1
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
2
|
De Bock T, Zhao X, Jacxsens L, Devlieghere F, Rajkovic A, Spanoghe P, Höfte M, Uyttendaele M. Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Antequera‐Gómez ML, Díaz‐Martínez L, Guadix JA, Sánchez‐Tévar AM, Sopeña‐Torres S, Hierrezuelo J, Doan HK, Leveau JH, de Vicente A, Romero D. Sporulation is dispensable for the vegetable-associated life cycle of the human pathogen Bacillus cereus. Microb Biotechnol 2021; 14:1550-1565. [PMID: 33955675 PMCID: PMC8313275 DOI: 10.1111/1751-7915.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 11/28/2022] Open
Abstract
Bacillus cereus is a common food-borne pathogen that is responsible for important outbreaks of food poisoning in humans. Diseases caused by B. cereus usually exhibit two major symptoms, emetic or diarrheic, depending on the toxins produced. It is assumed that after the ingestion of contaminated vegetables or processed food, spores of enterotoxigenic B. cereus reach the intestine, where they germinate and produce the enterotoxins that are responsible for food poisoning. In our study, we observed that sporulation is required for the survival of B. cereus in leaves but is dispensable in ready-to-eat vegetables, such as endives. We demonstrate that vegetative cells of B. cereus that are originally impaired in sporulation but not biofilm formation are able to reach the intestine and cause severe disorders in a murine model. Furthermore, our findings emphasise that the number of food poisoning cases associated with B. cereus is underestimated and suggest the need to revise the detection protocols, which are based primarily on spores and toxins.
Collapse
Affiliation(s)
- María Luisa Antequera‐Gómez
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Luis Díaz‐Martínez
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Juan Antonio Guadix
- Departamento de Biología AnimalFacultad de CienciasUniversidad de Málaga ‐ IBIMACampus de Teatinos s/nMálaga29071Spain
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND)Junta de AndalucíaUniversidad de MálagaC/ Severo Ochoa 35Campanillas (Málaga)29590Spain
| | - Ana María Sánchez‐Tévar
- Departamento de Biología AnimalFacultad de CienciasUniversidad de Málaga ‐ IBIMACampus de Teatinos s/nMálaga29071Spain
- Centro Andaluz de Nanomedicina y Biotecnología (BIONAND)Junta de AndalucíaUniversidad de MálagaC/ Severo Ochoa 35Campanillas (Málaga)29590Spain
| | - Sara Sopeña‐Torres
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Jesús Hierrezuelo
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Hung K. Doan
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA
| | | | - Antonio de Vicente
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| | - Diego Romero
- Departamento de MicrobiologíaInstituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"Universidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMA‐CSIC)Universidad de MálagaBulevar Louis Pasteur 31 (Campus Universitario de teatinos)Málaga29071Spain
| |
Collapse
|
4
|
Kim TD, Begyn K, Khanal S, Taghlaoui F, Heyndrickx M, Rajkovic A, Devlieghere F, Michiels C, Aertsen A. Bacillus weihenstephanensis can readily evolve for increased endospore heat resistance without compromising its thermotype. Int J Food Microbiol 2021; 341:109072. [PMID: 33524880 DOI: 10.1016/j.ijfoodmicro.2021.109072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Proper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C. Although the endospores of B. weihenstephanensis are generally less heat resistant compared to their mesophilic or thermotolerant relatives, our data now show that non-emetic B. weihenstephanensis strain LMG 18989T can readily and reproducibly evolve to acquire much enhanced endospore heat resistance. In fact, one of the B. weihenstephanensis mutants from directed evolution by wet heat in this study yielded endospores displaying a > 4-fold increase in D-value at 91 °C compared to the parental strain. Moreover, these mutant endospores retained their superior heat resistance even when sporulation was performed at 10 °C. Interestingly, increased endospore heat resistance did not negatively affect the vegetative growth capacities of the evolved mutants at lower (7 °C) and upper (37 °C) growth temperature boundaries, indicating that the correlation between cardinal growth temperatures and endospore heat resistance which is observed among bacterial sporeformers is not necessarily causal.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Katrien Begyn
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sadhana Khanal
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Fatima Taghlaoui
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Marc Heyndrickx
- ILVO - Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science, Unit - Food Safety, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP-UGent), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Chris Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M(2)S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
6
|
Pia AKR, Pereira APM, Costa RA, Alvarenga VO, Freire L, Carlin F, Sant'Ana AS. The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiol 2019; 82:99-106. [PMID: 31027825 DOI: 10.1016/j.fm.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/26/2022]
Abstract
Alkalization is a step of cocoa processing and consists of the use of alkali and high temperature to improve the sensorial and technological qualities of cocoa. Intense food processing can select spores, which can compromise safety and quality of the final product. Thus, the aim of this study was to evaluate the fate of B. cereus and G. stearothermophilus spores during the alkalization of pre-roasted (Pr) nibs (held at 120 °C) and unroasted (Ur) nibs (held at 90 °C) using potassium carbonate (0, 2, 4 and 6% w/w). In all conditions, log-linear inactivation kinetics with a tail was observed. The inactivation rate (kmax) for B. cereus varied from 0.065 to 1.67 min-1, whereas the kmax for G. stearothermophilus varied from 0.012 to 0.063 min-1. For both microorganisms, the lowest kmax values were observed during Ur nibs alkalization. The carbonate concentration increase promoted kmax values reduction. The highest tail values were observed for G. stearothermophilus in Ur nibs alkalization, reaching 3.04 log spores/g. Tail formation and low kmax values indicated that cocoa alkalization does not cause significant reductions on bacterial spore population. Therefore, the microbiological control should be primarily ensured by the raw material quality and by avoiding recontamination in the cocoa chain.
