1
|
Naharwal S, Dinkar Kharat N, Bajaj K, Panda SS, Sakhuja R. Rhodium-Catalyzed Functionalization and Annulation of N-Aryl Phthalazinediones with Allyl Alcohols. Chem Asian J 2024:e202400711. [PMID: 39176435 DOI: 10.1002/asia.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
A direct ortho-Csp2-H acylalkylation of 2-aryl-2,3-dihydrophthalazine-1,4-diones with unsubstituted and substituted allyl alcohols is achieved in high yields through Rh(III)-catalyzed C-H bond activation process. The additional employment of Cu(OAc)2⋅2H2O as an oxidant detour the reaction towards [4+1] annulation, producing 13-(2-oxopropyl)-13H-indazolo[1,2-b]phthalazine-6,11-diones in moderate yields. Interestingly, Lawesson's reagent-mediated conditions accomplished intramolecular cyclization in ortho-(formylalkylated)-2,3-dihydrophthalazine-1,4-diones to produce diazepino[1,2-b]phthalazine-diones in moderate yields. Furthermore, allyl alcohol showcased distinct reactivity in presence of different additives to produce ortho-allylated, oxidative and non-oxidative [4+2] annulated products.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Narendra Dinkar Kharat
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Siva S Panda
- Department of Chemistry and Biochemistry & Department, of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, 30912, USA
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
2
|
Nipate DS, Meena N, Swami PN, Rangan K, Kumar A. Rh(III)-catalyzed oxidative [4+2] annulation of 2-arylquinoxalines and 2-aryl-2 H-indazoles with allyl alcohols. Chem Commun (Camb) 2024; 60:344-347. [PMID: 38078491 DOI: 10.1039/d3cc04600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Synthesis of functionalized benzo[a]phenazines and indazolo[2,3-a]quinolines has been developed through Rh(III)-catalyzed oxidative annulation of 2-arylquinoxalines and 2-aryl-2H-indazoles with allyl alcohols, respectively. The method features a broad substrate scope, excellent functional group tolerance, good to high yields of annulated products, and scaled-up synthesis capability. Based on a preliminary mechanistic investigation, a tentative mechanism of annulation reaction has been proposed.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
3
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
4
|
Ren XY, Feng XX, Zhang HY, Zhang Y, Zhao J, Han YP, Liang YM. Lewis Acid Catalyzed [4 + 2] Annulation of Propargylic Alcohols with 2-Vinylanilines. J Org Chem 2023; 88:16007-16017. [PMID: 37906678 DOI: 10.1021/acs.joc.3c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An elegant Lewis acid catalyzed, protection-free, and straightforward synthetic strategy for the assembly of a series of sophisticated polycyclic quinoline skeletons employing propargylic alcohols and 2-vinylanilines as the substrates in the presence of Yb(OTf)3 (10 mol %) and AgOTf (10 mol %) in tetrahydrofuran has been described. This annulation protocol, which proceeds through a sequential Meyer-Schuster rearrangement/nucleophilic substitution/deprotonation sequence, provides a versatile, practical, and atom-economical approach for accessing quinoline derivatives in moderate-to-good yields.
Collapse
Affiliation(s)
- Xi-Yan Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xiang-Xuan Feng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Yan X, Pi C, Cui X, Cui X, Wu Y. 2-Butyne Biscarbonate as a "Bridge" in Rhodium(III)-Catalyzed [4 + 2] Cyclization and Diels-Alder Reaction. Org Lett 2023; 25:2953-2957. [PMID: 37087759 DOI: 10.1021/acs.orglett.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Described herein is the development of an unprecedented approach to construct multiple heterocycles with high selectivity through Rh(III)-catalyzed two- or three-component cyclization reaction from simple and readily available starting materials: N-methoxybenzamides, 2-butyne biscarbonate, and maleimides. This methodology provides an efficient strategy for the synthesis of diverse and complicated heterocycles in a one-pot manner and displays excellent features of extremely mild reaction conditions, easy operation, excellent regioselectivity, and good functional group compatibility.
