPs-set up domains of transcription factors in the border region which establish these progenitor territories by both cross-inhibitory and cross-autoregulatory interactions. The gradual assembly of different cohorts of transcription factors that results from these interactions is one mechanism to provide the competence to respond to inductive signals in different ways, ultimately generating the neural crest and cranial placodes.
Collapse
|
27
|
Bielen H, Houart C. BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis. Dev Cell 2013; 23:812-22. [PMID: 23079599 DOI: 10.1016/j.devcel.2012.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/08/2012] [Accepted: 09/07/2012] [Indexed: 12/22/2022]
Abstract
Depletion of Wnt signaling is a major requirement for the induction of the anterior prosencephalon. However, the molecular events driving the differential regionalization of this area into eye-field and telencephalon fates are still unknown. Here we show that the BMP pathway is active in the anterior neural ectoderm during late blastula to early gastrula stage in zebrafish. Bmp2b mutants and mosaic loss-of-function experiments reveal that BMP acts as a repressor of eye-field fate through inhibition of its key transcription factor Rx3, thereby protecting the future telencephalon from acquiring eye identity. This BMP-driven mechanism initiates the establishment of the telencephalon prior to the involvement of Wnt antagonists from the anterior neural border. Furthermore, we demonstrate that Rx3 and BMP are respectively required to maintain and restrict the chemokine receptor cxcr4a, which in turn contributes to the morphogenetic separation of eye-field and telencephalic cells during early neurulation.
Collapse
Affiliation(s)
- Holger Bielen
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | |
Collapse
|
28
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
29
|
Yardley N, García-Castro MI. FGF signaling transforms non-neural ectoderm into neural crest. Dev Biol 2012; 372:166-77. [PMID: 23000357 PMCID: PMC3541687 DOI: 10.1016/j.ydbio.2012.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/29/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling.
Collapse
Affiliation(s)
- Nathan Yardley
- KBT 1100, Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | - Martín I. García-Castro
- KBT 1100, Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
30
|
Abstract
The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.
Collapse
Affiliation(s)
- Doris K Wu
- National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
31
|
Harden MV, Pereiro L, Ramialison M, Wittbrodt J, Prasad MK, McCallion AS, Whitlock KE. Close association of olfactory placode precursors and cranial neural crest cells does not predestine cell mixing. Dev Dyn 2012; 241:1143-54. [PMID: 22539261 PMCID: PMC4240535 DOI: 10.1002/dvdy.23797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2012] [Indexed: 12/22/2022] Open
Abstract
Vertebrate sensory organs originate from both cranial neural crest cells (CNCCs) and placodes. Previously, we have shown that the olfactory placode (OP) forms from a large field of cells extending caudally to the premigratory neural crest domain, and that OPs form through cell movements and not cell division. Concurrent with OP formation, CNCCs migrate rostrally to populate the frontal mass. However, little is known about the interactions between CNCCs and the placodes that form the olfactory sensory system. Previous reports suggest that the OP can generate cell types more typical of neural crest lineages such as neuroendocrine cells and glia, thus marking the OP as an unusual sensory placode. One possible explanation for this exception is that the neural crest origin of glia and neurons has been overlooked due to the intimate association of these two fields during migration. Using molecular markers and live imaging, we followed the development of OP precursors and of dorsally migrating CNCCs in zebrafish embryos. We generated a six4b:mCherry line (OP precursors) that, with a sox10:EGFP line (CNCCs), was used to follow cell migration. Our analyses showed that CNCCs associate with and eventually surround the forming OP with limited cell mixing occurring during this process.
Collapse
Affiliation(s)
- Maegan V Harden
- Department of Molecular Biology and Genetics, 445/449 Biotechnology Building, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Origin and segregation of cranial placodes in Xenopus laevis. Dev Biol 2011; 360:257-75. [PMID: 21989028 DOI: 10.1016/j.ydbio.2011.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 11/23/2022]
Abstract
Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.