Collapse
Affiliation(s)
- Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ana P M Pereira
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Ramon A Costa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Verônica O Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Luisa Freire
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Frédéric Carlin
- UMR408 SQPOV "Sécurité et Qualité des Produits d'Origine Végétale", INRA Avignon Université, 84000, Avignon, France
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
7
|
Thermal inactivation kinetics of Bacillus cereus in Chinese rice wine and in simulated media based on wine components. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Rao L, Feeherry FE, Ghosh S, Liao X, Lin X, Zhang P, Li Y, Doona CJ, Setlow P. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiol 2018; 72:112-127. [DOI: 10.1016/j.fm.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
9
|
Hyun JE, Yoon JH, Lee SY. Response surface modeling for the inactivation ofBacillus cereuson cooked spinach by natural antimicrobials at various temperatures. J Food Saf 2018. [DOI: 10.1111/jfs.12484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong-Eun Hyun
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| | - Jae-Hyun Yoon
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| |
Collapse
|
10
|
Differences in the resistance of microbial spores to thermosonication, high pressure thermal processing and thermal treatment alone. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.11.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Evelyn, Milani E, Silva FV. Comparing high pressure thermal processing and thermosonication with thermal processing for the inactivation of bacteria, moulds, and yeasts spores in foods. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Desriac N, Postollec F, Coroller L, Pavan S, Combrisson J, Hallier-Soulier S, Sohier D. Trustworthy Identification of Resistance Biomarkers of Bacillus weihenstephanensis: Workflow of the Quality Assurance Procedure. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1058-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Warda AK, Tempelaars MH, Abee T, Nierop Groot MN. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair. Front Microbiol 2016; 7:1096. [PMID: 27486443 PMCID: PMC4947961 DOI: 10.3389/fmicb.2016.01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022] Open
Abstract
The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and NutritionWageningen, Netherlands
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands
- Wageningen UR Food & Biobased ResearchWageningen, Netherlands
| | | | - Tjakko Abee
- TI Food and NutritionWageningen, Netherlands
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Masja N. Nierop Groot
- TI Food and NutritionWageningen, Netherlands
- Wageningen UR Food & Biobased ResearchWageningen, Netherlands
| |
Collapse
|
14
|
Pereira J, Ferreira-Dias S, Dionísio L, Patarata L, Matos T. Application of Unsteady-State Heat Transfer Equations to Thermal Process of Morcela de arrozfrom MonchiqueRegion, a Portuguese Traditional Blood Sausage. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J.A. Pereira
- Department of Food Engineering, Instituto Superior de Engenharia; University of Algarve; Campus da Penha, Estrada da Penha 8005-139 Faro Portugal
- MeditBio - Centre for Mediterranean Bioresources and Food; University of Algarve, Campus de Gambelas; 8005-139 Faro Portugal
| | - S. Ferreira-Dias
- Instituto Superior de Agronomia; Universidade de Lisboa, Tapada da Ajuda; 1349-017 Lisbon Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food; Tapada da Ajuda; 1349-017 Lisbon Portugal
| | - L. Dionísio
- MeditBio - Centre for Mediterranean Bioresources and Food; University of Algarve, Campus de Gambelas; 8005-139 Faro Portugal
- Department of Biological Sciences and Bioengineering, Faculdade de Ciências e Tecnologia; University of Algarve; Campus de Gambelas 8005-139 Faro Portugal
| | - L. Patarata
- CECAV, Centro de Ciência Animal e Veterinária; Universidade de Trás-os-Montes e Alto Douro; Quinta de Prados 5000-801 Vila Real Portugal
| | - T.J.S. Matos
- Instituto Superior de Agronomia; Universidade de Lisboa, Tapada da Ajuda; 1349-017 Lisbon Portugal
- LEAF - Linking Landscape, Environment, Agriculture and Food; Tapada da Ajuda; 1349-017 Lisbon Portugal
| |
Collapse
|
15
|
