1
|
Rösch EL, Sack R, Chowdhury MS, Wolgast F, Zaborski M, Ludwig F, Schilling M, Viereck T, Rand U, Lak A. Amplification- and Enzyme-Free Magnetic Diagnostics Circuit for Whole-Genome Detection of SARS-CoV-2 RNA. Chembiochem 2024; 25:e202400251. [PMID: 38709072 DOI: 10.1002/cbic.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Polymerase chain reaction (PCR) requires thermal cycling and enzymatic reactions for sequence amplification, hampering their applications in point-of-care (POC) settings. Magnetic bioassays based on magnetic particle spectroscopy (MPS) and magnetic nanoparticles (MNPs) are isothermal, wash-free, and can be quantitative. Realizing them amplification- and enzyme-free on a benchtop device, they will become irreplaceable for POC applications. Here we demonstrate a first-in-class magnetic signal amplification circuit (MAC) that enables detection of whole genome of SARS-CoV-2 by combining the specificity of toehold-mediated DNA strand displacement with the magnetic response of MNPs to declustering processes. Using MAC, we detect the N gene of SARS-CoV-2 samples at a concentration of 104 RNA copies/μl as determined by droplet digital PCR. Further, we demonstrate that MAC can reliably distinguish between SARS-CoV-2 and other human coronaviruses. Being a wash-, amplification- and enzyme-free biosensing concept and working at isothermal conditions (25 °C) on a low-cost benchtop MPS device, our MAC biosensing concept offers several indispensable features for translating nucleic acid detection to POC applications.
Collapse
Affiliation(s)
- Enja Laureen Rösch
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Rebecca Sack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Mohammad Suman Chowdhury
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Florian Wolgast
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Margarete Zaborski
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Meinhard Schilling
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| | - Ulfert Rand
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures GmbH (DSMZ), Inhoffenstr. 7b, Braunschweig, 38124, Germany
| | - Aidin Lak
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering and Laboratory for Emerging Nanometrology (LENA), Hans-Sommer-Str. 66, Braunschweig, 38106, Germany
| |
Collapse
|
2
|
Fang Y, Nie L, Wang S, Liu S, Li H, Yu R. A universal fluorescence biosensor based on rolling circle amplification and locking probe for DNA detection. Mikrochim Acta 2024; 191:437. [PMID: 38951284 DOI: 10.1007/s00604-024-06501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
A stable DNA signal amplification sensor was developed on account of rolling circle amplification (RCA). This sensor includes target DNA-controlled rolling circle amplification technology and locking probe DNA replacement technology, which can be used to detect DNA fragments with genetic information, thus constructing a biosensor for universal detection of DNA. This study takes the homologous DNA of human immunodeficiency virus (HIV) and let-7a as examples to describe this biosensor. The padlock probe is first cyclized by T4 DNA ligase in response to the target's reaction with it. Then, rolling cycle amplification is initiated by Phi29 DNA polymerase, resulting in the formation of a lengthy chain with several triggers. These triggers can open the locked probe LP1 with the fluorescence signal turned off, so that it can continue to react with H2 to form a stable H1-H2 double strand. This regulates the distance between B-DNA modified by the quenching group and H1 modified by fluorescent group, and the fluorescence signal is recovered.
Collapse
Affiliation(s)
- Ying Fang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Shiwen Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, P. R. China.
| | - Hongbo Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
3
|
Tao S, Han X, Shi D, Yu T, Long Y, Zou S, Lu S, Song L, Liu G. Portable Device with Nicking Enzyme Enhanced Special RCA on μPADs toward Sensitive Detection of High-Risk HPV Infection. Anal Chem 2024. [PMID: 38912660 DOI: 10.1021/acs.analchem.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Development of an accurate, rapid, and cost-effective portable device is in high demand for point-of-care molecular diagnosis toward disease screening. Here we report a one-pot homogeneous isothermal assay that leverages nicking endonuclease and minimum secondary structured rolling circle amplification (N-MSSRCA) for fast and sensitive quantification of nucleic acids on distance microfluidic paper-based analytical devices (dμPAD) by a portable custom-made fluorescence detector. Human papillomavirus (HPV) oncogenic E7 mRNA as the biomarker for cervical cancer was used as the model analyte. N-MSSRCA integrates ligase for target recognition, the nicking enzyme for primer generation, and the dual function of the Phi29 DNA polymerase for both on- and off-loop amplification. The proposed method was capable of detecting 1 and 10 fM of the analyte using the microplate reader and portable detector with dμPAD, respectively, with ∼1 h assay time. A cohort study of 40 cervical swab samples shows N-MSSRCA reached positive and negative predictive values of 87.5% and 93.5% using the portable detector with dμPAD, compared to 91.67% and 100% using the microplate reader. N-MSSRCA demonstrates potential in early screening of high-risk HPV infection as a generic strategy to detect various nucleic acids in point-of-care scenarios.
Collapse
Affiliation(s)
- Shurui Tao
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Han
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Dongni Shi
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tian Yu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yingxi Long
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Siyi Zou
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Sheng Lu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Libing Song
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Joint Laboratory for Regenerative Medicine Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Wang Y, Qian J, Shi T, Wang Y, Ding Q, Ye C. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb Technol 2024; 175:110407. [PMID: 38341913 DOI: 10.1016/j.enzmictec.2024.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; Ministry of Education Key Laboratory of NSLSCS.
| |
Collapse
|
5
|
Pastrana C, Guerreiro JRL, Elumalai M, Carpena-Torres C, Crooke A, Carracedo G, Prado M, Huete-Toral F. Dual-Mode Gold Nanoparticle-Based Method for Early Detection of Acanthamoeba. Int J Mol Sci 2022; 23:ijms232314877. [PMID: 36499204 PMCID: PMC9740238 DOI: 10.3390/ijms232314877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Acanthamoeba keratitis is an aggressive and rapidly progressing ocular pathology whose main risk factor is the use of contact lenses. An early and differential diagnosis is considered the main factor to prevent the progression and improve the prognosis of the pathology. However, current diagnosis techniques require time, complex and costly materials making an early diagnosis challenging. Thus, there is a need for fast, accessible, and accurate methods for Acanthamoeba detection by practitioners for timely and suitable treatment and even for contact lens user as preventive diagnosis. Here, we developed a dual-mode colorimetric-based method for fast, visual, and accurate detection of Acanthamoeba using gold nanoparticles (AuNPs). For this strategy, AuNPs were functionalized with thiolated probes and the presence of target Acanthamoeba genomic sequences, produce a colorimetric change from red to purple. This approach allows the detection of 0.02 and 0.009 μM of the unamplified Acanthamoeba genome by the naked eye in less than 20 min and by color analysis using a smartphone. Additionally, real samples were successfully analyzed showing the potential of the technology considering the lack of point-of-care tools that are mostly needed.
