1
|
Miao Y, Wolfe MS. Emerging structures and dynamic mechanisms of γ-secretase for Alzheimer's disease. Neural Regen Res 2025; 20:174-180. [PMID: 38767485 PMCID: PMC11246123 DOI: 10.4103/nrr.nrr-d-23-01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 05/22/2024] Open
Abstract
γ-Secretase, called "the proteasome of the membrane," is a membrane-embedded protease complex that cleaves 150+ peptide substrates with central roles in biology and medicine, including amyloid precursor protein and the Notch family of cell-surface receptors. Mutations in γ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer's disease. γ-Secretase has thus served as a critical drug target for treating familial Alzheimer's disease and the more common late-onset Alzheimer's disease as well. However, critical gaps remain in understanding the mechanisms of processive proteolysis of substrates, the effects of familial Alzheimer's disease mutations, and allosteric modulation of substrate cleavage by γ-secretase. In this review, we focus on recent studies of structural dynamic mechanisms of γ-secretase. Different mechanisms, including the "Fit-Stay-Trim," "Sliding-Unwinding," and "Tilting-Unwinding," have been proposed for substrate proteolysis of amyloid precursor protein by γ-secretase based on all-atom molecular dynamics simulations. While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-bound γ-secretase, molecular dynamics simulations on a resolved model of Notch1-bound γ-secretase that was reconstructed using the amyloid precursor protein-bound γ-secretase as a template successfully captured γ-secretase activation for proper cleavages of both wildtype and mutant Notch, being consistent with biochemical experimental findings. The approach could be potentially applied to decipher the processing mechanisms of various substrates by γ-secretase. In addition, controversy over the effects of familial Alzheimer's disease mutations, particularly the issue of whether they stabilize or destabilize γ-secretase-substrate complexes, is discussed. Finally, an outlook is provided for future studies of γ-secretase, including pathways of substrate binding and product release, effects of modulators on familial Alzheimer's disease mutations of the γ-secretase-substrate complexes. Comprehensive understanding of the functional mechanisms of γ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer's disease and perhaps Alzheimer's disease in general.
Collapse
Affiliation(s)
- Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA
| | - Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
Georgieva I, Tchekalarova J, Nenchovska Z, Kortenska L, Tzoneva R. Melatonin Supplementation Alleviates Impaired Spatial Memory by Influencing Aβ 1-42 Metabolism via γ-Secretase in the icvAβ 1-42 Rat Model with Pinealectomy. Int J Mol Sci 2024; 25:10294. [PMID: 39408624 PMCID: PMC11476416 DOI: 10.3390/ijms251910294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
In the search for Alzheimer's disease (AD) therapies, most animal models focus on familial AD, which accounts for a small fraction of cases. The majority of AD cases arise from stress factors, such as oxidative stress, leading to neurological changes (sporadic AD). Early in AD progression, dysfunction in γ-secretase causes the formation of insoluble Aβ1-42 peptides, which aggregate into senile plaques, triggering neurodegeneration, cognitive decline, and circadian rhythm disturbances. To better model sporadic AD, we used a new AD rat model induced by intracerebroventricular administration of Aβ1-42 oligomers (icvAβ1-42) combined with melatonin deficiency via pinealectomy (pin). We validated this model by assessing spatial memory using the radial arm maze test and measuring Aβ1-42 and γ-secretase levels in the frontal cortex and hippocampus with ELISA. The icvAβ1-42 + pin model experienced impaired spatial memory and increased Aβ1-42 and γ-secretase levels in the frontal cortex and hippocampus, effects not seen with either icvAβ1-42 or the pin alone. Chronic melatonin treatment reversed memory deficits and reduced Aβ1-42 and γ-secretase levels in both structures. Our findings suggest that our icvAβ1-42 + pin model is extremely valuable for future AD research.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (J.T.); (Z.N.); (L.K.)
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (J.T.); (Z.N.); (L.K.)
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria; (J.T.); (Z.N.); (L.K.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Pettersson M, Johnson DS, Humphrey JM, Am Ende CW, Butler TW, Dorff PH, Efremov IV, Evrard E, Green ME, Helal CJ, Kauffman GW, Mullins PB, Navaratnam T, O'Donnell CJ, O'Sullivan TJ, Patel NC, Stepan AF, Stiff CM, Subramanyam C, Trapa P, Tran TP, Vetelino BC, Yang E, Xie L, Pustilnik LR, Steyn SJ, Wood KM, Bales KR, Hajos-Korcsok E, Verhoest PR. Discovery of Clinical Candidate PF-06648671: A Potent γ-Secretase Modulator for the Treatment of Alzheimer's Disease. J Med Chem 2024; 67:10248-10262. [PMID: 38848667 DOI: 10.1021/acs.jmedchem.4c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Herein, we describe the design and synthesis of γ-secretase modulator (GSM) clinical candidate PF-06648671 (22) for the treatment of Alzheimer's disease. A key component of the design involved a 2,5-cis-tetrahydrofuran (THF) linker to impart conformational rigidity and lock the compound into a putative bioactive conformation. This effort was guided using a pharmacophore model since crystallographic information was not available for the membrane-bound γ-secretase protein complex at the time of this work. PF-06648671 achieved excellent alignment of whole cell in vitro potency (Aβ42 IC50 = 9.8 nM) and absorption, distribution, metabolism, and excretion (ADME) parameters. This resulted in favorable in vivo pharmacokinetic (PK) profile in preclinical species, and PF-06648671 achieved a human PK profile suitable for once-a-day dosing. Furthermore, PF-06648671 was found to have favorable brain availability in rodent, which translated into excellent central exposure in human and robust reduction of amyloid β (Aβ) 42 in cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Martin Pettersson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Douglas S Johnson
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - John M Humphrey
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Todd W Butler
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Peter H Dorff
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Ivan V Efremov
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Michael E Green
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Christopher J Helal
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Gregory W Kauffman
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Patrick B Mullins
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Thayalan Navaratnam
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Theresa J O'Sullivan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Nandini C Patel
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Antonia F Stepan
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Cory M Stiff
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | | | - Patrick Trapa
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Tuan P Tran
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Beth Cooper Vetelino
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Eddie Yang
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Longfei Xie
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Leslie R Pustilnik
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Stefanus J Steyn
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Kathleen M Wood
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Kelly R Bales
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Eva Hajos-Korcsok
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R Verhoest
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Mitsuishi Y, Nakano M, Kojima H, Okabe T, Nishimura M. Reduction of Amyloid-β Production without Inhibiting Secretase Activity by MS-275. ACS Chem Neurosci 2024; 15:1234-1241. [PMID: 38416107 DOI: 10.1021/acschemneuro.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Brain amyloid-β (Aβ) governs the pathogenic process of Alzheimer's disease. Clinical trials to assess the disease-modifying effects of inhibitors or modulators of β- and γ-secretases have not shown clinical benefit and can cause serious adverse events. Previously, we found that the interleukin-like epithelial-to-mesenchymal transition inducer (ILEI, also known as FAM3C) negatively regulates the Aβ production through a decrease in Aβ immediate precursor, without the inhibition of β- and γ-secretase activity. Herein, we found that MS-275, a benzamide derivative that is known to inhibit histone deacetylases (HDACs), exhibits ILEI-like activity to reduce Aβ production independent of HDAC inhibition. Chronic MS-275 treatment decreased Aβ deposition in the cerebral cortex and hippocampus in an Alzheimer's disease mouse model. Overall, our results indicate that MS-275 is a potential therapeutic candidate for efficiently reducing brain Aβ accumulation.