Collapse
Affiliation(s)
- Xinxin Yan
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiaofan Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
6
|
Wu H, Gui J, Sun M, Ma Y, Yang J, Wang Z. Palladium-Catalyzed C-H Allylation/Annulation Reaction of Amides and Allylic Alcohols: Regioselective Construction of Vinyl-Substituted 3,4-Dihydroisoquinolones. J Org Chem 2023; 88:3871-3882. [PMID: 36864592 DOI: 10.1021/acs.joc.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A palladium-catalyzed highly regioselective C-H allylation/annulation reaction of N-sulfonyl amides with secondary or tertiary allylic alcohols has been developed to construct 3,4-dihydroisoquinolones bearing a synthetically valuable vinyl substituent. This cascade cyclization approach of allylic alcohols involving C-H allylation has not been reported previously. The commercially available allylic alcohol substrates, the only by-product of water, and the used terminal oxidant of O2 provide environmentally benign advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
7
|
Ishikawa S, Togashi R, Ueda R, Onodera S, Kochi T, Kakiuchi F. Rhodium-Catalyzed β-Acylalkylation of Allylbenzene Derivatives with Allyl Alcohols via C-C Bond Cleavage. J Org Chem 2023. [PMID: 36787647 DOI: 10.1021/acs.joc.2c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We report here a deallylative β-acylalkylation reaction of allylbenzene derivatives with allyl alcohols in the presence of Cp*Rh catalysts. Allylbenzenes possessing pyridyl and pyrazolyl directing groups were converted to β-aryl ketones via the cleavage of C(aryl)-C(allyl) bonds. Synthesis of a quinoline derivative from a β-aryl ketone product bearing a pyrazolyl group was also achieved.
Collapse
Affiliation(s)
- Soya Ishikawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryo Togashi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryosuke Ueda
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunsuke Onodera
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
8
|
Nagtilak PJ, Mane MV, Prasad S, Cavallo L, Tantillo DJ, Kapur M. Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons. Chemistry 2023; 29:e202203055. [PMID: 36197081 DOI: 10.1002/chem.202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manoj V Mane
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnatak, 562112, India
| | - Supreeth Prasad
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
9
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
10
|
Manikpuri D, Pradhan DR, Chatterjee B, Gunanathan C. Ruthenium-catalyzed acceptorless dehydrogenation of heterocycles. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Model Compounds. Angew Chem Int Ed Engl 2022; 61:e202206284. [DOI: 10.1002/anie.202206284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Fritz E. Kühn
- Molecular Catalysis Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Chang Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
12
|
Das J, Pal T, Ali W, Sahoo SR, Maiti D. Pd-Catalyzed Dual-γ-1,1-C(sp 3)–H Activation of Free Aliphatic Acids with Allyl–O Moieties. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumeet Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Linkages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yangming Ding
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Tenglong Guo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Zhewei Li
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Bo Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Fritz E. Kühn
- Technical University of Munich: Technische Universitat Munchen Catalysis Research Center and Department of Chemistry GERMANY
| | - Chang Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jian Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Dezhu Xu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Ming Lei
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Tao Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Changzhi Li
- Dalian Institute of Chemical Physics 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
14
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Jiang J, Liu J, Yang Z, Zheng J, Tian X, Zheng L, Liu ZQ. Rhodium(III)-catalyzed oxidative annulation of isoquinolones with allyl alcohols: synthesis of isoindolo[2,1- b]isoquinolin-5(7 H)-ones. Org Biomol Chem 2022; 20:339-344. [PMID: 34908095 DOI: 10.1039/d1ob02305e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient rhodium(III)-catalyzed direct C-H oxidative annulation of isoquinolones with allyl alcohols as C1 synthons has been successfully developed. This protocol enables the straightforward synthesis of structurally diverse isoindolo[2,1-b]isoquinolin-5(7H)-ones with high atom economy, tolerates a broad spectrum of functionalities, and is applicable to one-pot operation from readily available N-methoxybenzamides.
