1
|
Zhang L, Yu Y, Ding K, Ji C, Zhang D, Liang P, Tang BZ, Feng G. Tumor microenvironment ameliorative and adaptive nanoparticles with photothermal-to-photodynamic switch for cancer phototherapy. Biomaterials 2025; 313:122771. [PMID: 39190940 DOI: 10.1016/j.biomaterials.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.
Collapse
Affiliation(s)
- Le Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Yuewen Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu, 241001, China
| | - Chao Ji
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Di Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ping Liang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Zheng J, Wang X, Du H, Zhang R, Huo X, Zhou T, Zhang G, Wang F, Zhou Q, Zhang Z. Multifunctional Ru(III)/Fe 3O 4/DNA nanoplatform for photothermal-enhanced photodynamic and chemodynamic cancer therapy. J Inorg Biochem 2024; 262:112771. [PMID: 39504917 DOI: 10.1016/j.jinorgbio.2024.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Among the many cancer treatment methods, there have been many reports on the use of nanoplatforms with single treatment methods such as photothermal, photodynamic or chemodynamic for cancer treatment. In this study, Ru(III) with photodynamic effect and Fe3O4 nanoparticles with photothermal and chemodynamic effects are connected through long DNA chains with efficient active targeting rolling circle amplification to construct Ru(III)/Fe3O4/DNA nano-platform realizes the combination of photothermal, photodynamic and chemodynamic treatment, which significantly improves the therapeutic effect of the nano-platform. Its multiple active targeting capabilities reduce the damage to normal cells. Ru(III) has excellent photodynamic effect and can catalyze the respiration product NADH (Nicotinamide adenine dinucleotide)to produce highly oxidizing H2O2. Fe3O4 NPs has weak absorption at 808 nm indicates that it can perform mild photothermal treatment, and the Fe2+ in it can react with H2O2 to produce ·OH and participate in chemodynamic treatment. Each repeating unit on the rolling circle amplified DNA long chain is connected to the AS1411 aptamer that can actively target cancer cells. Unlike the passive targeting of other nanomedicines, active and efficient targeting is achieved, and a small amount of drugs can achieve high efficacy. The therapeutic effect also reduces the damage to normal cells. The comprehensive killing effect of Ru(III)/Fe3O4/DNA can reach 85.1 %. Its high targeting of cancer cells can also be used for imaging detection of cancer cells. This new nanoplatform provides an idea for the synergy of multiple cancer treatments.
Collapse
Affiliation(s)
- Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaobing Huo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qianxiong Zhou
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
3
|
Su Q, Wang Z, Zhou H, Zhang M, Deng W, Wei X, Xiao J, Duan X. Eradication of Large Tumors by Nanoscale Drug Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410536. [PMID: 39420689 DOI: 10.1002/adma.202410536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Most patients with cancer are first diagnosed at an advanced disease stage, when tumors are already large and/or metastases are present. This circumstance has a negative impact on the prognosis and therapeutic effect of anticancer drugs. In this study, it is demonstrated that photosensitizer chlorin e6 and the photochemotherapy drug mitoxantrone self-assemble into relatively stable nanoassemblies (CM NAs) through hydrogen-bonding effect, π-π stacking, and hydrophobic interactions. Administration of CM NAs in combination with 660 nm laser irradiation shows chemotherapeutic, photothermal, and photodynamic effects, causing tumor cell apoptosis and pyroptosis and enabling noninvasive tumor ablation without compromising the surrounding normal tissue. More importantly, treatment with CM NAs increases tumor immunogenicity, leading to a strong and long-term antitumor immune response that eradicates large tumors and provides long-term protection against tumor recurrence on various tumor models.