Collapse
Affiliation(s)
- Yachiyo Mitsuishi
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masaki Nakano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hirotatsu Kojima
- Drug Discovery Institute, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Institute, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
- Department of Neurology, Yoka Municipal Hospital, Hyogo 667-0051, Japan
| |
Collapse
|
5
|
Wolfe MS. γ-Secretase: once and future drug target for Alzheimer's disease. Expert Opin Drug Discov 2024; 19:5-8. [PMID: 37915204 PMCID: PMC10872755 DOI: 10.1080/17460441.2023.2277350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Michael S. Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66049 USA
| |
Collapse
|
6
|
Eccles MK, Main N, Carlessi R, Armstrong AM, Sabale M, Roberts-Mok B, Tirnitz-Parker JEE, Agostino M, Groth D, Fraser PE, Verdile G. Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase. FASEB J 2024; 38:e23396. [PMID: 38156414 DOI: 10.1096/fj.202300954rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-β. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Collapse
Affiliation(s)
- Melissa K Eccles
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Ayeisha Milligan Armstrong
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brigid Roberts-Mok
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Mark Agostino
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
7
|
Patwekar M, Patwekar F, Khan S, Sharma R, Kumar D. Navigating the Alzheimer's Treatment Landscape: Unraveling Amyloid-beta Complexities and Pioneering Precision Medicine Approaches. Curr Top Med Chem 2024; 24:1665-1682. [PMID: 38644708 DOI: 10.2174/0115680266295495240415114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
A variety of cutting-edge methods and good knowledge of the illness's complex causes are causing a sea change in the field of Alzheimer's Disease (A.D.) research and treatment. Precision medicine is at the vanguard of this change, where individualized treatment plans based on genetic and biomarker profiles give a ray of hope for customized therapeutics. Combination therapies are becoming increasingly popular as a way to address the multifaceted pathology of Alzheimer's by simultaneously attacking Aβ plaques, tau tangles, neuroinflammation, and other factors. The article covers several therapeutic design efforts, including BACE inhibitors, gamma- secretase modulators, monoclonal antibodies (e.g., Aducanumab and Lecanemab), and anti- Aβ vaccinations. While these techniques appear promising, clinical development faces safety concerns and uneven efficacy. To address the complicated Aβ pathology in Alzheimer's disease, a multimodal approach is necessary. The statement emphasizes the continued importance of clinical trials in addressing safety and efficacy concerns. Looking ahead, it suggests that future treatments may take into account genetic and biomarker traits in order to provide more personalized care. Therapies targeting Aβ, tau tangles, neuroinflammation, and novel drug delivery modalities are planned. Nanoparticles and gene therapies are only two examples of novel drug delivery methods that have the potential to deliver treatments more effectively, with fewer side effects, and with better therapeutic results. In addition, medicines that target tau proteins in addition to Aβ are in the works. Early intervention, based on precise biomarkers, is a linchpin of Alzheimer's care, emphasizing the critical need for detecting the disease at its earliest stages. Lifestyle interventions, encompassing diet, exercise, cognitive training, and social engagement, are emerging as key components in the fight against cognitive decline. Data analytics and art are gaining prominence as strategies to mitigate the brain's inflammatory responses. To pool knowledge and resources in the fight against Alzheimer's, international cooperation between scientists, doctors, and pharmaceutical companies is still essential. In essence, a complex, individualized, and collaborative strategy will characterize Alzheimer's research and therapy in the future. Despite obstacles, these encouraging possibilities show the ongoing commitment of the scientific and medical communities to combat A.D. head-on, providing a glimmer of hope to the countless people and families touched by this savage sickness.
