1
|
Wu L, Zhu Z, Xue J, Zheng L, Liu H, Ouyang H, Fu Z, He Y. Chemiluminescent/photothermal dual-mode lateral flow immunoassay based on CoFe PBAs/WS 2 nanozyme for rapid and highly sensitive point-of-care testing of gentamicin. Biosens Bioelectron 2024; 265:116711. [PMID: 39186893 DOI: 10.1016/j.bios.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Serious adverse drug reactions of gentamicin (GM) significantly limit its clinical use, thus there is an urgent demand to develop reliable strategies to detect its concentration. In this study, we have developed a novel highly sensitive and portable lateral flow immunoassay (LFIA) based on CoFe PBAs/WS2 nanozyme mediated chemiluminescence (CL) and photothermal (PT) dual-mode POCT biosensor for the detection of GM, which successfully combines sensitive laboratory analyses with portable in situ analyses in the field. In this proof-of-principle work, the dynamic detection ranges of CL-LFIA and PT-LFIA mode were 1 pg mL-1 to 100 ng mL-1 and 50 pg mL-1 to 100 ng mL-1 with the limits of detection of 0.33 and 16.67 pg mL-1, respectively. The whole detection of CL-LFIA and PT-LFIA could be completed within 15 min and 30 min, respectively. The recoveries of GM spiked into complex matrices including milk, urine, and serum for CL-LFIA and PT-LFIA were 90.94%-109.74% and 94.49%-109.31%, respectively, indicating the reliability and applicability of the dual-mode LFIA in real samples. The dual-mode POCT biosensor could effectively overcome the false problems with improving accuracy and sensitivity, enabling user to precisely detect GM by laboratory analysis or on-site analysis depending on the source condition. Due to the complementary properties of CL-LFIA and PT-LFIA, the developed POCT biosensor can effectively ensure high-performance detection, showing the potential application of accurately detecting drug concentration in clinical practice.
Collapse
Affiliation(s)
- Lulu Wu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Zhongjie Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Jinxia Xue
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Liang Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hongmei Liu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- The State Key Lab of Resource Insects, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Li L, Chen Q, Shi F, Wu J, Min L, Li J, Yang Z. Gold brocade coated CoFe PBA with enhanced peroxidase-like activity for a chemiluminescent imaging immunoassay. Chem Commun (Camb) 2024. [PMID: 39072469 DOI: 10.1039/d4cc02498b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Traditional chemiluminescence (CL) imaging immunoassays usually rely on natural enzymes as catalytic probes, which has hampered their extensive application due to the susceptibility to inactivation of natural enzymes. In response, a gold brocade coated CoFe Prussian blue analogue (CoFe PBA@Au brocade) with enhanced peroxidase-like activity was synthesized and utilized as a powerful label probe for constructing a highly sensitive CL imaging immunosensor targeting disease biomarkers with excellent performance. This research offers a universal strategy for enhancing the sensitivity of CL imaging immunoassays and further expands the application of PBA nanozymes.
Collapse
Affiliation(s)
- Ling Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Qingwen Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Jiayu Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Lingfeng Min
- Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou 225001, P. R. China.
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
3
|
Huang LH, Hsieh YY, Yang FA, Liao WC. DNA-modified Prussian blue nanozymes for enhanced electrochemical biosensing. NANOSCALE 2024; 16:9770-9780. [PMID: 38597919 DOI: 10.1039/d4nr00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.
Collapse
Affiliation(s)
- Lin-Hui Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Yu-Yu Hsieh
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Fu-An Yang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Li L, Yue T, Feng J, Zhang Y, Hou J, Wang Y. Recent progress in lactate oxidase-based drug delivery systems for enhanced cancer therapy. NANOSCALE 2024; 16:8739-8758. [PMID: 38602362 DOI: 10.1039/d3nr05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lactate oxidase (LOX) is a natural enzyme that efficiently consumes lactate. In the presence of oxygen, LOX can catalyse the formation of pyruvate and hydrogen peroxide (H2O2) from lactate. This process led to acidity alleviation, hypoxia, and a further increase in oxidative stress, alleviating the immunosuppressive state of the tumour microenvironment (TME). However, the high cost of LOX preparation and purification, poor stability, and systemic toxicity limited its application in tumour therapy. Therefore, the rational application of drug delivery systems can protect LOX from the organism's environment and maintain its catalytic activity. This paper reviews various LOX-based drug-carrying systems, including inorganic nanocarriers, organic nanocarriers, and inorganic-organic hybrid nanocarriers, as well as other non-nanocarriers, which have been used for tumour therapy in recent years. In addition, this area's challenges and potential for the future are highlighted.
Collapse
Affiliation(s)
- Lu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jie Feng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yujun Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jun Hou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
5
|
Gao X, Liu L, Jia M, Zhang H, Li X, Li J. A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots. Mikrochim Acta 2024; 191:284. [PMID: 38652331 DOI: 10.1007/s00604-024-06358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Lu Liu
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Mu Jia
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Hongmei Zhang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products. Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, Bohai University, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
6
|
Kim JU, Kim JM, Thamilselvan A, Nam KH, Kim MI. Colorimetric and Electrochemical Dual-Mode Detection of Thioredoxin 1 Based on the Efficient Peroxidase-Mimicking and Electrocatalytic Property of Prussian Blue Nanoparticles. BIOSENSORS 2024; 14:185. [PMID: 38667178 PMCID: PMC11047952 DOI: 10.3390/bios14040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL-1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10-50 ng mL-1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers.
Collapse
Affiliation(s)
- Jeong Un Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea; (J.U.K.); (J.M.K.); (A.T.)
| | - Jee Min Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea; (J.U.K.); (J.M.K.); (A.T.)
| | - Annadurai Thamilselvan
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea; (J.U.K.); (J.M.K.); (A.T.)
| | - Ki-Hwan Nam
- Division of Research and Development Equipment Industry, Center for Scientific Instrumentation, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea; (J.U.K.); (J.M.K.); (A.T.)
| |
Collapse
|
7
|
Pan Y, Wang X, Tan Q, Wang L. Effects and mechanisms of prussian blue nanozymes with multiple enzyme activities on nasopharyngeal carcinoma cells. Tissue Cell 2024; 87:102316. [PMID: 38301585 DOI: 10.1016/j.tice.2024.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Prussian blue nanozymes (PBNs) with multiple enzyme activities are prepared and their activities of antitumor in nasopharyngeal carcinoma cells (CEN2) are also explored in this research. On the one hand, it shows that PBNs can exert the catalase-like (CAT-like) activity to decompose hydrogen peroxide (H2O2) into non-toxic H2O in CEN2 cells. The O2 release of H2O2 catalysed by PBNs effectively alleviates the hypoxic environment of tumors, which inhibits the glycolysis of tumor and reduces the production of lactic acid. On the other hand, we also find that PBNs also has peroxidase-like (POD-like) enzymatic activity, which can catalyze the production of·OH from H2O2 in tumor cells and result in tumor cell apoptosis. This study lays a solid biomedical foundation for the development of safe and non-toxic nanozymes, as well as the expansion of their application in tumor treatment.