Evelyn, Silva FV. Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600MPa HPP combined with 38–70°C: Comparing with thermal processing and estimating the energy requirements. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Ziane M, Couvert O, Le Chevalier P, Moussa-Boudjemaa B, Leguerinel I. Identification and characterization of aerobic spore forming bacteria isolated from commercial camel’s milk in south of Algeria. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70°C. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Warda AK, den Besten HMW, Sha N, Abee T, Nierop Groot MN. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int J Food Microbiol 2015; 201:27-34. [PMID: 25727186 DOI: 10.1016/j.ijfoodmicro.2015.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 11/26/2022]
Abstract
Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments are widely used by food producing industries to reduce the microbial spore loads. However consumers prefer mildly processed products that have less impact on its quality and this trend steers industry towards milder preservation treatments. Such treatments may result in damaged instead of inactivated spores, and these spores may germinate, repair, and grow out, possibly leading to quality and safety issues. The ability to repair and grow out is influenced by the properties of the food matrix. In the current communication we studied the outgrowth from heat damaged Bacillus cereus ATCC 14579 spores on Anopore membrane, which allowed following outgrowth heterogeneity of individual spores on broccoli and rice-based media as well as standard and mildly acidified (pH 5.5) meat-based BHI. Rice, broccoli and BHI pH 5.5 media resulted in delayed outgrowth from untreated spores, and increased heterogeneity compared to BHI pH 7.4, with the most pronounced effect in rice media. Exposure to wet heat for 1 min at 95 °C caused 2 log inactivation and approximately 95% of the spores in the surviving fraction were damaged resulting in substantial delay in outgrowth based on the time required to reach a maximum microcolony size of 256 cells. The delay was most pronounced for heat-treated spores on broccoli medium followed by spores on rice media (both untreated and treated). Interestingly, the increase in outgrowth heterogeneity of heat treated spores on BHI pH 7.4 was more pronounced than on rice, broccoli and BHI pH 5.5 conceivably reflecting that conditions in BHI pH 7.4 better support spore damage repair. This study compares the effects of three main factors, namely heat treatment, pH of BHI and the effect of food matrix highlighting the impact of different (model) food recovery media on outgrowth efficiency and heterogeneity of non-heat-treated and heat-damaged B. cereus spores.
Collapse
Affiliation(s)
- Alicja K Warda
- TI Food and Nutrition, Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands; Food & Biobased Research, Wageningen UR, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Na Sha
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands.
| | - Masja N Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands; Food & Biobased Research, Wageningen UR, Wageningen, The Netherlands
| |
Collapse
|
19
|
Caro-Astorga J, Pérez-García A, de Vicente A, Romero D. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Front Microbiol 2015; 5:745. [PMID: 25628606 PMCID: PMC4292775 DOI: 10.3389/fmicb.2014.00745] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed (i) the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and (ii) the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.
Collapse
Affiliation(s)
- Joaquín Caro-Astorga
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Alejandro Pérez-García
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Antonio de Vicente
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| | - Diego Romero
- Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga Málaga, Spain
| |
Collapse
|
20
|
Thermosonication versus thermal processing of skim milk and beef slurry: Modeling the inactivation kinetics of psychrotrophic Bacillus cereus spores. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Characterisation of non-toxigenic Clostridium spp. strains, to use as surrogates for non-proteolytic Clostridium botulinum in chilled food challenge testing. J Microbiol Methods 2015; 108:83-91. [DOI: 10.1016/j.mimet.2014.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 11/22/2022]
|
22
|
Abbas AA, Planchon S, Jobin M, Schmitt P. A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis. J Microbiol Methods 2014; 105:54-8. [PMID: 25019521 DOI: 10.1016/j.mimet.2014.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
A new chemically defined liquid medium, MODS, was developed for the aerobic growth and anaerobic growth and sporulation of Bacillus cereus strains. The comparison of sporulation capacity of 18 strains of B. cereus has shown effective growth and spore production in anaerobiosis..