Collapse
|
33
|
Lachke SA, Maas RL. Building the developmental oculome: systems biology in vertebrate eye development and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:305-323. [PMID: 20836031 DOI: 10.1002/wsbm.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate eye is a sophisticated multicomponent organ that has been actively studied for over a century, resulting in the identification of the major embryonic and molecular events involved in its complex developmental program. Data gathered so far provides sufficient information to construct a rudimentary network of the various signaling molecules, transcription factors, and their targets for several key stages of this process. With the advent of genomic technologies, there has been a rapid expansion in our ability to collect and process biological information, and the use of systems-level approaches to study specific aspects of vertebrate eye development has already commenced. This is beginning to result in the definition of the dynamic developmental networks that operate in ocular tissues, and the interactions of such networks between coordinately developing ocular tissues. Such an integrative understanding of the eye by a comprehensive systems-level analysis can be termed the 'oculome', and that of serial developmental stages of the eye as it transits from its initiation to a fully formed functional organ represents the 'developmental oculome'. Construction of the developmental oculome will allow novel mechanistic insights that are essential for organ regeneration-based therapeutic applications, and the generation of computational models for eye disease states to predict the effects of drugs. This review discusses our present understanding of two of the individual components of the developing vertebrate eye--the lens and retina--at both the molecular and systems levels, and outlines the directions and tools required for construction of the developmental oculome.
Collapse
Affiliation(s)
- Salil A Lachke
- Division of Genetics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard L Maas
- Division of Genetics, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
35
|
Domínguez-Frutos E, Vendrell V, Alvarez Y, Zelarayan LC, López-Hernández I, Ros M, Schimmang T. Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 2009; 126:873-81. [DOI: 10.1016/j.mod.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/15/2022]
|
36
|
Bajoghli B, Aghaallaei N, Jung G, Czerny T. Induction of otic structures by canonical Wnt signalling in medaka. Dev Genes Evol 2009; 219:391-8. [PMID: 19760182 PMCID: PMC2773112 DOI: 10.1007/s00427-009-0302-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/30/2009] [Indexed: 12/21/2022]
Abstract
The Wnt family of signalling proteins is known to participate in multiple developmental decisions during embryogenesis. We misexpressed Wnt1 in medaka embryos and observed anterior truncations, similar to those described for ectopic activation of canonical Wnt signalling in other species. Interestingly, when we induced a heat-shock Wnt1 transgenic line exactly at 30% epiboly, we observed multiple ectopic otic vesicles in the truncated embryos. The vesicles then fused, forming a single large ear structure. These "cyclopic ears" filled the complete anterior region of the embryos. The ectopic induction of otic development can be explained by the juxtaposition of hindbrain tissue with anterior ectoderm. Fibroblast growth factor (Fgf) ligands are thought to mediate the otic-inducing properties of the hindbrain. However, signals different from Fgf3 and Fgf8 are necessary to explain the formation of the ectopic ear structures, suggesting that Wnt signalling is involved in the otic induction process in medaka.
Collapse
Affiliation(s)
- Baubak Bajoghli
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- Present Address: Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | - Narges Aghaallaei
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- Present Address: Max-Planck Institute of Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | - Gerlinde Jung
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Viehmarktgasse 2A, 1030 Vienna, Austria
| | - Thomas Czerny
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
- Department for Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Viehmarktgasse 2A, 1030 Vienna, Austria
| |
Collapse
|
37
|
Cvekl A, Wang WL. Retinoic acid signaling in mammalian eye development. Exp Eye Res 2009; 89:280-91. [PMID: 19427305 DOI: 10.1016/j.exer.2009.04.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 12/20/2022]
Abstract
Retinoic acid (RA) is a biologically active metabolite of vitamin A (retinol) that serves as a signaling molecule during a number of developmental and physiological processes. RA signaling plays multiple roles during embryonic eye development. RA signaling is initially required for reciprocal interactions between the optic vesicle and invaginating lens placode. RA signaling promotes normal development of the ventral retina and optic nerve through its activities in the neural crest cell-derived periocular mesenchyme. RA coordinates these processes by regulating biological activities of a family of non-steroid hormone receptors, RARalpha/beta/gamma, and RXRalpha/beta/gamma. These DNA-binding transcription factors recognize DNA as RAR/RXR heterodimers and recruit multiprotein transcriptional co-repressor complexes. RA-binding to RAR receptors induces a conformational change in the receptor, followed by the replacement of co-repressor with co-activator complexes. Inactivation of RARalpha/beta/gamma receptors in the periocular mesenchyme abrogates anterior eye segment formation. This review summarizes recent genetic studies of RA signaling and progress in understanding the molecular mechanism of transcriptional co-activators that function with RAR/RXR.