Collapse
Affiliation(s)
- Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Jieying Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Xin Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
16
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ghora S, Sreenivasulu C, Satyanarayana G. A Domino Heck Coupling–Cyclization–Dehydrogenative Strategy for the One-Pot Synthesis of Quinolines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1589-7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient, one-pot, domino synthesis of quinolines via the coupling of iodoanilines with allylic alcohols facilitated by palladium catalysis is described. The overall synthetic process involves an intermolecular Heck coupling between 2-iodoanilines and allylic alcohols, intramolecular condensation of in situ generated ketones with an internal amine functional group, and a dehydrogenation sequence. Notably, this protocol occurs in water as a green solvent. Significantly, the method exhibits broad substrate scope and is applied for the synthesis of deuterated quinolines through a deuterium-exchange process.
Collapse
|
18
|
Huang H, Wang H, Gong C, Zhuang Z, Feng W, Wu SH, Wang L. Synthesis of 2-trifluoromethylquinolines through rhodium-catalysed redox-neutral [3 + 3] annulation between anilines and CF3-ynones using traceless directing groups. Org Chem Front 2022. [DOI: 10.1039/d1qo01478a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rhodium-catalysed [3 + 3]-cycloaddition of acetanilides with CF3-ynones was achieved through a traceless directing-group strategy, which delivered 2-trifluromethylquinolines exhibiting favorable blue emissions.
Collapse
Affiliation(s)
- Haichao Huang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Hailong Wang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Chao Gong
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Wenmin Feng
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou, 362021, P. R. China
| |
Collapse
|
19
|
|
20
|
|
21
|
Jiang G, Yang G, Liu X, Wang S, Ji F. Palladium-catalyzed sequential acylation/annulation of indoles with acyl chlorides using primary amine as the directing group. NEW J CHEM 2021. [DOI: 10.1039/d0nj04406g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient, palladium(ii)-catalyzed, C(sp2)–H acylation/annulation of indoles with acyl chlorides for the synthesis of substituted indolo[1,2-a]quinazolines is reported.
Collapse
Affiliation(s)
- Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- People's Republic of China
| | - Guang Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- People's Republic of China
| | - Xinqiang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin 541004
- People's Republic of China
| |
Collapse
|
22
|
Si T, Kim HY, Oh K. One-Pot Tandem ortho-Naphthoquinone-Catalyzed Aerobic Nitrosation of N-Alkylanilines and Rh(III)-Catalyzed C-H Functionalization Sequence to Indole and Aniline Derivatives. J Org Chem 2021; 86:1152-1163. [PMID: 33354972 DOI: 10.1021/acs.joc.0c02776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nitroso group served as a traceless directing group for the C-H functionalization of N-alkylanilines, ultimately removed after functioning either as an internal oxidant or under subsequent reducing conditions. The unique ability of o-NQ catalysts to aerobically oxidize the N-alkylanilines without using solvents and stoichiometric amounts of oxidants has rendered the new opportunity to develop the telescoped catalyst systems without a need for directly handling the hazardous N-nitroso compounds.