Collapse
Affiliation(s)
- Mohsina Patwekar
- Department of Pharmacology, Luqman College of Pharmacy, P.B. 86, old Jewargi road, Gulbarga, Karnataka, 585102, India
| | - Faheem Patwekar
- Department of Pharmacognosy, Luqman College of Pharmacy, P.B. 86, old Jewargi Road, Gulbarga, Karnataka, 585102, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa City, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
8
|
Serneels L, Bammens L, Zwijsen A, Tolia A, Chávez-Gutiérrez L, De Strooper B. Functional and topological analysis of PSENEN, the fourth subunit of the γ-secretase complex. J Biol Chem 2024; 300:105533. [PMID: 38072061 PMCID: PMC10790097 DOI: 10.1016/j.jbc.2023.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 01/01/2024] Open
Abstract
The γ-secretase complexes are intramembrane cleaving proteases involved in the generation of the Aβ peptides in Alzheimer's disease. The complex consists of four subunits, with Presenilin harboring the catalytic site. Here, we study the role of the smallest subunit, PSENEN or Presenilin enhancer 2, encoded by the gene Psenen, in vivo and in vitro. We find a profound Notch deficiency phenotype in Psenen-/- embryos confirming the essential role of PSENEN in the γ-secretase complex. We used Psenen-/- fibroblasts to explore the structure-function of PSENEN by the scanning cysteine accessibility method. Glycine 22 and proline 27, which border the membrane domains 1 and 2 of PSENEN, are involved in complex formation and stabilization of γ-secretase. The hairpin structured hydrophobic membrane domains 1 and 2 are exposed to a water-containing cavity in the complex, while transmembrane domain 3 is not water exposed. We finally demonstrate the essential role of PSENEN for the cleavage activity of the complex. PSENEN is more than a structural component of the γ-secretase complex and might contribute to the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Lutgarde Serneels
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Leen Bammens
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Zwijsen
- Laboratory of Developmental Signaling, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Alexandra Tolia
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Chen SY, Koch M, Chávez-Gutiérrez L, Zacharias M. How Modulator Binding at the Amyloidβ-γ-Secretase Interface Enhances Substrate Binding and Attenuates Membrane Distortion. J Med Chem 2023; 66:16772-16782. [PMID: 38059872 DOI: 10.1021/acs.jmedchem.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibition of γ-secretase, an intramembrane protease, to reduce secretion of Amyloid-β (Aβ) peptides has been considered for treating Alzheimer's disease. However, γ-secretase inhibitors suffer from severe side effects. As an alternative, γ-secretase modulators (GSM) reduce the generation of toxic peptides by enhancing the cleavage processivity without diminishing the enzyme activity. Starting from a known γ-secretase structure without substrate but in complex with an E2012 GSM, we generated a structural model that included a bound Aβ43 peptide and studied interactions among enzyme, substrate, GSM, and lipids. Our result suggests that E2012 binding at the enzyme-substrate-membrane interface attenuates the membrane distortion by shielding the substrate-membrane interaction. The model predicts that the E2012 modulation is charge-dependent and explains the preserved hydrogen acceptor and the aromatic ring observed in many imidazole-based GSM. Predicted effects of γ-secretase mutations on E2012 modulation were confirmed experimentally. We anticipate that the study will facilitate the future development of effective GSMs.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Center for Functional Protein Assemblies, Garching 85748, Germany
| | - Matthias Koch
- VIB/KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven 3000, Belgium
| | | | - Martin Zacharias
- Center for Functional Protein Assemblies, Garching 85748, Germany
| |
Collapse
|
10
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
12
|
Premkumar T, Sajitha Lulu S. Molecular Mechanisms of Emerging Therapeutic Targets in Alzheimer’s Disease: A Systematic Review. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Guanidine-based β amyloid precursor protein cleavage enzyme 1 (BACE-1) inhibitors for the Alzheimer's disease (AD): A review. Bioorg Med Chem 2022; 74:117047. [DOI: 10.1016/j.bmc.2022.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
14
|
Wolfe MS. γ-Secretase as a drug target for familial Alzheimer's disease: the road less traveled. Future Med Chem 2022; 14:1341-1343. [PMID: 36039791 PMCID: PMC9518009 DOI: 10.4155/fmc-2022-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, 1567 Irving Hill Road, GLH-2115, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Sayevand Z, Nazem F, Nazari A, Sheykhlouvand M, Forbes SC. Cardioprotective effects of exercise and curcumin supplementation against myocardial ischemia–reperfusion injury. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Small molecules targeting γ-secretase and their potential biological applications. Eur J Med Chem 2022; 232:114169. [DOI: 10.1016/j.ejmech.2022.114169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 12/14/2022]
|
17
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Luo JE, Li YM. Turning the tide on Alzheimer's disease: modulation of γ-secretase. Cell Biosci 2022; 12:2. [PMID: 34983641 PMCID: PMC8725520 DOI: 10.1186/s13578-021-00738-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disorder. Amyloid-beta (Aβ) plaques are integral to the "amyloid hypothesis," which states that the accumulation of Aβ peptides triggers a cascade of pathological events leading to neurodegeneration and ultimately AD. While the FDA approved aducanumab, the first Aβ-targeted therapy, multiple safe and effective treatments will be needed to target the complex pathologies of AD. γ-Secretase is an intramembrane aspartyl protease that is critical for the generation of Aβ peptides. Activity and specificity of γ-secretase are regulated by both obligatory subunits and modulatory proteins. Due to its complex structure and function and early clinical failures with pan inhibitors, γ-secretase has been a challenging drug target for AD. γ-secretase modulators, however, have dramatically shifted the approach to targeting γ-secretase. Here we review γ-secretase and small molecule modulators, from the initial characterization of a subset of NSAIDs to the most recent clinical candidates. We also discuss the chemical biology of γ-secretase, in which small molecule probes enabled structural and functional insights into γ-secretase before the emergence of high-resolution structural studies. Finally, we discuss the recent crystal structures of γ-secretase, which have provided valuable perspectives on substrate recognition and molecular mechanisms of small molecules. We conclude that modulation of γ-secretase will be part of a new wave of AD therapeutics.
Collapse
Affiliation(s)
- Joanna E Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
19
|
Bhattarai S, Liu L, Wolfe MS. Discovery of aryl aminothiazole γ-secretase modulators with novel effects on amyloid β-peptide production. Bioorg Med Chem Lett 2021; 54:128446. [PMID: 34767913 DOI: 10.1016/j.bmcl.2021.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
A series of analogs based on a prototype aryl aminothiazole γ-secretase modulator (GSM) were synthesized and tested for their effects on the profile of 37-to-42-residue amyloid β-peptides (Aβ), generated through processive proteolysis of precursor protein substrate by γ-secretase. Certain substitutions on the terminal aryl D ring resulted in an altered profile of Aβ production compared to that seen with the parent molecule. Small structural changes led to concentration-dependent increases in Aβ37 and Aβ38 production without parallel decreases in their precursors Aβ40 and Aβ42, respectively. The new compounds therefore apparently also stimulate carboxypeptidase trimming of Aβ peptides ≥ 43 residues, providing novel chemical tools for mechanistic studies of processive proteolysis by γ-secretase.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
20
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Res Rev 2021; 72:101496. [PMID: 34687956 DOI: 10.1016/j.arr.2021.101496] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in ageing, affecting around 46 million people worldwide but few treatments are currently available. The etiology of AD is still puzzling, and new drugs development and clinical trials have high failure rates. Urgent outline of an integral (multi-target) and effective treatment of AD is needed. Accumulation of amyloid-β (Aβ) peptides is considered one of the fundamental neuropathological pillars of the disease, and its dyshomeostasis has shown a crucial role in AD onset. Therefore, many amyloid-targeted therapies have been investigated. Here, we will systematically review recent (from 2014) investigational, follow-up and review studies focused on anti-amyloid strategies to summarize and analyze their current clinical potential. Combination of anti-Aβ therapies with new developing early detection biomarkers and other therapeutic agents acting on early functional AD changes will be highlighted in this review. Near-term approval seems likely for several drugs acting against Aβ, with recent FDA approval of a monoclonal anti-Aβ oligomers antibody -aducanumab- raising hopes and controversies. We conclude that, development of oligomer-epitope specific Aβ treatment and implementation of multiple improved biomarkers and risk prediction methods allowing early detection, together with therapies acting on other factors such as hyperexcitability in early AD, could be the key to slowing this global pandemic.