Collapse
Affiliation(s)
- Ya Pan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaofeng Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Tan
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liping Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
8
|
Zhang Y, Yuan X, Guo X, Xu H, Zhang D, Wu Z, Zhang J. All-in-One Zinc-Doped Prussian Blue Nanozyme for Efficient Capture, Separation, and Detection of Copper Ion (Cu 2+ ) in Complicated Matrixes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306961. [PMID: 37803466 DOI: 10.1002/smll.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Copper is a vital micronutrient for lives and an important ingredient for bactericides and fungicides. Given its indispensable biological and agricultural roles, there is an urgent need to develop simple, affordable, and reliable methods for detecting copper in complicated matrixes, particularly in underdeveloped regions where costly standardized instruments and sample dilution procedures hinder progress. The findings that zinc-doped Prussian blue nanoparticle (ZnPB NP) exhibits exceptional efficiency in capturing and isolating copper ions, and accelerates the generation of dissolved oxygen in a solution of H2 O2 with remarkable sensitivity and selectivity, the signal of which displays a positive correlation with the copper level due to the copper-enhanced catalase-like activity of ZnPB NP, are presented. Consequently, the ZnPB NP serves as an all-in-one sensor for copper ion. The credibility of the method for copper assays in human urine and farmland soil is shown by comparing it to the standard instrumentation, yielding a coefficient of correlation (R2 = 0.9890), but the cost is dramatically reduced. This ZnPB nanozyme represents a first-generation probe for copper ion in complicated matrixes, laying the groundwork for the future development of a practical copper sensor that can be applied in resource-constrained environments.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Xinyue Guo
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Huan Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
9
|
Yang Z, Song M, Chen Y, Chen F. Bimetallic CuFe Prussian blue analogue cubes enhanced luminol chemiluminesence and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123421. [PMID: 37738766 DOI: 10.1016/j.saa.2023.123421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
In this paper, bimetallic CuFe Prussian blue analogue (CuFe PBA) was discovered to have oxidase-like activity. Luminol can be oxidized under alkaline conditions without adding other oxidants. The chemiluminescence (CL) intensity produced is more than 1000 times that of the original luminol-NaOH system. Thus, a novel luminol-NaOH-CuFe PBA CL sensor was constructed. The CL intensity of the system would drastically decrease with the addition of uric acid (UA), it served as the foundation for the creation of an enzyme-free CL sensor for the determination of UA. The CL signal intensity of the system showed a linear connection with the square of the UA concentration in the range of 0.25 to 0.45 mmol·L-1, and the limits of detection was 0.10 mmol·L-1. This system could be used to construct an efficient CL sensor for the detection of UA in human serum.
Collapse
Affiliation(s)
- Zixin Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mengling Song
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Funan Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Chen Y, Jiao L, Li R, Hu L, Jia X, Zhu Z, Zhai Y, Lu X. Immobilizing glucose oxidase on AuCu hydrogels for enhanced electrochromic biosensing. Anal Chim Acta 2023; 1283:341977. [PMID: 37977794 DOI: 10.1016/j.aca.2023.341977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Development of highly sensitive and accurate biosensors still faces a great challenge. Herein, glucose oxidase (GOx) is efficiently immobilized on the AuCu hydrogels owing to their porous structure and interfacial interaction, demonstrating enhanced catalytic activity, satisfactory stability and recyclability. Besides, by integration of AuCu@GOx and electrochromic material of Prussian blue, a sensitive and stable biosensing platform based on the excellent electrochromic property of Prussian blue and the enhanced enzyme activity of AuCu@GOx is developed, which enables the electrochemical and visual dual-mode detection of glucose. The as-constructed biosensing platform possesses a wide linear range, and good selectivity for glucose detection with a limit of detection of 0.82 μM in visual mode and 0.84 μM in electrochemical mode. This easy-to-operate biosensing platform opens a door for the practical application of the multi-mode strategy for glucose detection.
Collapse
Affiliation(s)
- Yanan Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Qin Y, Ouyang Y, Willner I. Nucleic acid-functionalized nanozymes and their applications. NANOSCALE 2023; 15:14301-14318. [PMID: 37646290 DOI: 10.1039/d3nr02345a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Nanozymes are inorganic, organic and metal-organic framework nanoparticles that reveal catalytic functions by emulating native enzyme activities. Recently, these nanozymes have attracted growing scientific interest, finding diverse analytical and medical applications. However, the catalytic activities and functions of nanozymes are limited, due to the lack of substrate binding sites that concentrate on the substrate at the catalytic site (molarity effect), introduce substrate specificity and allow functional complexity of the catalysts (cascaded, switchable and cooperative catalysis). The modification of nanozymes with functional nucleic acids provides means to overcome these limitations and engineer nucleic acid/nanozyme hybrids for diverse applications. This is exemplified with the synthesis of aptananozymes, which are supramolecular aptamer-modified nanozymes. Aptananozymes exhibit combined specific binding and catalytic properties that drive diverse chemical transformations, revealing enhanced catalytic activities, as compared to the separated nanozyme/aptamer constituents. Relationships of structure-catalytic functions in the aptananozyme constructs are demonstrated. In addition, modification of nanozymes exhibiting multimodal catalytic functions with aptamers allows the engineering of nanozyme-based bioreactors for cascaded catalysis. Also, the functionalization of reactive oxygen species (ROS)-generating nanozymes with cancer cell-recognizing aptamers yields aptananozymes for targeted chemodynamic treatment of cancer cells and cancer tumors elicited in mice. Finally, nucleic acid-modified enzyme (glucose oxidase)-loaded metal-organic framework nanoparticles yield switchable biocatalytic nanozymes that drive the ON/OFF biocatalyzed oxidation of Amplex Red, dopamine or the generation of chemiluminescence. Herein, future challenges of the topic are addressed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
12
|
Wang L, Liu Y, Yan J, Li H, Tu Y. Novel Electrochemiluminescent Immunosensor Using Dual Amplified Signals from a CoFe Prussian Blue Analogue and Au Nanoparticle for the Detection of Lp-PLA2. ACS Sens 2023; 8:2859-2868. [PMID: 37432366 DOI: 10.1021/acssensors.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Coronary heart disease (CHD) poses an important threat to human health, and its pathogenesis is the formation of atheromatous plaques in coronary ventricles. Compared to other biomarkers, lipoprotein-associated phospholipase A2 (Lp-PLA2), which is involved in multiple processes of atherosclerosis, is a noticeable inflammatory biomarker related to CHD. Herein, using a multifunctional nanocomposite containing a CoFe Prussian blue analogue (PBA) and Au nanoparticles (AuNPs) (AuNPs@CoFe PBA) as a sensing substrate, an electrochemiluminescent (ECL) immunosensor was developed for the highly sensitive detection of Lp-PLA2. Benefiting from the synergistic effect of the PBA and AuNPs, the nanocomposite exhibits excellent peroxidase-like activity and can catalyze the luminol-ECL reaction, amplifying the ECL signal by ∼29-fold. Meanwhile, the enlarged specific surface area of the nanocomposite and the presence of abundant AuNPs allow the immobilization of more antibody proteins, thereby improving the sensing response of the immunosensor. When the target Lp-PLA2 is captured by the antibody on the sensor surface, the sensor emits a reduced ECL signal because of the increased mass and electron transfer resistance due to the formation of the immune complex. Under optimized conditions, the constructed ECL immunosensor exhibits a broad linear range from 1 to 2200 ng/mL and a low detection limit of 0.21 ng/mL. Additionally, the ECL immunosensor exhibits high specificity, stability, and reproducibility. This work provides a new approach to diagnose CHD and broadened the application of the PBA in the field of ECL sensors.
