1
|
Zhao CX, Li XX, Shu Y. Fluorescence of europium activated by molecular-like silver clusters for the detection of alkaline phosphatase activity. Talanta 2025; 281:126892. [PMID: 39298805 DOI: 10.1016/j.talanta.2024.126892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Alkaline phosphatase (ALP) is abnormally expressed in some cancers and promotes the growth, metastasis, and invasion of cancer cells. The detection of ALP is of great significance for both pathological study and clinical detection. In this work, a europium (Eu)-based fluorescence detection sensor was prepared in a mild reaction condition. LaF3:Eu nanoparticles was mixed with ethylene imine polymer (PEI) and Ag+ ions. PEI was used as stabilizer and reducing agent, and Ag+ ions were reduced as molecular-like silver clusters (ML-Ag NCs). The fluorescence of LaF3:Eu nanoparticles was enhanced by ML-Ag NCs through energy transfer. When ascorbic acid 2-phosphate (AAP) was hydrolyzed to ascorbic acid (AA) in the presence of ALP, AA reduced Ag+ ions to silver nanoparticles (Ag NPs) and quenched the fluorescence of LaF3:Eu/PEI/Ag. The activity of ALP was detected by measuring the fluorescence intensity of Eu3+ at 618 nm. In the concentration range from 2.0 to 16.0 U/L, the fluorescence intensity ratio ((F0-F)/F0) had a linear relationship with the logarithm of ALP concentration. The limit of detection (LOD) was 1.3 U/L. Moreover, the ALP activity was detected successfully in cancer cells by this method. The sensing platform has application potential in the detection of ALP activity in biological systems.
Collapse
Affiliation(s)
- Chen-Xi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiao-Xia Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
2
|
Yao D, Zhou L, Hu S, Zhao S, Zhang L. Improving the sensing sensitivity of silver nanoparticle-based colorimetric biosensors from the point of salt. Mikrochim Acta 2024; 191:244. [PMID: 38578321 DOI: 10.1007/s00604-024-06328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.
Collapse
Affiliation(s)
- Di Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liuyan Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
3
|
Kong RM, Li P, Ge X, Zhao Y, Kong W, Xiang MH, Xia L, Qu F. Ratiometric fluorescence determination of alkaline phosphatase activity based on carbon dots and Ce 3+-crosslinked copper nanoclusters. Mikrochim Acta 2023; 190:487. [PMID: 38010451 DOI: 10.1007/s00604-023-06048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023]
Abstract
A new ratiometric fluorescent probe for efficient determination of ALP was developed. The probe was constructed by combining Ce3+-crosslinked copper nanoclusters (Ce3+-CuNCs) which exhibit the aggregation-induced emission (AIE) feature with carbon dots (CDs). The introduction of phosphate (Pi) induced the generation of CePO4 precipitation, resulting in significant decrease of fluorescence emission of CuNCs at 634 nm. At the same time, the fluorescence of CDs at 455 nm was obviously enhanced, thus generating ratiometric fluorescence response. Based on the fact that the hydrolysis of pyrophosphate (PPi) by ALP can produce Pi, the CD/Ce3+-CuNCs ratiometric probe was successfully used to determine ALP. A good linear relationship between the ratiometric value of F455/F634 and ALP concentrations ranging from 0.2 to 80 U·L- 1 was obtained, with a low detection limit of 0.1 U·L- 1. The ratiometric responses of the probe resulted in the visible fluorescence color change from orange red to blue with the increase of ALP concentration. The smartphone-based RGB recognition of the fluorescent sample images was used for ALP quantitative determination. A novel ratiometric fluorescent system based on Ce3+-CuNCs with AIE feature and CDs were constructed for efficient detection of ALP.
Collapse
Affiliation(s)
- Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China.
| | - Peihua Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Xinyue Ge
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Mei-Hao Xiang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Lian Xia
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, P. R. China
| |
Collapse
|
4
|
Thulasinathan B, Ganesan V, Manickam P, Kumar P, Govarthanan M, Chinnathambi S, Alagarsamy A. Simultaneous electrochemical determination of persistent petrogenic organic pollutants based on AgNPs synthesized using carbon dots derived from mushroom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163729. [PMID: 37120020 DOI: 10.1016/j.scitotenv.2023.163729] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic substances and accumulate in water bodies through various industries. Due to their harmful effects on humans, it is very important to monitor PAHs in various water resources. In the present work, we report an electrochemical sensor based on silver nanoparticles synthesized using mushroom-derived carbon dots for the simultaneous determination of anthracene and naphthalene, for the first time. Pleurotus species mushroom was used to synthesize the carbon dots (C-dots) via the hydrothermal method and these C-dots were used as a reducing agent for the synthesis of silver nanoparticles (AgNPs). The synthesized AgNPs have been characterized through UV-Visible and FTIR spectroscopy, DLS, XRD, XPS, FE-SEM, and HR-TEM. Well-characterized AgNPs were used to modify glassy carbon electrodes (GCEs) by the drop-casting method. Ag-NPs/GCE has shown strong electrochemical activity towards the oxidation of anthracene and naphthalene at well-separated potentials in phosphate buffer saline (PBS) at pH 7.0. The sensor exhibited a wide linear working range of 250 nM to 1.15 mM for anthracene and 500 nM to 842 μM for naphthalene with the corresponding lowest detection limits (LODs) of 112 nM and 383 nM respectively with extraordinary anti-interference ability against many possible interferents. The fabricated sensor showed high stability and reproducibility. The usefulness of the sensor for the monitoring of anthracene and naphthalene in a seashore soil sample has been demonstrated by the standard addition method. The sensor gave better results with a high recovery percentage indicating the first-ever device to detect two PAHs at the single electrode with the best analytical results.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, India; Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi 630003, India
| | - Veerapandi Ganesan
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India
| | - Pandiaraj Manickam
- Electrodics & Electrocatalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi 630003, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Sekar Chinnathambi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India.
