1
|
Sumohan Pillai A, Achraf Ben Njima M, Ayadi Y, Cattiaux L, Ladram A, Piesse C, Baptiste B, Gallard JF, Mallet JM, Bouchemal K. Cyclodextrin-based supramolecular nanogels decorated with mannose for short peptide encapsulation. Int J Pharm 2024; 660:124379. [PMID: 38925235 DOI: 10.1016/j.ijpharm.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.
Collapse
Affiliation(s)
- Archana Sumohan Pillai
- Département de Chimie, École Normale Supérieure-PSL University Paris, France; Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | | | - Yasmine Ayadi
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Laurent Cattiaux
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Plateforme d'Ingénierie des Protéines-Service de Synthèse Peptidique, F-75252 Paris, France
| | - Benoit Baptiste
- Sorbonne Université, CNRS, UMR 7590, IMPMC, IRD, MNHN, F-75252 Paris, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif-sur-Yvette, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Jean-Maurice Mallet
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
2
|
Chand Daskhan G, Ton Tran HT, Cairo CW. Convergent synthesis of a hexadecavalent heterobifunctional ABO blood group glycoconjugate. Carbohydr Res 2024; 535:108988. [PMID: 38048747 DOI: 10.1016/j.carres.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
3
|
Sarıçam M, Ercan Ayra M, Culha M. Systematic Investigation of Cellular Response to Hydroxyl Group Orientation Differences on Gold Glyconanoparticles. ACS OMEGA 2023; 8:42921-42935. [PMID: 38024762 PMCID: PMC10652720 DOI: 10.1021/acsomega.3c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) surfaces act as the interface as they interact with living systems and play a critical role in defining their cellular response. The nature of these interactions should be well understood to design safer and more effective NPs to be used in a wide range of biomedical applications. At the moment, it is not clear how a subtle change in surface chemistry will affect an NP's behavior in a biological system. Thus, understanding the role of such a small change is critical and may allow one to fine-tune a biological response. In this study, the cellular response to -OH orientation differences generated on gold glyconanoparticles, which are recently considered promising therapeutic agents as they mimic a glycocalyx, is investigated. As model molecules, glucose and mannose (C2 epimer) as monosaccharides and lactose and maltose (galactose and glucose as free units, C4 epimer) as disaccharides were chosen to monitor the cellular response in A549, BEAS-2b, and MDA-MB-231 cells through cellular uptake, cytotoxicity, and cell cycle progression. The three cell lines gave various and remarkable cellular responses to the same subtle -OH differences on gold glyconanoparticles, and it is determined that not only -OH orientation differences but also the number of saccharides on gold glyconanoparticles affect the cellular response. It was shown that mannose (C2 epimer to glucose) was significant with the promise of being a therapeutic agent for lung cancer therapy, whereas the toxicological profile of MDA-MB-231 cells was affected by AuNPs-glucose the most. This study demonstrates that clearly small chemical alterations on a NP surface can result in a significant cellular response. It can be concluded that the -OH orientation at the second and fourth carbon of a carbohydrate ring has a critical role in designing and engineering novel gold glyconanoparticles (consisting of monolayer mono- or disaccharides) for a specific cancer therapy.
Collapse
Affiliation(s)
- Melike Sarıçam
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Merve Ercan Ayra
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Mustafa Culha
- Department
of Chemistry & Biochemistry, Augusta
University, Augusta, Georgia 30912, United States
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
| |
Collapse
|
4
|
Singh A, Arango JC, Shi A, d’Aliberti JB, Claridge SA. Surface-Templated Glycopolymer Nanopatterns Transferred to Hydrogels for Designed Multivalent Carbohydrate-Lectin Interactions across Length Scales. J Am Chem Soc 2023; 145:1668-1677. [PMID: 36640106 PMCID: PMC9881003 DOI: 10.1021/jacs.2c09937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Multivalent interactions between carbohydrates and proteins enable a broad range of selective chemical processes of critical biological importance. Such interactions can extend from the macromolecular scale (1-10 nm) up to much larger scales across a cell or tissue, placing substantial demands on chemically patterned materials aiming to leverage similar interactions in vitro. Here, we show that diyne amphiphiles with carbohydrate headgroups can be assembled on highly oriented pyrolytic graphite (HOPG) to generate nanometer-resolution carbohydrate patterns, with individual linear carbohydrate assemblies up to nearly 1 μm, and microscale geometric patterns. These are then photopolymerized and covalently transferred to the surfaces of hydrogels. This strategy suspends carbohydrate patterns on a relatively rigid polydiacetylene (persistence length ∼ 16 nm), exposed at the top surface of the hydrogel above the bulk pore structure. Transferred patterns of appropriate carbohydrates (e.g., N-acetyl-d-glucosamine, GlcNAc) enable selective, multivalent interactions (KD ∼ 40 nM) with wheat germ agglutinin (WGA), a model lectin that exhibits multivalent binding with appropriately spaced GlcNAc moieties. WGA binding affinity can be further improved (KD ∼ 10 nM) using diacetylenes that shift the polymer backbone closer to the displayed carbohydrate, suggesting that this strategy can be used to modulate carbohydrate presentation at interfaces. Conversely, GlcNAc-patterned surfaces do not induce specific binding of concanavalin A, and surfaces patterned with glucuronic acid, or with simple carboxylic acid or hydroxyl groups, do not induce WGA binding. More broadly, this approach may have utility in designing synthetic glycan-mimetic interfaces with features from molecular to mesoscopic scales, including soft scaffolds for cells.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Juan C. Arango
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Anni Shi
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Joseph B. d’Aliberti
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Shelley A. Claridge
- Department
of Chemistry, Purdue University, West Lafayette, Indiana47907, United States,Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana47907, United States,. Phone: 765-494-6070
| |