Collapse
|
21
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
22
|
Kobayashi K, Otani T, Ijiri S, Kawasaki Y, Matsubara H, Miyagi T, Kitajima T, Iseki R, Ishizawa K, Shindo N, Okawa K, Ueda K, Ando S, Kawakita M, Hattori Y, Akaji K. Structure-activity relationship study of hydroxyethylamine isostere and P1' site structure of peptide mimetic BACE1 inhibitors. Bioorg Med Chem 2021; 50:116459. [PMID: 34700240 DOI: 10.1016/j.bmc.2021.116459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
An aromatic substituent has been introduced into a known hydroxyethylamine (HEA)-type BACE1 inhibitor containing the superior substrate sequence to enhance inhibitory activity. The HEA-type isosteres bearing different hydroxyl group and methyl group configurations were prepared through a branched synthesis approach using intra- and inter-molecular epoxide opening reactions. The effect of their configuration was evaluated, showing that an R-configuration improved the inhibitory activity, while introduction of a methyl group on the isostere decreased the activity. Based on the non-substituted isostere with an R-configuration, 21 derivatives containing various substituents at the P1' site were synthesized. Our evaluation of the derivatives showed that the structure of the P1' site had a clear effect on activity, and highly potent inhibitor 40g, which showed sub-micromolar activity against recombinant BACE1 (rBACE1), was identified. The docking simulation of 40g with rBACE1 suggested that a carboxymethyl group at the para-position of the P1' benzene ring interacted with Lys285 in the S1' pocket.
Collapse
Affiliation(s)
- Kazuya Kobayashi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takuya Otani
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Saki Ijiri
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yuki Kawasaki
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroki Matsubara
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Takahiro Miyagi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Taishi Kitajima
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Risa Iseki
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Katsuyasu Ishizawa
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Naoka Shindo
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kouta Okawa
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kouta Ueda
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Syun Ando
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Momoka Kawakita
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
23
|
Bhattarai S, Devkota S, Wolfe MS. Design of Transmembrane Mimetic Structural Probes to Trap Different Stages of γ-Secretase-Substrate Interaction. J Med Chem 2021; 64:15367-15378. [PMID: 34647731 DOI: 10.1021/acs.jmedchem.1c01395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmembrane domain (TMD) of the amyloid precursor protein of Alzheimer's disease is cut processively by γ-secretase through endoproteolysis and tricarboxypeptidase "trimming". We recently developed a prototype substrate TMD mimetic for structural analysis-composed of a helical peptide inhibitor linked to a transition-state analogue-that simultaneously engages a substrate exosite and the active site and is pre-organized to trap the carboxypeptidase transition state. Here, we developed variants of this prototype designed to allow visualization of transition states for endoproteolysis, TMD helix unwinding, and lateral gating of the substrate, identifying potent inhibitors for each class. These TMD mimetics exhibited non-competitive inhibition and occupy both the exosite and the active site, as demonstrated by inhibitor cross-competition experiments and photoaffinity probe binding assays. The new probes should be important structural tools for trapping different stages of substrate recognition and processing via ongoing cryo-electron microscopy with γ-secretase, ultimately aiding rational drug design.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- Department of Medicinal Chemistry, University of Kansas, Lawrence, 66045 Kansas, United States
| | - Sujan Devkota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, 66045 Kansas, United States
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, 66045 Kansas, United States
| |
Collapse
|
24
|
Bursavich MG, Harrison BA, Acharya R, Costa DE, Freeman EA, Hrdlicka LA, Jin H, Kapadnis S, Moffit JS, Murphy D, Nolan SJ, Patzke H, Tang C, Van Voorhies HE, Wen M, Koenig G, Blain JF, Burnett DA. Discovery of the Oxadiazine FRM-024: A Potent CNS-Penetrant Gamma Secretase Modulator. J Med Chem 2021; 64:14426-14447. [PMID: 34550687 DOI: 10.1021/acs.jmedchem.1c00904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent approval of aducanumab for Alzheimer's disease has heightened the interest in therapies targeting the amyloid hypothesis. Our research has focused on identification of novel compounds to improve amyloid processing by modulating gamma secretase activity, thereby addressing a significant biological deficit known to plague the familial form of the disease. Herein, we describe the design, synthesis, and optimization of new gamma secretase modulators (GSMs) based on previously reported oxadiazine 1. Potency improvements with a focus on predicted and measured properties afforded high-quality compounds further differentiated via robust Aβ42 reductions in both rodents and nonhuman primates. Extensive preclinical profiling, efficacy studies, and safety studies resulted in the nomination of FRM-024, (+)-cis-5-(4-chlorophenyl)-6-cyclopropyl-3-(6-methoxy-5-(4-methyl-1H-imidazole-1-yl)pyridin-2-yl)-5,6-dihydro-4H-1,2,4-oxadiazine, as a GSM preclinical candidate for familial Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew G Bursavich
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Bryce A Harrison
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Raksha Acharya
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Donald E Costa
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Emily A Freeman
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Lori A Hrdlicka
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Hong Jin
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Sudarshan Kapadnis
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jeffrey S Moffit
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Deirdre Murphy
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Scott J Nolan
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Holger Patzke
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Cuyue Tang
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | - Melody Wen
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Gerhard Koenig
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jean-François Blain
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Duane A Burnett
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
25
|
Miranda A, Montiel E, Ulrich H, Paz C. Selective Secretase Targeting for Alzheimer's Disease Therapy. J Alzheimers Dis 2021; 81:1-17. [PMID: 33749645 DOI: 10.3233/jad-201027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979 Verubecestat, LY2886721, Lanabecestat, LY2811376 and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse disease progress. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase activity enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.