Collapse
Affiliation(s)
- Amina Aicha Abbas
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, "F-84000 Avignon, France; Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, France
| | - Stella Planchon
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, "F-84000 Avignon, France; Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, France
| | - Michel Jobin
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, "F-84000 Avignon, France; Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, France
| | - Philippe Schmitt
- INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, "F-84000 Avignon, France; Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, France.
| |
Collapse
|
23
|
Daelman J, Jacxsens L, Membré JM, Sas B, Devlieghere F, Uyttendaele M. Behaviour of Belgian consumers, related to the consumption, storage and preparation of cooked chilled foods. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Daelman J, Jacxsens L, Devlieghere F, Uyttendaele M. Microbial safety and quality of various types of cooked chilled foods. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Smelt J, Stringer S, Brul S. Behaviour of individual spores of non proteolytic Clostridium botulinum as an element in quantitative risk assessment. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Assessment of the microbial safety and quality of cooked chilled foods and their production process. Int J Food Microbiol 2013; 160:193-200. [DOI: 10.1016/j.ijfoodmicro.2012.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 01/25/2023]
|
27
|
Daelman J, Vermeulen A, Willemyns T, Ongenaert R, Jacxsens L, Uyttendaele M, Devlieghere F. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage. Int J Food Microbiol 2013; 161:7-15. [DOI: 10.1016/j.ijfoodmicro.2012.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/16/2022]
|
28
|
The safety of pasteurised in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Sci 2012; 70:461-75. [PMID: 22063745 DOI: 10.1016/j.meatsci.2004.07.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 06/30/2004] [Accepted: 07/15/2004] [Indexed: 11/22/2022]
Abstract
There has been a substantial increase in sales of pasteurised in-pack chilled products over the last decade. It is anticipated that this trend will continue. These foods address consumer demand in being of high quality and requiring little preparation time. The microbiological safety of these foods commonly depends on a combination of a minimal heat treatment, refrigerated storage and a restricted shelf-life. The principal microbiological safety hazard for pasteurised in-pack meat products is foodborne botulism, as presented by non-proteolytic Clostridium botulinum. This review provides a summary of research that has contributed to the safe development of these foods without incidence of botulism.
Collapse
|
29
|
Phan V, Ramaekers M, Bolhuis D, Garczarek U, van Boekel M, Dekker M. On the use of Bayesian networks to combine raw data from related studies on sensory satiation. Food Qual Prefer 2012. [DOI: 10.1016/j.foodqual.2012.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Innovative Cooking Techniques for Improving the Overall Quality of a Kailan-Hybrid Broccoli. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0871-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Bae YM, Kim BR, Lee SY, Cha M, Park KH, Chung MS, Ryu K. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0064-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Pérez-Rodríguez P, de Blas E, Soto B, Pontevedra-Pombal X, López-Periago J. El conflicto de uso del suelo y la calidad de los alimentos The soil use conflict and food quality. CYTA - JOURNAL OF FOOD 2011. [DOI: 10.1080/19476337.2011.615944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Global gene expression profile for swarming Bacillus cereus bacteria. Appl Environ Microbiol 2011; 77:5149-56. [PMID: 21642396 DOI: 10.1128/aem.00245-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus can use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response of B. cereus ATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K(+) transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entire hbl operon during swarming. Finally, BC1435 and BC1436, orthologs of liaI-liaH that are known to be involved in the resistance of Bacillus subtilis to daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarming B. cereus cells to daptomycin, and P(spac)-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response of B. cereus to daptomycin.
Collapse
|
34
|
Augustin JC. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria. Food Microbiol 2011; 28:209-13. [DOI: 10.1016/j.fm.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/01/2010] [Accepted: 05/03/2010] [Indexed: 11/15/2022]
|
35
|
Heyndrickx M. Dispersal of Aerobic Endospore-forming Bacteria from Soil and Agricultural Activities to Food and Feed. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19577-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Peck MW, Plowman J, Aldus CF, Wyatt GM, Izurieta WP, Stringer SC, Barker GC. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials. Appl Environ Microbiol 2010; 76:6607-14. [PMID: 20709854 PMCID: PMC2950478 DOI: 10.1128/aem.01007-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/01/2010] [Indexed: 11/20/2022] Open
Abstract
The highly potent botulinum neurotoxins are responsible for botulism, a severe neuroparalytic disease. Strains of nonproteolytic Clostridium botulinum form neurotoxins of types B, E, and F and are the main hazard associated with minimally heated refrigerated foods. Recent developments in quantitative microbiological risk assessment (QMRA) and food safety objectives (FSO) have made food safety more quantitative and include, as inputs, probability distributions for the contamination of food materials and foods. A new method that combines a selective enrichment culture with multiplex PCR has been developed and validated to enumerate specifically the spores of nonproteolytic C. botulinum. Key features of this new method include the following: (i) it is specific for nonproteolytic C. botulinum (and does not detect proteolytic C. botulinum), (ii) the detection limit has been determined for each food tested (using carefully structured control samples), and (iii) a low detection limit has been achieved by the use of selective enrichment and large test samples. The method has been used to enumerate spores of nonproteolytic C. botulinum in 637 samples of 19 food materials included in pasta-based minimally heated refrigerated foods and in 7 complete foods. A total of 32 samples (5 egg pastas and 27 scallops) contained spores of nonproteolytic C. botulinum type B or F. The majority of samples contained <100 spores/kg, but one sample of scallops contained 444 spores/kg. Nonproteolytic C. botulinum type E was not detected. Importantly, for QMRA and FSO, the construction of probability distributions will enable the frequency of packs containing particular levels of contamination to be determined.