Collapse
|
5
|
Cooper O, Phan HP, Fitzpatrick T, Dinh T, Huang H, Nguyen NT, Tiralongo J. Picomolar detection of carbohydrate-lectin interactions on piezoelectrically printed microcantilever array. Biosens Bioelectron 2022; 205:114088. [DOI: 10.1016/j.bios.2022.114088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
|
6
|
Lacham-Hartman S, Shmidov Y, Radisky ES, Bitton R, Lukatsky DB, Papo N. Avidity observed between a bivalent inhibitor and an enzyme monomer with a single active site. PLoS One 2021; 16:e0249616. [PMID: 34847142 PMCID: PMC8631645 DOI: 10.1371/journal.pone.0249616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022] Open
Abstract
Although myriad protein–protein interactions in nature use polyvalent binding, in which multiple ligands on one entity bind to multiple receptors on another, to date an affinity advantage of polyvalent binding has been demonstrated experimentally only in cases where the target receptor molecules are clustered prior to complex formation. Here, we demonstrate cooperativity in binding affinity (i.e., avidity) for a protein complex in which an engineered dimer of the amyloid precursor protein inhibitor (APPI), possessing two fully functional inhibitory loops, interacts with mesotrypsin, a soluble monomeric protein that does not self-associate or cluster spontaneously. We found that each inhibitory loop of the purified APPI homodimer was over three-fold more potent than the corresponding loop in the monovalent APPI inhibitor. This observation is consistent with a suggested mechanism whereby the two APPI loops in the homodimer simultaneously and reversibly bind two corresponding mesotrypsin monomers to mediate mesotrypsin dimerization. We propose a simple model for such dimerization that quantitatively explains the observed cooperativity in binding affinity. Binding cooperativity in this system reveals that the valency of ligands may affect avidity in protein–protein interactions including those of targets that are not surface-anchored and do not self-associate spontaneously. In this scenario, avidity may be explained by the enhanced concentration of ligand binding sites in proximity to the monomeric target, which may favor rebinding of the multiple ligand binding sites with the receptor molecules upon dissociation of the protein complex.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Shmidov
- Deprtment of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Ronit Bitton
- Deprtment of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - David B. Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (DBL)
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (DBL)
| |
Collapse
|
7
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
8
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
9
|
Amjad AM. DENDRIMERS IN ANTICANCER TARGETED DRUG DELIVERY: ACCOMPLISHMENTS, CHALLENGES AND DIRECTIONS FOR FUTURE. PHARMACY & PHARMACOLOGY 2021. [DOI: 10.19163/2307-9266-2021-9-1-4-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendrimers are nanoparticles with unique features including globular 3D shape and nanometer size. The availability of numerous terminal functional groups and modifiable surface engineering permit modification of dendrimer surface with several therapeutic agents, diagnostic moieties and targeting substances.The aim. To enlighten the readers regarding design, development, limitations, challenges and future directions regarding anticancer bio-dendrimers.Materials and methods. The data base was represented by such systems as Medline, Cochrane Central Register of Controlled Trials, Scopus, Web of Science Core Collection, PubMed. gov, Google-Academy. A search was carried out for the following keywords and combinations: Polypropylene imine (PPI); Poly-L-lysine (PLL); polyamidoamine (PAMAM); cancer; drug delivery; dendrimers.Results. High encapsulation of drug and effective passive targeting are also among their therapeutic uses. Herein, we have described latest developments in chemotherapeutic delivery of drugs by dendrimers. For the most part, the potential and efficacy of dendrimers are anticipated to have considerable progressive effect on drug targeting and delivery.Conclusion. The newest discoveries have shown that the dendritic nanocarriers have many unique features that endorse more research and development.
Collapse
Affiliation(s)
- A. M. Amjad
- Northern Border University
Rafha, Saudi Arabia, 76322
| |
Collapse
|
10
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Parajuli B, Acharya K, Nangarlia A, Zhang S, Parajuli B, Dick A, Ngo B, Abrams CF, Chaiken I. Identification of a glycan cluster in gp120 essential for irreversible HIV-1 lytic inactivation by a lectin-based recombinantly engineered protein conjugate. Biochem J 2020; 477:4263-4280. [PMID: 33057580 DOI: 10.1042/bcj20200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
Abstract
We previously discovered a class of recombinant lectin conjugates, denoted lectin DLIs ('dual-acting lytic inhibitors') that bind to the HIV-1 envelope (Env) protein trimer and cause both lytic inactivation of HIV-1 virions and cytotoxicity of Env-expressing cells. To facilitate mechanistic investigation of DLI function, we derived the simplified prototype microvirin (MVN)-DLI, containing an MVN domain that binds high-mannose glycans in Env, connected to a DKWASLWNW sequence (denoted 'Trp3') derived from the membrane-associated region of gp41. The relatively much stronger affinity of the lectin component than Trp3 argues that the lectin functions to capture Env to enable Trp3 engagement and consequent Env membrane disruption and virolysis. The relatively simplified engagement pattern of MVN with Env opened up the opportunity, pursued here, to use recombinant glycan knockout gp120 variants to identify the precise Env binding site for MVN that drives DLI engagement and lysis. Using mutagenesis combined with a series of biophysical and virological experiments, we identified a restricted set of residues, N262, N332 and N448, all localized in a cluster on the outer domain of gp120, as the essential epitope for MVN binding. By generating these mutations in the corresponding HIV-1 virus, we established that the engagement of this glycan cluster with the lectin domain of MVN*-DLI is the trigger for DLI-derived virus and cell inactivation. Beyond defining the initial encounter step for lytic inactivation, this study provides a guide to further elucidate DLI mechanism, including the stoichiometry of Env trimer required for function, and downstream DLI optimization.