Collapse
Affiliation(s)
- Cristina Pastrana
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
- Correspondence: (C.P.); (J.R.L.G.)
| | - J. Rafaela L. Guerreiro
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- BioMark@ISEP, School of Engineering of the Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
- CEB/LABBELS, Center of Biological Engineering, Minho University, Campus de Gualtar, Rua da Universidade, 4710-057 Braga, Portugal
- Correspondence: (C.P.); (J.R.L.G.)
| | - Monisha Elumalai
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Marta Prado
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| |
Collapse
|
6
|
Photoacoustic detection of SARS-CoV-2 spike N501Y single-nucleotide polymorphism based on branched rolling circle amplification. Talanta 2022. [PMCID: PMC9630300 DOI: 10.1016/j.talanta.2022.124047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rapid and accurate diagnosis of SARS-CoV-2 single-nucleotide variations is an urgent need for the initial detection of local circulation and monitoring the alternation of dominant variant. In this proof-of-concept study, a homogeneous and isothermal photoacoustic biosensor is demonstrated for rapid molecular amplification and detection of a synthetic DNA corresponding to SARS-CoV-2 spike N501Y. Branched rolling circle amplification produces single-stranded amplicons that can aggregate detection probe-modified AuNPs, which induces a strong photoacoustic signal at 640 nm due to both the surface plasmon resonance shift and the size-dependent effect of laser-induced nanobubbles, achieving a sub-femtomolar detection limit within a total assay time of 80 min. The limit of detection can be kept when measuring 5% serum samples. Moreover, the proposed biosensor is highly specific for single-nucleotide polymorphism discrimination and robust against background DNA.
Collapse
|
7
|
He Q, Hu O, Chen M, Liang Z, Liang L, Chen Z. A novel and cost-efficient allele-specific PCR method for multiple SNP genotyping in a single run. Anal Chim Acta 2022; 1229:340366. [PMID: 36156224 DOI: 10.1016/j.aca.2022.340366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Cost-effective methods for DNA genotyping were needed because single nucleotide polymorphisms (SNPs) were essential biomarkers associated with many diseases. Allele-specific PCR (AS-PCR) has the advantages of mature instruments and high sensitivity. But conventional AS-PCR needs to multiply the number of reactions or primers for multiple targets, which complicates the operation and increases the cost. Herein, we proposed a novel AS-PCR method for multiple SNP genotyping in a single run. Wild-type allele-specific primer (WT primer) was designed for each target gene. The sample and WT primers only needed to undergo multiplexed AS-PCR once simultaneously. After AS-PCR, the concentration of remaining primers varied among the samples of each genotype combination, due to the different matching performance between template and WT primers. The remaining primers then triggered multiplexed molecular beacon-rolling circle amplification, and the molecular beacons labelled with different fluorescent dyes corresponded to different targets. The fluorescence ratios of the sample to the positive control were used as the genotyping indexes. This method was able to detect samples with concentrations as low as 10 fM. We successfully applied the method to the multiple genotyping of 23 hair root samples for ADH1B and ALDH2 genes, obtaining completely consistent results with sequencing. The reagent cost was 0.6 dollar for one sample, showing a good cost performance. This proposed approach had a great application prospect in simultaneously rapid and accurate genotyping of multi-SNPs, and provided a new method for personalized health management.
Collapse
Affiliation(s)
- Qidi He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Meng Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhixian Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China; Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510006, People's Republic of China
| | - Lushan Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
8
|
Boonbanjong P, Treerattrakoon K, Waiwinya W, Pitikultham P, Japrung D. Isothermal Amplification Technology for Disease Diagnosis. BIOSENSORS 2022; 12:bios12090677. [PMID: 36140062 PMCID: PMC9496038 DOI: 10.3390/bios12090677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Isothermal amplification (IA) is a nucleic acid amplification technology (NAAT) that has contributed significantly to the healthcare system. The combination of NAAT with a suitable detection platform resulted in higher sensitivity, specificity, and rapid disease diagnosis. Traditional NAAT, such as polymerase chain reaction (PCR), is widely applied in the general healthcare system but is rarely accessed in resource-limited hospitals. Some IA methods provide a rapid, sensitive, specific, and simple method for disease diagnosis. However, not all IA techniques have been regularly used in clinical applications because different biomarkers and sample types affect either the enzyme in the IA system or sample preparation. This review focuses on the application of some IA techniques that have been applied in the medical field and have the potential for use at points of care.
Collapse
Affiliation(s)
- Poramin Boonbanjong
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Kiatnida Treerattrakoon
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Wassa Waiwinya
- Multidisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyawat Pitikultham
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deanpen Japrung
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-2-117-6665
| |
Collapse
|
9
|
Huang Z, Li J, Zhong H, Tian B. Nucleic acid amplification strategies for volume-amplified magnetic nanoparticle detection assay. Front Bioeng Biotechnol 2022; 10:939807. [PMID: 36032733 PMCID: PMC9399362 DOI: 10.3389/fbioe.2022.939807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
Magnetic nanoparticles (MNPs) can be quantified based on their magnetic relaxation properties by volumetric magnetic biosensing strategies, for example, alternating current susceptometry. Volume-amplified magnetic nanoparticle detection assays (VAMNDAs) employ analyte-initiated nucleic acid amplification (NAA) reactions to increase the hydrodynamic size of MNP labels for magnetic sensing, achieving attomolar to picomolar detection limits. VAMNDAs offer rapid and user-friendly analysis of nucleic acid targets but present inherence defects determined by the chosen amplification reactions and sensing principles. In this mini-review, we summarize more than 30 VAMNDA publications and classify their detection models for NAA-induced MNP size increases, highlighting the performances of different linear, cascade, and exponential NAA strategies. For some NAA strategies that have not yet been reported in VAMNDA, we predicted their performances based on the reaction kinetics and feasible detection models. Finally, challenges and perspectives are given, which may hopefully inspire and guide future VAMNDA studies.
Collapse
|
10
|
Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosens Bioelectron 2022; 206:114109. [PMID: 35245867 DOI: 10.1016/j.bios.2022.114109] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Achieving superhigh sensitivity is the ultimate goal for bio-detection in modern analytical science and life science. Among variable signal amplification strategies, nucleic acid amplification technologies are revolutionizing the field of bio-detection, providing greater possibilities in novel diagnosis achieving high efficiency, specificity, and cost-effectiveness. Nucleic acid amplification techniques (NAATs), such as Polymerase Chain Reaction (PCR), Rolling Circle Amplification (RCA), Loop-Mediated Isothermal Amplification (LAMP), Recombinase Polymerase Amplification (RPA), CRISPR-related amplification, and others are dominating methods employed in research and clinical settings. They each provide distinctively unique features that can offer desirable performance in terms of sensitivity, specificity, simplicity, stability, and cost. NAATs are in unmet demand in molecular diagnosis, especially in point-of-care scenario. This review will discuss the principles and recent advancements of each NAAT, respectively, revealing their strengths and challenges in achieving rapid and accurate bio-detection with a focus on point-of-care diagnosis. Furthermore, this review will explore the application of each of the technologies through the contemporary COVID-19 pandemic, analyzing their ability in point-of-care diagnosis of the COVID-19 with high sensitivity to emphasize significance of developing NAATs based methods in battling COVID-19. Finally, advantages and potentials of each NAAT in enhancements of sensitivity and specificity in bio-detection from bench side to the bedside will be discussed, aiming for full exploitation of capability of each NAAT. This review will provide novel aspects in the selection and combination of usages of various NAATs based on their distinctive characteristics and limitations. A possible advancing direction of future accurate POCT is also proposed.