Collapse
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
37
|
Quantification of the effect of culturing temperature on salt-induced heat resistance of bacillus species. Appl Environ Microbiol 2010; 76:4286-92. [PMID: 20453152 DOI: 10.1128/aem.00150-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short- and long-term exposure to mild stress conditions can activate stress adaptation mechanisms in pathogens, resulting in a protective effect toward otherwise lethal stresses. The mesophilic strains Bacillus cereus ATCC 14579 and ATCC 10987 and the psychrotolerant strain B. weihenstephanensis KBAB4 were cultured at 12 degrees C and 30 degrees C until the exponential growth phase (i) in the absence of salt, (ii) in the presence of salt, and (iii) with salt shock after they reached the exponential growth phase and subsequently heat inactivated. Both the first-order model and the Weibull model were fitted to the inactivation kinetics, and statistical indices were calculated to select for each condition the most appropriate model to describe the inactivation data. The third-decimal reduction times (which reflected the times needed to reduce the initial number of microorganisms by three decimal powers) were determined for quantitative comparison. The heat resistance of both mesophilic strains increased when cells were salt cultured and salt shocked at 30 degrees C, whereas these salt-induced effects were not significant for the psychrotolerant strain. In contrast, only the psychrotolerant strain showed salt-induced heat resistance when cells were cultured at 12 degrees C. Therefore, culturing temperature and strain diversity are important aspects to address when adaptive stress responses are quantified. The activated adaptive stress response had an even larger impact on the number of surviving microorganisms when the stress factor (i.e., salt) was still present during inactivation. These factors should be considered when stress-integrated predictive models are developed that can be used in the food industry to balance and optimize processing conditions of minimally processed foods.
Collapse
|
38
|
Silva FV, Gibbs PA. Non-proteolytic Clostridium botulinum spores in low-acid cold-distributed foods and design of pasteurization processes. Trends Food Sci Technol 2010. [DOI: 10.1016/j.tifs.2009.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Direct-imaging-based quantification of Bacillus cereus ATCC 14579 population heterogeneity at a low incubation temperature. Appl Environ Microbiol 2009; 76:927-30. [PMID: 20023091 DOI: 10.1128/aem.01372-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus ATCC 14579 was cultured in microcolonies on Anopore strips near its minimum growth temperature to directly image and quantify its population heterogeneity at an abusive refrigeration temperature. Eleven percent of the microcolonies failed to grow during low-temperature incubation, and this cold-induced population heterogeneity could be partly attributed to the loss of membrane integrity of individual cells.
Collapse
|
40
|
Phenotypic and transcriptomic analyses of mildly and severely salt-stressed Bacillus cereus ATCC 14579 cells. Appl Environ Microbiol 2009; 75:4111-9. [PMID: 19395575 DOI: 10.1128/aem.02891-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are able to cope with the challenges of a sudden increase in salinity by activating adaptation mechanisms. In this study, exponentially growing cells of the pathogen Bacillus cereus ATCC 14579 were exposed to both mild (2.5% [wt/vol] NaCl) and severe (5% [wt/vol] NaCl) salt stress conditions. B. cereus continued to grow at a slightly reduced growth rate when it was shifted to mild salt stress conditions. Exposure to severe salt stress resulted in a lag period, and after 60 min growth had resumed, with cells displaying a filamentous morphology. Whole-genome expression analyses of cells exposed to 2.5% salt stress revealed that the expression of these cells overlapped with the expression of cells exposed to 5% salt stress, suggesting that the corresponding genes were involved in a general salt stress response. Upregulation of osmoprotectant, Na(+)/H(+), and di- and tripeptide transporters and activation of an oxidative stress response were noticeable aspects of the general salt stress transcriptome response. Activation of this response may confer cross-protection against other stresses, and indeed, increased resistance to heat and hydrogen peroxide could be demonstrated after preexposure to salt. A temporal shift between the transcriptome response and several phenotypic responses of severely salt-stressed cells was observed. After resumption of growth, these cells showed cellular filamentation, reduced chemotaxis, increased catalase activity, and optimal oxidative stress resistance, which corresponded to the transcriptome response displayed in the initial lag period. The linkage of transcriptomes and phenotypic characteristics can contribute to a better understanding of cellular stress adaptation strategies and possible cross-protection mechanisms.