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, India.
| |
Collapse
|
5
|
Mao Z, Chen J, Wang Y, Xia J, Zhang Y, Zhang W, Zhu H, Hu X, Chen H. Copper metal organic framework as natural oxidase mimic for effective killing of Gram-negative and Gram-positive bacteria. NANOSCALE 2022; 14:9474-9484. [PMID: 35748350 DOI: 10.1039/d2nr01673g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanozymes have been widely studied as substitutes for natural enzymes. However, the delicacy of their structures and their unclear catalytic sites make it difficult to maintain their structural robustness and catalytic durability. By mimicking active catalytic sites of natural enzymes and combining them with distinct channels of metal organic frameworks (MOFs), an active copper mimetic oxidase enzyme (Cu-MOF) was designed and synthesized with good structure and clear catalytic sites for improvement in catalytic activity. The Cu-MOFs showed excellent oxidase-like activity with a low Km of 1.09 mM and exogenous ROS generation capacity. The Cu-MOFs exhibited antibacterial efficacy at a low concentration of 12.5 μg mL-1 by an oxidative stress response. These Cu-MOFs with their simple design and effective oxidase mimicking show attractive application prospects in the field of antibacterial and enzyme catalysis.
Collapse
Affiliation(s)
- Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jie Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yindian Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yajing Zhang
- School of Qianweichang, Shanghai University, Shanghai, 200444, China
| | - Weiwen Zhang
- School of Qianweichang, Shanghai University, Shanghai, 200444, China
| | - Han Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Sensitive and Rapid Detection of Glutamic Acid in Colloidal Solution by Surfactant Mediated Silver Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Alkaline Phosphatase Electrochemical Micro-Sensor Based on 3D Graphene Networks for the Monitoring of Osteoblast Activity. BIOSENSORS 2022; 12:bios12060406. [PMID: 35735554 PMCID: PMC9221009 DOI: 10.3390/bios12060406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Alkaline phosphatase (ALP) is a significant biomarker that indicates osteoblast activity and skeletal growth. Efficient ALP detection methods are essential in drug development and clinical diagnosis. In this work, we developed an in-situ synthesized three-dimensional graphene networks (3DGNs)-based electrochemical sensor to determine ALP activity. The sensor employs an ALP enzymatic conversion of non-electroactive substrate to electroactive product and presents the ALP activity as an electrochemical signal. With 3DGNs as the catalyst and signal amplifier, a sample consumption of 5 μL and an incubation time of 2 min are enough for the sensor to detect a wide ALP activity range from 10 to 10,000 U/L, with a limit of detection of 5.70 U/L. This facile fabricated sensor provides a quick response, cost-effective and non-destructive approach for monitoring living adherent osteoblast cell activity and holds promise for ALP quantification in other biological systems and clinical samples.
Collapse
|
8
|
Irfan MI, Amjad F, Abbas A, Rehman MFU, Kanwal F, Saeed M, Ullah S, Lu C. Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules 2022; 27:3363. [PMID: 35684301 PMCID: PMC9182355 DOI: 10.3390/molecules27113363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present work reports the synthesis, characterization, and antimicrobial activities of adipic acid-capped silver nanoparticles (AgNPs@AA) and their utilization for selective detection of Hg2+ ions in an aqueous solution. The AgNPs were synthesized by the reduction of Ag+ ions with NaBH4 followed by capping with adipic acid. Characterization of as-synthesized AgNPs@AA was carried out by different techniques, including UV-Visible spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), and zeta potential (ZP). In the UV-Vis absorption spectrum, the characteristic absorption band for AgNPs was observed at 404 nm. The hydrodynamic size of as-synthesized AgNPs was found to be 30 ± 5.0 nm. ZP values (-35.5 ± 2.4 mV) showed that NPs possessed a negative charge due to carboxylate ions and were electrostatically stabilized. The AgNPs show potential antimicrobial activity against clinically isolated pathogens. These AgNPs were found to be selectively interacting with Hg2+ in an aqueous solution at various concentrations. A calibration curve was constructed by plotting concentration as abscissa and absorbance ratio (AControl - AHg/AControl) as ordinate. The linear range and limit of detection (LOD) of Hg2+ were 0.6-1.6 μM and 0.12 μM, respectively. A rapid response time of 4 min was found for the detection of Hg2+ by the nano-probe. The effect of pH and temperature on the detection of Hg2+ was also investigated. The nano-probe was successfully applied for the detection of Hg2+ from tap and river water.
Collapse
Affiliation(s)
- Muhammad Imran Irfan
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fareeha Amjad
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Azhar Abbas
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
- Department of Chemistry, Government Ambala Muslim Graduate College, Sargodha 40100, Pakistan
| | - Muhammad Fayyaz ur Rehman
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Fariha Kanwal
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 201620, China;
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Sami Ullah
- Institute of Chemistry, Faculty of Science, University of Sargodha, Sargodha 40100, Pakistan; (F.A.); (S.U.)
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
9
|
Wei P, Wang Q, Yi T. From fluorescent probes to the theranostics platform. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Qing Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
- Department of Chemistry Fudan University Shanghai 200438 China
| |
Collapse
|
10
|
Hu J, Li G. Recent Progress in Fluorescent Chemosensors for Protein Kinases. Chem Asian J 2022; 17:e202200182. [PMID: 35486328 DOI: 10.1002/asia.202200182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Indexed: 11/10/2022]
Abstract
Protein kinases are involved in almost all biological activities. The activities of different kinases reflect the normal or abnormal status of the human body. Therefore, detecting the activities of different kinases is important for disease diagnosis and drug discovery. Fluorescent probes offer opportunities for studying kinase behaviors at different times and spatial locations. In this review, we summarize different kinds of fluorescent chemosensors that have been used to detect the activities of many different kinases.