Collapse
|
11
|
Zhang C, Belwal T, Luo Z, Su B, Lin X. Application of Nanomaterials in Isothermal Nucleic Acid Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102711. [PMID: 34626064 DOI: 10.1002/smll.202102711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Collapse
Affiliation(s)
- Chao Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
12
|
Gao YP, Huang KJ, Wang FT, Hou YY, Xu J, Li G. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications. Analyst 2022; 147:3396-3414. [DOI: 10.1039/d2an00556e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rolling circle amplification (RCA) is a simple and isothermal DNA amplification technique that is used to generate thousands of repeating DNA sequences using circular templates under the catalysis of DNA polymerase.
Collapse
Affiliation(s)
- Yong-ping Gao
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China
- Analysis and Testing Center, Xinyang College, Xinyang 464000, PR China
| | - Ke-Jing Huang
- Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi Minzu University, Nanning 530008, PR China
| | - Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Guoqiang Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, PR China
| |
Collapse
|
13
|
Sánchez Martín D, Oropesa-Nuñez R, Zardán Gómez de la Torre T. Formation of Visible Aggregates between Rolling Circle Amplification Products and Magnetic Nanoparticles as a Strategy for Point-of-Care Diagnostics. ACS OMEGA 2021; 6:32970-32976. [PMID: 34901648 PMCID: PMC8655940 DOI: 10.1021/acsomega.1c05047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Visual detection of rolling circle amplification products (RCPs) has been achieved by specific aggregation with magnetic nanoparticles. The method presented here reliably generates aggregates in 1.5 h; these are visible to the naked eye in samples containing at least 0.4 fmol of RCPs. In addition, alternate current susceptometry and absorbance spectroscopy have also been used to quantify the amplified products. The specificity of the detection method was tested, and no non-specific aggregation was detected in samples containing up to 20 fmol of non-complementary amplified DNA. This method is a versatile tool for detecting pathogenic DNA in point-of-care diagnostics, with no readout equipment required. However, chips and automated assays can be used in conjugation with the developed method since detection and quantification can be achieved by commercially available readout instruments.
Collapse
Affiliation(s)
- Darío Sánchez Martín
- Department
of Material Sciences and Engineering, Division of Nanotechnology and
Functional Materials, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | - Reinier Oropesa-Nuñez
- Department
of Material Sciences and Engineering, Division of Solid-State Physics,
Ångström Laboratory, Uppsala
University, 751 21 Uppsala, Sweden
| | - Teresa Zardán Gómez de la Torre
- Department
of Material Sciences and Engineering, Division of Nanotechnology and
Functional Materials, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| |
Collapse
|
14
|
Wu X, Che C, Wang X, Du Q, Liang H, Gao P, Xia F. Ionic Signal Enhancement by the Space Charge Effect through the DNA Rolling Circle Amplification on the Outer Surface of Nanochannels. Anal Chem 2021; 93:16043-16050. [PMID: 34807570 DOI: 10.1021/acs.analchem.1c03631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA species are recognized as a powerful probe for nanochannel analyses to address the issues of specific target recognition and highly efficient signal conversion due to their programmable and predictable Watson-Crick bases. However, in the conventional view, abundant sophisticated DNA structures synthesized by DNA amplification strategies are unsuitable for use in nanochannel analyses owing to their low probability to enter a nanochannel restricted by the smaller opening of the nanochannel, as well as the faint ion signal produced by the steric effect. Here, we present an integrated strategy of nanochannel analyses that combines the target recognitions by encoded rolling circle amplification (RCA) in solution and the ionic signal enhancement by the space charge effect through the immobilization of highly negative-charged RCA amplicons on the outer surface of the nanochannels. Owing to the highly negative-charged RCA amplicons with 100 nm sizes, a sharp increase of ionic current up to 7454% has been achieved. The RCA amplicon triggered by mRNA-21 on the outer surface of the poly(ethylene terephthalate) membrane with a single nanochannel realized the single-base mismatch detection of mRNA-21 with a sensitivity of 6 fM. The DNA amplicon endows the nanochannel with high sensitivity and selectivity that could extend to other applications, such as DNA sequencing, desalination, sieving, and water-energy nexus.
Collapse
Affiliation(s)
- Xiaoqing Wu
- State Key Laboratory of Biogeology and Envi-ronmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Cheng Che
- State Key Laboratory of Biogeology and Envi-ronmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- State Key Laboratory of Biogeology and Envi-ronmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Since and Technology, Wuhan 430022, P. R. China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Envi-ronmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Envi-ronmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Mahmoudian F, Akbariqomi M, Heidari R, Ghahremani MH, Roshan N, Adabi M, Absalan M, Karimi F, Bahrami S, Fathi S, Tavoosidana G. Designing a fluorescence padlock probe-based biosensor and colorimetric assay for the detection of G12D KRAS mutation. Biomark Med 2021; 15:1741-1754. [PMID: 34784779 DOI: 10.2217/bmm-2021-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Cell-free DNA in the plasma is known to be a potential biomarker for noninvasive diagnosis of oncogenic mutations. The authors aimed to design an optimized padlock probe-based hyperbranched rolling circle amplification biosensor to detect the KRAS G12D mutation using fluorescence and colorimetric methods. Methods: Single-factor experiments, Plackett-Burman design and response surface methodology were applied to optimize the padlock probe-based hyperbranched rolling circle amplification reaction. Results: The maximum fluorescence intensity was achieved at a padlock probe concentration of 1.5 pM and target concentration of 9 pM at 38°C ligation temperature. The proposed biosensor has a low detection limit of 60 fM of target DNA and a linear response in the concentration range of 60 fM to 0.2 pM. Conclusion: The results indicated the power of these assays to detect KRAS point mutations in liquid state reactions.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Roshan
- Department of Internal Medicine, Division of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Karimi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Fathi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Liu H, You Y, Zhu Y, Zheng H. Recent advances in the exonuclease III-assisted target signal amplification strategy for nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5103-5119. [PMID: 34664562 DOI: 10.1039/d1ay01275d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of nucleic acids has become significantly important in molecular diagnostics, gene therapy, mutation analysis, forensic investigations and biomedical development, and so on. In recent years, exonuclease III (Exo III) as an enzyme in the 3'-5' exonuclease family has evolved as a frequently used technique for signal amplification of low level DNA target detection. Different from the traditional target amplification strategies, the Exo III-assisted amplification strategy has been used for target DNA detection through directly amplifying the amounts of signal reagents. The Exo III-assisted amplification strategy has its unique advantages and characters, because the character of non-specific recognition of Exo III can overcome the limitation of a target-to-probe ratio of 1 : 1 in the traditional nucleic acid hybridization assay and acquire higher sensitivity. In this review, we selectively discuss the recent advances in the Exo III-assisted amplification strategy, including the amplification strategy integrated with nanomaterials, biosensors, hairpin probes and other nucleic acid detection methods. We also discuss the strengths and limitations of each strategy and methods to overcome the limitations.