Collapse
Affiliation(s)
- Lixin Wang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuhong Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P. R. China
| | - Jilin Yan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| | - Huiling Li
- First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
- Nursing School, Suzhou Medical College of Soochow University, Suzhou 215006, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
Peng L, Gineste S, Coudret C, Ciuculescu-Pradines D, Benoît-Marquié F, Mingotaud C, Marty JD. Iron-based hybrid polyionic complexes as chemical reservoirs for the pH-triggered synthesis of Prussian blue nanoparticles. J Colloid Interface Sci 2023; 649:900-908. [PMID: 37390537 DOI: 10.1016/j.jcis.2023.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
HYPOTHESIS Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Coudret
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
14
|
Tang Y, Chang Q, Chen G, Zhao X, Huang G, Wang T, Jia C, Lu L, Jin T, Yang S, Cao L, Zhang X. Tumor immunosuppression relief via acidity modulation combined PD-L1 siRNA for enhanced immunotherapy. BIOMATERIALS ADVANCES 2023; 150:213425. [PMID: 37084635 DOI: 10.1016/j.bioadv.2023.213425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023]
Abstract
The efficacy of immune checkpoint therapy is limited by the immunosuppressive tumor microenvironment (TME), and lactate, the most universal component of TME, has been rediscovered that plays important roles in the regulation of metabolic pathways, angiogenesis, and immunosuppression. Here, a therapeutic strategy of acidity modulation combined with programmed death ligand-1 (PD-L1) siRNA (siPD-L1) is proposed to synergistically enhance tumor immunotherapy. The lactate oxidase (LOx) is encapsulated into the hollow Prussian blue (HPB) nanoparticles (NPs) prepared by hydrochloric acid etching followed by the modification with polyethyleneimine (PEI) and polyethylene glycol (PEG) via sulfur bonds (HPB-S-PP@LOx), siPD-L1 is loaded via electrostatic adsorption to obtain HPB-S-PP@LOx/siPD-L1. The obtained co-delivery NPs can accumulate in tumor tissue with stable systemic circulation, and simultaneous release of LOx and siPD-L1 in intracellular high glutathione (GSH) environment after uptake by tumor cells without being destroyed by lysosome. Moreover, LOx can catalyze the decomposition of lactate in the hypoxic tumor tissue with the aid of oxygen release by the HPB-S-PP nano-vector. The results show that the acidic TME regulation via lactate consumption can improve the immunosuppressive TME, including revitalizing the exhausted CD8+ T cells and decreasing the proportion of immunosuppressive Tregs, and synergistically elevating the therapeutic effect of PD1/PD-L1 blockade therapy via siPD-L1. This work provides a novel insight for tumor immunotherapy and explores a promising therapy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Qingcheng Chang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaomei Zhao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tong Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Changhao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linghong Lu
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Taiwei Jin
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Shudi Yang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Li Cao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Zhang Q, Sun Z, Sun W, Yu B, Liu J, Jiang C, Lu L. Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment. Acta Biomater 2023; 158:625-636. [PMID: 36608895 DOI: 10.1016/j.actbio.2022.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
The antioxidant system of tumor cells severely impairs reactive oxygen species (ROS)-mediated tumor therapy. Despite extensive attempts to attenuate the antioxidant capacity by eliminating ROS scavengers such as glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) over-expressed in the tumor microenvironment can regenerate GSH from glutathione disulfide (GSSG), hence weakening ROS-induced oxidative damage. Therefore, engineering a nanoplatform capable of depleting both NADPH and GSH is extremely significant for improving ROS-mediated tumor treatment. Herein, a synergetic antioxidant inhibition strategy is proposed to attenuate intracellular antioxidant capacity for hypoxic tumor therapy. In this context, both porous Prussian blue nanoparticles (PPB NPs) and cisplatin prodrug [cis-Pt (IV)] in the nanoplatform can oxidize GSH to directly reduce GSH levels, while PPB NPs also enable NADPH depletion by peroxidase-mimicking to impair GSH regeneration. Furthermore, PPB NPs with catalase-mimicking activity catalyze H2O2 decomposition to alleviate tumor hypoxia, thus reducing the generation of GSH and boosting singlet oxygen (1O2) production by Chlorin e6 (Ce6) for enhancing oxidative damage. Experimental results prove that the nanoplatform, denoted as PPB-Ce6-Pt, can induce remarkable tumor cells apoptosis and ferroptosis. Importantly, a simple loading method and the use of Food Drug Administration (FDA)-approved materials make PPB-Ce6-Pt have great potential for practical applications. STATEMENT OF SIGNIFICANCE: The antioxidant system in tumor cells disables ROS-mediated tumor therapy. Besides, extensive attempts aim at depleting GSH without considering their regeneration. Therefore, we developed a synergetic strategy to attenuate intracellular antioxidant capacity for hypoxic tumor therapy. PPB-Ce6-Pt nanoplatform could not only directly reduce GSH levels but also deplete NADPH by peroxidase-mimicking to impair GSH regeneration. In addition, PPB-Ce6-Pt nanoplatform could catalyze H2O2 decomposition to alleviate tumor hypoxia, thus reducing the generation of GSH and boosting 1O2 production by Chlorin e6 (Ce6) for increasing oxidative damage. Then, intracellular ROS boost and redox dyshomeostasis induced remarkable tumor cells apoptosis and ferroptosis. Importantly, a simple loading method and the use of biosafety materials made the nanoplatform have great potential for practical applications.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jianhua Liu
- Department of Radiology, Second Hospital of Jilin University, Changchun 130041, PR China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
16
|
He L, Ji Q, Chi B, You S, Lu S, Yang T, Xu Z, Wang Y, Li L, Wang J. Construction nanoenzymes with elaborately regulated multi-enzymatic activities for photothermal-enhanced catalytic therapy of tumor. Colloids Surf B Biointerfaces 2023; 222:113058. [PMID: 36473371 DOI: 10.1016/j.colsurfb.2022.113058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In order to solve the limitation of tumor microenvironment on the anticancer effect of nanozymes, a multifunctional nanoenzyme Co/La-PB@MOF-199/GOx was designed in this work. By doping Co2+ and La3+ in different proportions, Co/La-PB with the optimal photothermal-enhanced catalytic performance was screened, which can catalyze H2O2 to generate more hydroxyl radicals (•OH) and oxygen, showing peroxidase (POD)-like and catalase(CAT)-like property. Through MOF-199 coating and loading glucose oxidase (GOx), a multifunctional nanoenzyme Co/La-PB@MOF-199/GOx was achieved. Due to the pH response of MOF-199, GOx can be accurately released into tumors to catalyze the reaction of glucose and oxygen to produce H2O2. In this process, the oxygen consumption can be compensated by the CAT-like property to realize continuous consumption of glucose and self-supply of H2O2 to continuously produce •OH. In the presence of high oxidation state metal ions (Co3+ and Fe3+), GSH consumption is accelerated to avoid weakening of •OH, showing the glutathione oxidase (GPx-like) activity. Besides, magnetic resonance imaging (MRI) experiments showed the potential application in imaging guided therapy. In vivo anti-tumor experiments showed a satisfactory anti-cancer effect through multi-enzymatic activities.
Collapse
Affiliation(s)
- Le He
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, China
| | - Qin Ji
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sasha You
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, China
| | - Si Lu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, China
| | - Tingting Yang
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yingxi Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, China.