Collapse
Affiliation(s)
- Jun Hu
- Fujian Agriculture and Forestry University, College of Life Sciences, No.15 Shangxiadian Road, Cangshan District, 350002, Fuzhou, CHINA
| | - Gao Li
- Minjiang University, College of Material and Chemical Engineering, CHINA
| |
Collapse
|
11
|
Silver nanomaterials sensing of mercury ions in aqueous medium. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kateshiya MR, Malek NI, Kailasa SK. Folic acid functionalized molybdenum oxide quantum dots for the detection of Cu 2+ ion and alkaline phosphatase via fluorescence turn off-on mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120659. [PMID: 34863637 DOI: 10.1016/j.saa.2021.120659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The assay of alkaline phosphatase (ALP) plays a key role in the diagnosis of various diseases. Herein, folic acid functionalized molybdenum oxide quantum dots (FA-MoOx QDs) are explored as fluorescence "turn- off and on" probes for assaying of Cu2+ ion and ALP, respectively. This fluorescence sensing strategy was based on the quenching of emission peak of FA-MoOx QDs at 445 nm by Cu2+ ion, followed by restoring of emission peak selectively with ALP. Based on the quenching and restoring of FA-MoOx QDs emission intensity, quantitative assay was developed for the detection of Cu2+ ion (0.20 - 500 µM) and ALP (0.06 - 150 U/L) with detection limits of 29 nM and 0.026 U/L, respectively. The developed FA-MoOx QDs-based fluorescence "turn- off and on" strategy exhibited satisfactory results for assaying of ALP in biofluids.
Collapse
Affiliation(s)
- Mehul R Kateshiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat, India.
| |
Collapse
|
13
|
Wang Y, Feng Z, Sun Y, Zhu L, Xia D. Chiral induction in a novel self-assembled supramolecular system composed of α-cyclodextrin porous liquids, chiral silver nanoparticles and planar conjugated molecules. SOFT MATTER 2022; 18:975-982. [PMID: 35014653 DOI: 10.1039/d1sm01248g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The newly developed porous liquids known as liquids with permanent microporosity, have considerable application potential in many unknown areas. Herein, a supramolecular system composed of α-cyclodextrin porous liquid, chiral silver nanoparticles and planar conjugated molecules (methylene blue and indigo carmine) was designed and the induced chirality of the system was observed. It was found that the induced chirality can be easily tuned by changing the pH value of the mixture solution. The induced chiral signal of methylene blue in the developed self-assembled supramolecular system occurred when the pH was between 8 and 10, and furthermore the induced chirality of indigo carmine was found when the pH was between 6.5 and 7.5. The intensity of induced chirality decreases upon increasing temperatures and ionic strength. This study may offer a new approach for the creation of a chiral supramolecular system based on host-guest and electrostatic interaction and make cyclodextrin porous liquids promising candidates for applications in chiral induction.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
- Oil & Gas Technology Research Institute, Changqing Oilfield Company, Xi'an 710018, China
| | - Zhen Feng
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yawei Sun
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Lijun Zhu
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Daohong Xia
- College of Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
14
|
Zheng J, Zhu M, Kong J, Li Z, Jiang J, Xi Y, Li F. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone. Talanta 2022; 237:122954. [PMID: 34736679 DOI: 10.1016/j.talanta.2021.122954] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Herein, a simple microfluidic paper-based analytical device (μPAD) by using platinum nanoparticles (Pt NPs) as highly active peroxidase mimic for simultaneous determination of glucose and uric acid was fabricated. The μPAD consisted of one sample transportation layer, four paper-based detection chips, and two layers of hydrophobic polyethylene terephthalate (PET) films. The four detection chips were immobilized with various chromogenic reagents, Pt NPs, and specific oxidase (glucose oxidase or uricase). H2O2 generated by specific enzymatic reactions could oxidize co-immobilized chromogenic reagents to produce colored products by using Pt NPs as efficient catalyst. The multi-layered structure of μPAD could effectively improve the color uniformity and color intensity. Total color intensity from each two detection chips modified with distinct chromogenic reagents were used for quantitative analysis of glucose and uric acid, respectively, resulting in significantly improved sensitivity. The linear range for glucose and uric acid detection was 0.01-5.0 mM and 0.01-2.5 mM, respectively. Satisfied results were obtained for glucose and uric acid detection in real serum samples. An easy-to-use smartphone APP was developed for convenient and intelligent detection. The developed μPAD integrated with smartphone as detector holds great applicability for simple and portable on-site analysis.