Collapse
Affiliation(s)
- Ales Cvekl
- The Department Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
38
|
Ohyama T. Unraveling inner ear induction by gene manipulation using Pax2-Cre BAC transgenic mice. Brain Res 2009; 1277:84-9. [PMID: 19265685 DOI: 10.1016/j.brainres.2009.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/27/2022]
Abstract
One of the biggest drawbacks of conventional mouse knockout techniques in the study of the inner ear is that loss of a gene of interest may cause embryonic lethality before the inner ear develops. Thus, there is a need for an inner ear-specific gene manipulation system for loss- and gain-of-function analysis in the mouse inner ear. We generated a Pax2-Cre BAC transgenic line in which Cre recombinase expression recapitulates Pax2 expression in the presumptive otic ectoderm. Here, we present a brief summary of a recent model of inner ear induction suggested by the results of inner ear-specific gene modification using Pax2-Cre mice.
Collapse
Affiliation(s)
- Takahiro Ohyama
- Division of Cell Biology and Genetics, House Ear Institute, 2100 West Third Street, Los Angeles, CA 90057, USA.
| |
Collapse
|
39
|
Chen B, Kim EH, Xu PX. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4. Dev Biol 2008; 326:75-85. [PMID: 19027001 DOI: 10.1016/j.ydbio.2008.10.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 01/15/2023]
Abstract
Mouse olfactory epithelium (OE) originates from ectodermally derived placode, the olfactory placode that arises at the anterior end of the neural plate. Tissue grafting and recombination experiments suggest that the placode is derived from a common preplacodal domain around the neural plate and its development is directed by signals arising from the underlying mesoderm and adjacent neuroectoderm. In mice, loss of Six1 affects OE morphogenesis but not placode formation. We show here that embryos lacking both Six1 and Six4 failed to form the olfactory placode but the preplacodal region appeared to be specified as judged by the expression of Eya2, which marks the common preplacodal domain, suggesting a synergistic requirement of Six1 and Six4 in patterning the preplacodal ectoderm to a morphologic placode. Our results show that Six1 and Six4 are coexpressed in the preplacodal ectoderm from E8.0. In the olfactory pit, Six4 expression was observed in the peripheral precursors that overlap with Mash1-expressing cells, the early committed neuronal lineage. In contrast, Six1 is highly distributed in the peripheral regions where stem cells reside at E10.5 and it overlaps with Sox2 expression. Both genes are expressed in the basal and apical neuronal progenitors in the OE. Analyses of Six1;Six4 double mutant embryos demonstrated that the slightly thickened epithelium observed in the mutant was not induced for neuronal development. In contrast, in Six1(-/-) embryos, all neuronal lineage markers were initially expressed but the pattern of their expression was altered. Although very few, the pioneer neurons were initially present in the Six1 mutant OE. However, neurogenesis ceased by E12.5 due to markedly increased cell apoptosis and reduced proliferation, thus defining the cellular defects occurring in Six1(-/-) OE that have not been previously observed. Our findings demonstrate that Six1/4 function at the top of early events controlling olfactory placode formation and neuronal development. Our analyses show that the threshold of Six1/4 may be crucial for the expression of olfactory specific genes and that Six1 and Six4 may act synergistically to mediate olfactory placode specification and patterning through Fgf and Bmp signaling pathways.
Collapse
Affiliation(s)
- Binglai Chen
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY 10029, USA
| | | | | |
Collapse
|
40
|
Esterberg R, Fritz A. dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity. Dev Biol 2008; 325:189-99. [PMID: 19007769 DOI: 10.1016/j.ydbio.2008.10.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/19/2008] [Accepted: 10/13/2008] [Indexed: 12/20/2022]
Abstract
The vertebrate inner ear arises from the otic placode, a transient thickening of ectodermal epithelium adjacent to neural crest domains in the presumptive head. During late gastrulation, cells fated to comprise the inner ear are part of a domain in cranial ectoderm that contain precursors of all sensory placodes, termed the preplacodal region (PPR). The combination of low levels of BMP activity coupled with high levels of FGF signaling are required to establish the PPR through induction of members of the six/eya/dach, iro, and dlx families of transcription factors. The zebrafish dlx3b/4b transcription factors are expressed at the neural plate border where they play partially redundant roles in the specification of the PPR, otic and olfactory placodes. We demonstrate that dlx3b/4b assist in establishing the PPR through the transcriptional regulation of the BMP antagonist cv2. Morpholino-mediated knockdown of Dlx3b/4b results in loss of cv2 expression in the PPR and a transient increase in Bmp4 activity that lasts throughout early somitogenesis. Through the cv2-mediated inhibition of BMP activity, dlx3b/4b create an environment where FGF activity is favorable for PPR and otic marker expression. Our results provide insight into the mechanisms of PPR specification as well as the role of dlx3b/4b function in PPR and otic placode induction.