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University, Wuhan 430062, China.
| | - Jing Wang
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
17
|
Xu X, Guo J, Lei Z. Ultrafast colorimetric detection of Cr(VI) using Fe 3O 4@polydopamine/Prussian blue composites as a highly efficient peroxidase mimic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:221-227. [PMID: 36541424 DOI: 10.1039/d2ay01849g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A recyclable peroxidase mimic Fe3O4@polydopamine/Prussian blue (Fe3O4@PDA/PB) composite was facilely prepared by coating PDA on an Fe3O4 nanoparticle core and in situ growth of PB nanoparticles on a PDA shell. The prepared Fe3O4@PDA/PB composite exhibited excellent peroxidase-like activity and can catalytically oxidize the colorless colorimetric substrate 3,3',5,5'-tetramethylbenzidine (TMB) into a blue colored product in the presence of H2O2 at 30 °C in 1 min. The catalytic mechanism was deduced to be the nanozyme-promoted generation of a hydroxyl radical (·OH), and the catalytic behavior followed the typical Michaelis-Menten kinetics. Based on Cr(VI)-boosted peroxidase-like activity of Fe3O4@PDA/PB, a simple and fast colorimetric method for detection of Cr(VI) was developed. Under the optimum conditions, the colorimetric method exhibited wider linear range (100 nM to 140 μM), low LOD (51.1 nM), good selectivity and short detection time (1 min). Moreover, the feasibility of the proposed colorimetric method was evaluated by determination of Cr(VI) in spiked tap water and lake water samples. Good recoveries (95.2-102.9%) and low relative standard deviations (RSDs) (1.6-4.4%) were obtained, showing great promise for practical use.
Collapse
Affiliation(s)
- Xianyuan Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
18
|
Sun X, Luo S, Zhang L, Miao Y, Yan G. Photoresponsive oxidase-like phosphorescent carbon dots in colorimetric Hg2+ detection. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
19
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Sohn YS, Karmi O, Qin Y, Chen X, Nechushtai R, Willner I. Aptamer-Functionalized Ce 4+-Ion-Modified C-Dots: Peroxidase Mimicking Aptananozymes for the Oxidation of Dopamine and Cytotoxic Effects toward Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55365-55375. [PMID: 36475576 PMCID: PMC9782376 DOI: 10.1021/acsami.2c16199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Aptamer-functionalized Ce4+-ion-modified C-dots act as catalytic hybrid systems, aptananozymes, catalyzing the H2O2 oxidation of dopamine. A series of aptananozymes functionalized with different configurations of the dopamine binding aptamer, DBA, are introduced. All aptananozymes reveal substantially enhanced catalytic activities as compared to the separated Ce4+-ion-modified C-dots and aptamer constituents, and structure-catalytic functions between the structure and binding modes of the aptamers linked to the C-dots are demonstrated. The enhanced catalytic functions of the aptananozymes are attributed to the aptamer-induced concentration of the reaction substrates in spatial proximity to the Ce4+-ion-modified C-dots catalytic sites. The oxidation processes driven by the Ce4+-ion-modified C-dots involve the formation of reactive oxygen species (•OH radicals). Accordingly, Ce4+-ion-modified C-dots with the AS1411 aptamer or MUC1 aptamer, recognizing specific biomarkers associated with cancer cells, are employed as targeted catalytic agents for chemodynamic treatment of cancer cells. Treatment of MDA-MB-231 breast cancer cells and MCF-10A epithelial breast cells, as control, with the AS1411 aptamer- or MUC1 aptamer-modified Ce4+-ion-modified C-dots reveals selective cytotoxicity toward the cancer cells. In vivo experiments reveal that the aptamer-functionalized nanoparticles inhibit MDA-MB-231 tumor growth.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Xinghua Chen
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18:1-14. [PMID: 35387158 PMCID: PMC8961303 DOI: 10.1016/j.bioactmat.2022.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and destruction of cartilage, promoted by sustained inflammation. However, current treatments remain unsatisfactory due to lacking of selective and effective strategies for alleviating inflammatory environments in RA joint. Inspired by neutrophil chemotaxis for inflammatory region, we therefore developed neutrophil-derived exosomes functionalized with sub-5 nm ultrasmall Prussian blue nanoparticles (uPB-Exo) via click chemistry, inheriting neutrophil-targeted biological molecules and owning excellent anti-inflammatory properties. uPB-Exo can selectively accumulate in activated fibroblast-like synoviocytes, subsequently neutralizing pro-inflammatory factors, scavenging reactive oxygen species, and alleviating inflammatory stress. In addition, uPB-Exo effectively targeted to inflammatory synovitis, penetrated deeply into the cartilage and real-time visualized inflamed joint through MRI system, leading to precise diagnosis of RA in vivo with high sensitivity and specificity. Particularly, uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. Therefore, nanoenzyme functionalized exosomes hold the great potential for enhanced treatment of RA in clinic. uPB-Exo were firstly developed by combining NE-Exo with sub-5 nm ultrasmall PB nanoparticles via click chemistry. uPB-Exo selectively targeted inflamed joints via neutrophil-targeted biological molecules inherited from neutrophils. uPB-Exo accumulated in active FLS, and eventually scavenged reactive oxygen species and alleviated inflammatory stress. uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. uPB-Exo, as a drug free therapeutical agent, holds the great potential for enhanced treatment of RA in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ziguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
21
|
Ouyang Y, O'Hagan MP, Willner I. Functional catalytic nanoparticles (nanozymes) for sensing. Biosens Bioelectron 2022; 218:114768. [DOI: 10.1016/j.bios.2022.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
22
|
Rapid vertical flow technique for the highly sensitive detection of Brucella antibodies with Prussian blue nanoparticle labeling and nanozyme-catalyzed signal amplification. World J Microbiol Biotechnol 2022; 39:23. [PMID: 36422675 DOI: 10.1007/s11274-022-03462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Brucellosis is a chronic infectious disease caused by Brucella, which is characterized by inflammation of reproductive organs and fetal membranes, abortion, infertility, and local inflammatory lesions of various tissues. Due to the widespread prevalence and spread of brucellosis, it has not only caused huge losses to animal husbandry, but also brought serious impacts on human health and safety. Therefore, rapid and accurate diagnosis is of great significance for the effective control of brucellosis. Therefore, we have developed a rapid vertical flow technique (RVFT) using Prussian blue nanoparticles (PBNPs) as a marker material for the detection of brucellosis antibodies. Lipopolysaccharide (LPS) was purified and used to detect brucellosis antibodies to improve the sensitivity of this technique. To enhance the sensitivity of serum antibody detection, a single multifunctional compound buffer was created using whole blood as a biological sample while retaining the advantages of typical lateral flow immunoassays. After signal amplification, standard Brucella-positive serum (containing Brucella antibody at 4000 IU mL-1) could be detected in this system even at a dilution factor of 1 × 10-2. The detection limit was 40 IU mL-1, which is ten times that before signal amplification. This RVFT displayed good specificity and no cross-reactivity. This RVFT effectively avoided the false negative phenomenon of lateral flow immunoassays, was easy to operate, had a short reaction time, has good repeatability, and could elicit results that were visible to the naked eye for 2 ~ 3 min without any equipment. Since this method is very important for controlling the prevalence of brucellosis, it holds great promise for application in primary medical units and veterinary brucellosis detection.