Collapse
Affiliation(s)
- Jie Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Min Zhu
- PLA Army Academy of Artillery and Air Defense, Hefei, Anhui, 230031, People's Republic of China
| | - Jiao Kong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Jianming Jiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
15
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Morato NM, Le MT, Holden DT, Graham Cooks R. Automated High-Throughput System Combining Small-Scale Synthesis with Bioassays and Reaction Screening. SLAS Technol 2021; 26:555-571. [PMID: 34697962 DOI: 10.1177/24726303211047839] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Purdue Make It system is a unique automated platform capable of small-scale in situ synthesis, screening small-molecule reactions, and performing direct label-free bioassays. The platform is based on desorption electrospray ionization (DESI), an ambient ionization method that allows for minimal sample workup and is capable of accelerating reactions in secondary droplets, thus conferring unique advantages compared with other high-throughput screening technologies. By combining DESI with liquid handling robotics, the system achieves throughputs of more than 1 sample/s, handling up to 6144 samples in a single run. As little as 100 fmol/spot of analyte is required to perform both initial analysis by mass spectrometry (MS) and further MSn structural characterization. The data obtained are processed using custom software so that results are easily visualized as interactive heatmaps of reaction plates based on the peak intensities of m/z values of interest. In this paper, we review the system's capabilities as described in previous publications and demonstrate its utilization in two new high-throughput campaigns: (1) the screening of 188 unique combinatorial reactions (24 reaction types, 188 unique reaction mixtures) to determine reactivity trends and (2) label-free studies of the nicotinamide N-methyltransferase enzyme directly from the bioassay buffer. The system's versatility holds promise for several future directions, including the collection of secondary droplets containing the products from successful reaction screening measurements, the development of machine learning algorithms using data collected from compound library screening, and the adaption of a variety of relevant bioassays to high-throughput MS.
Collapse
Affiliation(s)
- Nicolás M Morato
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, USA
| | - MyPhuong T Le
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, USA
| | - Dylan T Holden
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, USA
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K, Ali GAM. The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2318. [PMID: 34578634 PMCID: PMC8467496 DOI: 10.3390/nano11092318] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Nanoscience enables researchers to develop new and cost-effective nanomaterials for energy, healthcare, and medical applications. Silver nanoparticles (Ag NPs) are currently increasingly synthesized for their superior physicochemical and electronic properties. Good knowledge of these characteristics allows the development of applications in all sensitive and essential fields in the service of humans and the environment. This review aims to summarize the Ag NPs synthesis methods, properties, applications, and future challenges. Generally, Ag NPs can be synthesized using physical, chemical, and biological routes. Due to the great and increasing demand for metal and metal oxide nanoparticles, researchers have invented a new, environmentally friendly, inexpensive synthetic method that replaces other methods with many defects. Studies of Ag NPs have increased after clear and substantial support from governments to develop nanotechnology. Ag NPs are the most widely due to their various potent properties. Thus, this comprehensive review discusses the different synthesis procedures and electronic applications of Ag NPs.
Collapse
Affiliation(s)
- Abderrhmane Bouafia
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, El-Oued 39000, Algeria;
| | - Abdelaal S. A. Ahmed
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, 344090 Rostov-on-Don, Russia;
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Physics, Faculty of Sciences, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, Kuantan 26300, Malaysia;
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| |
Collapse
|
19
|
Zhu X, Xu H, Zhan Y, Li W, Dong Y, Yu L, Chi Y, Ye H. A simple enzyme-catalyzed reaction induced "switch" type fluorescence biosensor based on carbon nitride nanosheets for the assay of alkaline phosphatase activity. Analyst 2021; 145:6277-6282. [PMID: 32940263 DOI: 10.1039/d0an01224f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An enzyme-catalyzed fluorescence "switch" type sensor was constructed for the determination of alkaline phosphatase (ALP) activity by combining the fluorescence quenching effect of Ag+ on ultrathin g-C3N4 nanosheets (CNNSs) with the simple redox reaction of AA and Ag+. Briefly, Ag+ exhibits a significant quenching effect on the fluorescence of CNNSs. Thus the fluorescence signal of the CNNS-Ag+ system is extremely weak even in the presence of l-ascorbic acid-2-phosphate (AAP) ("off" state). When ALP coexists in the system, the enzyme can specifically catalyze the hydrolysis of AAP to form ascorbic acid (AA), which reduces Ag+ to Ag0. In this case, the fluorescence signal of the system is recovered ("on" state). Based on this principle, a signal-enhanced CNNS fluorescence sensor was developed to determine the activity of alkaline phosphatase. The experimental results show that the detection range of alkaline phosphatase is 0.5-20 U L-1, and the detection limit is 0.05 U L-1 (S/N = 3). Meanwhile, this method was used to assay ALP in serum samples.
Collapse
Affiliation(s)
- Xi Zhu
- College of Life Sciences, Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun W, Han X, Qu F, Kong RM, Zhao Z. A carbon dot doped lanthanide coordination polymer nanocomposite as the ratiometric fluorescent probe for the sensitive detection of alkaline phosphatase activity. Analyst 2021; 146:2862-2870. [PMID: 33890963 DOI: 10.1039/d1an00218j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of sensitive methods for alkaline phosphatase (ALP) activity analysis is an important analytical topic. Based on the stimulus-responsive lanthanide coordination polymer, a simple ratiometric fluorescence sensing strategy was proposed to detect ALP activity. A carbon dot (CD) doped fluorescent supramolecular lanthanide coordination polymer (CDs@Tb-GMP) was prepared with Tb3+ and the ligand guanine single nucleotide (GMP). To construct a ratiometric fluorescence biosensor, the fluorescence of Tb-GMP was used as a response signal, and the fluorescence of CDs was used as a reference signal due to its good stability. When excited at 290 nm, the polymer network Tb-GMP emits characteristic fluorescence at 545 nm, while the CDs encapsulated in the polymer network emit fluorescence at 370 nm. After adding ALP to the system, the substrate GMP can be hydrolyzed by ALP, resulting in the destruction of the polymer network. Accordingly, the fluorescence of Tb-GMP significantly decreased, while the fluorescence of CDs slightly increased due to their release from the polymer network. By comparing the relationship between the fluorescence intensity ratio of the two signals and the concentration of ALP, sensitive detection of ALP could be achieved with the linear range from 0.5 to 80 U L-1 and a detection limit of 0.13 U L-1. Furthermore, the proposed ratiometric sensing system was applied to the detection of ALP in human serum samples with desirable results, indicating potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Weidi Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Xue Han
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Zilong Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
21
|
Cho H, Lee CS, Kim TH. Label-Free Assay of Protein Kinase A Activity and Inhibition Using a Peptide-Based Electrochemical Sensor. Biomedicines 2021; 9:biomedicines9040423. [PMID: 33924719 PMCID: PMC8069798 DOI: 10.3390/biomedicines9040423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
We propose a simple label-free electrochemical biosensor for monitoring protein kinase activity and inhibition using a peptide-modified electrode. The biosensor employs cys-kemptide (CLRRASLG) as a substrate peptide which was immobilized on the surface of a gold electrode via the self-assembly of the thiol terminals in cysteine (C) residues. The interaction between protein kinase A (PKA) and adenosine 5′-triphosphate (ATP) on the cys-kemptide immobilized electrode can cause the transfer of ATP terminal phosphates to the peptide substrates at serine (S) residues, which alters the surface charge of the electrode, thus enabling monitoring of the PKA activity via measuring the interfacial electron transfer resistance with electrochemical impedance spectroscopy. The proposed sensor showed reliable, sensitive, and selective detection of PKA activity with a wide dynamic range of 0.1–100 U/mL and a detection limit of 56 mU/mL. The sensor also exhibited high selectivity, rendering it possible to screen PKA inhibitors. Moreover, the sensor can be employed to evaluate the activity and inhibition of PKA in real samples.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
| | - Chang-Seuk Lee
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
| | - Tae Hyun Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan 31538, Korea; (H.C.); (C.-S.L.)