Collapse
|
41
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
42
|
Schlosser G. Do vertebrate neural crest and cranial placodes have a common evolutionary origin? Bioessays 2008; 30:659-72. [PMID: 18536035 DOI: 10.1002/bies.20775] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany.
| |
Collapse
|
43
|
Baker CVH, O'Neill P, McCole RB. Lateral line, otic and epibranchial placodes: developmental and evolutionary links? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:370-83. [PMID: 17638322 PMCID: PMC4209393 DOI: 10.1002/jez.b.21188] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two embryonic cell populations, the neural crest and cranial ectodermal placodes, between them give rise to many of the unique characters of vertebrates. Neurogenic placode derivatives are vital for sensing both external and internal stimuli. In this speculative review, we discuss potential developmental and evolutionary relationships between two placode series that are usually considered to be entirely independent: lateral line placodes, which form the mechanosensory and electroreceptive hair cells of the anamniote lateral line system as well as their afferent neurons, and epibranchial placodes (geniculate, petrosal and nodose), which form Phox2b(+) visceral sensory neurons with input from both the external and internal environment. We illustrate their development using molecular data we recently obtained in shark embryos, and we describe their derivatives, including the possible geniculate placode origin of a mechanosensory sense organ associated with the first pharyngeal pouch/cleft (the anamniote spiracular organ/amniote paratympanic organ). We discuss how both lateral line and epibranchial placodes can be related in different ways to the otic placode (which forms the inner ear and its afferent neurons), and how both are important for protective somatic reflexes. Finally, we put forward a highly speculative proposal about the original function of the cells whose evolutionary descendants today include the derivatives of the lateral line, otic and epibranchial placodes, namely that they produced sensory receptors and neurons for Phox2b-dependent protective reflex circuits. We hope this review will stimulate both debate and a fresh look at possible developmental and evolutionary relationships between these seemingly disparate and independent placodes.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge, United Kingdom.
| | | | | |
Collapse
|
44
|
Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA. Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Dev Biol 2008; 320:199-214. [PMID: 18571637 DOI: 10.1016/j.ydbio.2008.05.523] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/16/2022]
Abstract
Genes of the Eya family and of the Six1/2 subfamily are expressed throughout development of vertebrate cranial placodes and are required for their differentiation into ganglia and sense organs. How they regulate placodal neurogenesis, however, remains unclear. Through loss of function studies in Xenopus we show that Eya1 and Six1 are required for neuronal differentiation in all neurogenic placodes. The effects of overexpression of Eya1 or Six1 are dose dependent. At higher levels, Eya1 and Six1 expand the expression of SoxB1 genes (Sox2, Sox3), maintain cells in a proliferative state and block expression of neuronal determination and differentiation genes. At lower levels, Eya1 and Six1 promote neuronal differentiation, acting downstream of and/or parallel to Ngnr1. Our findings suggest that Eya1 and Six1 are required for both the regulation of placodal neuronal progenitor proliferation, through their effects on SoxB1 expression, and subsequent neuronal differentiation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, FB2, PO Box 330440, 28334 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo. Dev Biol 2008; 317:174-86. [PMID: 18367162 DOI: 10.1016/j.ydbio.2008.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 01/19/2023]
Abstract
Vertebrate cranial ectodermal placodes are transient, paired thickenings of embryonic head ectoderm that are crucial for the formation of the peripheral sensory nervous system: they give rise to the paired peripheral sense organs (olfactory organs, inner ears and anamniote lateral line system), as well as the eye lenses, and most cranial sensory neurons. Here, we present the first detailed spatiotemporal fate-maps in any vertebrate for the ophthalmic trigeminal (opV) and maxillomandibular trigeminal (mmV) placodes, which give rise to cutaneous sensory neurons in the ophthalmic and maxillomandibular lobes of the trigeminal ganglion. We used focal DiI and DiO labelling to produce eight detailed fate-maps of chick embryonic head ectoderm over approximately 24 h of development, from 0-16 somites. OpV and mmV placode precursors arise from a partially overlapping territory; indeed, some individual dyespots labelled both opV and mmV placode-derived cells. OpV and mmV placode precursors are initially scattered within a relatively large region of ectoderm adjacent to the neural folds, intermingled both with each other and with future epidermal cells, and with geniculate and otic placode precursors. Although the degree of segregation increases with time, there is no clear border between the opV and mmV placodes even at the 16-somite stage, long after neurogenesis has begun in the opV placode, and when neurogenesis is just beginning in the mmV placode. Finally, we find that occasional cells in the border region between the opV placode and mmV placode express both Pax3 (an opV placode specific marker) and Neurogenin1 (an mmV placode specific marker), suggesting that a few cells are responding to both opV and mmV placode-inducing signals. Overall, our results fill a large gap in our knowledge of the early stages of development of both the opV and mmV placodes, providing an essential framework for subsequent studies of the molecular control of their development.