Collapse
Affiliation(s)
- Hongyu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Yuhao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Youzhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
17
|
Qiu Q, Ni X, Liu T, Li Z, An X, Chen X. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Analyst 2021; 146:6808-6814. [PMID: 34647930 DOI: 10.1039/d1an01483h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Food allergy is an immune system reaction to a particular food, milk being the most common one. β-Lactoglobulin (β-Lg) is the main ingredient of milk protein and the main cause of infant milk allergy. On such an occasion, the determination of β-Lg is very important and the electrochemical sensors are a good alternative for this purpose since they are sensitive, selective and inexpensive. In this work, an electrochemical aptasensor was fabricated for the quantitative detection of β-Lg in hypoallergenic formula (HF) milk. A tri-functional hairpin (HP) was designed, which was composed of an aptamer sequence, a nicking site and a DNA sequence (T1). In the absence of β-Lg, the aptamer part hybridized with T1 to form a stable stem-loop structure. However, in the presence of β-Lg, the capture of the aptamer sequence towards β-Lg caused the reconstruction of HP and thus the nicking sites were exposed. Then, the nicking enzyme was activated and T1 could be released, which bound with the end of the hairpin 1-methylene blue (HP1-MB)/HP2-MB conjugation on the Au nanoparticle (AuNP) modified electrode surface. Thus, the insulating property of the electrode was enhanced and the current response of MB decreased, which built the quantitative basis for β-Lg detection. In this way, the proposed aptasensor exhibited a wide linear range of 0.01-100 ng mL-1 and a low detection limit of 5.7 pg mL-1. This aptasensor also displayed high selectivity, reproducibility and stability, and became a promising platform for β-Lg detection in real food samples.
Collapse
Affiliation(s)
- Qianying Qiu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiao Ni
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Tianchen Liu
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Zening Li
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xinyi An
- Nanjing Foreign Language School, Nanjing 210018, PR China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, PR China
| |
Collapse
|
18
|
Chen CA, Huang YJ, Yi-Ju Ho N, Huang TH, Tsai TT. Smartphone-assisted fluorescent analysis of polyT-Cu-nanoprobes using nucleic acid amplification test for the diagnosis of tuberculosis. Anal Biochem 2021; 630:114340. [PMID: 34411550 DOI: 10.1016/j.ab.2021.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis is one of devastating infectious diseases in the world, and early diagnosis and treatment can help overcome this global burden. In this work, a new detection platform combining smartphone-assisted fluorescent analysis and highly sensitive fluorescent copper nanoprobes (CuNPs) in a specific nucleic acid amplification test (NAAT) for the diagnosis of tuberculosis (TB) was demonstrated and validated using clinical samples. To enhance the precision and accuracy of detection, polymerase chain reaction (PCR), padlock probe (PLP) ligation, and rolling circle amplification (RCA) were combined. Long poly(thymine) (polyT) single-stranded DNA was synthesized through RCA, and polyT-CuNPs were formed by adding copper(II) ions and sodium ascorbate as reducing agents; subsequently, the results were visualized through the excitation from a UV transilluminator and quantified with just a smartphone. After optimization, this proposed platform was validated by testing 18 residual DNA samples after TB PCR, including 8 TB-negative and 10 TB-positive samples, and exhibited a detection limit of 5 fg/μL. The findings indicate the potential of this platform for practical application, where it can be combined with a smartphone for image analysis to achieve accurate on-site detection of TB, especially in resource-limited settings.
Collapse
Affiliation(s)
- Chung-An Chen
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Yu-Jui Huang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Natalie Yi-Ju Ho
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Tse-Hao Huang
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan 333, Taiwan, R.O.C..
| |
Collapse
|
19
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
20
|
Wang G, Wu M, Chu LT, Chen TH. Portable microfluidic device with thermometer-like display for real-time visual quantitation of Cadmium(II) contamination in drinking water. Anal Chim Acta 2021; 1160:338444. [PMID: 33894969 DOI: 10.1016/j.aca.2021.338444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd2+) is a toxic metal ion widely existing in water, soil and food. Conventional water quality control heavily relies on expensive, bulky and sophisticated instrument such as spectrometry, which is time-consuming and incompatible with on-site, real-time detection. Here, a portable microfluidic device with thermometer-like visual readouts is developed for real-time quantitation of cadmium (II) contamination in drinking water. We use Cd2+-dependent DNAzyme (Cd16), which is cleaved when Cd2+ is present, creating a single strand DNA which triggers catalytic hairpin assembly (CHA) with two hairpins H1 and H2 as the building blocks. Plenty of H1H2 complex, the product after the Cd2+-mediated CHA, are generated, which can connect magnetic microparticles (MMPs) and polystyrene microparticles (PMPs), forming "MMPs-H1H2-PMPs" sandwich structure. To provide visual readout to quantitate the particle connection, the particle solution is loaded into a portable microfluidic chip. A magnetic separator first removes MMPs and the connected PMPs, while free PMPs can continue flowing until accumulating into a bar at the particle dam. Shown as a thermometer-like display, the accumulating length is inversely proportional to the concentration of Cd2+, enabling quantitative detection of Cd2+ by the naked eye. The proposed device exhibits a limit of detection of 11.3 nM of Cd2+, selectivity >200-fold against other metal ions, high tolerance to the interferents present in drinking water and high recovery rate in tap water. With high analytical performance without any sample preparation step, this portable device is highly promising in real-time monitoring in urban drinking water at sites.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
21
|
Xu M, Xing S, Zhao Y, Zhao C. Peptide nucleic acid-assisted colorimetric detection of single-nucleotide polymorphisms based on the intrinsic peroxidase-like activity of hemin-carbon nanotube nanocomposites. Talanta 2021; 232:122420. [PMID: 34074407 DOI: 10.1016/j.talanta.2021.122420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Here, taking the advantage of single-stranded (ss) DNA specific nuclease (S1) and peptide nucleic acid (PNA), we demonstrated a novel, rapid, and label-free colorimetric nanosensor for the sensitive and accurate detection of SNPs based on the intrinsic peroxidase-like activity of hemin-functionalized single-walled carbon nanotubes (hemin-SWCNTs). PNA, a man-made mimic of DNA with extraordinary stability toward enzymatic degradation, can effectively protect DNA in the fully matched DNA/PNA duplexes from nuclease digestion. While the DNA in DNA/PNA duplexes containing a mismatch can be cleaved into small fragments. This difference can be visually monitored from the specific color change of TMB/H2O2 system by employing the peroxidase activity of hemin-SWCNTs because of its different aggregation states responding to ssPNA or DNA/PNA duplex. Under optimized conditions, the SNPs in the human tumor suppressor gene TP53 have been successfully genotyped in a linear range of 50-1000 nM with a detection limit of 0.11 nM. Moreover, this platform can effectively discriminate a series of single-base mismatches. This assay avoids the assistance of sophisticated instruments and complicated modifications of probes or nanomaterials, and function well for both cell lysate samples and PCR amplicons from standard cell lines, implying its potential practical applications for bioanalysis and biosensors.