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
- Correspondence: ; Tel.: +82-41-530-4722; Fax: +82-41-530-1247
| |
Collapse
|
22
|
Su YC, Lin AY, Hu CC, Chiu TC. Functionalized silver nanoparticles as colorimetric probes for sensing tricyclazole. Food Chem 2021; 347:129044. [PMID: 33472118 DOI: 10.1016/j.foodchem.2021.129044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
A colorimetric assay for highly selective and sensitive detection of tricyclazole using fluorescein-functionalized silver nanoparticles (F-AgNPs) as sensing probes was investigated. As the addition of tricyclazole to F-AgNPs, a drastic decrease in the absorbance at 394 nm was detected, which was accompanied with a noticeable color change from yellow to gray. The sensing mechanism involved an interaction between tricyclazole and F-AgNPs, which led to aggregation of the latter, inducing a color change from yellow to gray. An excellent linear calibration curve (R2 = 0.9994) was achieved between absorbance at 394 nm and the tricyclazole concentration in the range between 0.06 and 1.0 ppm. Moreover, the detection limit was estimated at 0.051 ppm. The developed colorimetric assay also showed good selectivity and was successfully utilized to quantify tricyclazole in rice samples with satisfactory recoveries. The proposed assay has been successfully applied for monitoring tricyclazole in rice samples.
Collapse
Affiliation(s)
- Yen-Chang Su
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Ai-Yu Lin
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| |
Collapse
|
23
|
A sensitive "off-on" carbon dots-Ag nanoparticles fluorescent probe for cysteamine detection via the inner filter effect. Talanta 2021; 221:121463. [PMID: 33076083 DOI: 10.1016/j.talanta.2020.121463] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
In this study, we describe the construction of an "off-on" fluorescent probe based on carbon dots (CDs) and silver nanoparticles (AgNPs) mixture for sensitive and selective detection of cysteamine. By mixing AgNPs with CDs solution, the fluorescence of CDs was significantly decreased due to the inner filter effect (IFE). Upon addition of cysteamine to the mixed aqueous of CDs and AgNPs, the silver-sulfur bond between cysteamine and AgNPs caused AgNPs to aggregate, and the quenched fluorescence of CDs could in turn be recovered. The probe was employed to quantitatively detect cysteamine, and the results showed that it could detect cysteamine in a concentration range of 2-16 μM with the detection limit of 0.35 μM (signal-to-noise ratio of 3). The detection of cysteamine spiked into bovine serum samples showed high recovery rates ranging from 95.5 to 111.7%. More importantly, the developed probe had low cytotoxicity and was successfully used for in vivo imaging of HepG2 cells.
Collapse
|
24
|
Hossain S. A Study on Understanding Potential Gold and Silver Nanoparticle : An Overview. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x21500095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper highlights on the coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the time of writing this paper, there has been over 6 million confirmed cases worldwide. It is a person–person transmittable infection but there have been cases of asymptomatic carriers. Hence, development of an effective biosensing diagnostic tool can curb its rapid transmission rate. The first part of the paper highlights on the SARS-CoV-2 structure and its resemblance to SARS-CoV. The second part of the paper analyzes on the potential application of gold and silver nanoparticles to generate a red shift that had enhanced the calorimetric property of the MERS-CoV analysis due to transition in its optical property. Other electrochemical techniques that utilized the application of gold nanoparticles are also reviewed. Gold and silver nanoparticles (AuNP and Ag NP) can accelerate the sensitivity upon electrodeposition on the diagnostic tool.