Collapse
Affiliation(s)
- Alvaro Miranda
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Enrique Montiel
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
26
|
Lao K, Zhang R, Luan J, Zhang Y, Gou X. Therapeutic Strategies Targeting Amyloid-β Receptors and Transporters in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1429-1442. [PMID: 33459712 DOI: 10.3233/jad-200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that has been recognized as one of the most intractable medical problems with heavy social and economic costs. Amyloid-β (Aβ) has been identified as a major factor that participates in AD progression through its neurotoxic effects. The major mechanism of Aβ-induced neurotoxicity is by interacting with membrane receptors and subsequent triggering of aberrant cellular signaling. Besides, Aβ transporters also plays an important role by affecting Aβ homeostasis. Thus, these Aβ receptors and transporters are potential targets for the development of AD therapies. Here, we summarize the reported therapeutic strategies targeting Aβ receptors and transporters to provide a molecular basis for future rational design of anti-AD agents.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Ruisan Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
27
|
New RNA-Based Breakthroughs in Alzheimer's Disease Diagnosis and Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13091397. [PMID: 34575473 PMCID: PMC8471423 DOI: 10.3390/pharmaceutics13091397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023] Open
Abstract
Dementia is described as the fifth leading cause of death worldwide and Alzheimer’s disease (AD) is recognized as the most common, causing a huge impact on health costs and quality of patients’ lives. The main hallmarks that are commonly associated with the pathologic process are amyloid deposition, pathologic Tau phosphorylation and neurodegeneration. It is still unclear how these events are linked to the disease progression, due to the complex pathologic mechanisms. Nevertheless, several hypotheses have been proposed for a better understanding of AD. The AD diagnosis is performed by using a combination of several tools to detect β-amyloid peptide (Aβ) deposits and modifications in cognitive performance, sometimes being expensive and invasive. In the treatment field, there is still an absence of effective treatments to delay or stop the progression of the disease, with most of the approved drugs used to relieve symptoms, and all of them with significant adverse side effects. Considering all limitations, the need to establish new and more effective diagnostic and therapeutic strategies becomes clear. This review aims not only to describe the disease and its impact but also to collect the currently available diagnostic and therapeutic strategies, highlighting new promising RNA-based strategies for AD.
Collapse
|
28
|
Santiago Á, Guzmán-Ocampo DC, Aguayo-Ortiz R, Dominguez L. Characterizing the Chemical Space of γ-Secretase Inhibitors and Modulators. ACS Chem Neurosci 2021; 12:2765-2775. [PMID: 34291906 DOI: 10.1021/acschemneuro.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
γ-Secretase (GS) is one of the most attractive molecular targets for the treatment of Alzheimer's disease (AD). Its key role in the final step of amyloid-β peptides generation and its relationship in the cascade of events for disease development have caught the attention of many pharmaceutical groups. Over the past years, different inhibitors and modulators have been evaluated as promising therapeutics against AD. However, despite the great chemical diversity of the reported compounds, a global classification and visual representation of the chemical space for GS inhibitors and modulators remain unavailable. In the present work, we carried out a two-dimensional (2D) chemical space analysis from different classes and subclasses of GS inhibitors and modulators based on their structural similarity. Along with the novel structural information available for GS complexes, our analysis opens the possibility to identify compounds with high molecular similarity, critical to finding new chemical structures through the optimization of existing compounds and relating them with a potential binding site.
Collapse
Affiliation(s)
- Ángel Santiago
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Dulce C. Guzmán-Ocampo
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
29
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
30
|
Nowak D, Słupski W, Rutkowska M. New therapeutic strategies for Alzheimer’s disease. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) described as a chronic and irreversible neurodegenerative disease
remains the most common cause of dementia. Due to the aging of the population, the incurability
of AD has become a growing problem of medicine in the 21stcentury. Current treatment
is only symptomatic, providing minimal, temporary improvement in the patient’s
cognitive function. This paper presents the latest trends in the search for effective pharmacotherapy
capable of preventing or inhibiting AD progression. Since the exact pathogenesis
of Alzheimer’s disease is not known, the main therapeutic strategies are based only on the
following hypotheses: amyloid cascade, tau protein, oxidative stress, neuroinflammation and
those associated with dysfunction of the cholinergic system as well as glutamatergic. Most
of the compounds currently tested in clinical trials are targeted at pathological amyloid β
(A β), which is considered the cause of neurodegeneration, according to the most widely described
cascade theory. Most of the compounds currently tested in clinical trials are targeted
at pathological amyloid β (Aβ), which is the main cause of neurodegeneration according to
the widely described theory of the amyloid cascade. Attempts to fight the toxic Aβ are based
on the following: immunotherapy (vaccines, monoclonal antibodies), compounds that inhibit
its formation: γ-secretase inhibitors/modulators and β-secretase. Immunotherapy can
also be us,ed to increase the clearance of hyperphosphorylated tau protein, the occurrence
of which is another feature of Alzheimer’s disease. In addition to immunotherapy, anti-inflammatory,
metabolic and neuroprotective compounds have been the subject of a number of studies. A range of symptomatic compounds that improve cognitive functions by compensating
cholinergic, noradrenergic and glutamatergic signaling deficits have also been investigated
in clinical trials.