Collapse
|
23
|
Ouyang Y, Fadeev M, Zhang P, Carmieli R, Li J, Sohn YS, Karmi O, Nechushtai R, Pikarsky E, Fan C, Willner I. Aptamer-Modified Au Nanoparticles: Functional Nanozyme Bioreactors for Cascaded Catalysis and Catalysts for Chemodynamic Treatment of Cancer Cells. ACS NANO 2022; 16:18232-18243. [PMID: 36286233 PMCID: PMC9706657 DOI: 10.1021/acsnano.2c05710] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polyadenine-stabilized Au nanoparticles (pA-AuNPs) reveal dual nanozyme catalytic activities toward the H2O2-mediated oxidation of dopamine to aminochrome and toward the aerobic oxidation of glucose to gluconic acid and H2O2. The conjugation of a dopamine-binding aptamer (DBA) to the pA-AuNPs yields aptananozyme structures catalyzing simultaneously the H2O2-mediated oxidation of dopamine to aminochrome through the aerobic oxidation of glucose. A set of aptananozymes consisting of DBA conjugated through the 5'- or 3'-end directly or spacer bridges to pA-AuNPs were synthesized. The set of aptananozymes revealed enhanced catalytic activities toward the H2O2-catalyzed oxidation of dopamine to dopachrome, as compared to the separated pA-AuNPs and DBA constituents, and structure-function relationships within the series of aptananozymes were demonstrated. The enhanced catalytic function of the aptananozymes was attributed to the concentration of the dopamine at the catalytic interfaces by means of aptamer-dopamine complexes. The dual catalytic activities of aptananozymes were further applied to design bioreactors catalyzing the effective aerobic oxidation of dopamine in the presence of glucose. Mechanistic studies demonstrated that the aptananozymes generate reactive oxygen species. Accordingly, the AS1411 aptamer, recognizing the nucleolin receptor associated with cancer cells, was conjugated to the pA-AuNPs, yielding a nanozyme for the chemodynamic treatment of cancer cells. The AS1411 aptamer targets the aptananozyme to the cancer cells and facilitates the selective permeation of the nanozyme into the cells. Selective cytotoxicity toward MDA-MB-231 breast cancer cells (ca. 70% cell death) as compared to MCF-10A epithelial cells (ca. 2% cell death) is demonstrated.
Collapse
Affiliation(s)
- Yu Ouyang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jiang Li
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Zhangjiang Laboratory, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- The Lautenberg
Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Itamar Willner
- The
Institute of Chemistry, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Dai Y, Sha X, Song X, Zhang X, Xing M, Liu S, Xu K, Li J. Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing. Int J Nanomedicine 2022; 17:5413-5429. [PMID: 36419720 PMCID: PMC9677925 DOI: 10.2147/ijn.s371873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Early diagnosis and treatment of atherosclerosis (AS) vulnerable plaque has important clinical significance for the prognosis of patients. In this work, the integrated diagnosis and treatment nanoparticles based on Gd-doped Prussian blue (GPB) were constructed for the fluorescence/MR dual-mode imaging and anti-ROS treatment of vulnerable AS plaques in vitro and in vivo. Methods To fabricate the theranostic NPs, GPB was modified with water-soluble polymer polyethyleneimine (PEI), fluorescence molecule rhodamine (Rd), and targeted molecule dextran sulfate (DS) step by step via electrostatic adsorption to construct GPRD NPs. The fluorescence/MR imaging ability and various nano-enzymes activity of GPRD NPs were detected, and the biocompatibility and safety of GPRD were also evaluated. Subsequently, RAW264.7 cells and ApoE -/- model mice were used to evaluate the effect of GPRD NPs on the targeted dual-mode imaging and anti-ROS treatment of vulnerable plaque in vitro and in vivo. Results The experimental results showed that our fabricated GPRD NPs not only displayed excellent MR/fluorescence dual-modality imaging of vulnerable plaque in vivo but also effectively utilized the nano-enzyme activity of GPB to inhibit the AS progress by ROS scavenging and the following reduction of inflammation, apoptosis, and foam cells’ formation, providing a new avenue for the diagnosis and treatment of AS vulnerable plaque. Conclusion The fabricated multimodal imaging nanoparticles with ROS-scavenging ability provided a new avenue for the diagnosis and treatment of AS vulnerable plaques.
Collapse
Affiliation(s)
- Yue Dai
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Xuan Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiaoxi Song
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| | - Mengyuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Siwen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
- Correspondence: Kai Xu; Jingjing Li, Email ;
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People’s Republic of China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People’s Republic of China
| |
Collapse
|
25
|
Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc Natl Acad Sci U S A 2022; 119:e2213373119. [PMID: 36256822 PMCID: PMC9618076 DOI: 10.1073/pnas.2213373119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high level of reactive oxygen species (ROS) in the rheumatoid arthritis (RA) microenvironment (RAM) and its persistent inflammatory nature can promote damage to joints, bones, and the synovium. Targeting strategies that integrate effective RAM regulation with imaging-based monitoring could lead to improvements in the diagnosis and treatment of RA. Here, we report the combined use of small interfering RNAs (siRNAsT/I) and Prussian blue nanoparticles (PBNPs) to silence the expression of proinflammatory cytokines TNF-α/IL-6 and scavenge the ROS associated with RAM. To enhance the in vitro and in vivo biological stability, biocompatibility, and targeting capability of the siRNAsT/I and PBNPs, macrophage membrane vesicles were used to prepare biomimetic nanoparticles, M@P-siRNAsT/I. The resulting constructs were found to suppress tumor necrosis factor-α/interleukin-6 expression and overcome the hypoxic nature of RAM, thus alleviating RA-induced joint damage in a mouse model. The M@P-siRNAsT/I of this study could be monitored via near-infrared photoacoustic (PA) imaging. Moreover, multispectral PA imaging without the need for labeling permitted the real-time evaluation of M@P-siRNAsT/I as a putative RA treatment. Clinical microcomputed tomography and histological analysis confirmed the effectiveness of the treatment. We thus suggest that macrophage-biomimetic M@P-siRNAsT/I and their analogs assisted by PA imaging could provide a new strategy for RA diagnosis, treatment, and monitoring.
Collapse
|
26
|
Bimetallic CuCo Prussian blue analogue nanocubes induced chemiluminescence of luminol under alkaline solution for uric acid detection in human serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Xian J, Luo S, Xue J, Zhang L, Fu Z, Ouyang H. Synergetic Dual-Site Atomic Catalysts for Sensitive Chemiluminescent Immunochromatographic Test Strips. Anal Chem 2022; 94:11449-11456. [PMID: 35938606 DOI: 10.1021/acs.analchem.2c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Li J, Wu C, Yuan C, Shi Z, Zhang K, Zou Z, Xiong L, Chen J, Jiang Y, Sun W, Tang K, Yang H, Li CM. Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O-O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H 2O 2. Anal Chem 2022; 94:14109-14117. [PMID: 35727990 DOI: 10.1021/acs.analchem.2c01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM-1 cm-2, which is much higher than that (6.5 μA mM-1 cm-2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of -O-O- for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
Collapse
Affiliation(s)
- Juan Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chengsong Yuan
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Kaiyue Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhuo Zou
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Lulu Xiong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jie Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yali Jiang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Kanglai Tang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Hongbin Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.,Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 200671, China
| |
Collapse
|
29
|
Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au 3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O 2•- and •OH Generating Nanozymes and Their Antibacterial Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The synthesis and characterization of Au3+ -modified UiO-67 metal-organic framework nanoparticles, Au3+ -NMOFs, are described. The Au3+ -NMOFs reveal dual oxidase-like and peroxidase-like activities and act as an active catalyst for the catalyzed generation of O2•- under aerobic conditions or •OH in the presence of H2 O2 . The two reactive oxygen species (ROS) agents O2•- and •OH are cooperatively formed by Au3+ -NMOFs under aerobic conditions, and in the presence of H2 O2. The Au3+ -NMOFs are applied as an effective catalyst for the generation ROS agents for antibacterial and wound healing applications. Effective antibacterial cell death and inhibition of cell proliferation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial colonies are demonstrated in the presence of the Au3+ -NMOFs. In addition, in vivo experiments demonstrate effective wound healing of mice wounds infected by S. aureus, treated by the Au3+ -NMOFs.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Yu Ouyang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yong-Li Song
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lu-Qin Si
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
30
|
Chen C, Vázquez-González M, O'Hagan MP, Ouyang Y, Wang Z, Willner I. Enzyme-Loaded Hemin/G-Quadruplex-Modified ZIF-90 Metal-Organic Framework Nanoparticles: Bioreactor Nanozymes for the Cascaded Oxidation of N-hydroxy-l-arginine and Sensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104420. [PMID: 35037383 DOI: 10.1002/smll.202104420] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Indexed: 05/21/2023]
Abstract
Biocatalytic cascades are challenging to operate in homogeneous solution, where diffusional mass transport hinders efficient communication between the reactive components. There is great interest in developing devices to perform such transformations in confined environments, which increase the efficiency of the cascaded process by generating high local concentrations of the reactive species. Herein, a bioreactor-nanozyme assembly is introduced for the cascaded aerobic oxidation of N-hydroxy-l-arginine (NOHA) to citrulline in the presence of glucose. The reaction mimics a key step in the nitric oxide synthase oxidation of l-arginine in nature. The system consists of glucose oxidase (GOx)-loaded hemin/G-quadruplex (hemin/G4)-modified ZIF-90 metal-organic framework nanoparticles. The aerobic oxidation of glucose by GOx yields H2 O2 that fuels the hemin/G4-catalyzed oxidation of NOHA into citrulline. The process driven by the bioreactor-nanozyme system is ≈sixfold enhanced compared to the homogeneous mixture of the biocatalysts, due to its operation in the confined environment of the nanoparticles. Extension to a three-step cascade is then demonstrated using a bioreactor composed of β-galactosidase/GOx-loaded hemin/G4-modified ZIF-90 nanoparticles activating the cascaded oxidation of NOHA to citrulline, in the presence of lactose. Moreover, the bioreactor-nanozyme hybrid is applied as a functional optical sensor of glucose, using fluorescence or chemiluminescence as readout signals.