Collapse
Affiliation(s)
- Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
23
|
Pan Q, Wang J, Wang Q, Li H, Wu Y. Synthesis of 2‐Trifluoromethyl Quinolines from α,β‐Unsaturated Trifluoromethyl Ketones: Regiochemistry Reversal Comparing to the Standard Skraup‐Doebner‐Von Miller Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qian‐Wen Pan
- School of Marine Science and Technology Harbin Institute of Technology No. 2, Wenhuaxi Road Weihai 264209 P. R. China
| | - Jun‐Hu Wang
- School of Marine Science and Technology Harbin Institute of Technology No. 2, Wenhuaxi Road Weihai 264209 P. R. China
| | - Qi Wang
- School of Marine Science and Technology Harbin Institute of Technology No. 2, Wenhuaxi Road Weihai 264209 P. R. China
| | - Hui‐Jing Li
- School of Marine Science and Technology Harbin Institute of Technology No. 2, Wenhuaxi Road Weihai 264209 P. R. China
| | - Yan‐Chao Wu
- School of Marine Science and Technology Harbin Institute of Technology No. 2, Wenhuaxi Road Weihai 264209 P. R. China
- Weihai ChuanghuiEnvironmental Protection Technology Co., Ltd No. 3–2, Shichangdadao Road Weihai 264200 P. R. China
| |
Collapse
|
24
|
Xuan DD. Recent Progress in the Synthesis of Quinolines. Curr Org Synth 2020; 16:671-708. [PMID: 31984888 DOI: 10.2174/1570179416666190719112423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Quinoline-containing compounds present in both natural and synthetic products are an important class of heterocyclic compounds. Many of the substituted quinolines have been used in various areas including medicine as drugs. Compounds with quinoline skeleton possess a wide range of bioactivities such as antimalarial, anti-bacterial, anthelmintic, anticonvulsant, antiviral, anti-inflammatory, and analgesic activity. Due to such a wide range of applicability, the synthesis of quinoline derivatives has attracted a lot of attention of chemists to develop effective methods. Many known methods have been expanded and improved. Furthermore, various new methods for quinoline synthesis have been established. This review will focus on considerable studies on the synthesis of quinolines date which back to 2014. OBJECTIVE In this review, we discussed recent achievements on the synthesis of quinoline compounds. Some classical methods have been modified and improved, while other new methods have been developed. A vast variety of catalysts were used for these transformations. In some studies, quinoline synthesis reaction mechanisms were also displayed. CONCLUSION Many methods for the synthesis of substituted quinoline rings have been developed recently. Over the past five years, the majority of those reported have been based on cycloisomerization and cyclization processes. Undoubtedly, more imaginative approaches to quinoline synthesis will appear in the literature in the near future. The application of known methods to natural product synthesis is probably the next challenge in the field.
Collapse
Affiliation(s)
- Duc Dau Xuan
- Department of Chemistry, Institute of Natural Science, Vinh University, Vinh City, Vietnam
| |
Collapse
|
25
|
Li A, Luo C, Wu F, Zheng S, Li L, Zhang J, Chen L, Liu K, Zhou C. Mesoporous HBeta zeolite obtained via zeolitic dissolution–recrystallization successive treatment for vapor-phase Doebner–Von Miller reaction to quinolines. NEW J CHEM 2020. [DOI: 10.1039/d0nj04539j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous HBeta zeolite was obtained via zeolitic dissolution–recrystallization successive treatment, and exhibited enhanced selectivity to Q, anti-alkylation ability and stability in the vapor-phase Doebner–Von Miller reaction.
Collapse
Affiliation(s)
- An Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - CaiWu Luo
- School of Environmental Protection and Safety Engineering
- University of South China
- Hengyang
- China
| | - Fen Wu
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - ShuQin Zheng
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - LiJun Li
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - JianCe Zhang
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - Liang Chen
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - Kun Liu
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| | - Congshan Zhou
- Province Key Laboratory for Fine Petrochemical Catalysis and Separation
- College of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang
- P. R. China
| |
Collapse
|
26
|
Carral-Menoyo A, Sotomayor N, Lete E. Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mechanistic insights and recent applications. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00789g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent developments in Pd(0)- and Pd(ii)-catalysed alkenylation reactions for the synthesis of quinolines focusing on mechanistic understanding.