Collapse
Affiliation(s)
- Shadeeb Hossain
- Department of Electrical Engineering, University of Texas, San Antonio, TX, USA
| |
Collapse
|
25
|
Chen C, Zhao D, Wang B, Ni P, Jiang Y, Zhang C, Yang F, Lu Y, Sun J. Alkaline Phosphatase-Triggered in Situ Formation of Silicon-Containing Nanoparticles for a Fluorometric and Colorimetric Dual-Channel Immunoassay. Anal Chem 2020; 92:4639-4646. [DOI: 10.1021/acs.analchem.0c00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Dan Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Scences, Changchun, Jilin 130022, China
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Fan Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Scences, Changchun, Jilin 130022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Scences, Changchun, Jilin 130022, China
| |
Collapse
|
26
|
Han X, Meng Z, Xia L, Qu F, Kong RM. o-Phenylenediamine/gold nanocluster-based nanoplatform for ratiometric fluorescence detection of alkaline phosphatase activity. Talanta 2020; 212:120768. [PMID: 32113538 DOI: 10.1016/j.talanta.2020.120768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023]
Abstract
This study demonstrates a novel and convenient ratiometric fluorescent method for the detection of alkaline phosphatase (ALP) activity. Amino-functionalized mesoporous silica nanoparticle-gold nanoclusters (MSN-AuNCs) nanocomposites were integrated with o-phenylenediamine (OPD) to form a ratiometric fluorescence nanoplatform. The presence of ALP induced the generation of quinoxaline (QX) derivative which called 3-(dihydroxyethyl)furo[3,4-b]quinoxaline-1-one (DFQ) with strong fluorescence emission at 450 nm, while the orange-red fluorescence of MSN-AuNCs at 580 nm was slightly quenched. Meanwhile, an obvious fluorescence color change from orange-red to purple and finally to blue can be observed by naked eyes with the increasing of ALP concentration. Therefore, employing the fluorescence emission of DFQ at 450 nm as the reporter signal and the fluorescence emission of MSN-AuNCs at 580 nm as a reference signal, a sensitive ratiometric detection method for ALP was developed. Quantitative detection of ALP activity in the linear range from 0.2 to 80 U/L with a detection limit of 0.1 U/L can be realized in this way, which endows the assay with high sensitivity enough for practical detection of ALP in human serum samples.
Collapse
Affiliation(s)
- Xue Han
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Zhen Meng
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Lian Xia
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China
| | - Rong-Mei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, PR China.
| |
Collapse
|
27
|
Hu Q, Kong J, Han D, Bao Y, Zhang X, Zhang Y, Niu L. Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta 2020; 206:120173. [DOI: 10.1016/j.talanta.2019.120173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
|
28
|
Wang X, Jiang X, Wei H. Phosphate-responsive 2D-metal–organic-framework-nanozymes for colorimetric detection of alkaline phosphatase. J Mater Chem B 2020; 8:6905-6911. [DOI: 10.1039/c9tb02542a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phosphate-responsive peroxidase-mimicking two-dimensional-metal–organic-framework nanozymes were employed to develop alkaline phosphatase assays with tunable dynamic ranges and colorimetric logic gates.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| | - Xiaoqian Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing
| |
Collapse
|
29
|
Qi S, Zheng H, Qin H, Zhai H. Development of a facile and sensitive method for detecting alkaline phosphatase activity in serum with fluorescent gold nanoclusters based on the inner filter effect. Analyst 2020; 145:3871-3877. [DOI: 10.1039/d0an00052c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, a simple and sensitive method based on the inner filter effect (IFE) of p-nitrophenol (PNP) on the fluorescence of gold nanoclusters (AuNCs) has been developed for detecting alkaline phosphatase (ALP) activity.
Collapse
Affiliation(s)
- Shengda Qi
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Huanhuan Zheng
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Hongyan Qin
- Department of Pharmacy
- First Hospital of Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
30
|
DNA markers and nano-biosensing approaches for tuberculosis diagnosis. NANOTECHNOLOGY BASED APPROACHES FOR TUBERCULOSIS TREATMENT 2020. [PMCID: PMC7303904 DOI: 10.1016/b978-0-12-819811-7.00013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to WHO 2018 report, 10 million people developed tuberculosis and 1.3 million died from it making it 1 of 10 deadliest diseases worldwide. Tuberculosis is caused by infection with the bacillus Mycobacterium tuberculosis (Mtb). WHO recommends using a specific diagnostic kit Xpert MTB/RIF developed by Cepheid (California, United States). An alarming number of new cases (ca. 558,000) of rifampicin-resistant tuberculosis was diagnosticated in 2017. In recent years, new diagnosis tools targeting the Mtb DNA biomarkers have emerged using a plethora of nanomaterials capable of delivering new technological approaches for the rapid diagnostics of TB and rifampicin-resistant TB (RR-TB). In this chapter, we summarized the state-of-the-art of the current available DNA biomarkers and the potential applications for the development of new diagnosis nanotechnology-based devices. The latter use carbonaceous nanomaterials (graphene and carbon nanotubes), noble metals (silver and gold), semi-conducting (metal oxides, magnetic beads, and quantum dots) in order to reveal and/or to amplify the signal after the recognition of target DNA biomarker. The readout techniques such as colorimetry, fluorescence, surface plasmon resonance, and electrochemical methods were also reviewed. Future is bright for point-of-care diagnostics with a sample-in answer-out approach that hampers user-error through miniaturization of biochip technology to the nanoscale range, which will enable their use by nonspecialized personnel.