Collapse
Affiliation(s)
- Mengjia Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, 315300, Zhejiang, PR China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315300, PR China
| | - Chao Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
22
|
Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105858] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
24
|
Wang ZY, Li P, Cui L, Qiu JG, Jiang B, Zhang CY. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
A Label-Free Fluorescent Sensor Based on the Formation of Poly(thymine)-Templated Copper Nanoparticles for the Sensitive and Selective Detection of MicroRNA from Cancer Cells. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, a simple and label-free fluorescence “off” to “on” platform was designed for the sensitive and selective detection of microRNA (miRNA) in cancer cells. This method utilized a padlock DNA-based rolling circle amplification (P-RCA) to synthesize fluorescent poly(thymine) (PolyT) which acted as a template for the synthesis of copper nanoparticles (CuNPs) within 10 minutes under mild conditions. While the repeated PolyT sequence was used as the template for CuNP synthesis, other non-PolyT parts (single strand-DNAs without the capacity to act as the template for CuNP formation) served as “smart glues” or rigid linkers to build complex nanostructures. Under the excitation wavelength of 340 nm, the synthesized CuNPs emitted strong red fluorescence effectively at 620 nm. To demonstrate the use of this method as a universal biosensor platform, lethal-7a (let-7a) miRNA was chosen as the standard target. This sensor could achieve highly sensitive and selective detection of miRNA in the presence of other homologous analogues for the combination of P-RCA with the fluorescent copper nanoparticle. Overall, this novel label-free method holds great potential in the sensitive detection of miRNA with high specificity in real samples.
Collapse
|
26
|
Cao X, Yu H, Xue J, Bai M, Zhao Y, Li Y, Zhao Y, Chen F. RNA-Primed Amplification for Noise-Suppressed Visualization of Single-Cell Splice Variants. Anal Chem 2020; 92:9356-9361. [PMID: 32456418 DOI: 10.1021/acs.analchem.0c01734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Splice variants visualization is pivotal for a deeper understanding of cell growth and development. However, it remains technically challenging due to short lengths, similar sequences, and low abundance. The existing single-cell imaging strategies suffer from nonspecific amplification that causes considerable noise during visualization of the splice variants. Herein we develop a new RNA-primed amplification strategy for noise-suppressed visualization of single-cell splice variants. Block probes were designed to specifically identify the conjugated region of exons in mRNA, which was then digested by endonuclease and provided a hydroxyl group at the 3' terminal. The RNA target can act as primer to trigger rolling circle amplification, achieving visualization of splice variants with noise suppressed to nearly zero. We further explored the expression and distribution of BRCA1 splice variants in three breast cell lines, revealing cell-type specific mapping of this cancer suppressor gene.
Collapse
Affiliation(s)
- Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youjun Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
27
|
Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron 2020; 165:112356. [PMID: 32510339 DOI: 10.1016/j.bios.2020.112356] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Circle-to-circle amplification (C2CA) is a specific and precise cascade nucleic acid amplification method consisting of more than one round of padlock probe ligation and rolling circle amplification (RCA). Although C2CA provides a high amplification efficiency with a negligible increase of false-positive risk, it contains several step-by-step operation processes. We herein demonstrate a homogeneous and isothermal nucleic acid quantification strategy based on C2CA and optomagnetic analysis of magnetic nanoparticle (MNP) assembly. The proposed homogeneous circle-to-circle amplification eliminates the need for additional monomerization and ligation steps after the first round of RCA, and combines two amplification rounds in a one-pot reaction. The second round of RCA produces amplicon coils that anneal to detection probes grafted onto MNPs, resulting in MNP assembly that can be detected in real-time using an optomagnetic sensor. The proposed methodology was applied for the detection of a synthetic complementary DNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2, also known as 2019-nCoV) RdRp (RNA-dependent RNA polymerase) coding sequence, achieving a detection limit of 0.4 fM with a dynamic detection range of 3 orders of magnitude and a total assay time of ca. 100 min. A mathematical model was set up and validated to predict the assay performance. Moreover, the proposed method was specific to distinguish SARS-CoV and SARS-CoV-2 sequences with high similarity.
Collapse
Affiliation(s)
- Bo Tian
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| | - Fei Gao
- Department of Physics, Technical University of Denmark, DTU Physics, Building 307, DK-2800, Kongens Lyngby, Denmark
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark
| | - Mikkel Fougt Hansen
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
28
|
Bai M, Cao X, Huang W, Chen F, Zhao Y, Xue J, Li Y, Cheng Y, Zhang L, Zhao Y. Visualizing Newly Synthesized RNA by Bioorthogonal Labeling-Primed DNA Amplification. Anal Chem 2020; 92:8444-8449. [PMID: 32410443 DOI: 10.1021/acs.analchem.0c01161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monitoring RNA synthesis and spatial distribution can help to understand its role in physiology and diseases. However, visualizing newly synthesized RNA in single cells remains a great challenge. Here, we developed a bioorthogonal labeling-primed DNA amplification strategy to visualize newly synthesized RNA in single cells. The new bioorthogonal N6-allyladenosine nucleoside was prepared to metabolically label cellular newly synthesized RNAs. These allyl-functionalized RNAs then reacted with tetrazine-modified primers. These primers could initiate rolling circle amplification, producing tandem periodic long single DNA strands to capture hundreds of fluorescence probes for signal amplification. Using this method, we explored the subcellular distributions of newly synthesized RNAs. And we found that newly synthesized RNAs are spatially organized in a cell type-specific style with cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Wei Huang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Youjun Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yilong Cheng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
29
|
Tian B, Fock J, Minero GAS, Hansen MF. Nicking-assisted on-loop and off-loop enzymatic cascade amplification for optomagnetic detection of a highly conserved dengue virus sequence. Biosens Bioelectron 2020; 160:112219. [PMID: 32339155 DOI: 10.1016/j.bios.2020.112219] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Applications of conventional linear ligation-rolling circle amplification (RCA) are restricted by the sophisticated operation steps and unsatisfactory picomolar-level detection limits. We herein demonstrate an RCA-based cascade amplification reaction that converts a side-reaction to secondary amplification, which improves the detection limit and simplifies the operation compared to linear ligation-RCA assays. The proposed nicking-assisted enzymatic cascade amplification (NECA) comprises an on-loop amplification reaction using circular templates to generate intermediate amplicons, and an off-loop amplification reaction using intermediate amplicons as primers for end amplicons. The whole NECA reaction is homogeneous and isothermal. Amplicons anneal to detection probes that are grafted onto magnetic nanoparticles (MNPs), such that MNP clusters form and can be detected in real-time using optomagnetic measurements. The optomagnetic sensor detects the presence and size increase of MNP clusters by optical transmission measurements in an oscillating magnetic field. A detection limit of 2 fM was achieved with a total assay time of ca. 70 min. By combining optomagnetic readouts of signal phase lag and hydrodynamic size increase of MNPs, NECA-based target quantification provided a wide dynamic detection range of ca. 4.5 orders of magnitude. Moreover, the specificity and the serum detection capability of the proposed method were investigated.