Collapse
Affiliation(s)
- Bibek Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Bijay Parajuli
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Brendon Ngo
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, U.S.A
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, U.S.A
| |
Collapse
|
12
|
Wilms D, Schröer F, Paul TJ, Schmidt S. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12555-12562. [PMID: 32975417 DOI: 10.1021/acs.langmuir.0c02040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion processes at the cellular scale are dominated by carbohydrate interactions, including the attachment and invasion of pathogens. Carbohydrate-presenting responsive polymers can bind pathogens and inhibit pathogen invasion by remote stimuli for the development of new antibiotic strategies. In this work, the adhesion forces of E. coli to monolayers composed of mannose-functionalized microgels with thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)) (PEG) networks are quantified using single-cell force spectroscopy (SCFS). When exceeding the microgels' lower critical solution temperature (LCST), the adhesion increases up to 2.5-fold depending on the polymer backbone and the mannose density. For similar mannose densities, the softer PNIPAM microgels show a significantly stronger adhesion increase when crossing the LCST as compared to the stiffer PEG microgels. This is explained by a stronger shift in swelling, mannose density, and surface roughness of the softer gels when crossing the LCST. When using nonbinding galactose instead of mannose, or when inhibiting bacterial receptors, a certain level of adhesion remains, indicating that also polymer-fimbria entanglements contribute to adhesion. The presented quantitative analysis provides insights into carbohydrate-mediated bacterial adhesion and the relation to material properties and shows the prospects and limitations of interactive polymer materials to control the attachment of bacteria.
Collapse
Affiliation(s)
- Dimitri Wilms
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Fabian Schröer
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja J Paul
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Institute for Organic and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Danielson E, Dindo M, Porkovich AJ, Kumar P, Wang Z, Jain P, Mete T, Ziadi Z, Kikkeri R, Laurino P, Sowwan M. Non-enzymatic and highly sensitive lactose detection utilizing graphene field-effect transistors. Biosens Bioelectron 2020; 165:112419. [DOI: 10.1016/j.bios.2020.112419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
|
14
|
Abstract
In addition to the conventional Isothermal Titration Calorimetry (ITC), kinetic ITC (kinITC) not only gains thermodynamic information, but also kinetic data from a biochemical binding process. Moreover, kinITC gives insights into reactions consisting of two separate kinetic steps, such as protein folding or sequential binding processes. The ITC method alone cannot deliver kinetic parameters, especially not for multivalent bindings. This paper describes how to solve the problem using kinITC and an invariant subspace projection. The algorithm is tested for multivalent systems with different valencies.
Collapse
|
15
|
Davis TC, Bechtold JO, Hayes TR, Villarreal TA, Claridge SA. Hierarchically patterned striped phases of polymerized lipids: toward controlled carbohydrate presentation at interfaces. Faraday Discuss 2019; 219:229-243. [PMID: 31298259 DOI: 10.1039/c9fd00022d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcontact printing can be used to generate well-defined microscopic areas of striped phases of both single-chain and dual-chain amphiphiles.
Collapse
Affiliation(s)
- Tyson C. Davis
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Tyler R. Hayes
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
| | | | - Shelley A. Claridge
- Department of Chemistry
- Purdue University
- West Lafayette
- USA
- Weldon School of Biomedical Engineering
| |
Collapse
|
16
|
|
17
|
Bryce DA, Kitt JP, Harris JM. Confocal Raman Microscopy for Label-Free Detection of Protein–Ligand Binding at Nanopore-Supported Phospholipid Bilayers. Anal Chem 2018; 90:11509-11516. [DOI: 10.1021/acs.analchem.8b02791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David A. Bryce
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Jay P. Kitt
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Joel M. Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
18
|
Xiao R, Zeng J, Grinstaff MW. Biologically Active Branched Polysaccharide Mimetics: Synthesis via Ring-Opening Polymerization of a Maltose-Based β-Lactam. ACS Macro Lett 2018; 7:772-777. [PMID: 35650766 DOI: 10.1021/acsmacrolett.8b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereoregular poly-amido-saccharides bearing α-glucopyranose branches (Mal-PASs) are synthesized by anionic ring-opening polymerization of a maltose-based β-lactam monomer followed by debenzylation. The polymerization affords high molecular weight polymers (up to 31500 g/mol) with narrow dispersities (Đ < 1.1). Deprotected Mal-PASs are highly soluble in water and adopt a left-handed helical conformation in solution. Turbidimetric assay shows that Mal-PASs are multivalent ligands to lectin Concanavalin A.