Collapse
Affiliation(s)
- Qianyi Su
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenyu Wang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Huimin Zhou
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Miaomiao Zhang
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjia Deng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Wei
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Yang S, Hu X, Yong Z, Dou Q, Quan C, Cheng HB, Zhang M, Wang J. GSH-responsive bithiophene Aza-BODIPY@HMON nanoplatform for achieving triple-synergistic photoimmunotherapy. Colloids Surf B Biointerfaces 2024; 242:114109. [PMID: 39047644 DOI: 10.1016/j.colsurfb.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Siao Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhengze Yong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
5
|
Han Z, Liang Y, Li Y, Yuan M, Zhan X, Yan J, Sun Y, Luo K, Zhao B, Li F. Programmed Cascade Polydopamine Nanoclusters for Pyroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401397. [PMID: 38898735 DOI: 10.1002/smll.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Pyroptosis, an inflammatory cell death, plays a pivotal role in activating inflammatory response, reversing immunosuppression and enhancing anti-tumor immunity. However, challenges remain regarding how to induce pyroptosis efficiently and precisely in tumor cells to amplify anti-tumor immunotherapy. Herein, a pH-responsive polydopamine (PDA) nanocluster, perfluorocarbon (PFC)@octo-arginine (R8)-1-Hexadecylamine (He)-porphyrin (Por)@PDA-gambogic acid (GA)-cRGD (R-P@PDA-GC), is rationally design to augment phototherapy-induced pyroptosis and boost anti-tumor immunity through a two-input programmed cascade therapy. Briefly, oxygen doner PFC is encapsulated within R8 linked photosensitizer Por and He micelles as the core, followed by incorporation of GA and cRGD peptides modified PDA shell, yielding the ultimate R-P@PDA-GC nanoplatforms (NPs). The pH-responsive NPs effectively alleviate hypoxia by delivering oxygen via PFC and mitigate heat resistance in tumor cells through GA. Upon two-input programmed irradiation, R-P@PDA-GC NPs significantly enhance reactive oxygen species production within tumor cells, triggering pyroptosis via the Caspase-1/GSDMD pathway and releasing numerous inflammatory factors into the TME. This leads to the maturation of dendritic cells, robust infiltration of cytotoxic CD8+ T and NK cells, and diminution of immune suppressor Treg cells, thereby amplifying anti-tumor immunity.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xin Zhan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
6
|
Wang H, Zhao R, Peng L, Yu A, Wang Y. A Dual-Function CD47-Targeting Nano-Drug Delivery System Used to Regulate Immune and Anti-Inflammatory Activities in the Treatment of Atherosclerosis. Adv Healthc Mater 2024; 13:e2400752. [PMID: 38794825 DOI: 10.1002/adhm.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Atherosclerosis is a primary contributor to cardiovascular disease. Current studies have highlighted the association between the immune system, particularly immune cells, and atherosclerosis, although treatment options and clinical trials remain scarce. Immunotherapy for cardiovascular disease is still in its infancy. Bruton's tyrosine kinase (BTK), widely expressed in various immune cells, represents a promising therapeutic target for atherosclerosis by modulating the anti-inflammatory function of immune cells. This study introduces a polydopamine-based nanocarrier system to deliver the BTK inhibitor, ibrutinib, to atherosclerotic plaques with an active targeting property via an anti-CD47 antibody. Leveraging polydopamine's pH-sensitive reversible disassembly, the system offers responsive, controlled release within the pathologic microenvironment. This allows precise and efficient ibrutinib delivery, concurrently inhibiting the activation of the NF-κB pathway in B cells and the NLRP3 inflammasome in macrophages within the plaques. This treatment also modulates both the immune cell microenvironment and inflammatory conditions in atherosclerotic lesions, thereby conveying promising therapeutic effects for atherosclerosis in vivo. This strategy also provides a novel option for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ao Yu
- Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Lu W, Wang N, Liu X, Chen D, Li Q, Rui J, Ning W, Shi X, Li C, Zhao Y, He A, Teng Z. Matrix-degrading soft-nanoplatform with enhanced tissue penetration for amplifying photodynamic therapeutic efficacy of breast cancer. J Mater Chem B 2024; 12:7837-7847. [PMID: 39016097 DOI: 10.1039/d4tb00894d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The dense extracellular matrix (ECM) in the tumor microenvironment forms an abnormal physical barrier, which impedes the delivery and penetration of nanomedicines and hinders their therapeutic efficacy. Herein, we synthesize matrix-degrading soft-nanocapsules composed of human serum albumin (HSA) and hyaluronidase (HAase) for overcoming the obstruction of ECM in the tumor microenvironment. The matrix-degrading human serum albumin/hyaluronidase soft-nanocapsules, referred to as HSA/HAase SNCs, possess a uniform diameter, inward hollow structure, and wrinkled morphology. In vitro biocompatibility results indicate that the HSA/HAase SNCs display no adverse effects on the viability of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs), and mouse breast cancer (4T1) cells and do not induce hemolysis towards red blood cells (RBCs). The HSA/HAase SNCs exhibit a 1.4-fold increase in tumor cellular uptake compared to the stiff-counterparts and enhanced penetration in 4T1-, mouse colon carcinoma 26- (CT26-), and mouse pancreatic cancer- (PanO2-) multicellular spheroids. Thanks to the advanced biological properties, a photodynamic platform prepared by loading Ce6 in the HSA/HAase SNCs (HSA/HAase@Ce6) shows improved reactive oxygen species production, a stronger killing effect for cancer cells, and deeper penetration in tumor tissues. In vivo experiments show that HSA/HAase@Ce6 effectively inhibits tumor growth in breast cancer mouse models. RNA-seq analysis of the mice that received the treatment of HSA/HAase@Ce6 shows enrichment of signaling pathways associated with ECM-degradation, which demonstrates that the matrix-degrading nanocapsules overcome the ECM-induced physical barriers in tumors. Overall, the matrix-degrading soft-nanoplatform represents a highly promising strategy to overcome ECM-induced physical barriers and enhance the therapeutic efficacy of nanomedicines.
Collapse
Affiliation(s)
- Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Ning Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Xiao Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Dong Chen
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Jianxin Rui
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Weiqing Ning
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Xuzhi Shi
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Chang Li
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 213161, P. R. China
| | - Ao He
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China.
| |
Collapse
|
8
|
Yang F, Cao X, Yang T, Feng W, Tong Q, Liu K, Wu L, Lin H, Fan Q. H 2S-Responsive NIR-II Fluorescent Nanozyme that Regulates Tumor Microenvironment for Activatable Synergistic CO Therapy/Catalytic Therapy/Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402904. [PMID: 39128139 DOI: 10.1002/smll.202402904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Nanozyme catalytic therapy triggered by the tumor microenvironment (TME)-responsive enzyme-like catalytic activities is an emerging approach for tumor treatment. However, the poor catalytic efficiency of nanozymes in tumors and the toxic side effects on normal tissues limit their further development, primarily due to the limited uptake and penetration depth of nanozyme in tumor tissues. Here, a tumor-targeting TME and electric field stimuli-responsive nanozyme (AgPt@CaCO3-FA) is developed, which is capable of catalyzing the generation of ROS to induce cell death and releasing carbon monoxide (CO) specifically in tumor tissues for on-demand CO therapy and immunotherapy. Benefiting from the endogenous H2S activated NIR-II fluorescence (FL) imaging guidance, AgPt@CaCO3-FA can be delivered into the deeper site of tumor tissues resulted from the TME regulation via generated CO during the electrolysis process to improve the catalytic efficiency of nanozymes in tumors. Moreover, CO effectively relieve immunosuppression TME via reeducating tumor-supportive M2-like macrophages to tumoricidal M1-like macrophages and induce mitochondrial dysfunction by reducing mitochondrial membrane potential, triggering tumor cells apoptosis. The enzyme-like activities combined with CO therapy arouse distinct immunogenic cell death (ICD) effect. Therefore, AgPt@CaCO3-FA permits synergistic CO gas, catalytic therapy and immunotherapy, effectively eradicating orthotopic breast tumors and preventing tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Fangqi Yang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiang Cao