Collapse
|
46
|
McCabe KL, Shiau CE, Bronner-Fraser M. Identification of candidate secreted factors involved in trigeminal placode induction. Dev Dyn 2008; 236:2925-35. [PMID: 17879314 DOI: 10.1002/dvdy.21325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cranial ectodermal placodes are critical for normal development of the peripheral nervous system of the head. However, many aspects of the molecular and tissue interactions involved in their induction have yet to be elucidated. The trigeminal placode is induced by an unidentified secreted factor(s) from the dorsal neural tube. To determine candidates that may be involved in this induction process, we have performed reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to screen for receptors expressed by uninduced presumptive trigeminal level ectoderm. We have found that receptors for fibroblast growth factors, insulin-like growth factors, platelet-derived growth factors, Sonic hedgehog, the transforming growth factor-beta superfamily, and Wnts all are expressed in patterns consistent with a role in trigeminal placode formation. This RT-PCR screen for candidate receptors expressed in presumptive trigeminal ectoderm is the first systematic screen to identify potential interactions underlying induction of the trigeminal placode and represents a critical step for understanding this complex process.
Collapse
Affiliation(s)
- Kathryn L McCabe
- Division of Biology MC 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
47
|
Mason I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007; 8:583-96. [PMID: 17637802 DOI: 10.1038/nrn2189] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From a wealth of experimental findings, derived from both in vitro and in vivo experiments, it is becoming clear that fibroblast growth factors regulate processes that are central to all aspects of nervous system development. Some of these functions are well known, whereas others, such as the roles of these proteins in axon guidance and synaptogenesis, have been established only recently. The emergent picture is one of remarkable economy, in which this family of ligands is deployed and redeployed at successive developmental stages to sculpt the nervous system.
Collapse
Affiliation(s)
- Ivor Mason
- MRC Centre for Developmental Neurobiology, King's College London, Fourth floor New Hunt's House, Guy's Hospital Campus, London, SE1 1UL, UK.
| |
Collapse
|
48
|
Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007; 26:555-97. [PMID: 17905638 PMCID: PMC2136409 DOI: 10.1016/j.preteyeres.2007.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
49
|
Lassiter RN, Dude C, Reynolds SB, Winters NI, Baker CV, Stark MR. Canonical Wnt signaling is required for ophthalmic trigeminal placode cell fate determination and maintenance. Dev Biol 2007; 308:392-406. [PMID: 17604017 PMCID: PMC3983986 DOI: 10.1016/j.ydbio.2007.05.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 12/23/2022]
Abstract
Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament, and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate.
Collapse
Affiliation(s)
| | - Carolynn Dude
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | | | | | - Clare V.H. Baker
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Michael R. Stark
- Author for correspondence – Department of Physiology and Developmental Biology, 574 WIDB, Brigham Young University, Provo, UT 84602, , Phone – 801-422-7498, Fax – 801-422-0700
| |
Collapse
|
50
|
Toro S, Varga ZM. Equivalent progenitor cells in the zebrafish anterior preplacodal field give rise to adenohypophysis, lens, and olfactory placodes. Semin Cell Dev Biol 2007; 18:534-42. [PMID: 17580121 DOI: 10.1016/j.semcdb.2007.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/31/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Embryonic organizing centers secrete signaling molecules that instruct target cells about their position and future identity. Information about cell position in relation to sources of instructive signals and about precursor cell lineages is key to our understanding of developmental processes that restrict cell potency and determine cell fate. We review adenohypophysis, lens, and olfactory placode formation and how gene expression patterns, cell positions, and cell fates in the anterior neural plate and anterior placodal field correlate in zebrafish and other vertebrates. Single cell lineage analysis in zebrafish suggests that the majority of preplacodal cells might be specified for pituitary, lens, or olfactory placode by the end of gastrulation.
Collapse
Affiliation(s)
- Sabrina Toro
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, United States.
| | | |
Collapse
|