Collapse
Affiliation(s)
- Asier Carral-Menoyo
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU
- 48080 Bilbao
- Spain
| | - Nuria Sotomayor
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU
- 48080 Bilbao
- Spain
| | - Esther Lete
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU
- 48080 Bilbao
- Spain
| |
Collapse
|
27
|
Singh D, Kumar GS, Kapur M. Oxazolinyl-Assisted Ru(II)-Catalyzed C–H Allylation with Allyl Alcohols and Synthesis of 4-Methyleneisochroman-1-ones. J Org Chem 2019; 84:12881-12892. [DOI: 10.1021/acs.joc.9b01536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
28
|
Ghosh C, Nagtilak PJ, Kapur M. Rhodium(III)-Catalyzed Directed C-H Dienylation of Anilides with Allenes Leads to Highly Conjugated Systems. Org Lett 2019; 21:3237-3241. [PMID: 30998382 DOI: 10.1021/acs.orglett.9b00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allenes are unique coupling partners in transition-metal-catalyzed C-H functionalization leading to a variety of products via alkenylation, allenylation, allylation, and annulation reactions. The outcome is governed by both the reactivity of the allene and the formation and stability of the organometallic intermediate. An efficient Rh(III)-catalyzed, weakly coordinating group-directed dienylation of electronically unbiased allenes is developed using an N-acyl amino acid as a ligand. Further elaboration of the dienylated products to construct polycyclic compounds is also described.
Collapse
Affiliation(s)
- Chiranjit Ghosh
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| | - Manmohan Kapur
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| |
Collapse
|
29
|
Efficient Synthesis of Functionalized Indene Derivatives via Rh(III)‐Catalyzed Cascade Reaction between Oxadiazoles and Allylic Alcohols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Jiang G, Wang S, Zhang J, Yu J, Zhang Z, Ji F. Palladium‐Catalyzed Primary Amine‐Directed Decarboxylative Annulation of
α
‐Oxocarboxylic Acids: Access to Indolo[1,2‐
a
]quinazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| | - Jun Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| | - Jianwen Yu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| | - Ziang Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and BioengineeringGuilin University of Technology Guilin 541004 People's Republic of China
| |
Collapse
|
31
|
Ahn DK, Kang YW, Woo SK. Oxidative Deprotection of p-Methoxybenzyl Ethers via Metal-Free Photoredox Catalysis. J Org Chem 2019; 84:3612-3623. [PMID: 30781954 DOI: 10.1021/acs.joc.8b02951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient and greener deprotection method for p-methoxybenzyl (PMB) ethers using a metal-free visible light photoredox catalyst and air and ammonium persulfate as the terminal oxidants is presented. Various functional groups and protecting groups were tolerated in the developed method to achieve good to excellent yields in short reaction times. Significantly, the developed method was compatible with PMB ethers derived from primary, secondary, and tertiary alcohols and a gram-scale reaction. Mechanistic studies support a proposed reaction mechanism that involves single electron oxidation of the PMB ether.
Collapse
Affiliation(s)
- Deok Kyun Ahn
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| | - Young Woo Kang
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| | - Sang Kook Woo
- Department of Chemistry , University of Ulsan , 93 Daehak-Ro , Nam-Gu, Ulsan 44610 , Korea
| |
Collapse
|
32
|
Naruto H, Togo H. Preparation of 2-arylquinolines from β-arylpropionitriles with aryllithiums and NIS through iminyl radical-mediated cyclization. Org Biomol Chem 2019; 17:5760-5770. [DOI: 10.1039/c9ob00944b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of β-arylpropionitriles with aryllithiums, followed by the reaction with water and then with NIS under irradiation with a tungsten lamp gave 2-arylquinolines in good to moderate yields.