Collapse
Affiliation(s)
- Dominika Nowak
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| | - Wojciech Słupski
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| | - Maria Rutkowska
- Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu
| |
Collapse
|
31
|
Li B, Barnhart RW, Dion A, Guinness S, Happe A, Hayward CM, Kohrt J, Makowski T, Maloney M, Nelson JD, Nematalla A, McWilliams JC, Peng Z, Raggon J, Sagal J, Weisenburger GA, Bao D, Gonzalez M, Lu J, McLaws MD, Tao J, Wu B. Process Development of a Second Generation β-Amyloid-Cleaving Enzyme Inhibitor—Improving the Robustness of a Halogen-Metal Exchange Using Continuous Stirred-Tank Reactors. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bryan Li
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
- Chemical Research & Development La Jolla Laboratory, Worldwide Research Development & Medical, Pfizer Inc., Science Center Drive, San Diego, California 92121, United States
| | - Richard W. Barnhart
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amelie Dion
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven Guinness
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alan Happe
- Chemical Research & Development Worldwide Research Development & Medical, Pfizer Inc., Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Cheryl M. Hayward
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey Kohrt
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Teresa Makowski
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Maloney
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jade D. Nelson
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Asaad Nematalla
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - J. Christopher McWilliams
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Zhihui Peng
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey Raggon
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - John Sagal
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gerald A. Weisenburger
- Chemical Research & Development, Worldwide Research Development & Medical, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Denghui Bao
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| | - Miguel Gonzalez
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| | - Jiangping Lu
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| | - Mark D. McLaws
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| | - Jian Tao
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| | - Baolin Wu
- Asymchem Life Science Co. Limited, No. 71, 7th Street, TEDA, Tianjin 300457, China
| |
Collapse
|
32
|
Decourt B, Boumelhem F, Pope ED, Shi J, Mari Z, Sabbagh MN. Critical Appraisal of Amyloid Lowering Agents in AD. Curr Neurol Neurosci Rep 2021; 21:39. [PMID: 34110536 PMCID: PMC8192384 DOI: 10.1007/s11910-021-01125-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW According to the amyloid cascade hypothesis, removing amyloid beta (Aβ) should cure Alzheimer's disease (AD). In the past three decades, many agents have been tested to try to lower Aβ production, prevent Aβ aggregation, and dissolve Aβ deposits. However, the paucity in definitive preventative or curative properties of these agents in clinical trials has resulted in more avant-garde approaches to therapeutic investigations. Immunotherapy has become an area of focus for research on disease-modifying therapies for neurodegenerative diseases. In this review, we highlight the current clinical development landscape of monoclonal antibody (mAb) therapies that target Aβ plaque formation and removal in AD. RECENT FINDINGS Multiple potential disease-modifying therapeutics for AD are in active development. Targeting Aβ with mAbs has the potential to treat various stages of AD: prodromal, prodromal to mild, mild, and mild to moderate. Monoclonal antibodies discussed here include aducanumab, lecanemab, solanezumab, crenezumab, donanemab, and gantenerumab. The final decision by the FDA regarding the approval of aducanumab will offer valuable insight into the trajectory of drug development for mAbs in AD and other neurodegenerative diseases. Future directions for improving the treatment of AD will include more inquiry into the efficacy of mAbs as disease-modifying agents that specifically target Aβ peptides and/or multimers. In addition, a more robust trial design for AD immunotherapy agents should improve outcomes such that objective measures of clinical efficacy will eventually lead to higher chances of drug approval.
Collapse
Affiliation(s)
- Boris Decourt
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | | | - Evans D Pope
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Jiong Shi
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA
| | - Marwan Noel Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV, 89106, USA.
| |
Collapse
|
33
|
|
34
|
Ratni H, Baumann K, Bellotti P, Cook XA, Green LG, Luebbers T, Reutlinger M, Stepan AF, Vifian W. Phenyl bioisosteres in medicinal chemistry: discovery of novel γ-secretase modulators as a potential treatment for Alzheimer's disease. RSC Med Chem 2021; 12:758-766. [PMID: 34124674 PMCID: PMC8152580 DOI: 10.1039/d1md00043h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Phenyl rings are one of the most prevalent structural moieties in active pharmaceutical ingredients, even if they often contribute to poor physico-chemical properties. Herein, we propose the use of a bridged piperidine (BP) moiety as a phenyl bioisostere, which could also be seen as a superior phenyl alternative as it led to strongly improved drug like properties, in terms of solubility and lipophilicity. Additionally, this BP moiety compares favorably to the recently reported saturated phenyl bioisosteres. We applied this concept to our γ-secretase modulator (GSM) project for the potential treatment of Alzheimer's disease delivering clinical candidates.
Collapse
Affiliation(s)
- H Ratni
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - K Baumann
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - P Bellotti
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - X A Cook
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - L G Green
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - T Luebbers
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - M Reutlinger
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - A F Stepan
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| | - W Vifian
- pRED, Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. Grenzacherstrasse 124 4070 Basel Switzerland (+41) 61 688 2748
| |
Collapse
|
35
|
Lao K, Zhang R, Dai Y, Luan J, Guo N, Xu X, Zhang Y, Gou X. Identification of novel Aβ-LilrB2 inhibitors as potential therapeutic agents for Alzheimer's disease. Mol Cell Neurosci 2021; 114:103630. [PMID: 34029694 DOI: 10.1016/j.mcn.2021.103630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023] Open
Abstract
LilrB2 is an Aβ receptor with high affinity, which not only contributes to memory deficits but also mediates the loss of synaptic plasticity. Thus, Aβ-LilrB2 interaction inhibitors (ALIs) might be a potential therapeutic strategy for Alzheimer's disease. In this study, an ELISA-based interaction assay was established as a novel approach to identify ALIs and was used to screen 110 compounds from a compound library. Among the 110 compounds, four compounds presented IC50 values lower than the positive control flusipirilene. The two phenyl-1,3,5-triazine derivatives (compound 103 and 104) displayed inhibitory activities with the IC50 of 0.23 μM and 0.05 μM respectively. The neuroprotection activities of the hit compounds were evaluated in SH-SY5Y cell line. Compound 104 presented good safety and neuroprotective effects against Aβ. Further study of its effect on the downstream pathway of Aβ indicated that compound 104 was able to reverse the Aβ induced cofilin dephosphorylation, tau hyperphosphorylation and neurite outgrowth inhibition. The docking study showed that fluspirilene and compound 104 were favorably positioned into the Ben 3 and 4 binding pockets via their aromatic ring, which was similar to that reported for Aβ. Based on these facts, compound 104 can be identified as a potential ALI which might be of therapeutic importance for AD treatment.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China
| | - Ruisan Zhang
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, China
| | - Yuxuan Dai
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China
| | - Na Guo
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China
| | - Xi Xu
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China.