Collapse
Affiliation(s)
- Chaochao Chen
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, P. R. China
| | - Margarita Vázquez-González
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Michael P O'Hagan
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, P. R. China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
31
|
Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63833-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Chen J, Zheng X, Zhang J, Ma Q, Zhao Z, Huang L, Wu W, Wang Y, Wang J, Dong S. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl Sci Rev 2021; 9:nwab186. [PMID: 35261777 PMCID: PMC8897313 DOI: 10.1093/nsr/nwab186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O2 to produce H2O2. Density functional theory calculations reveal that the Co/C can catalyze O2 reduction to H2O2 or H2O considerably. The Co/C can also mediate electron transfer from NADH to heme protein cytochrome c, thereby exhibiting cytochrome c reductase-like activity. The Co/C nanoparticles can deplete NADH in cancer cells, induce increase of the reactive oxygen species, lead to impairment of oxidative phosphorylation and decrease in mitochondrial membrane potential, and cause ATP production to be damaged. This ‘domino effect’ facilitates the cell to approach apoptosis.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiwei Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
33
|
Ma L, Zhu J, Wu C, Li D, Tang X, Zhang Y, An C. Three-dimensional MoS 2 nanoflowers supported Prussian blue and Au nanoparticles: A peroxidase-mimicking catalyst for the colorimetric detection of hydrogen peroxide and glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119886. [PMID: 33991816 DOI: 10.1016/j.saa.2021.119886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Well-dispersed Prussian blue (PB) and Au nanoparticles (Au NPs) loaded three dimensional MoS2 nanoflowers (PB-Au@MoS2 NFs) was synthesized by a simple and economical method. The structure, morphology and composition of the hybrid were characterized by XRD, SEM and EDS. Similar to the reported literature, MoS2 nanoflowers showed peroxidase-like activity in catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). This peroxidase-mimicking activity could be enhanced with the introduction of PB and Au NPs. Herein, PB-Au@MoS2 NFs could be used to establish a new platform for the determination of H2O2 and glucose by the chromogenic reaction. Wide linear ranges with 0-15 μM and 0-120 μM for H2O2 and glucose detection were finally obtained. The detection limits were as low as 0.25 μM and 3 μM (with signal to noise ratio of 3), respectively. The established platform was also used successfully for the determination of glucose in human serum and fruit juice samples with excellent sensitivity and stability.
Collapse
Affiliation(s)
- Lian Ma
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Jiao Zhu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Chao Wu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Duo Li
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xuehui Tang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yue Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Changhua An
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
34
|
Hu J, Guan Z, Chen J. Multifunctional biomaterials that modulate oxygen levels in the tumor microenvironment. Cancer Lett 2021; 521:39-49. [PMID: 34419500 DOI: 10.1016/j.canlet.2021.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
A characteristic feature of solid tumors is their low oxygen tension, which confers resistance to radiotherapy, photodynamic therapy, and chemotherapy. Therefore, to improve treatment outcomes, it is critical to develop biomaterials capable of targeted modulation of oxygen levels in tumors. In this review, we summarize four types of oxygen-modulating biomaterials, namely, oxygen-carrying biomaterials to deliver oxygen into tumors (e.g., perfluorocarbon and hemoglobin), oxygen-generating biomaterials to promote in situ oxygen generation (e.g., MnO2, catalase, and CuO), oxygen-consuming biomaterials to starve tumors (e.g., photosensitizer, glucose oxidase, and magnesium silicide), and oxygen-circulating biomaterials capable of both providing and consuming oxygen (e.g., ENBS-B). The current literature suggests that these biomaterials are useful for anticancer therapeutics. We present the key molecular mechanisms involved in modulating oxygen levels and the potential applications of these biomaterials in the context of hypoxic tumor treatment.
Collapse
Affiliation(s)
- Jinghui Hu
- School of Rehabilitation, Institute of Rehabilitation Engineering, Binzhou Medical University, Yantai, 264003, PR China
| | - Zhenxin Guan
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Jing Chen
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
35
|
Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu 2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021; 143:11510-11519. [PMID: 34286967 PMCID: PMC8856595 DOI: 10.1021/jacs.1c03939] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The covalent linkage of aptamer binding
sites to nanoparticle nanozymes
is introduced as a versatile method to improve the catalytic activity
of nanozymes by concentrating the reaction substrates at the catalytic
nanozyme core, thereby emulating the binding and catalytic active-site
functions of native enzymes. The concept is exemplified with the synthesis
of Cu2+ ion-functionalized carbon dots (C-dots), modified
with the dopamine binding aptamer (DBA) or the tyrosinamide binding
aptamer (TBA), for the catalyzed oxidation of dopamine to aminochrome
by H2O2 or the oxygenation of l-tyrosinamide
to the catechol product, which is subsequently oxidized to amidodopachrome,
in the presence of H2O2/ascorbate mixture. Sets
of structurally functionalized DBA-modified Cu2+ ion-functionalized
C-dots or sets of structurally functionalized TBA-modified Cu2+ ion-functionalized C-dots are introduced as nanozymes of
superior catalytic activities (aptananozymes) toward the oxidation
of dopamine or the oxygenation of l-tyrosinamide, respectively.
The aptananozymes reveal enhanced catalytic activities as compared
to the separated catalyst and respective aptamer constituents. The
catalytic functions of the aptananozymes are controlled by the structure
of the aptamer units linked to the Cu2+ ion-functionalized
C-dots. In addition, the aptananozyme shows chiroselective catalytic
functions demonstrated by the chiroselective-catalyzed oxidation of l/d-DOPA to l/d-dopachrome. Binding
studies of the substrates to the different aptananozymes and mechanistic
studies associated with the catalytic transformations are discussed.