Collapse
|
19
|
Sunkari YK, Pulukuri KK, Kandiyal PS, Vaishnav J, Ampapathi RS, Chakraborty TK. Conformation Analysis of GalNAc-Appended Sugar Amino Acid Foldamers as Glycopeptide Mimics. Chembiochem 2018; 19:1507-1513. [PMID: 29727041 DOI: 10.1002/cbic.201800087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 11/08/2022]
Abstract
Sugar amino acid (SAA)-based foldamers with well-defined secondary structures were appended with N-acetylgalactosamine (GalNAc) sugars to access sequence-defined, multidentate glycoconjugates with full control over number, spacing and position. Conformation analysis of these glycopeptides by extensive NMR spectroscopic studies revealed that the appended GalNAc units had a profound influence on the native conformational behaviour of the SAA foldamers. Whereas the 2,5-cis glycoconjugate showed a helical structure in water, comprising of two consecutive 16-membered hydrogen bonds, its 2,5-trans congener displayed an unprecedented 16/10-mixed turn structure not seen before in any glycopeptide foldamer.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kiran Kumar Pulukuri
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jayanti Vaishnav
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Tushar Kanti Chakraborty
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
20
|
Murakami E, Cheng J, Gysel K, Bozsoki Z, Kawaharada Y, Hjuler CT, Sørensen KK, Tao K, Kelly S, Venice F, Genre A, Thygesen MB, de Jong N, Vinther M, Jensen DB, Jensen KJ, Blaise M, Madsen LH, Andersen KR, Stougaard J, Radutoiu S. Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. eLife 2018; 7:e33506. [PMID: 29957177 PMCID: PMC6025957 DOI: 10.7554/elife.33506] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/05/2018] [Indexed: 02/04/2023] Open
Abstract
Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.
Collapse
Affiliation(s)
- Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jeryl Cheng
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Kira Gysel
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | | | - Ke Tao
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simon Kelly
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Francesco Venice
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Andrea Genre
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | | | - Noor de Jong
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Maria Vinther
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Michael Blaise
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
21
|
Lobeek D, Franssen GM, Ma MT, Wester HJ, Decristoforo C, Oyen WJG, Boerman OC, Terry SYA, Rijpkema M. In Vivo Characterization of 4 68Ga-Labeled Multimeric RGD Peptides to Image α vβ 3 Integrin Expression in 2 Human Tumor Xenograft Mouse Models. J Nucl Med 2018; 59:1296-1301. [PMID: 29626124 DOI: 10.2967/jnumed.117.206979] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
αvβ3 integrins play an important role in angiogenesis and cell migration in cancer and are highly expressed on the activated endothelial cells of newly formed blood vessels. Here, we compare the targeting characteristics of 4 68Ga-labeled multimeric cyclic arginine-glycine-aspartate (RGD)-based tracers in an αvβ3 integrin-expressing tumor model and a tumor model in which αvβ3 integrin is expressed solely on the neovasculature. Methods: Female BALB/c nude mice were subcutaneously injected with SK-RC-52 (αvβ3 integrin-positive) or FaDu (αvβ3 integrin-negative) tumor cells. 68Ga-labeled DOTA-(RGD)2, TRAP-(RGD)3, FSC-(RGD)3, or THP-(RGD)3 was intravenously administered to the mice (0.5 nmol per mouse, 10-20 MBq), followed by small-animal PET/CT imaging and ex vivo biodistribution studies 1 h after injection. Nonspecific uptake of the tracers in both models was determined by coinjecting an excess of unlabeled DOTA-(RGD)2 (50 nmol) along with the radiolabeled tracers. Results: Imaging and biodistribution data showed specific uptake in the tumors for each tracer in both models. Tumor uptake of 68Ga-FSC-(RGD)3 was significantly higher than that of 68Ga-DOTA-(RGD)2, 68Ga-TRAP-(RGD)3, or 68Ga-THP-(RGD)3 in the SK-RC-52 model but not in the FaDu model, in which 68Ga-FSC-(RGD)3 showed significantly higher tumor uptake than 68Ga-TRAP-(RGD)3 Most importantly, differences were also observed in normal tissues and in tumor-to-blood ratios. Conclusion: All tracers showed sufficient targeting of αvβ3 integrin expression to allow for tumor detection. Although the highest tumor uptake was found for 68Ga-FSC-(RGD)3 and 68Ga-THP-(RGD)3 in the SK-RC-52 and FaDu models, respectively, selection of the optimal tracer for specific diagnostic applications also depends on tumor-to-blood ratio and uptake in normal tissues; these factors should therefore also be considered.
Collapse
Affiliation(s)
- Daphne Lobeek
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Michelle T Ma
- Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Hans-Jürgen Wester
- Pharmazeutische Radiochemie, Technische Universität München, Garching, Germany
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria; and
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.,Institute of Cancer Research and Royal Marsden NHS Trust, Department of Nuclear Medicine, London, United Kingdom
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, King's College London, London, United Kingdom
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Restricted HIV-1 Env glycan engagement by lectin-reengineered DAVEI protein chimera is sufficient for lytic inactivation of the virus. Biochem J 2018; 475:931-957. [PMID: 29343613 DOI: 10.1042/bcj20170662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
We previously reported a first-generation recombinant DAVEI construct, a dual action virus entry inhibitor composed of cyanovirin-N (CVN) fused to a membrane proximal external region or its derivative peptide Trp3. DAVEI exhibits potent and irreversible inactivation of HIV-1 (human immunodeficiency virus) viruses by dual engagement of gp120 and gp41. However, the promiscuity of CVN to associate with multiple glycosylation sites in gp120 and its multivalency limit current understanding of the molecular arrangement of the DAVEI molecules on trimeric spike. Here, we constructed and investigated the virolytic function of second-generation DAVEI molecules using a simpler lectin, microvirin (MVN). MVN is a monovalent lectin with a single glycan-binding site in gp120, is structurally similar to CVN and exhibits no toxicity or mitogenicity, both of which are liabilities with CVN. We found that, like CVN-DAVEI-L2-3Trp (peptide sequence DKWASLWNW), MVN-DAVEI2-3Trp exploits a similar mechanism of action for inducing HIV-1 lytic inactivation, but by more selective gp120 glycan engagement. By sequence redesign, we significantly increased the potency of MVN-DAVEI2-3Trp protein. Unlike CVN-DAVEI2-3Trp, re-engineered MVN-DAVEI2-3Trp(Q81K/M83R) virolytic activity and its interaction with gp120 were both competed by 2G12 antibody. That the lectin domain in DAVEIs can utilize MVN without loss of virolytic function argues that restricted HIV-1 Env (envelope glycoprotein) glycan engagement is sufficient for virolysis. It also shows that DAVEI lectin multivalent binding with gp120 is not required for virolysis. MVN-DAVEI2-3Trp(Q81K/M83R) provides an improved tool to elucidate productive molecular arrangements of Env-DAVEI enabling virolysis and also opens the way to form DAVEI fusions made up of gp120-binding small molecules linked to Trp3 peptide.