Collapse
|
41
|
Cabo ML, Torres B, Herrera JJR, Bernárdez M, Pastoriza L. Application of nisin and pediocin against resistance and germination of Bacillus spores in sous vide products. J Food Prot 2009; 72:515-23. [PMID: 19343939 DOI: 10.4315/0362-028x-72.3.515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sous vide and other mild preservation techniques are increasingly demanded by consumers. However, spores often will survive in minimally processed foods, causing both spoilage and safety problems. The main objective of the present work was to solve an industrial spoilage problem associated with two sous vide products: mushrooms and shellfish salad. Bacillus subtilis and Bacillus licheniformis predominated as the most heat-resistant organisms isolated from mushrooms and shellfish salad, respectively. The combined effects of nisin and pediocin against resistance and germination of both Bacillus species were described by empirical equations. Whereas nisin was more effective for decreasing thermal resistance of B. subtilis spores, pediocin was more effective against B. licheniformis. However, a significant positive interaction between both biopeptides for decreasing the proportion of vegetative cells resulting from thermoresistant spores was demonstrated in later experiments, thus indicating the increased efficacy of applying high concentrations of both bacteriocins. This efficacy was further demonstrated in additional challenge studies carried out at 15 degrees C in the two sous vide products: mushrooms and shellfish salad. Whereas no vegetative cells were detected after 90 days in the presence of bacteriocins, almost 100% of the population in nontreated samples of mushrooms and shellfish salad was in the vegetative state after 17 and 43 days of storage at 15 degrees C, respectively.
Collapse
Affiliation(s)
- M L Cabo
- Instituto de Investigaciones Marinas (C.S.I.C.), Eduardo Cabello, 6-36208 Vigo, Spain.
| | | | | | | | | |
Collapse
|
42
|
Hernández-Herrero L, Giner M, Valero M. Effective chemical control of psychrotrophic Bacillus cereus EPSO-35AS and INRA TZ415 spore outgrowth in carrot broth. Food Microbiol 2008; 25:714-21. [DOI: 10.1016/j.fm.2008.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/28/2022]
|
43
|
Galimpin-Johan SMC, Rahman RA, Jamilah B, Che Man YB, Rusul G. Pasteurization, development and storage of sous vide rendang (spicy beef stew). ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4506.2007.00071.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Martínez S, Borrajo R, Franco I, Carballo J. Effect of environmental parameters on growth kinetics of Bacillus cereus (ATCC 7004) after mild heat treatment. Int J Food Microbiol 2007; 117:223-7. [PMID: 16978725 DOI: 10.1016/j.ijfoodmicro.2006.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of temperature (10 to 50 degrees C), initial pH (4.0 to 6.0) and sodium chloride concentration (0.5 to 3.0%) on the growth in nutrient broth and in meat extract of Bacillus cereus after mild heat treatment (90 degrees C--10 min) was determined. B. cereus spores survived after heating and they were able to germinate and grow in both media when post-treatment conditions were favourable. Heated B. cereus did not grow at 10 and 50 degrees C or in a medium with pH 4.0. Decreasing pH values and increasing levels of sodium chloride decreased growth rate and increased the lag phase of B. cereus. pH 4.5 was unable to prevent the growth of heated spores in a meat substrate with 0.5% NaCl at 12 degrees C. The combination of pH </=4.5, NaCl concentration >/=1.0% and temperatures </=12 degrees C was sufficient to inhibit B. cereus growth after heat treatment at 90 degrees C for 10 min, for at least 50 days in nutrient broth and in meat extract. Re-heating at temperatures >/=60 degrees C could control heated B. cereus ATCC 7004 growth.
Collapse
Affiliation(s)
- Sidonia Martínez
- Area de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Campus Universitario, s/n. 32004 Ourense, Spain.
| | | | | | | |
Collapse
|
45
|
den Besten HMW, Ingham CJ, van Hylckama Vlieg JET, Beerthuyzen MM, Zwietering MH, Abee T. Quantitative analysis of population heterogeneity of the adaptive salt stress response and growth capacity of Bacillus cereus ATCC 14579. Appl Environ Microbiol 2007; 73:4797-804. [PMID: 17545319 PMCID: PMC1951020 DOI: 10.1128/aem.00404-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial populations can display heterogeneity with respect to both the adaptive stress response and growth capacity of individual cells. The growth dynamics of Bacillus cereus ATCC 14579 during mild and severe salt stress exposure were investigated for the population as a whole in liquid culture. To quantitatively assess the population heterogeneity of the stress response and growth capacity at a single-cell level, a direct imaging method was applied to monitor cells from the initial inoculum to the microcolony stage. Highly porous Anopore strips were used as a support for the culturing and imaging of microcolonies at different time points. The growth kinetics of cells grown in liquid culture were comparable to those of microcolonies grown upon Anopore strips, even in the presence of mild and severe salt stress. Exposure to mild salt stress resulted in growth that was characterized by a remarkably low variability of microcolony sizes, and the distributions of the log(10)-transformed microcolony areas could be fitted by the normal distribution. Under severe salt stress conditions, the microcolony sizes were highly heterogeneous, and this was apparently caused by the presence of both a nongrowing and growing population. After discriminating these two subpopulations, it was shown that the variability of microcolony sizes of the growing population was comparable to that of non-salt-stressed and mildly salt-stressed populations. Quantification of population heterogeneity during stress exposure may contribute to an optimized application of preservation factors for controlling growth of spoilage and pathogenic bacteria to ensure the quality and safety of minimally processed foods.