Collapse
Affiliation(s)
- Bo Tian
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Gabriel Antonio S Minero
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark
| | - Mikkel Fougt Hansen
- Department of Health Technology, Technical University of Denmark, DTU Health Tech, Building 345C, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
30
|
Molecular inversion probe-rolling circle amplification with single-strand poly-T luminescent copper nanoclusters for fluorescent detection of single-nucleotide variant of SMN gene in diagnosis of spinal muscular atrophy. Anal Chim Acta 2020; 1123:56-63. [PMID: 32507240 DOI: 10.1016/j.aca.2020.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 11/21/2022]
Abstract
In this study, a simple fluorescent detection of survival motor neuron gene (SMN) in diagnosis of spinal muscular atrophy (SMA) based on nucleic acid amplification test and the poly-T luminescent copper nanoclusters (CuNCs) was established. SMA is a severely genetic diseases to cause infant death in clinical, and detection of SMN gene is a powerful tool for pre- and postnatal diagnosis of this disease. This study utilized the molecular inversion probe for recognition of nucleotide variant between SMN1 (c.840 C) and SMN2 (c.840 C > T) genes, and rolling circle amplification with a universal primer for production of poly-T single-strand DNA. Finally, the fluorescent CuNCs were formed on the poly-T single-strand DNA template with addition of CuSO4 and sodium ascorbate. The fluorescence of CuNCs was only detected in the samples with the presence of SMN1 gene controlling the disease of SMA. After optimization of experimental conditions, this highly efficient method was performed under 50 °C for DNA ligation temperature by using 2U Ampligase, 3 h for rolling circle amplification, and the formation of the CuNCs by mixing 500 μM Cu2+ and 4 mM sodium ascorbate. Additionally, this highly efficient method was successfully applied for 65 clinical DNA samples, including 4 SMA patients, 4 carriers and 57 wild individuals. This label-free detection strategy has the own potential to not only be a general method for detection of SMN1 gene in diagnosis of SMA disease, but also served as a tool for detection of other single nucleotide polymorphisms or nucleotide variants in genetic analysis through designing the different sensing probes.
Collapse
|
31
|
|
32
|
Hu F, Zhang W, Meng W, Ma Y, Zhang X, Xu Y, Wang P, Gu Y. Ferrocene-labeled and purification-free electrochemical biosensor based on ligase chain reaction for ultrasensitive single nucleotide polymorphism detection. Anal Chim Acta 2020; 1109:9-18. [PMID: 32252909 DOI: 10.1016/j.aca.2020.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are crucial during the early diagnosis of a given disease as well as in evaluating their response to certain drugs. Thus, this study sought the development of ferrocene (Fc)-labeled electrochemical biosensor for SNP detection. This proposed system involves the ligation of four short probes (e.g., A, B, A', and B', where B' is labeled with an Fc-tag) in the presence of target DNA via ligase chain reaction (LCR), resulting in the formation of Fc-tagged duplex AB-A'B' in 2n. Subsequently, immobilization of the Fc-tagged duplex AB-A'B' on a single-stranded DNA capture probe (SC-DNA)-carboxyl multi-wall carbon nanotube (MWCNT-COOH) modified glassy carbon electrode (GCE) was accomplished through hybridization. Owing to the specificity of hybridization, and the use of Fc as electrochemical probe for detection of duplex AB-A'B', such strategy realized directly analysis of LCR products without the need for purification. By taking advantage of the thermal stability and high-discrimination ability of HiFi Taq DNA ligase for single-base differences, the specificity of hybridization, the EGFR T790 M mutant DNA (MT-DNA) biosensor was developed to offer a low limit of detection (0.75 aM), a high discrimination of single-base mismatches [as low as 0.01% (molar fraction)], a wide linear range of more than 7 orders of magnitude (1 aM-10 pM), and the recovery rates (95.3%-107.8%) from human serum samples. Thus, the biosensor under development was found to be economical, highly-sensitive, and exceptionally selective for detection of SNPs, and as well as extending the versatile applications of LCR to offer great potential for diagnosis and individual clinical regimens.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxiang Ma
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Ying Xu
- Department of Pediatric Oncology Surgery, Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450018, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
33
|
Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods. Mikrochim Acta 2019; 186:565. [DOI: 10.1007/s00604-019-3677-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
|
34
|
Minero GAS, Cangiano V, Garbarino F, Fock J, Hansen MF. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays. Mikrochim Acta 2019; 186:528. [DOI: 10.1007/s00604-019-3636-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 01/14/2023]
|
35
|
Xing S, Xu X, Fu P, Xu M, Gao T, Zhang X, Zhao C. Colorimetric detection of single base-pair mismatches based on the interactions of PNA and PNA/DNA complexes with unmodified gold nanoparticles. Colloids Surf B Biointerfaces 2019; 181:333-340. [PMID: 31154144 DOI: 10.1016/j.colsurfb.2019.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
Rapid and sensitive single nucleotide polymorphisms (SNPs) genotyping is of particular important for early diagnosis, prevention, and treatment of specific human diseases. A simple and low-cost SNP detection method would be valuable for routine analysis in resource-limited settings. Here, we demonstrated a novel and convenient gold nanoparticle (AuNPs) based colorimetric approach for efficient screening of SNPs at room temperature without instrumentation. SNP detection is performed in a single tube with one set of unmodified AuNPs, a label-free peptide nucleic acid (PNA) probe, a single exonuclease (S1 nuclease), and the target to be tested. S1 nuclease could digest DNAs in DNA/PNA duplexes involving a mismatch into small fragments, while DNAs in the fully-matched DNA/PNA duplexes can be effectively protected by PNA from enzymatic degradation. This difference could be easily discriminated by color changes associated with gold aggregation. PNA oligomers can induce immediate AuNP aggregation even in the presence of nucleoside monophosphates (dNMPs), the digestion products of DNA. Whereas PNA/DNA duplexes can effectively stabilize unmodified AuNPs, and the stabilization effect of PNA/DNA is better than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Without the need of precise temperature control and extra salt addition, SNPs are detected with a detection limit of 2.3 nM in cell lysate. Moreover, this system can effectively discriminate a range of different mismatches even in spiked cell lysate, demonstrate the potential use of this biosensor for biological samples.