Collapse
|
23
|
Myung JH, Park SJ, Wang AZ, Hong S. Integration of biomimicry and nanotechnology for significantly improved detection of circulating tumor cells (CTCs). Adv Drug Deliv Rev 2018; 125:36-47. [PMID: 29247765 PMCID: PMC6800256 DOI: 10.1016/j.addr.2017.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022]
Abstract
Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and microfluidics, have been introduced in an effort of achieving clinically significant detection of CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently under development, this review paper focuses on a unique, promising approach that takes advantages of naturally occurring processes achievable through application of nanotechnology to realize significant improvement in sensitivity and specificity of CTC capture. We provide an overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, minimally invasive method that potentially replaces or supplements existing methods such as imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as treatment guidelines and that ultimately help to realize personalized therapy are discussed.
Collapse
Affiliation(s)
- Ja Hye Myung
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States
| | - Sin-Jung Park
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States
| | - Andrew Z Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, United States; Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Seoul 03706, Republic of Korea.
| |
Collapse
|
24
|
Baier M, Giesler M, Hartmann L. Split-and-Combine Approach Towards Branched Precision Glycomacromolecules and Their Lectin Binding Behavior. Chemistry 2018; 24:1619-1630. [DOI: 10.1002/chem.201704179] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mischa Baier
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Markus Giesler
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Duesseldorf; Universitaetsstraße 1 40225 Duesseldorf Germany
| |
Collapse
|
25
|
Lupu M, Maillard P, Mispelter J, Poyer F, Thomas CD. A glycoporphyrin story: from chemistry to PDT treatment of cancer mouse models. Photochem Photobiol Sci 2018; 17:1599-1611. [DOI: 10.1039/c8pp00123e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glycoporphyrin: from bench to preclinical studies on PDX xenografted on mice.
Collapse
Affiliation(s)
- M. Lupu
- Institut Curie
- Research Center
- PSL Research University
- CNRS
- INSERM
| | - Ph. Maillard
- Institut Curie
- Research Center
- PSL Research University
- CNRS
- INSERM
| | - J. Mispelter
- Institut Curie
- Research Center
- PSL Research University
- CNRS
- INSERM
| | - F. Poyer
- Institut Curie
- Research Center
- PSL Research University
- CNRS
- INSERM
| | - C. D. Thomas
- Institut Curie
- Research Center
- PSL Research University
- CNRS
- INSERM
| |
Collapse
|
26
|
Igde S, Röblitz S, Müller A, Kolbe K, Boden S, Fessele C, Lindhorst TK, Weber M, Hartmann L. Linear Precision Glycomacromolecules with Varying Interligand Spacing and Linker Functionalities Binding to Concanavalin A and the Bacterial Lectin FimH. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sinaida Igde
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanna Röblitz
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Anne Müller
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Katharina Kolbe
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Sophia Boden
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Claudia Fessele
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Marcus Weber
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
27
|
Freichel T, Eierhoff S, Snyder NL, Hartmann L. Toward Orthogonal Preparation of Sequence-Defined Monodisperse Heteromultivalent Glycomacromolecules on Solid Support Using Staudinger Ligation and Copper-Catalyzed Click Reactions. J Org Chem 2017; 82:9400-9409. [DOI: 10.1021/acs.joc.7b01398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tanja Freichel
- Department
of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Svenja Eierhoff
- Department
of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department
of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department
of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Shukla SP, Manarang JC, Udugamasooriya DG. A unique mid-sequence linker used to multimerize the lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. Eur J Med Chem 2017; 137:1-10. [PMID: 28551176 DOI: 10.1016/j.ejmech.2017.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Ligand multimerizations enhance the binding affinity towards cell surface biomarkers through their avidity effects. Typical linkers connect individual monomeric ligand moieties from one end (e.g., C- or N-terminus of a peptide) and exclusively target protein receptors. The lipid phosphatidylserine (PS) is normally present on the cytoplasmic side of the eukaryotic cell membrane, but in tumors and tumor endothelial cells, this negatively charged PS flips to the outer layer. We recently reported a PS binding peptide-peptoid hybrid (PPS1) that has distinct positively charged and hydrophobic residue-containing regions. The PPS1 monomer is inactive, and upon C-terminal dimerization (PPS1D1), it triggers cytotoxicity. In the current study, a unique series of PPS1 multimeric derivatives were synthesized by switching the linker from the C-terminus to an internal position. The unimportant fourth residue (N-lys) from the C-terminus was utilized to build the linker. The synthesis strategy was developed employing variations of (I) the linker size, (II) the number of positively charged residues, and (III) the number of hydrophobic regions. Cytotoxicity of these new derivatives on HCC4017 lung cancer cells showed that a minimum of two hydrophobic regions was important to retain the activity and that the shortest linker length was optimal for activity.