Collapse
|
31
|
Liu H, Hua Y, Cai Y, Feng L, Li S, Wang H. Mineralizing gold-silver bimetals into hemin-melamine matrix: A nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose. Anal Chim Acta 2019; 1092:57-65. [PMID: 31708033 DOI: 10.1016/j.aca.2019.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
|
32
|
Zhao XE, Zuo YN, Qu X, Sun J, Liu L, Zhu S. Colorimetric determination of the activities of tyrosinase and catalase via substrate-triggered decomposition of MnO2 nanosheets. Mikrochim Acta 2019; 186:848. [DOI: 10.1007/s00604-019-3995-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/31/2019] [Indexed: 01/01/2023]
|
33
|
Kurrey R, Deb MK, Shrivas K, Khalkho BR, Nirmalkar J, Sinha D, Jha S. Citrate-capped gold nanoparticles as a sensing probe for determination of cetyltrimethylammonium surfactant using FTIR spectroscopy and colorimetry. Anal Bioanal Chem 2019; 411:6943-6957. [DOI: 10.1007/s00216-019-02067-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022]
|
34
|
Gao C, Zang S, Nie L, Tian Y, Zhang R, Jing J, Zhang X. A sensitive ratiometric fluorescent probe for quantitive detection and imaging of alkaline phosphatase in living cells. Anal Chim Acta 2019; 1066:131-135. [PMID: 31027528 DOI: 10.1016/j.aca.2019.03.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 11/25/2022]
|
35
|
Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Mikrochim Acta 2019; 186:348. [DOI: 10.1007/s00604-019-3478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
|
36
|
Chen C, Yuan Q, Ni P, Jiang Y, Zhao Z, Lu Y. Fluorescence assay for alkaline phosphatase based on ATP hydrolysis-triggered dissociation of cerium coordination polymer nanoparticles. Analyst 2019; 143:3821-3828. [PMID: 30010688 DOI: 10.1039/c8an00787j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alkaline phosphatase (ALP) is a significant biomarker for diagnostics. Simple, selective and sensitive detection of ALP activity is thus of critical importance. In this study, an artful fluorescence assay for ALP is proposed based on adenosine triphosphate (ATP) hydrolysis-triggered disassociation and fluorescence quenching of cerium coordination polymer nanoparticles (CPNs). ATP, a recognized natural substrate of phosphatase, can serve as a superb "antenna" to sensitize the luminescence of Ce3+ with the aid of tris(hydroxymethyl) aminomethane (Tris), forming Ce3+-ATP-Tris CPNs. In the presence of ALP, ATP will be catalytically converted into adenosine and inorganic orthophosphate, however neither of them can sensitize Ce3+ in alkaline media. As a result, the obtained CPNs are disassociated, inducing the quenching of the fluorescence. On this basis, a straightforward fluorescence assay for ALP activity is rationally developed. The fluorescence quenching efficiency shows a linear relationship for ALP within the activity range from 0.1 to 10 mU mL-1 with a detection limit of 0.09 mU mL-1 under the optimal experimental conditions. Moreover, this facile yet effective fluorescence method featured simplicity, cost-effectiveness, high sensitivity and high selectivity and can be successfully utilized for the quantitative detection of ALP in human serum samples.
Collapse
Affiliation(s)
- Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | | | | | | | | | | |
Collapse
|
37
|
Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters. Anal Bioanal Chem 2019; 411:2531-2543. [PMID: 30828757 DOI: 10.1007/s00216-019-01693-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
In this work, a novel ratiometric fluorescent sensor, based on carbon dots (CDs) and gold nanoclusters (AuNCs), is developed for highly sensitive and selective visual colorimetric detection of Cu2+ and alkaline phosphatase (ALP). The ratiometric fluorescent sensor was synthesized by covalently linking 11-mercaptoundecanoic acid (11-MUA)-stabilized AuNCs to the surface of amino-functionalized CD/SiO2 nanoparticles. The red fluorescence of the AuNCs can be quenched by Cu2+ owing to coordination between Cu2+ and 11-MUA; however, the blue emission of the CDs was insensitive to Cu2+ owing to the protective silica shell. The quenching of the AuNCs' fluorescence returned when PPi was added because of the higher affinity between Cu2+ and PPi than that between Cu2+ and 11-MUA. In the presence of ALP, PPi was catalytically hydrolyzed into phosphate (Pi), which showed a much weaker affinity for Cu2+. Thus, Cu2+ ions were released, and the fluorescence of the AuNCs was quenched once more. Based on this principle, Cu2+ and ALP could be simultaneously detected. The developed ratiometric fluorescent sensor could detect Cu2+ over a range from 0.025 to 4 μM with a detection limit of 0.013 μM and ALP over a range from 0.12 to 15 U/L with a detection limit of 0.05 U/L. The present method was successfully applied for the detection of Cu2+ and ALP in real water samples and in human serum samples, respectively. This ratiometric fluorescent approach may provide a highly sensitive and accurate platform for visual Cu2+ and ALP sensing in environmental monitoring and medical diagnosis.
Collapse
|
38
|
Han X, Han M, Ma L, Qu F, Kong RM, Qu F. Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer. Talanta 2019; 194:55-62. [DOI: 10.1016/j.talanta.2018.09.108] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/22/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
|
39
|
Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. ANAL SCI 2019; 35:123-131. [PMID: 30224569 DOI: 10.2116/analsci.18r001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.
Collapse
Affiliation(s)
- Sumaira Nishat
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS).,Department of Computer Science, University of Agriculture
| | - Fazli Rabbi Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| |
Collapse
|
40
|
Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S. Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Mikrochim Acta 2019; 186:123. [DOI: 10.1007/s00604-018-3224-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/29/2018] [Indexed: 01/19/2023]
|
41
|
Hu Q, Kong J, Han D, Zhang Y, Bao Y, Zhang X, Niu L. Electrochemically Controlled RAFT Polymerization for Highly Sensitive Electrochemical Biosensing of Protein Kinase Activity. Anal Chem 2019; 91:1936-1943. [DOI: 10.1021/acs.analchem.8b04221] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
42
|
Han Y, Niu Y, Liu M, Niu F, Xu Y. A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. J Mater Chem B 2019; 7:897-902. [DOI: 10.1039/c8tb02948b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By comparing the percentage of FL quenching and recovery of the BNQDs, a Fe3+-mediated FL quenching of BNQDs system was rationally designed for efficient ALP assay. Moreover, the aforementioned ensemble was exploited to newly construct a 2D-QD-based INH logic gate.