Collapse
Affiliation(s)
- Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Xiaojun Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Institute of Pharmaceutical Chemistry, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingting Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
36
|
Peña-Venegas CP, Kuyper TW, Davison J, Jairus T, Vasar M, Stomph TJ, Struik PC, Öpik M. Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. MYCORRHIZA 2019; 29:263-275. [PMID: 31028480 DOI: 10.1007/s00572-019-00891-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Manioc (Manihot esculenta Crantz) is an important tropical crop that depends on arbuscular mycorrhizal (AM) association for its nutrition. However, little is known about the richness and species composition of AM fungal communities associating with manioc and possible differences across soils and manioc landraces. We studied the diversity and composition of AM fungal communities present in the roots of different manioc landraces and surrounding soils in indigenous shifting cultivation fields on different Amazonian soil types. A total of 126 AM fungal virtual taxa (VT; phylogenetically defined taxonomic units) were recovered from soil and root samples using 454 sequencing of AM fungal SSU rRNA gene amplicons. Different AM fungal communities occurred in different soil types. Minor differences occurred in the composition of AM fungal community associating with different manioc landraces, but AM fungal richness was not different among them. There was a low similarity between the AM fungal communities colonizing manioc roots and those recorded in the soil, independently of differences in soil properties or the manioc landrace evaluated. Rhizophagus manihotis and Glomus VT126 were the most abundant AM fungal species colonizing manioc roots. Contrasting with the results of earlier spore-based investigations, all the AM fungi identified as indicator species of particular manioc landraces were morphologically unknown Glomus species. In conclusion, different manioc landraces growing in common conditions associated with distinct AM fungal communities, whereby AM fungal communities in soils did not necessarily reflect the AM fungal communities colonizing manioc roots.
Collapse
Affiliation(s)
- Clara P Peña-Venegas
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Instituto Amazónico de Investigaciones Científicas Sinchi, Avenida Vásquez Cobo entre Calle 15 y 16, Leticia, Amazonas, Colombia.
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands
| | - John Davison
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Teele Jairus
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martti Vasar
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Tjeerd Jan Stomph
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maarja Öpik
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
37
|
Shamsipur M, Samandari L, Taherpour A(A, Pashabadi A. Sub-femtomolar detection of HIV-1 gene using DNA immobilized on composite platform reinforced by a conductive polymer sandwiched between two nanostructured layers: A solid signal-amplification strategy. Anal Chim Acta 2019; 1055:7-16. [DOI: 10.1016/j.aca.2018.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/25/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
|
38
|
Gao M, Lian H, Yu L, Gong M, Ma L, Zhou Y, Yu M, Yan X. Rolling circle amplification integrated with suspension bead array for ultrasensitive multiplex immunodetection of tumor markers. Anal Chim Acta 2019; 1048:75-84. [DOI: 10.1016/j.aca.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
39
|
Zhu C, Liu M, Li X, Zhang X, Chen J. A new electrochemical aptasensor for sensitive assay of a protein based on the dual-signaling electrochemical ratiometric method and DNA walker strategy. Chem Commun (Camb) 2018; 54:10359-10362. [PMID: 30152501 DOI: 10.1039/c8cc05829f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a new electrochemical aptamer-based biosensor for highly sensitive assay of thrombin has been developed based on the dual-signaling electrochemical ratiometric method and the DNA walker strategy, and shows a low detection limit of about 56 fM.
Collapse
Affiliation(s)
- Caixia Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Li XH, Zhang XL, Wu J, Lin N, Sun WM, Chen M, Ou QS, Lin ZY. Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta 2018; 191:277-282. [PMID: 30262063 DOI: 10.1016/j.talanta.2018.08.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Detection of specific genes related to drug action can provide scientific guidance for personalized medicine. Taking the detection of a single-nucleotide polymorphism (SNP) genotyping related to the chronic hepatitis B virus (HBV) therapy as an example, a novel biosensor with high sensitivity and selectivity was developed based on the hyperbranched rolling circle amplification (HRCA) in this work. The single-base mutant DNA (mutDNA) sequence can perfectly hybridize with the specially designed discrimination padlock probe and initiate the HRCA reaction. Subsequently, a great abundant of double-strand DNA sequences were released and a strong fluorescence signal can be detected after adding SYBR Green I. In particular, the enhanced fluorescence intensity exhibits a linear relationship with the logarithm of mutDNA concentration ranging from 0.1 nM to 40 nM with a low detection limit of 0.05 nM. However, when there was even a single base mismatch in the target DNA, the HRCA was suppressed and fluorescence response process could not occur, resulting in a high selectivity of this biosensor. Moreover, this detection strategy also performs well in human serums, demonstrating its potential application in detecting SNPs in real biological samples.
Collapse
Affiliation(s)
- Xiang-Hui Li
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Xiao-Ling Zhang
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Juan Wu
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Ni Lin
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China
| | - Wei-Ming Sun
- Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, People's Republic of China
| | - Min Chen
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China.
| | - Qi-Shui Ou
- Medical Technology and Engineering College, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China; Department of Laboratory Medicine, The 1st Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350004, Fujian, People's Republic of China.
| | - Zhen-Yu Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
41
|
Gong J, Li Y, Lin T, Feng X, Chu L. Multiplex real-time PCR assay combined with rolling circle amplification (MPRP) using universal primers for non-invasive detection of tumor-related mutations. RSC Adv 2018; 8:27375-27381. [PMID: 35540013 PMCID: PMC9083282 DOI: 10.1039/c8ra05259j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 12/01/2022] Open
Abstract
With the continuous development and application of targeted drugs, it is particularly desirable to find a non-invasive diagnostic approach to screen patients for precision treatment. Specifically, detection of multiple cancer-related mutations is very important for targeted therapy and prediction of drug resistance. Although numerous advanced PCR methods have been developed to discriminate single nucleotide polymorphisms, their drawbacks significantly limit their application, such as low sensitivity and throughput, complicated operations, and expensive costs. In order to overcome these challenges, in this study, we developed a method combining multiplex and sensitive real-time PCR assay with rolling circle amplification. This allows specific and sensitive discrimination of the single nucleotide mutation and provides convenient multiplex detection by real-time PCR assay. The clinical potential of the MPRP assay was further demonstrated by comparing samples from 8 patients with a digital PCR assay. The coincident results between these two methods indicated that the MPRP assay can provide a specific, sensitive, and convenient method for multiplex detection of cancer-related mutations.
Collapse
Affiliation(s)
- Jian Gong
- Hebei Medical University Hebei 050017 China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital Hebei 050000 China
| | - Ting Lin
- Apexbio Biotech Co., LTD Beijing 100176 China
| | | | - Li Chu
- Hebei Medical University Hebei 050017 China
- Department of Pharmacology, Hebei University of Chinese Medicine Hebei 050200 China
| |
Collapse
|
42
|
Le BH, Seo YJ. Transcription of Unnatural Fluorescent Nucleotides and their Application with Graphene Oxide for the Simple and Direct Detection of miRNA. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences; Chonbuk National University; Jeonju 561-756 South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences; Chonbuk National University; Jeonju 561-756 South Korea
- Department of Chemistry; Chonbuk National University; Jeonju 561-756 South Korea
| |
Collapse
|
43
|
Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, Khandanlou R, Johan MR. Advancements in electrochemical DNA sensor for detection of human papilloma virus - A review. Anal Biochem 2018; 556:136-144. [PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022]
Abstract
Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
Collapse
Affiliation(s)
- Elisa Rasouli
- Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Zohreh Shahnavaz
- Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wan Jefrey Basirun
- Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Majid Rezayi
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Roshanak Khandanlou
- School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University, 3350, Ballarat, Australia.