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Tonglin Yang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Weifang Feng
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qiang Tong
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ketong Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Huihui Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
9
|
Chang Y, Xu KQ, Yang XL, Xie MH, Mo Z, Li ML, Ju HX. Zinc hexacyanoferrate/g-C 3N 4 nanocomposites with enhanced photothermal and photodynamic properties for rapid sterilization and wound healing. Colloids Surf B Biointerfaces 2024; 240:113998. [PMID: 38823340 DOI: 10.1016/j.colsurfb.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Photoactivated therapy has gradually emerged as a promising and rapid method for combating bacteria, aimed at overcoming the emergence of drug-resistant strains resulting from the inappropriate use of antibiotics and the subsequent health risks. In this work, we report the facile fabrication of Zn3[Fe(CN)6]/g-C3N4 nanocomposites (denoted as ZHF/g-C3N4) through the in-situ loading of zinc hexacyanoferrate nanospheres onto two-dimensional g-C3N4 sheets using a simple metal-organic frameworks construction method. The ZHF/g-C3N4 nanocomposite exhibits enhanced antibacterial activity through the synergistic combination of the excellent photothermal properties of ZHF and the photodynamic capabilities of g-C3N4. Under dual-light irradiation (420 nm + 808 nm NIR), the nanocomposites achieve remarkable bactericidal efficacy, eliminating 99.98% of Escherichia coli and 99.87% of Staphylococcus aureus within 10 minutes. Furthermore, in vivo animal experiments have demonstrated the outstanding capacity of the composite in promoting infected wound healing, achieving a remarkable wound closure rate of 99.22% after a 10-day treatment period. This study emphasizes the potential of the ZHF/g-C3N4 nanocomposite in effective antimicrobial applications, expanding the scope of synergistic photothermal/photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yi Chang
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China
| | - Ke-Qiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Xiu-Li Yang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ming-Hua Xie
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhao Mo
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng-Lin Li
- Department of Basic Medical, Jiangsu Vocational College of Medicine, Yancheng 224005, PR China
| | - Hui-Xiang Ju
- The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng 224001, PR China.
| |
Collapse
|
10
|
Zhang S, Zhang S, Luo S, Wang R, Di J, Wang Y, Wu D. Four-component of double-layer infinite coordination polymer nanocomposites for large tumor trimodal therapy via multi high-efficiency synergies. J Colloid Interface Sci 2024; 666:259-275. [PMID: 38598998 DOI: 10.1016/j.jcis.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Multimodal /components tumors synergistic therapy is a crucial approach for enhancing comprehensive efficacy. Our research has identified lots of high efficiency synergies among four suitable components, revealing combinations with remarkably low combination index (CI) values (10-3-10-8). These combinations hold promise for large tumor powerful electrothermal-thermodynamic-multi-chemo trimodal therapy. To implement this approach, we developed four-component of double-layer infinite coordination polymer (ICP) nanocomposites, in which hypoxia-activated AQ4N and thermodynamic agent AIPH coordinated with Cu(Ⅱ) to form initial layer of positively charged ICPs-l NPs, chemotherapeutic agents gossypol-hyaluronic acid (G-HA) and CA4 coordinated with Fe(Ⅲ) to form out layer of negatively charged ICPs-2 NPs, then double-layer infinite coordination polymer nanocomposites (ICPs-1@ICPs-2 CNPs) were fabricated by electrostatic adsorption using ICPs-l NPs and ICPs-2 NPs. Cell experiments have extensively optimized the coordination combinations of the four components and the composition of the two layers. A programmable three-stage therapeutic procedure, assisted by a micro-electrothermal needle (MEN), was developed. Under this procedure the resulting nanocomposites demonstrate the powerful trimodal comprehensive therapeutic outcomes for large tumors using lower components dosage, achieving a tumor inhibition rate nearly reaching 100 % and no recurrence for 60 days. This study offers remarkable potential for tumor multimodal /components synergistic therapy in future.