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No.1 Xinwang Road, Xi'an 710021, PR China.
| |
Collapse
|
36
|
Saretz S, Basset G, Useini L, Laube M, Pietzsch J, Drača D, Maksimović-Ivanić D, Trambauer J, Steiner H, Hey-Hawkins E. Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules 2021; 26:2843. [PMID: 34064783 PMCID: PMC8151329 DOI: 10.3390/molecules26102843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer's disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood-brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood-brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.
Collapse
Affiliation(s)
- Stefan Saretz
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
- Chemische Biologie, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Gabriele Basset
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Liridona Useini
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Johannes Trambauer
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Harald Steiner
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
- German Center for Neurogenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, D-81377 München, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| |
Collapse
|
37
|
Zhang B, Liu D, Sun Y, Zhang Y, Feng J, Yu F. Preparation of Thiazole-2-thiones through TBPB-Promoted Oxidative Cascade Cyclization of Enaminones with Elemental Sulfur. Org Lett 2021; 23:3076-3082. [DOI: 10.1021/acs.orglett.1c00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yajing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiayi Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
38
|
Cai T, Tomita T. Sequential conformational changes in transmembrane domains of presenilin 1 in Aβ42 downregulation. J Biochem 2021; 170:215-227. [PMID: 33739423 DOI: 10.1093/jb/mvab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease worldwide. AD is pathologically characterized by the deposition of senile plaques in the brain, which are composed of an amyloid-β peptide (Aβ) that is produced through the multistep cleavage of amyloid precursor protein (APP) by γ-secretase. γ-Secretase is a membrane protein complex, which includes its catalytic subunit presenilin 1 (PS1). However, much about the structural dynamics of this enzyme remain unclear. We have previously demonstrated that movements of the transmembrane domain (TMD) 1 and TMD3 of PS1 are strongly associated with decreased production of the Aβ peptide ending at the 42nd residue (i.e., Aβ42), which is the aggregation-prone, toxic species. However, the association between these movements as well as the sequence of these TMDs remains unclear. In this study, we raised the possibility that the vertical movement of TMD1 is a prerequisite for expansion of the catalytic cavity around TMD3 of PS1, resulting in reduced Aβ42 production. Our results shed light on the association between the conformational changes of TMDs and the regulation of γ-secretase activity.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
40
|
Mehra R, Kepp KP. Computational prediction and molecular mechanism of γ-secretase modulators. Eur J Pharm Sci 2021; 157:105626. [DOI: 10.1016/j.ejps.2020.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
|
41
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Wolfe MS. Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26020388. [PMID: 33450968 PMCID: PMC7828430 DOI: 10.3390/molecules26020388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The membrane-embedded γ-secretase complex carries out hydrolysis within the lipid bilayer in proteolyzing nearly 150 different membrane protein substrates. Among these substrates, the amyloid precursor protein (APP) has been the most studied, as generation of aggregation-prone amyloid β-protein (Aβ) is a defining feature of Alzheimer's disease (AD). Mutations in APP and in presenilin, the catalytic component of γ-secretase, cause familial AD, strong evidence for a pathogenic role of Aβ. Substrate-based chemical probes-synthetic peptides and peptidomimetics-have been critical to unraveling the complexity of γ-secretase, and small drug-like inhibitors and modulators of γ-secretase activity have been essential for exploring the potential of the protease as a therapeutic target for Alzheimer's disease. Such chemical probes and therapeutic prototypes will be reviewed here, with concluding commentary on the future directions in the study of this biologically important protease complex and the translation of basic findings into therapeutics.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, 1567 Irving Hill Road, GLH-2115, Lawrence, KS 66045, USA
| |
Collapse
|
43
|
Yang G, Zhou R, Guo X, Yan C, Lei J, Shi Y. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 2020; 184:521-533.e14. [PMID: 33373587 DOI: 10.1016/j.cell.2020.11.049] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023]
Abstract
Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the β strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.
Collapse
Affiliation(s)
- Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuefei Guo
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
44
|
Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Rescue Memory Defects in Drosophila-Expressing Alzheimer's Disease-Related Transgenes Independently of the Canonical Renin Angiotensin System. eNeuro 2020; 7:ENEURO.0235-20.2020. [PMID: 33060184 PMCID: PMC7768280 DOI: 10.1523/eneuro.0235-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disorder that causes progressive memory and cognitive decline. Recently, studies have reported that inhibitors of the mammalian renin angiotensin system (RAS) result in a significant reduction in the incidence and progression of AD by unknown mechanisms. Here, we used a genetic and pharmacological approach to evaluate the beneficial effects of angiotensin converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) in Drosophila expressing AD-related transgenes. Importantly, while ACE orthologs have been identified in Drosophila, other RAS components are not conserved. We show that captopril, an ACE-I, and losartan, an ARB, can suppress a rough eye phenotype and brain cell death in flies expressing a mutant human C99 transgene. Captopril also significantly rescues memory defects in these flies. Similarly, both drugs reduce cell death in Drosophila expressing human Aβ42 and losartan significantly rescues memory deficits. However, neither drug affects production, accumulation or clearance of Aβ42 Importantly, neither drug rescued brain cell death in Drosophila expressing human Tau, suggesting that RAS inhibitors specifically target the amyloid pathway. Of note, we also observed reduced cell death and a complete rescue of memory deficits when we crossed a null mutation in Drosophila Acer into each transgenic line demonstrating that the target of captopril in Drosophila is Acer. Together, these studies demonstrate that captopril and losartan are able to modulate AD related phenotypes in the absence of the canonical RAS pathway and suggest that both drugs have additional targets that can be identified in Drosophila.
Collapse
|
45
|
Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov 2020; 20:125-144. [PMID: 33293690 DOI: 10.1038/s41573-020-00091-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Notch signalling is involved in many aspects of cancer biology, including angiogenesis, tumour immunity and the maintenance of cancer stem-like cells. In addition, Notch can function as an oncogene and a tumour suppressor in different cancers and in different cell populations within the same tumour. Despite promising preclinical results and early-phase clinical trials, the goal of developing safe, effective, tumour-selective Notch-targeting agents for clinical use remains elusive. However, our continually improving understanding of Notch signalling in specific cancers, individual cancer cases and different cell populations, as well as crosstalk between pathways, is aiding the discovery and development of novel investigational Notch-targeted therapeutics.