Collapse
Affiliation(s)
- Yaqian Han
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yusheng Niu
- College of Life Sciences
- Qingdao University
- Qingdao 266003
- China
| | - Mengli Liu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Fushang Niu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Yuanhong Xu
- Institute for Graphene Applied Technology Innovation
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
43
|
Zhang Q, Li S, Fu C, Xiao Y, Zhang P, Ding C. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity. J Mater Chem B 2019; 7:443-450. [DOI: 10.1039/c8tb02799d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A NIR ratiometric fluorescent probe based on cyanine dye was developed for detecting and intracellular imaging of ALP activity with high sensitivity.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Shasha Li
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Caixia Fu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Yuzhe Xiao
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Peng Zhang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology
| |
Collapse
|
44
|
Jahed FS, Hamidi S, Nemati M. Dopamine‐Capped Silver Nanoparticles as a Colorimetric Probe for On‐Site Detection of Cyclosporine. ChemistrySelect 2018. [DOI: 10.1002/slct.201802272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatemeh Soghra Jahed
- Food and Drug Safety Research CenterTabriz University of Medical Science Tabriz 51664 Iran
- Department of Organic ChemistryAzarbaijan Shahid Madani University, Tabriz Iran
| | - Samin Hamidi
- Food and Drug Safety Research CenterTabriz University of Medical Science Tabriz 51664 Iran
| | - Mahboob Nemati
- Food and Drug Safety Research CenterTabriz University of Medical Science Tabriz 51664 Iran
- Department of Drug and Food ControlTabriz University of Medical Sciences, Tabriz Iran
| |
Collapse
|
45
|
Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles. Mikrochim Acta 2018; 186:25. [DOI: 10.1007/s00604-018-3131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
|
46
|
Wang X, Liu Z, Zhao W, Sun J, Qian B, Wang X, Zeng H, Du D, Duan J. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Anal Bioanal Chem 2018; 411:1009-1017. [DOI: 10.1007/s00216-018-1514-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/29/2023]
|
47
|
Zhong Y, Xue F, Wei P, Li R, Cao C, Yi T. Water-soluble MoS 2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect. NANOSCALE 2018; 10:21298-21306. [PMID: 30422141 DOI: 10.1039/c8nr05549a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a facile and sensitive method for the detection of alkaline phosphatase (ALP) activity in serum and live cells using molybdenum disulfide quantum dots (MoS2 QDs) based on the Inner Filter Effect (IFE). In the present work, water soluble MoS2 QDs with bright green fluorescence were synthesized through direct ultrasonic exfoliation of MoS2 powder in 85 vol% aqueous ethanol solution. p-Nitrophenylphosphate (PNPP) was employed to act as an ALP substrate, and its enzyme catalytic product (p-nitrophenol (PNP)) functioned as a powerful absorber in the IFE to influence the excitation of MoS2 QDs. PNPP was transformed into PNP in the presence of ALP, leading to the transition of the absorption peak from 310 nm to 405 nm and therefore resulted in a complementary overlap between the absorption of PNP and the excitation of MoS2 QDs. The fluorescence of MoS2 QDs was quenched due to the significant weakening of the excitation of MoS2 QDs by competitive absorption between QDs and PNP. A good linear relationship was obtained from 0 to 5 U L-1 (R2 = 0.9919) using the present IFE based sensing strategy with the lowest detection activity of 0.1 U L-1. The proposed sensing approach was successfully applied to ALP sensing in serum samples and ALP inhibitor investigation, as well as in ALP cell imaging.
Collapse
Affiliation(s)
- Yaping Zhong
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | | | | | | | | | | |
Collapse
|
48
|
In-situ decorated silver nanoparticles on electrospun poly (vinyl alcohol)/chitosan nanofibers as a plasmonic sensor for azathioprine determination. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Zhang XQ, Ling J, Liu CJ, Tan YH, Chen LQ, Cao QE. An irreversible temperature indicator fabricated by citrate induced face-to-face assembly of silver triangular nanoplates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:657-662. [PMID: 30184792 DOI: 10.1016/j.msec.2018.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Assembly of anisotropic nanoparticles which need well controlling of assembly direction and spatial arrangement is more interesting than one-dimensional nanoparticles assemblies. As confirmed by observing of transmission electron microscopy images and analysis of plasmon resonance spectrum transformations, we found that silver triangular nanoplates (TNPs) without further modification could be face-to-face assembled by citrate. The face-to-face assembly of silver TNPs could be disassembled quickly by heating at a wide temperature range from 30 to 80 °C. In this process, an obvious localized surface plasmon resonance (LSPR) peak shift and a color change of solution from pink to purple could be observed. Moreover, the disassembled silver TNPs suspension is very stable that no significant peak shift of silver TNPs spectrum was observed in 8 h after removing of silver TNPs from a hearing area. Therefore, we fabricated an irreversible temperature indicator by measuring the relationship between the shift of LSPR peak and heating temperature, and by watching the color change of the solution in a certain environment. The irreversible temperature indicator has potential to develop a temperature label for revealing temperature history of a thermosensitive product which cannot expose to excessive temperature.
Collapse
Affiliation(s)
- Xiu-Qing Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Kunming City Center for Disease Control and Prevention, Kunming, 650034, China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chao-Juan Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Hang Tan
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Li-Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
50
|
Wang J, Koo KM, Wang Y, Trau M. “Mix-to-Go” Silver Colloidal Strategy for Prostate Cancer Molecular Profiling and Risk Prediction. Anal Chem 2018; 90:12698-12705. [DOI: 10.1021/acs.analchem.8b02959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kevin M. Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuling Wang
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|