Collapse
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Rong Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
11
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
12
|
Wang Y, Xu Y, Song J, Liu X, Liu S, Yang N, Wang L, Liu Y, Zhao Y, Zhou W, Zhang Y. Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int J Nanomedicine 2024; 19:5837-5858. [PMID: 38887692 PMCID: PMC11182360 DOI: 10.2147/ijn.s466042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Phototherapy, known for its high selectivity, few side effects, strong controllability, and synergistic enhancement of combined treatments, is widely used in treating diseases like cervical cancer. Methods In this study, hollow mesoporous manganese dioxide was used as a carrier to construct positively charged, poly(allylamine hydrochloride)-modified nanoparticles (NPs). The NP was efficiently loaded with the photosensitizer indocyanine green (ICG) via the addition of hydrogen phosphate ions to produce a counterion aggregation effect. HeLa cell membrane encapsulation was performed to achieve the final M-HMnO2@ICG NP. In this structure, the HMnO2 carrier responsively degrades to release ICG in the tumor microenvironment, self-generates O2 for sensitization to ICG-mediated photodynamic therapy (PDT), and consumes GSH to expand the oxidative stress therapeutic effect [chemodynamic therapy (CDT) + PDT]. The ICG accumulated in tumor tissues exerts a synergistic PDT/photothermal therapy (PTT) effect through single laser irradiation, improving efficiency and reducing side effects. The cell membrane encapsulation increases nanomedicine accumulation in tumor tissues and confers an immune evasion ability. In addition, high local temperatures induced by PTT can enhance CDT. These properties of the NP enable full achievement of PTT/PDT/CDT and targeted effects. Results Mn2+ can serve as a magnetic resonance imaging agent to guide therapy, and ICG can be used for photothermal and fluorescence imaging. After its intravenous injection, M-HMnO2@ICG accumulated effectively at mouse tumor sites; the optimal timing of in-vivo laser treatment could be verified by near-infrared fluorescence, magnetic resonance, and photothermal imaging. The M-HMnO2@ICG NPs had the best antitumor effects among treatment groups under near-infrared light conditions, and showed good biocompatibility. Conclusion In this study, we designed a nano-biomimetic delivery system that improves hypoxia, responds to the tumor microenvironment, and efficiently loads ICG. It provides a new economical and convenient strategy for synergistic phototherapy and CDT for cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yiyan Xu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Jiayu Song
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Xueting Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Sijia Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Nan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yujie Liu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yiwei Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, 410219, People’s Republic of China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
13
|
Li M, Liu Z, Tang J, Cheng L, Xue Y, Liu Y, Liu J. Facile Synthesis of a Multifunctional Porous Organic Polymer Nanosonosensitizer (mHM@HMME) for Enhanced Cancer Sonodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28104-28117. [PMID: 38769350 DOI: 10.1021/acsami.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Sonodynamic therapy (SDT), which involves the activation of sonosensitizers to generate cytotoxic reactive oxygen species under ultrasound irradiation, is a promising noninvasive modality for cancer treatment. However, the clinical translational application of SDT is impeded by the lack of efficient sonosensitizers, the inefficient accumulation of sonosensitizers at tumor sites, and the complicated immunosuppressive tumor microenvironment. Herein, we developed a facilely synthesized multifunctional porous organic polymer nanosonosensitizer (mHM@HMME) for enhanced SDT. Specifically, mHM@HMME nanosonosensitizers were prepared by incorporating chemotherapeutic mitoxantrone into the one-step synthesis process of disulfide bond containing porous organic polymers, followed by loading with organic sonosensitizer (HMME) and camouflaging with a cancer cell membrane. Due to the cancer cell membrane camouflage, this multifunctional mHM@HMME nanosonosensitizer showed prolonged blood circulation and tumor targeting aggregation. Under ultrasound irradiation, the mHM@HMME nanosonosensitizer exhibited a satisfactory SDT performance both in vitro and in vivo. Moreover, the potent SDT combined with glutathione-responsive drug release in tumor cells induced robust immunogenic cell death to enhance the antitumor effect of SDT in turn. Overall, this facilely synthesized multifunctional mHM@HMME nanosonosensitizer shows great potential application in enhanced SDT.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - LiLi Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
14
|