Collapse
Affiliation(s)
- Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA. .,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
46
|
Luo W, Ip FCF, Fu G, Cheung K, Tian Y, Hu Y, Sinha A, Cheng EYL, Wu X, Bustos V, Greengard P, Li YM, Sinha SC, Ip NY. A Pentacyclic Triterpene from Ligustrum lucidum Targets γ-Secretase. ACS Chem Neurosci 2020; 11:2827-2835. [PMID: 32786303 DOI: 10.1021/acschemneuro.0c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid-beta peptides generated by β-secretase- and γ-secretase-mediated successive cleavage of amyloid precursor protein are believed to play a causative role in Alzheimer's disease. Thus, reducing amyloid-beta generation by modulating γ-secretase remains a promising approach for Alzheimer's disease therapeutic development. Here, we screened fruit extracts of Ligustrum lucidum Ait. (Oleaceae) and identified active fractions that increase the C-terminal fragment of amyloid precursor protein and reduce amyloid-beta production in a neuronal cell line. These fractions contain a mixture of two isomeric pentacyclic triterpene natural products, 3-O-cis- or 3-O-trans-p-coumaroyl maslinic acid (OCMA), in different ratios. We further demonstrated that trans-OCMA specifically inhibits γ-secretase and decreases amyloid-beta levels without influencing cleavage of Notch. By using photoactivatable probes targeting the subsites residing in the γ-secretase active site, we demonstrated that trans-OCMA selectively affects the S1 subsite of the active site in this protease. Treatment of Alzheimer's disease transgenic model mice with trans-OCMA or an analogous carbamate derivative of a related pentacyclic triterpene natural product, oleanolic acid, rescued the impairment of synaptic plasticity. This work indicates that the naturally occurring compound trans-OCMA and its analogues could become a promising class of small molecules for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Wenjie Luo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Fanny C. F. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen−Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| | - Guangmiao Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Kit Cheung
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Yuan Tian
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yueqing Hu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Anjana Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Elaine Y. L. Cheng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
| | - Xianzhong Wu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Victor Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Subhash C. Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Nancy Y. Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen−Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China 518057
| |
Collapse
|
47
|
Substrate recruitment by γ-secretase. Semin Cell Dev Biol 2020; 105:54-63. [DOI: 10.1016/j.semcdb.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
|
48
|
Lee C, Willerth SM, Nygaard HB. The Use of Patient-Derived Induced Pluripotent Stem Cells for Alzheimer’s Disease Modeling. Prog Neurobiol 2020; 192:101804. [DOI: 10.1016/j.pneurobio.2020.101804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023]
|
49
|
Mekala S, Nelson G, Li YM. Recent developments of small molecule γ-secretase modulators for Alzheimer's disease. RSC Med Chem 2020; 11:1003-1022. [PMID: 33479693 PMCID: PMC7513388 DOI: 10.1039/d0md00196a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disorder, marked by memory loss and a decline in cognitive function. The major hallmarks of AD are the presence of intracellular neurofibrillary tau tangles (NFTs) composed of hyperphosphorylated tau proteins and extracellular plaques composed of amyloid beta peptides (Aβ). The amyloid (Aβ) cascade hypothesis proposes that the AD pathogenesis is initiated by the accumulation of Aβ peptides in the parenchyma of the brain. An aspartyl intramembranal protease called γ-secretase is responsible for the production of Aβ by the cleavage of the amyloid precursor protein (APP). Clinical studies of γ-secretase inhibitors (GSIs) for AD failed due to the lack of substrate specificity. Therefore, γ-secretase modulators (GSMs) have been developed as potential disease modifying agents to modulate the γ-secretase cleavage activity towards the production of toxic Aβ42 peptides. Following the first-generation 'nonsteroidal anti-inflammatory drug' (NSAID) based GSMs, second-generation GSMs (carboxylic acid based NSAID derivatives and non-NSAID derived heterocyclic analogues), as well as natural product-based GSMs, have been developed. In this review, we focus on the recent developments of small molecule-based GSMs that show potential improvements in terms of drug-like properties as well as their current status in human clinical trials and the future perspectives of GSM research.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Grady Nelson
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Yue-Ming Li
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
- Pharmacology Graduate Program , Weill Graduate School of Medical Sciences of Cornell University , New York , New York 10021 , USA
| |
Collapse
|
50
|
Rodríguez Sarmiento RM, Bissantz C, Bylund J, Limberg A, Neidhart W, Jakob-Roetne R, Wang L, Baumann K. Stepwise Design of γ-Secretase Modulators with an Advanced Profile by Judicious Coordinated Structural Replacements and an Unconventional Phenyl Ring Bioisostere. J Med Chem 2020; 63:8534-8553. [PMID: 32706964 DOI: 10.1021/acs.jmedchem.0c00909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starting from RO6800020 (1), our former γ-secretase modulator (GSM) lead compound, we utilized sequential structural replacements to improve the potency (IC50), pharmacokinetic properties including the free fraction (fraction unbound (fu)) in plasma, and in vivo efficacy. Importantly, we used novel CF3-alkoxy groups as bioisosteric replacements of a fluorinated phenyl ring and properties such as lipophilicity, solubility, metabolic stability, and free fraction could be balanced, maintaining low Pgp efflux needed for CNS penetration. In addition, by reducing aromaticity, we prevented phototoxicity. Additional substitution in the triazolopyridine core disturbed the binding to phosphatidylinositol 4-kinase, catalytic β (PIK4CB). We also introduced less lipophilic head heterocycles devoid of covalent binding (CVB) liability. After these changes, further modifications to the trifluoroethoxy bioisosteric replacement allowed rebalancing of properties, such as lipophilicity, and also potency. Our optimization strategy culminated with in vivo active RO7101556 (18B) having excellent properties and being selected as an advanced candidate.
Collapse
Affiliation(s)
- Rosa María Rodríguez Sarmiento
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Caterina Bissantz
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Johan Bylund
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anja Limberg
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Werner Neidhart
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland Jakob-Roetne
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lisha Wang
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Karlheinz Baumann
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche AG, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|