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5037, USA
| | - Joseph C Manarang
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5037, USA
| | - D Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 3455 Cullen Blvd., Houston, TX 77204-5037, USA; Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX 77030-4009, USA.
| |
Collapse
|
29
|
Leemans B, Gadella BM, Stout TAE, De Schauwer C, Nelis H, Hoogewijs M, Van Soom A. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization. Reproduction 2016; 152:R233-R245. [PMID: 27651517 DOI: 10.1530/rep-16-0420] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 11/08/2022]
Abstract
In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct.
Collapse
Affiliation(s)
- Bart Leemans
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart M Gadella
- Departments of Farm Animal Health.,Biochemistry and Cell Biology
| | - Tom A E Stout
- Departments of Farm Animal Health.,Equine SciencesFaculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde Nelis
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Hoogewijs
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of ReproductionObstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Singh J, Lopes D, Gomika Udugamasooriya D. Development of a large peptoid-DOTA combinatorial library. Biopolymers 2016; 106:673-84. [PMID: 27257968 PMCID: PMC5035194 DOI: 10.1002/bip.22883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Conventional one-bead one-compound (OBOC) library synthesis is typically used to identify molecules with therapeutic value. The design and synthesis of OBOC libraries that contain molecules with imaging or even potentially therapeutic and diagnostic capacities (e.g. theranostic agents) has been overlooked. The development of a therapeutically active molecule with a built-in imaging component for a certain target is a daunting task, and structure-based rational design might not be the best approach. We hypothesize to develop a combinatorial library with potentially therapeutic and imaging components fused together in each molecule. Such molecules in the library can be used to screen, identify, and validate as direct theranostic candidates against targets of interest. As the first step in achieving that aim, we developed an on-bead library of 153,600 Peptoid-DOTA compounds in which the peptoids are the target-recognizing and potentially therapeutic components and the DOTA is the imaging component. We attached the DOTA scaffold to TentaGel beads using one of the four arms of DOTA, and we built a diversified 6-mer peptoid library on the remaining three arms. We evaluated both the synthesis and the mass spectrometric sequencing capacities of the test compounds and of the final library. The compounds displayed unique ionization patterns including direct breakages of the DOTA scaffold into two units, allowing clear decoding of the sequences. Our approach provides a facile synthesis method for the complete on-bead development of large peptidomimetic-DOTA libraries for screening against biological targets for the identification of potential theranostic agents in the future. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 673-684, 2016.
Collapse
Affiliation(s)
- Jaspal Singh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204
| | - Daniel Lopes
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390
| | - D Gomika Udugamasooriya
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204.
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77030-4009.
- Advanced Imaging Research Center, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
- Department of Biochemistry, UT-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390.
| |
Collapse
|
31
|
Sunkari YK, Alam F, Kandiyal PS, Aloysius S, Ampapathi RS, Chakraborty TK. Influence of Linker Length on Conformational Preferences of Glycosylated Sugar Amino Acid Foldamers. Chembiochem 2016; 17:1839-1844. [DOI: 10.1002/cbic.201600386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Yashoda Krishna Sunkari
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Faiyaz Alam
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Pancham Singh Kandiyal
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Siriwardena Aloysius
- Laboratoire des Glucides (UMR 6912); CNRS-FRE-3517; Universit de Picardie Jules Verne, 33, Rue St Leu, Faculte des Sciences; Amiens 80039 France
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance; SAIF; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| | - Tushar Kanti Chakraborty
- Department of Organic Chemistry; Indian Institute of Science, CV Raman Road; Bengaluru 560012 India
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road; Lucknow 226031 India
| |
Collapse
|
32
|
Bai Y, Nguyen L, Song Z, Peng S, Lee J, Zheng N, Kapoor I, Hagler LD, Cai K, Cheng J, Chan HYE, Zimmerman SC. Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting. J Am Chem Soc 2016; 138:9498-507. [DOI: 10.1021/jacs.6b03697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Shaohong Peng
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | - H. Y. Edwin Chan
- Laboratory
of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong SAR, China
| | | |
Collapse
|
33
|
Lenci E, Menchi G, Trabocchi A. Carbohydrates in diversity-oriented synthesis: challenges and opportunities. Org Biomol Chem 2016; 14:808-25. [DOI: 10.1039/c5ob02253c] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbohydrates are attractive building blocks for diversity-oriented synthesis due to their stereochemical diversity and high density of polar functional groups.