Hu X, Zhang M, Quan C, Ren S, Chen W, Wang J. ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact Mater 2024; 36:490-507. [PMID: 39055351 PMCID: PMC11269796 DOI: 10.1016/j.bioactmat.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Immunogenic cell death (ICD) represents a modality of apoptosis distinguished by the emanation of an array of damage-related molecular signals. This mechanism introduces a novel concept in the field of contemporary tumor immunotherapy. The inception of reactive oxygen species (ROS) within tumor cells stands as the essential prerequisite and foundation for ICD induction. The formulation of highly efficacious photodynamic therapy (PDT) nanomedicines for the successful induction of ICD is an area of significant scientific inquiry. In this work, we devised a ROS-responsive and triple-synergistic mitochondria-targeted polymer micelle (CAT/CPT-TPP/PEG-Ce6, CTC) that operates with multistage amplification of ROS to achieve the potent induction of ICD. Utilizing an "all-in-one" strategy, we direct both the PDT and chemotherapeutic units to the mitochondria. Concurrently, a multistage cyclical amplification that caused by triple synergy strategy stimulates continuous, stable, and adequate ROS generation (domino effect) within the mitochondria of cells. Conclusively, influenced by ROS, tumor cell-induced ICD is effectively activated, remodeling immunogenicity, and enhancing the therapeutic impact of PDT when synergized with chemotherapy. Empirical evidence from in vitro study substantiates that CTC micelles can efficiently provoke ICD, catalyzing CRT translocation, the liberation of HMGB1 and ATP. Furthermore, animal trials corroborate that polymer micelles, following tail vein injection, can induce ICD, accumulate effectively within tumor tissues, and markedly inhibit tumor growth subsequent to laser irradiation. Finally, transcriptome analysis was carried out to evaluate the changes in tumor genome induced by CTC micelles. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Saisai Ren
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| |
Collapse
|
15
|
Xu J, Huang BB, Lai CM, Lu YS, Shao JW. Advancements in the synthesis of carbon dots and their application in biomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112920. [PMID: 38669742 DOI: 10.1016/j.jphotobiol.2024.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
As a sort of fluorescent carbon nanomaterial with a particle size of less than 10 nm, carbon dots (CDs) have their own merits of good dispersibility in water, stable optical properties, strong chemical inertness, stable optical properties, and good biosecurity. These excellent peculiarities facilitated them like sensing, imaging, medicine, catalysis, and optoelectronics, making them a new star in the field of nanotechnology. In particular, the development of CDs in the fields of chemical probes, imaging, cancer therapy, antibacterial and drug delivery has become a hot topic in current research. Although the biomedical applications in CDs have been demonstrated in many research articles, a systematic summary of their role in biomedical applications is scarce. In this review, we introduced the basic information of CDs in detail, including synthesis approaches of CDs as well as their favorable properties including photoluminescence and low cytotoxicity. Subsequently, the application of CDs in the field of biomedicine was emphasized. Finally, the main challenges and research prospects of CDs in this field were proposed, which might provide some detailed information in designing new CDs in this promising biomedical field.
Collapse
Affiliation(s)
- Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bing-Bing Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu-Sheng Lu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
16
|
Shen K, Li L, Tan F, Ang CCL, Jin T, Xue Z, Wu S, Chee MY, Yan Y, Lew WS. NIR and magnetism dual-response multi-core magnetic vortex nanoflowers for boosting magneto-photothermal cancer therapy. NANOSCALE 2024; 16:10428-10440. [PMID: 38742446 DOI: 10.1039/d4nr00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Due to the relatively low efficiency of magnetic hyperthermia and photothermal conversion, it is rather challenging for magneto-photothermal nanoagents to be used as an effective treatment during tumor hyperthermal therapy. The advancement of magnetic nanoparticles exhibiting a vortex-domain structure holds great promise as a viable strategy to enhance the application performance of conventional magnetic nanoparticles while retaining their inherent biocompatibility. Here, we report the development of Mn0.5Zn0.5Fe2O4 nanoflowers with ellipsoidal magnetic cores, and show them as effective nanoagents for magneto-photothermal synergistic therapy. Comparative studies were conducted on the heating performance of anisometric Mn0.5Zn0.5Fe2O4 (MZF) nanoparticles, including nanocubes (MZF-C), hollow spheres (MZF-HS), nanoflowers consisting of ellipsoidal magnetic cores (MZF-NFE), and nanoflowers consisting of needle-like magnetic cores (MZF-NFN). MZF-NFE exhibits an intrinsic loss parameter (ILP) of up to 15.3 N h m2 kg-1, which is better than that of commercial equivalents. Micromagnetic simulations reveal the magnetization configurations and reversal characteristics of the various MZF shapes. Additionally, all nanostructures displayed a considerable photothermal conversion efficiency rate of more than 18%. Our results demonstrated that by combining the dual exposure of MHT and PTT for hyperthermia treatments induced by MZF-NFE, BT549, MCF-7, and 4T1 cell viability can be significantly decreased by ∼95.7% in vitro.