Collapse
Affiliation(s)
- Hiroki Naruto
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| | - Hideo Togo
- Graduate School of Science
- Chiba University
- Chiba 263-8522
- Japan
| |
Collapse
|
33
|
Kumar P, Garg V, Kumar M, Verma AK. Rh(iii)-catalyzed alkynylation: synthesis of functionalized quinolines from aminohydrazones. Chem Commun (Camb) 2019; 55:12168-12171. [DOI: 10.1039/c9cc06205j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rhodium-catalyzed, chemo- and regioselective synthesis of functionalized quinolines using 2-aminohydrazones and terminal alkynes has been described.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Chemistry
- University of Delhi
- Delhi-11007
- India
| | - Vineeta Garg
- Department of Chemistry
- University of Delhi
- Delhi-11007
- India
| | - Manoj Kumar
- Department of Chemistry
- University of Delhi
- Delhi-11007
- India
| | | |
Collapse
|
34
|
Li X, Zhang F, Wu D, Liu Y, Xu G, Peng Y, Liu Z, Huang Y. Rhodium(III)-catalyzed C-H alkylation of heterocycles with allylic alcohols in water: A reusable catalytic system for the synthesis of β-aryl ketones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Kumar GS, Khot NP, Kapur M. Oxazolinyl‐Assisted Ru(II)‐Catalyzed C−H Functionalization Based on Carbene Migratory Insertion: A One‐Pot Three‐Component Cascade Cyclization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801362] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| | - Nandkishor Prakash Khot
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066, MP India
| |
Collapse
|
36
|
Faggyas RJ, Grace M, Williams L, Sutherland A. Multibond Forming Tandem Reactions of Anilines via Stable Aryl Diazonium Salts: One-Pot Synthesis of 3,4-Dihydroquinolin-2-ones. J Org Chem 2018; 83:12595-12608. [DOI: 10.1021/acs.joc.8b01910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Réka J. Faggyas
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Megan Grace
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Lewis Williams
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
37
|
Malinowski Z, Fornal E, Warpas A, Nowak M. Synthesis of benzoquinoline derivatives from formyl naphthylamines via Friedländer annulation under metal-free conditions. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2268-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
39
|
Kumar GS, Chand T, Singh D, Kapur M. Ruthenium-Catalyzed C–H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between C–H Alkenylation and C–H Alkylation Pathways. Org Lett 2018; 20:4934-4937. [DOI: 10.1021/acs.orglett.8b02064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Tapasi Chand
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, MP 462066, India
| |
Collapse
|
40
|
Zhu L, Jiang YY, Fan X, Liu P, Ling BP, Bi S. Mechanism of Palladium-Catalyzed Alkylation of Aryl Halides with Alkyl Halides through C–H Activation: A Computational Study. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Bao-Ping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
41
|
Reddy ACS, Anbarasan P. Copper catalyzed oxidative coupling of ortho-vinylanilines with N-tosylhydrazones: Efficient synthesis of polysubstituted quinoline derivatives. J Catal 2018. [DOI: 10.1016/j.jcat.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
|
43
|
Zhou X, Xia J, Zheng G, Kong L, Li X. Divergent Coupling of Anilines and Enones by Integration of C−H Activation and Transfer Hydrogenation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xukai Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jintao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangfan Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lingheng Kong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingwei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
44
|
Zhou X, Xia J, Zheng G, Kong L, Li X. Divergent Coupling of Anilines and Enones by Integration of C-H Activation and Transfer Hydrogenation. Angew Chem Int Ed Engl 2018; 57:6681-6685. [PMID: 29663592 DOI: 10.1002/anie.201803347] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/06/2022]
Abstract
Cp*RhIII /IrIII complexes are known to play important roles in both C-H activation and transfer hydrogenation (TH). However, these two areas evolved separately. They have been integrated in redox- and chemodivergent coupling reactions of N-pyridylanilines with enones. The iridium-catalyzed coupling with enones leads to the efficient synthesis of tetrahydroquinolines through TH from i PrOH. Counterintuitively, i PrOH does not serve as the sole hydride source, and the major reaction pathway involves disproportionation of a dihydroquinoline intermediate, followed by the convergent and iterative reduction of quinolinium species.