Collapse
Affiliation(s)
- E. Lenci
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - G. Menchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - A. Trabocchi
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| |
Collapse
|
34
|
Loka RS, McConnell MS, Nguyen HM. Studies of Highly-Ordered Heterodiantennary Mannose/Glucose-Functionalized Polymers and Concanavalin A Protein Interactions Using Isothermal Titration Calorimetry. Biomacromolecules 2015; 16:4013-4021. [PMID: 26580410 DOI: 10.1021/acs.biomac.5b01380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preparations of the highly ordered monoantennary, homofunctional diantennary, and heterofunctional diantennary neoglycopolymers of α-d-mannose and β-d-glucose residues were achieved via ring-opening metathesis polymerization. Isothermal titration calorimetry measurements of these synthetic neoglycopolymers with Concanavalin A (Con A), revealed that heterofunctional diantennary architectures bearing both α-mannose and nonbinding β-glucose units, poly(Man-Glc), binds to Con A (Ka = 16.1 × 10(6) M(-1)) comparably to homofunctional diantennary neoglycopolymer (Ka = 30 × 10(6) M(-1)) bearing only α-mannose unit, poly(Man-Man). In addition, poly(Man-Glc) neoglycopolymer shows a nearly 5-fold increasing in binding affinity compared to monoantennary neoglycopolymer, poly(Man). Although the exact mechanism for the high binding affinity of poly(Man-Glc) to Con A is unclear, we hypothesize that the α-mannose bound to Con A might facilitate interaction of β-glucose with the extended binding site of Con A due to the close proximity of β-glucose to α-mannose residues in the designed polymerizable scaffold.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa 52242, United States
| |
Collapse
|
35
|
Essaid D, Chaminade P, Maillard P, Kasselouri A. Lipophilicity of porphyrins and their retention in IAM, C8-C18 and HILIC chromatographic systems. J Pharm Biomed Anal 2015; 114:227-40. [PMID: 26099259 DOI: 10.1016/j.jpba.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/29/2022]
Abstract
Porphyrins are a class of photosensitizers used in photodynamic therapy (PDT). Understanding the interaction of porphyrins with membrane cells components is important in order to improve this therapy. Many analytical methods can be used for this aim. High performance liquid chromatography (HPLC) was used for the separation of porphyrins on RP and HILIC stationary phases as well as on a biomimetic membrane IAM phase. Twenty-six tetraphenyl porphyrins (TPP) were successfully separated on an IAM column, a C18 Gravity RP column, a C8 Gravity RP column, a PolarTec RP column and a HILIC column. Stationary phases were chosen as the most appropriate to cover the study of different types of interactions. Elution was performed with a 45 min linear gradient. Obtained gradient retention times were converted to gradient chromatography hydrophobicity index (CHI) and to an apparent retention factor (kapp). The partition coefficients (logP) of the 26 compounds were measured in a 2-octanol/PBS system and estimated in silico. Correlation between kapp values was studied. Moreover, a multivariate analysis was performed to explain columns relationships. Obtained results show that porphyrins are separated mainly according to hydrophobic interactions that are relative to their structure (sugar number and the disposition around the porphyrin macrocycle).
Collapse
Affiliation(s)
- D Essaid
- Lipides, Systèmes Analytiques et Biologiques, ex EA4041, Faculté de Pharmacie, Univ. Paris-Sud, 92296 Châtenay Malabry Cedex, France.
| | - P Chaminade
- Lipides, Systèmes Analytiques et Biologiques, ex EA4041, Faculté de Pharmacie, Univ. Paris-Sud, 92296 Châtenay Malabry Cedex, France
| | - Ph Maillard
- Institut Curie, Centre de Recherche, Centre Universitaire, Univ. Paris-Sud, F-91405 Orsay, France; CNRS, INSERM, UMR 9187-U 1196, Centre Universitaire, Univ. Paris-Sud, F-91405 Orsay, France
| | - A Kasselouri
- Lipides, Systèmes Analytiques et Biologiques, ex EA4041, Faculté de Pharmacie, Univ. Paris-Sud, 92296 Châtenay Malabry Cedex, France
| |
Collapse
|
36
|
Multicomponent diversity oriented synthesis of multivalent glycomimetics containing hexafluorovaline. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res 2015; 116:34-44. [PMID: 25637710 DOI: 10.1016/j.antiviral.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 02/03/2023]
Abstract
Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform.
Collapse
|
38
|
Bellucci MC, Sani M, Sganappa A, Volonterio A. Diversity oriented combinatorial synthesis of multivalent glycomimetics through a multicomponent domino process. ACS COMBINATORIAL SCIENCE 2014; 16:711-20. [PMID: 25330415 DOI: 10.1021/co5001184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both multicomponent reactions and diversity oriented synthesis are indispensable tools for the modern medicinal chemist. However, their employment for the synthesis of multivalent glycomimetics has not been exploited so far although the importance that such compounds play in exploring multivalency on glycoside inhibition. Herein, we report the combinatorial synthesis of diversity oriented hetero di- and trivalent glycomimetics through a multicomponent domino process. The process is high yielding and very general, working efficiently with easily accessible sugar starting materials such as glycosylamines, glycosylazides, and glycosylisothiocyanates, having the reactive functional groups tethered either directly to the anomeric carbon, through a suitable linker, or to the primary 6 position of hexoses (or 5 position of pentoses), leading, in the latter case, to glycomimetics with artificial enzymatically stable backbone. The process has been also exploited for the multicomponent synthesis of aminoglycoside (neomycin) conjugates.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department
of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Monica Sani
- C.N.R. Istituto di Chimica del Riconoscimento Molecolare, via Mancinelli 7, 20131 Milano, Italy
| | - Aurora Sganappa
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| | - Alessandro Volonterio
- Department
of Chemistry, Materials, and Chemical Engineer “G. Natta”, Politecnico di Milano,via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
39
|
Eller CH, Yang G, Ouerfelli O, Raines RT. Affinity of monoclonal antibodies for Globo-series glycans. Carbohydr Res 2014; 397:1-6. [PMID: 25163606 DOI: 10.1016/j.carres.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/03/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Globo-series glycans are human cell-surface carbohydrates that include stem-cell marker SSEA-4 and cancer-cell antigen Globo H. These two hexasaccharides differ only in their terminal saccharide: N-acetylneuraminic acid in SSEA-4 and L-fucose in Globo H. Herein, we evaluated the affinity of the monoclonal antibodies α-SSEA-4 and α-GH for the glycans SSEA-4 and Globo H. Using fluorescence polarization, we find that the two monoclonal antibodies have affinity for their cognate glycan in the low nanomolar range, and have negligible affinity for the non-cognate glycan. Using surface plasmon resonance, we find that each cognate affinity is ∼20-fold greater if the glycan is immobilized on a surface rather than free in solution. We conclude that the terminal saccharide plays a dominant role in the ability of monoclonal antibodies to recognize these Globo-series glycans and that the extraordinary specificity of these antibodies supports their use for identifying and sorting stem-cells (α-SSEA-4) and as an agent in cancer immunotherapy (α-GH).