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
44
|
Song W, Guo X, Sun W, Yin W, He P, Yang X, Zhang X. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR. Anal Biochem 2018; 553:57-61. [DOI: 10.1016/j.ab.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/26/2022]
|
45
|
Yin C, Wu Y, Li X, Niu J, Lei J, Ding X, Xiao D, Zhou C. Highly Selective, Naked-Eye, and Trace Discrimination between Perfect-Match and Mismatch Sequences Using a Plasmonic Nanoplatform. Anal Chem 2018; 90:7371-7376. [PMID: 29851471 DOI: 10.1021/acs.analchem.8b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A plasmonic nanoplatform to perform an enzyme-free, naked-eye, and trace discrimination of single-base mutation from fully matched sequence is reported. The nanoplatform showed great potential to enhance catalytic hairpin assembly (CHA) amplification efficiency and biocatalytic activity of hemin/G-quadruplex (DNAzyme). When human immunodeficiency virus (HIV) DNA biomarker was used as the model analyst, a naked-eye detection with high selectivity and high sensitivity down to 10-17 M in whole serum was achieved by observing red-to-blue color change. Single-base mismatch and two-base mismatch were detected at the low concentrations of 10-11 and 10-8 M, respectively. The naked-eye detection based on the enzyme-free plasmonic nanoplatform is expected to have potential applications ranging from quick detection and early diagnostics to point-of-care research.
Collapse
|
46
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
47
|
Le BH, Seo YJ. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P. Bioorg Med Chem Lett 2018; 28:2035-2038. [PMID: 29709251 DOI: 10.1016/j.bmcl.2018.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022]
Abstract
We designed and synthesized several fluorescent nucleotides from thiophene, anthracene and pyrene, which have different sizes, and screened their incorporation and extension capability during the rolling circle amplification of DNA. The thiophene-based fluorescent nucleotide (dUthioTP) could highly incorporate and extended into the rolling circle DNA product, while other fluorescent nucleotides (dUanthTP, and dUpyrTP) could not. This dUthioTP fluorescent nucleotide could be used for the detection of miRNA 24-3P, which is related PRRSV. This direct labeling system during rolling circle DNA amplification exhibited an increased fluorescence signal showing gel formation for the detection of miRNA 24-3P. This direct labeling system is a very simple and cost-efficient method for the detection miRNA 24-3P and also exhibited highly sensitive and selective detection properties.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea; Department of Chemistry, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
48
|
Liu Y, Gao L, Yan H, Shangguan J, Zhang Z, Xiang X. A cationic conjugated polymer coupled with exonuclease I: application to the fluorometric determination of protein and cell imaging. Mikrochim Acta 2018; 185:118. [PMID: 29594586 DOI: 10.1007/s00604-017-2661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/31/2017] [Indexed: 11/25/2022]
Abstract
A strategy is described for the detection of protein by using a cationic fluorescent conjugated polymer coupled with exonuclease I (Exo I). Taking streptavidin (SA) as model protein, it is observed that Exo I can digest single-stranded DNA conjugated with biotin and carboxyfluorescein (P1) if SA is absent. This leads to the formation of small nucleotide fragments and to weak fluorescence resonance energy transfer (FRET) from the polymer to P1. If, however, SA is present, the high affinity of SA and biotin prevents the digestion of P1 by Exo I. This results in the sorption of P1 on the surface of the polymer through strong electrostatic interaction. Hence, efficient FRET occurs from the fluorescent polymer to the fluorescent label of P1. Fluorescence is measured at an excitation wavelength of 370 nm, and emission is measured at two wavelengths (530 and 425 nm). The ratio of the two intensities (I530/I425) is directly related to the concentration of SA. Under the optimal conditions, the assay has a detection limit of 1.3 ng·mL-1. The method was also applied to image the folate receptor in HeLa cells, thus demonstrating the versatility of this strategy. Graphical abstract A fluorometric strategy is described for protein detection and cell imaging based on a cationic conjugated polymer (PFP) coupled with exonuclease I (Exo I) trigged fluorescence resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.
| | - Liyun Gao
- Department of toxicology, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Huijuan Yan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Zhen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430000, People's Republic of China
| | - Xia Xiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430000, People's Republic of China.
| |
Collapse
|
49
|
Bao B, Pan Y, Gu B, Chen J, Xu Y, Su P, Liu Y, Tong L, Wang L. Highly sensitive detection of nucleic acids using a cascade amplification strategy based on exonuclease III-assisted target recycling and conjugated polyelectrolytes. Analyst 2018; 143:4267-4272. [DOI: 10.1039/c8an01024b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ratiometric and cascade amplification strategy that combines the signal amplification and effecitive FRET property of CPEs with the Exo III-assisted target recycling method has been developed for DNA detection.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yanrui Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| |
Collapse
|
50
|
Le BH, Seo YJ. Highly sensitive MicroRNA 146a detection using a gold nanoparticle-based CTG repeat probing system and isothermal amplification. Anal Chim Acta 2017; 999:155-160. [PMID: 29254567 DOI: 10.1016/j.aca.2017.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
We have developed a gold nanoparticle (AuNP)-based CTG repeat probing system displaying high quenching capability and combined it with isothermal amplification for the detection of miRNA 146a. This method of using a AuNP-based CTG repeat probing system with isothermal amplification allowed the highly sensitive (14 aM) and selective detection of miRNA 146a. A AuNP-based CTG repeat probing system having a hairpin structure and a dTF fluorophore exhibited highly efficient quenching because the CTG repeat-based stable hairpin structure imposed a close distance between the AuNP and the dTF residue. A small amount of miRNA 146a induced multiple copies of the CAG repeat sequence during rolling circle amplification; the AuNP-based CTG repeat probing system then bound to the complementary multiple-copy CAG repeat sequence, thereby inducing a structural change from a hairpin to a linear structure with amplified fluorescence. This AuNP-based CTG probing system combined with isothermal amplification could also discriminate target miRNA 146a from one- and two-base-mismatched miRNAs (ORN 1 and ORN 2, respectively). This simple AuNP-based CTG probing system, combined with isothermal amplification to induce a highly sensitive change in fluorescence, allows the detection of miRNA 146a with high sensitivity (14 aM) and selectivity.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea
| | - Young Jun Seo
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials Chonbuk National University, Jeonju 561-756, South Korea; Department of Chemistry, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|