Collapse
|
46
|
Demidova TN, Hamblin MR. Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl Environ Microbiol 2005; 71:6918-25. [PMID: 16269726 PMCID: PMC1287731 DOI: 10.1128/aem.71.11.6918-6925.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation is a sophisticated mechanism by which some bacteria survive conditions of stress and starvation by producing a multilayered protective capsule enclosing their condensed DNA. Spores are highly resistant to damage by heat, radiation, and commonly employed antibacterial agents. Previously, spores have also been shown to be resistant to photodynamic inactivation using dyes and light that easily destroy the corresponding vegetative bacteria. We have discovered that Bacillus spores are susceptible to photoinactivation by phenothiazinium dyes and low doses of red light. Dimethylmethylene blue, methylene blue, new methylene blue, and toluidine blue O are all effective, while alternative photosensitizers such as Rose Bengal, polylysine chlorin(e6) conjugate, a tricationic porphyrin, and a benzoporphyrin derivative, which easily kill vegetative cells, are ineffective. Spores of Bacillus cereus and B. thuringiensis are most susceptible, B. subtilis and B. atrophaeus are also killed, and B. megaterium is resistant. Photoinactivation is most effective when excess dye is washed from the spores, showing that the dye binds to the spores and that excess dye in solution can quench light delivery. The relatively mild conditions needed for spore killing could have applications for treating wounds contaminated by anthrax spores, for which conventional sporicides would have unacceptable tissue toxicity.
Collapse
Affiliation(s)
- Tatiana N Demidova
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
47
|
Counil E, Verger P, Volatier JL. Handling of contamination variability in exposure assessment: A case study with ochratoxin A. Food Chem Toxicol 2005; 43:1541-55. [PMID: 15963619 DOI: 10.1016/j.fct.2005.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/15/2022]
Abstract
The contamination of foods dedicated to human consumption varies over space and time. In exposure assessment, this is usually addressed through probabilistic modelling. The present work explores how the variability and uncertainty of exposures estimated at the population level are affected by: (a) the (non-)parametric nature of input contamination distributions; (b) the time-window used to sample contamination values within those distributions. Focusing on exposure of the French population to food mycotoxin ochratoxin A, we implement a range of second-order Monte-Carlo simulations that allow distinguishing variability of exposures from uncertainty of distributional parameters estimates. A simulation runs 10,000 iterations. Overall estimates of parameters are given by the median across iterations and 95%CI by 2.5th and 97.5th percentiles. Our results show that: (a) parametric (log-normal) input distributions may lead to over-estimation of variability and greater uncertainty as compared to non-parametric ones (P97.5 [95%CI] of 7.1 [6.6;7.7] for Parametric-Occasion, 4.6 [4.3;5.0] for Non-Parametric-Occasion), and that (b) the 'Occasion' time-window combines better estimate of variability and lower uncertainty when exposure modelling is applied to populations living in developed countries with complex agri-food systems (P97.5 [95%CI]: 7.3 [6.2;8.9] for Non-Parametric-Week, 4.6 [4.3;5.0] for Non-Parametric-Occasion). A deterministic approach is nevertheless preferred to probabilistic modelling every time input data quality is questionable.
Collapse
Affiliation(s)
- E Counil
- INRA-Mét@risk, Méthodologie d'analyse du risque alimentaire, INA P-G, 16 rue Claude Bernard, 75231 Paris Cedex 5, France.