Collapse
Affiliation(s)
- Yu Ouyang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Biniuri
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Pu Zhang
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
36
|
Estelrich J, Busquets MA. Prussian Blue: A Nanozyme with Versatile Catalytic Properties. Int J Mol Sci 2021; 22:ijms22115993. [PMID: 34206067 PMCID: PMC8198601 DOI: 10.3390/ijms22115993] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Nanozymes, nanomaterials with enzyme-like activities, are becoming powerful competitors and potential substitutes for natural enzymes because of their excellent performance. Nanozymes offer better structural stability over their respective natural enzymes. In consequence, nanozymes exhibit promising applications in different fields such as the biomedical sector (in vivo diagnostics/and therapeutics) and the environmental sector (detection and remediation of inorganic and organic pollutants). Prussian blue nanoparticles and their analogues are metal–organic frameworks (MOF) composed of alternating ferric and ferrous irons coordinated with cyanides. Such nanoparticles benefit from excellent biocompatibility and biosafety. Besides other important properties, such as a highly porous structure, Prussian blue nanoparticles show catalytic activities due to the iron atom that acts as metal sites for the catalysis. The different states of oxidation are responsible for the multicatalytic activities of such nanoparticles, namely peroxidase-like, catalase-like, and superoxide dismutase-like activities. Depending on the catalytic performance, these nanoparticles can generate or scavenge reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Catalonia, Spain
- Correspondence:
| | - M. Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Chen B, Wu X, Xiong J, Zong MH, Cheng JH, Ge J, Lou WY. Biomimetic Mineralization of Prussian Blue Analogue-Incorporated Glucose Oxidase Hybrid Catalyst for Glucose Detection. Catal Letters 2021. [DOI: 10.1007/s10562-021-03668-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Wu C, Zhang Q, Li D, Tang X, Xie F, Zhang Y, Lu Y. A Sensitive Signal‐off Electrochemical Aptasensor for Thrombin Detection using PB−Au@MoS
2
Nanomaterial as Both Platform and Signal Reporter. ELECTROANAL 2021. [DOI: 10.1002/elan.202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chao Wu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Qiaran Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Duo Li
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Xuehui Tang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Fei Xie
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Yue Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 PR China
| | - Yizhong Lu
- School of Materials Science and Engineering University of Jinan Jinan 250022 PR China
| |
Collapse
|
39
|
Cheng L, Ding H, Wu C, Wang S, Zhan X. Synthesis of a new Ag +-decorated Prussian blue analog with high peroxidase-like activity and its application in measuring the content of the antioxidant substances in Lycium ruthenicum Murr. RSC Adv 2021; 11:7913-7924. [PMID: 35423344 PMCID: PMC8695107 DOI: 10.1039/d0ra10396a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 01/12/2023] Open
Abstract
A new Prussian blue analog (PBA) that contains three metal elements and has peroxidase-like activity was synthesized by a simple method. Then, AgNO3 solution was added slowly to the PBA solution under continuous stirring. We found that this synthesis method could be used to prepare other PBAs, and that the anchoring of Ag+ on the surface of PBA could enhance the peroxidase-like activity of the material, suggesting potential applications for the Ag+-decorated Prussian blue analog (Ag-PBA) in traditional Chinese medicine. Ag-PBA is a new type of multi-metal cubic nano-enzyme that exhibits good stability and excellent peroxidase-like activity; as such, it could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 and Ag-PBA. We then developed a new method to measure the content of antioxidant substances in Chinese herbs by using the excellent peroxidase-like activity of Ag-PBA. Using the Chinese herb Lycium ruthenicum Murr. as a model compound, we measured the content of the antioxidant substances in Lycium ruthenicum Murr. by this new method. After optimization of reaction temperature, concentrations of TMB and H2O2, and reaction time, the content of the antioxidant substances was measured and calculated in comparison with anthocyanidin standards. The results of the Ag-PBA method and the classical DPPH method were compared by a paired t-test, with no statistically significant difference found between the methods. Hence, these two methods can be used interchangeably, although the Ag-PBA method had the advantages of simplicity, rapidness, and good stability. Moreover, the Ag-PBA method has a low limit of quantification and a shorter reaction time, which are improvements on the DPPH method, and it is not necessary to avoid light. Therefore, we anticipate that the Ag-PBA method may be used widely for the measurement of the content of antioxidant substances in Chinese herbs.
Collapse
Affiliation(s)
- Linqi Cheng
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Haoxue Ding
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Chunying Wu
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Shuyu Wang
- Beijing University of Chinese Medicine Beijing 102400 China
| | - Xueyan Zhan
- Beijing University of Chinese Medicine Beijing 102400 China
- Beijing Key Laboratory for Process Control and Quality Evaluation of Traditional Chinese Medicine Beijing 102400 China
| |
Collapse
|
40
|
Wu D, Li J, Xu S, Xie Q, Pan Y, Liu X, Ma R, Zheng H, Gao M, Wang W, Li J, Cai X, Jaouen F, Li R. Engineering Fe-N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells. J Am Chem Soc 2020; 142:19602-19610. [PMID: 33108194 DOI: 10.1021/jacs.0c08360] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP+ and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1β, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanxia Pan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jia Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou 215123, Jiangsu, China
| | | | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Collaborative innovation Center of radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
41
|
Wang Y, Wang S, Huang M, Chen F. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Cui L, Shen J, Ai S, Wang X, Zhang CY. In-situ synthesis of covalent organic polymer thin film integrates with palladium nanoparticles for the construction of a cathodic photoelectrochemical cytosensor. Biosens Bioelectron 2020; 168:112545. [DOI: 10.1016/j.bios.2020.112545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/26/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
|
43
|
Pu Y, Zhou M, Wang P, Wu Q, Liu T, Zhang M. An ultrasensitive electrochemiluminescence sensor based on luminol functionalized AuNPs@Fe-Co-Co nanocomposite as signal probe for glutathione determination. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Forgách L, Hegedűs N, Horváth I, Kiss B, Kovács N, Varga Z, Jakab G, Kovács T, Padmanabhan P, Szigeti K, Máthé D. Fluorescent, Prussian Blue-Based Biocompatible Nanoparticle System for Multimodal Imaging Contrast. NANOMATERIALS 2020; 10:nano10091732. [PMID: 32878344 PMCID: PMC7557721 DOI: 10.3390/nano10091732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
(1) Background. The main goal of this work was to develop a fluorescent dye-labelling technique for our previously described nanosized platform, citrate-coated Prussian blue (PB) nanoparticles (PBNPs). In addition, characteristics and stability of the PB nanoparticles labelled with fluorescent dyes were determined. (2) Methods. We adsorbed the fluorescent dyes Eosin Y and Rhodamine B and methylene blue (MB) to PB-nanoparticle systems. The physicochemical properties of these fluorescent dye-labeled PBNPs (iron(II);iron(III);octadecacyanide) were determined using atomic force microscopy, dynamic light scattering, zeta potential measurements, scanning- and transmission electron microscopy, X-ray diffraction, and Fourier-transformation infrared spectroscopy. A methylene-blue (MB) labelled, polyethylene-glycol stabilized PBNP platform was selected for further assessment of in vivo distribution and fluorescent imaging after intravenous administration in mice. (3) Results. The MB-labelled particles emitted a strong fluorescent signal at 662 nm. We found that the fluorescent light emission and steric stabilization made this PBNP-MB particle platform applicable for in vivo optical imaging. (4) Conclusion. We successfully produced a fluorescent and stable, Prussian blue-based nanosystem. The particles can be used as a platform for imaging contrast enhancement. In vivo stability and biodistribution studies revealed new aspects of the use of PBNPs.