Collapse
Affiliation(s)
- Xukai Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jintao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangfan Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingheng Kong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingwei Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
45
|
Tulichala RNP, Shankar M, Swamy KCK. Palladium-Catalyzed Decarboxylative ortho-Amidation of Indole-3-carboxylic Acids with Isothiocyanates Using Carboxyl as a Deciduous Directing Group. J Org Chem 2018; 83:4375-4383. [PMID: 29554415 DOI: 10.1021/acs.joc.8b00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palladium-catalyzed ortho-amidation of indole-3-carboxylic acids with isothiocyanates by using the deciduous directing group nature of carboxyl functionality to afford indole-2-amides is demonstrated. Both C-H functionalization and decarboxylation took place in one pot, and hence, this carboxyl group served as a unique, deciduous (or traceless) directing group. This reaction offers a broad substrate scope as demonstrated for several other heterocyclic carboxylic acids like chromene-3-carboxylic acid, imidazo[1,2- a]pyridine-2-carboxylic acid, benzofuran-2-carboxylic acid, pyrrole-2-carboxylic acid, and thiophene-2-carboxylic acid. In the reaction using 2-naphthoic acid, of the two possible isomers, only one isomer of the amide was exclusively formed. The indole-2-amide product underwent palladium-catalyzed C-H functionalization to afford the diindole-fused 2-pyridones by combining two molecules of the indole moiety, with the elimination of an amide group from one of them, attached at the C3-position for the C-C/C-N bond formation. The structures of key products are confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- R N Prasad Tulichala
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| | - Mallepalli Shankar
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| | - K C Kumara Swamy
- School of Chemistry , University of Hyderabad , Hyderabad , Telangana 500 046 , India
| |
Collapse
|
46
|
Bao L, Liu J, Xu L, Hu Z, Xu X. Divergent Synthesis of Quinoline Derivatives via [5+1] Annulation of 2-Isocyanochalcones with Nitroalkanes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800152] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lan Bao
- Chemistry and Chemical Engineering College, Inner Mongolia Key Laboratory of Natural Chemistry and Synthesis of Functional Molecules; Inner Mongolia University for Nationalities; Tongliao 028043 People's Republic of China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| | - Jinglin Liu
- Chemistry and Chemical Engineering College, Inner Mongolia Key Laboratory of Natural Chemistry and Synthesis of Functional Molecules; Inner Mongolia University for Nationalities; Tongliao 028043 People's Republic of China
| | - Liang Xu
- Chemistry and Chemical Engineering College, Inner Mongolia Key Laboratory of Natural Chemistry and Synthesis of Functional Molecules; Inner Mongolia University for Nationalities; Tongliao 028043 People's Republic of China
| | - Zhongyan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science; Shandong Normal University; Jinan 250014 People's Republic of China
| |
Collapse
|
47
|
Xia YQ, Li C, Liu M, Dong L. Ruthenium-Catalyzed Selective C−C Coupling of Allylic Alcohols with Free Indoles: Influence of the Metal Catalyst. Chemistry 2018; 24:5474-5478. [PMID: 29575207 DOI: 10.1002/chem.201706080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ying-Qi Xia
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Chao Li
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Man Liu
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Lin Dong
- Key laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
48
|
Kumar GS, Singh D, Kumar M, Kapur M. Palladium-Catalyzed Aerobic Oxidative Coupling of Allylic Alcohols with Anilines in the Synthesis of Nitrogen Heterocycles. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00287] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Diksha Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
49
|
Du Y, Liu Y, Wan JP. Copper-Catalyzed One-Pot N-Acylation and C5–H Halogenation of 8-Aminoquinolines: The Dual Role of Acyl Halides. J Org Chem 2018; 83:3403-3408. [DOI: 10.1021/acs.joc.8b00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi Du
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
50
|
Peng F, Liu J, Li L, Chen Z. Copper-Catalyzed Tandem Reaction of Enamino Esters with ortho
-Halogenated Aromatic Carbonyls: One-Pot Approach to Functionalized Quinolines. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fei Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Jin Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Lili Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; College of Pharmaceutical Sciences; Zhejiang University of Technology; Chao Wang Road 18th 310014 Hangzhou China
| |
Collapse
|