| | | | | |
Collapse
|
48
|
de Vries YP, Atmadja RD, Hornstra LM, de Vos WM, Abee T. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium. Appl Environ Microbiol 2005; 71:3248-54. [PMID: 15933027 PMCID: PMC1151813 DOI: 10.1128/aem.71.6.3248-3254.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 12/27/2004] [Indexed: 11/20/2022] Open
Abstract
A chemically defined medium in combination with an airlift fermentor system was used to study the growth and sporulation of Bacillus cereus ATCC 14579. The medium contained six amino acids and lactate as the main carbon sources. The amino acids were depleted during exponential growth, while lactate was metabolized mainly during stationary phase. Two concentrations of glutamate were used: high (20 mM; YLHG) and low (2.5 mM; YLLG). Under both conditions, sporulation was complete and synchronous. Sporulation started and was completed while significant amounts of carbon and nitrogen sources were still present in the medium, indicating that starvation was not the trigger for sporulation. Analysis of amino acids and NH4+ in the culture supernatant showed that most of the nitrogen assimilated by the bacteria was taken up during sporulation. The consumption of glutamate depended on the initial concentration; in YLLG, all of the glutamate was used early during exponential growth, while in YLHG, almost all of the glutamate was used during sporulation. In YLLG, but not in YLHG, NH4+ was taken up by the cells during sporulation. The total amount of nitrogen used by the bacteria in YLLG was less than that used by the bacteria in YLHG, although a significant amount of NH4+ was present in the medium throughout sporulation. Despite these differences, growth and temporal expression of key sigma factors involved in sporulation were parallel, indicating that the genetic time frames of sporulation were similar under both conditions. Nevertheless, in YLHG, dipicolinic acid production started later and the spores were released from the mother cells much later than in YLLG. Notably, spores had a higher heat resistance when obtained after growth in YLHG than when obtained after growth in YLLG, and the spores germinated more rapidly and completely in response to inosine, l-alanine, and a combination of these two germinants.
Collapse
Affiliation(s)
- Ynte P de Vries
- Wageningen Center for Food Sciences, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Del Torre M, Stecchini ML, Braconnier A, Peck MW. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin. Int J Food Microbiol 2004; 96:115-31. [PMID: 15364467 DOI: 10.1016/j.ijfoodmicro.2004.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 07/07/2003] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
Sales and consumption of refrigerated processed foods of extended durability (REPFEDs) have increased many-fold in Europe over the last 10 years. The safety and quality of these convenient ready-to-eat foods relies on a combination of mild heat treatment and refrigerated storage, sometimes in combination with other hurdles such as mild preservative factors. The major hazard to the microbiological safety of these foods is Clostridium botulinum. This paper reports on the prevalence and behaviour of proteolytic C. botulinum and non-proteolytic C. botulinum in gnocchi, a potato-based REPFED of Italian origin. Attempts to isolate proteolytic C. botulinum and non-proteolytic C. botulinum from gnocchi and its ingredients were unsuccessful. Based on assessment of the adequacy of the methods used, it was estimated that for proteolytic C. botulinum there was < 25 spores/kg of gnocchi and < 70 spores/kg of ingredients. The total anaerobic microbial load of gnocchi and its ingredients was low, with an estimated 1 MPN/g in processed gnocchi. Most of the anaerobic flora was facultatively anaerobic. A few obligately anaerobic bacteria were isolated from gnocchi and its ingredients and belonged to different Clostridium species. The protection factor, number of decimal reductions in the probability of toxigenesis from a single spore, was determined for eight different gnocchi formulations by challenge test studies. For all gnocchi stored at 8 degrees C (as recommended by the manufacturer) or 12 degrees C (mild temperature abuse), growth and toxin production were not detected in 75 days. The protection factor was >4.2 for proteolytic C. botulinum, and >6.2 for non-proteolytic C. botulinum. When inoculated packs were stored at 20 degrees C (severe temperature abuse), toxin production in 75 days was prevented by the inclusion of 0.09% (w/w) sorbic acid (protection factors as above), however in the absence of sorbic acid the packs became toxic before the end of the intended shelf-life and the protection factors were lower. Providing sorbic acid (0.09% w/w) is included in the gnocchi, the safety margin would seem to be very large with respect to the foodborne botulism hazard.
Collapse
Affiliation(s)
- M Del Torre
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | | | |
Collapse
|
50
|
de Vries YP, Hornstra LM, de Vos WM, Abee T. Growth and sporulation of Bacillus cereus ATCC 14579 under defined conditions: temporal expression of genes for key sigma factors. Appl Environ Microbiol 2004; 70:2514-9. [PMID: 15066852 PMCID: PMC383076 DOI: 10.1128/aem.70.4.2514-2519.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An airlift fermentor system allowing precise regulation of pH and aeration combined with a chemically defined medium was used to study growth and sporulation of Bacillus cereus ATCC 14579. Sporulation was complete and synchronous. Expression of sigA, sigB, sigF, and sigG was monitored with real-time reverse transcription-PCR, and the pattern qualitatively resembled that of Bacillus subtilis. This method allows reproducible production of stable spores, while the synchronous growth and defined conditions are excellently suitable for further gene expression studies of cellular differentiation of B. cereus.
Collapse
Affiliation(s)
- Ynte P de Vries
- Wageningen Centre for Food Sciences, Laboratory of Food Microbiology, Wageningen UR, The Netherlands.
| | | | | | | |
Collapse
|