Collapse
Affiliation(s)
- László Forgách
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
- Correspondence: (L.F.); (K.S.); (D.M.); Tel.: +36-1-459-1500 (ext. 60164) (L.F.); +36-1-459-1500 (ext. 60210) (D.M.)
| | - Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
| | - Bálint Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
| | - Noémi Kovács
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Géza Jakab
- Department of Pharmaceutics, Semmelweis University, 1085 Budapest, Hungary;
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, University of Pannonia, 8200 Veszprém, Hungary;
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
- Correspondence: (L.F.); (K.S.); (D.M.); Tel.: +36-1-459-1500 (ext. 60164) (L.F.); +36-1-459-1500 (ext. 60210) (D.M.)
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary; (N.H.); (I.H.); (B.K.); (N.K.); (Z.V.)
- In Vivo Imaging Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6723 Szeged, Hungary
- CROmed Translational Research Centers, 1047 Budapest, Hungary
- Correspondence: (L.F.); (K.S.); (D.M.); Tel.: +36-1-459-1500 (ext. 60164) (L.F.); +36-1-459-1500 (ext. 60210) (D.M.)
| |
Collapse
|
45
|
Gao Y, Yu G, Xing K, Gorin D, Kotelevtsev Y, Tong W, Mao Z. Finely tuned Prussian blue-based nanoparticles and their application in disease treatment. J Mater Chem B 2020; 8:7121-7134. [PMID: 32648878 DOI: 10.1039/d0tb01248c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Prussian blue (PB) based nanostructure is a mixed-valence coordination network with excellent biosafety, remarkable photothermal effect and multiple enzyme-mimicking behaviours. Compared with other nanomaterials, PB-based nanoparticles (NPs) exhibit several unparalleled advantages in biomedical applications. This review begins with the chemical composition and physicochemical properties of PB-based NPs. The tuning strategies of PB-based NPs and their biomedical properties are systemically demonstrated. Afterwards, the biomedical applications of PB-based NPs are comprehensively recounted, mainly focusing on treatment of tumors, bacterial infection and inflammatory diseases. Finally, the challenges and future prospects of PB-based NPs and their application in disease treatment are discussed.
Collapse
Affiliation(s)
- Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuoran Xing
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Russian Federation
| | - Yuri Kotelevtsev
- Functional Genomics and RNAi Therapy CREI, Skolkovo Institute for Science and Technology, 3 Nobel Street, Skolkovo Moscow region, 143026, Russian Federation
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| |
Collapse
|
46
|
He Y, Zhou X, Zhou L, Zhang X, Ma L, Jiang Y, Gao J. Self-Reducing Prussian Blue on Ti3C2Tx MXene Nanosheets as a Dual-Functional Nanohybrid for Hydrogen Peroxide and Pesticide Sensing. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02154] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Xitong Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Xiaoning Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
47
|
Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Nanozymes in electrochemical affinity biosensing. Mikrochim Acta 2020; 187:423. [PMID: 32621150 DOI: 10.1007/s00604-020-04390-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/13/2020] [Indexed: 01/13/2023]
Abstract
Over the past decade, artificial nanomaterials that exhibit properties similar to those of enzymes are gaining attraction in electrochemical biosensing as highly stable and low-cost alternatives to enzymes. This review article discusses the main features of the various nanomaterials (metal oxide, metal, and carbon-based materials) explored so far to mimic different kinds of enzymes. The unprecedented opportunities imparted by these functional nanomaterials or their nanohybrids, mostly providing peroxidase-like activity, in electrochemical affinity biosensing are critically discussed mainly in connection with their use as catalytic labels or electrode surface modifiers by highlighting representative strategies reported in the past 5 years with application in the food, environmental, and biomedical fields. Apart from outlining the pros and cons of nanomaterial-based enzyme mimetics arising from the impressive development they have experienced over the last few years, current challenges and future directions for achieving their widespread use and exploiting their full potential in the development of electrochemical biosensors are discussed. Graphical abstract.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| |
Collapse
|
48
|
Busquets MA, Estelrich J. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today 2020; 25:1431-1443. [PMID: 32492486 DOI: 10.1016/j.drudis.2020.05.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
Abstract
Prussian blue nanoparticles (PBNPs) are a nanomaterial that presents unique properties and an excellent biocompatibility. They can be synthesized in mild conditions and can be derivatized with polymers and/or biomolecules. PBNPs are used in biomedicine as therapy and diagnostic agents. In biomedical imaging, PBNPs constitute contrast agents in photoacoustic and magnetic resonance imaging (MRI). They are a good adsorbent to be used as antidotes for poisoning with cesium and/or thallium ions. Moreover, the ability to convert energy into heat makes them useful photothermal agents (PAs) in photothermal therapy (PTT) or as nonantibiotic substances with antibacterial properties. Finally, PBNPs can be both reduced to Prussian white and oxidized to Prussian green. A large window of redox potential exists between reduction and oxidation, which result in the enzyme-like characteristics of these NPs.
Collapse
Affiliation(s)
- Maria Antònia Busquets
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31, 08028 Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology, IN2UB, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
49
|
Wu X, Xiong J, Liu S, Chen B, Liang S, Lou W, Zong M. Peroxidase Encapsulated in Peroxidase Mimics via in situAssembly with Enhanced Catalytic Performance. ChemCatChem 2020. [DOI: 10.1002/cctc.201902055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoling Wu
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Jun Xiong
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Shuli Liu
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Bin Chen
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Shan Liang
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| | - Wenyong Lou
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
- Innovation Center of Bioactive Molecule Development and ApplicationSouth China Institute of Collaborative Innovation Dongguan 221116 P.R. China
| | - Minhua Zong
- Lab of Applied Biocatalysis School of Food Science and EngineeringSouth China University of Technology Guangzhou 510640 P.R. China
| |
Collapse
|
50
|
Sahar S, Zeb A, Ling C, Raja A, Wang G, Ullah N, Lin XM, Xu AW. A Hybrid VO x Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic via Cascade Reactions. ACS NANO 2020; 14:3017-3031. [PMID: 32105066 DOI: 10.1021/acsnano.9b07886] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inspired by the cascade reactions occurring in micro-organelles of living systems, we have developed a hybrid hydrogel, a nanozyme that mimics three key enzymes including peroxidase, superoxide dismutase, and catalase. The organic/inorganic nanostructured hydrogel constituting VOx incorporated hexacyanoferrate Berlin green analogue complex (VOxBG) is prepared by a simple one-step hydrothermal process, and its composition, structure, and properties are thoroughly investigated. Polyvinylpyrrolidone, a low-cost and biocompatible polymer, was utilized as a scaffold to increase the surface area and dispersion of the highly active catalytic centers of the nanozyme. Compared to the widely used horseradish peroxidase in enzyme-linked immunosorbent assay, our VOxBG analogue hydrogel displays an excellent affinity toward the chromogenic substrate that is used in these peroxidase-based assays. This higher affinity makes it a competent nanozyme for detection and oxidation of biomolecules, including glucose, in a cascade-like system which can be further used for hydrogel photolithography. The VOxBG analogue hydrogel also holds a good ability for the rapid and efficient oxidative degradation of environmentally unfriendly recalcitrant substrates under light irradiation. Detailed mechanistic studies of this multifaceted material suggest that different complex catalytic processes and routes are involved in these photo-Fenton and Fenton reactions that are responsible for the generation as well as consumption of reactive oxygen species, which are effectively activated by a multienzyme mimetic of the VOxBG analogue hydrogel.
Collapse
Affiliation(s)
- Shafaq Sahar
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Akif Zeb
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Cong Ling
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Amna Raja
- Department of Environmental Medicine, New York University, New York, New York 10010, United States
| | - Gang Wang
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Naseeb Ullah
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiao-Ming Lin
- Key Laboratory for Energy Conversion and Storage, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|