Collapse
Affiliation(s)
- Chelcie H Eller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Guangbin Yang
- Organic Synthesis Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA; Department Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|
41
|
Kang YJ, Yang HJ, Jeon S, Kang YS, Do Y, Hong SY, Kang S. Polyvalent Display of Monosaccharides on Ferritin Protein Cage Nanoparticles for the Recognition and Binding of Cell-Surface Lectins. Macromol Biosci 2014; 14:619-25. [DOI: 10.1002/mabi.201300528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/06/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Young Ji Kang
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Hyun Ji Yang
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Sangbin Jeon
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Young-Sun Kang
- Department of Biomedical Science and Technology; SMART Institute of Advanced Biomedical Science; Konkuk University; Seoul 143-701 Korea
| | - Yoonkyung Do
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Sung You Hong
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| | - Sebyung Kang
- School of Nano-Bioscience and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 689-798 Korea
| |
Collapse
|
42
|
Ponader D, Maffre P, Aretz J, Pussak D, Ninnemann NM, Schmidt S, Seeberger PH, Rademacher C, Nienhaus GU, Hartmann L. Carbohydrate-Lectin Recognition of Sequence-Defined Heteromultivalent Glycooligomers. J Am Chem Soc 2014; 136:2008-16. [DOI: 10.1021/ja411582t] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daniela Ponader
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Pauline Maffre
- Institute
of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Jonas Aretz
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Daniel Pussak
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Nina M. Ninnemann
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Stephan Schmidt
- Institut für
Biochemie, Universität Leipzig, Johannisallee
21-23, 04103 Leipzig, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Christoph Rademacher
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - G. Ulrich Nienhaus
- Institute
of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Laura Hartmann
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
43
|
Kopitzki S, Dilmaghani KA, Thiem J. Synthesis of benzaldehyde-functionalized LewisX trisaccharide analogs for glyco-SAM formation. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
45
|
Wong CH. Design and Synthesis of Carbohydrate Mimetics: A New Strategy for Tackling the Problem of Carbohydrate-Mediated Biological Recognition. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dina Polyak
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Hemda Baabur-Cohen
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
47
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
48
|
Hendricks GL, Weirich KL, Viswanathan K, Li J, Shriver ZH, Ashour J, Ploegh HL, Kurt-Jones EA, Fygenson DK, Finberg RW, Comolli JC, Wang JP. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem 2013; 288:8061-8073. [PMID: 23362274 DOI: 10.1074/jbc.m112.437202] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.
Collapse
Affiliation(s)
- Gabriel L Hendricks
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Kim L Weirich
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106
| | - Karthik Viswanathan
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jing Li
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Zachary H Shriver
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Joseph Ashour
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Evelyn A Kurt-Jones
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Deborah K Fygenson
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106; Department of Physics, University of California, Santa Barbara, California 93106
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - James C Comolli
- Charles Stark Draper Laboratory, Department of Bioengineering, Cambridge, Massachusetts 02139
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
49
|
Mercer N, Ramakrishnan B, Boeggeman E, Verdi L, Qasba PK. Use of novel mutant galactosyltransferase for the bioconjugation of terminal N-acetylglucosamine (GlcNAc) residues on live cell surface. Bioconjug Chem 2013; 24:144-52. [PMID: 23259695 PMCID: PMC3547369 DOI: 10.1021/bc300542z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of the crystal structure of bovine β4Gal-T1 enzyme, mutation of a single amino acid Y289 to L289 (Y289L) changed its donor specificity from Gal to N-acetyl-galactosamine (GalNAc). A chemoenzymatic method that uses GalNAc analogues like GalNAz or 2-keto-Gal as sugar donors with the enzyme Y289L-β4Gal-T1 has identified hundreds of cytosolic and nuclear proteins that have O-GlcNAc modifications. To avoid potential cytotoxicity at Mn(2+) concentrations required to selectively modify GlcNAc residues on the surface of live cells, we have engineered a Mg(2+)-dependent enzyme. Previously, we found that the mutation of the metal-binding residue Met-344 to His-344 in bovine β4Gal-T1 enzyme altered its metal-ion specificity in such a way that the M344H-β4Gal-T1 enzyme exhibits better catalytic activity with Mg(2+) than with Mn(2+). Here, we find that, when these two mutations are combined, the double mutant, Y289L-M344H-β4Gal-T1, transfers GalNAc and its analogue sugars to the acceptor GlcNAc in the presence of Mg(2+). Using this mutant enzyme, we have detected free GlcNAc residues on the surface glycans of live HeLa cells and platelets. The specific transfer of a synthetic sugar with a chemical handle to the terminal GlcNAc residues on the surface of live cells provides a novel tool for selective modification, detection, and isolation of GlcNAc-ending glycans present on the cellular surface.
Collapse
Affiliation(s)
- Natalia Mercer
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Boopathy Ramakrishnan
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Elizabeth Boeggeman
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Luke Verdi
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Pradman K. Qasba
- Structural Glycobiology Section, CCR-Nanobiology Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
50
|
Valaitis AP, Podgwaite JD. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins. J Invertebr Pathol 2013; 112:1-8. [DOI: 10.1016/j.jip.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|