Collapse
Affiliation(s)
- Kaiming Shen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Funan Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Calvin Ching Lan Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Zongguo Xue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Shuo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Yunfei Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
17
|
Cheng J, Li J, Yu Q, Li P, Huang J, Li J, Guan L, Xu Z, Xiao J, Duan X. Laser-activable murine ferritin nanocage for chemo-photothermal therapy of colorectal cancer. J Nanobiotechnology 2024; 22:297. [PMID: 38812019 PMCID: PMC11134727 DOI: 10.1186/s12951-024-02566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.
Collapse
Affiliation(s)
- Jinmei Cheng
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaxin Li
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qilin Yu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peishan Li
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junyi Huang
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinhui Li
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Leyang Guan
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyong Xu
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jisheng Xiao
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Cardiology, Heart Center, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaopin Duan
- Department of General Surgery, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Chen G, Xiong M, Jiang C, Zhao Y, Chen L, Ju Y, Jiang J, Xu Z, Pan J, Li X, Wang K. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Bioorg Chem 2024; 148:107494. [PMID: 38797067 DOI: 10.1016/j.bioorg.2024.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Near-infrared (NIR) responsive nanoparticles are an important platform for multimodal phototherapy. Importantly, the simultaneous NIR-triggered photodynamic (PDT) and photothermal (PTT) therapy is a powerful approach to increase the antitumor efficiency of phototherapic nanoparticles due to the synergistic effect. Herein, a boron dipyrromethene (BODIPY)-based amphiphilic dye with enhanced electron donor-acceptor-donor (D-A-D) structure (BDP-AP) was designed and synthesized, which could self-assemble into stable nanoparticles (BDP-AP NPs) for the synergistic NIR-triggered PDT/PTT therapy. BDP-AP NPs synchronously generated singlet oxygen (1O2) and achieved preeminent photothermal conversion efficiency (61.42%). The in vitro and in vivo experiments showed that BDP-AP NPs possessed negligible dark cytotoxicity and infusive anticancer performance. BDP-AP NPs provide valuable guidance for the construction of PDT/PTT-synergistic NIR nanoagents to improve the efficiency of photoinduced cancer therapy in the future.
Collapse
Affiliation(s)
- Gang Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Mengmeng Xiong
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Chen Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yimei Zhao
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Li Chen
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Yunlong Ju
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jun Jiang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China; Hubei Province Engineering Centre of Performance Chemicals, Wuhan 430062, PR China.
| | - Zekun Xu
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Jie Pan
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China
| | - Xiang Li
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| | - Kai Wang
- School of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, PR China.
| |
Collapse
|
19
|
Li J, Xing Y, Chen X. Intercalating of AIEgens into MoS 2 nanosheets to induce crystal phase transform for enhanced photothermal and photodynamic synergetic anti-tumor therapy. Talanta 2024; 271:125677. [PMID: 38245956 DOI: 10.1016/j.talanta.2024.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
A MoS2-based nanotherapeutic platform was developed for synergetic photothermal and photodynamic anti-tumor therapy. AIEgens TFPy-SH molecules were intercalated into MoS2 nanosheets (MoS2 NSs) with S-deficiencies to give the nanocomposite MoS2-TFPy. The AIEgens intercalation expanded the interlayer spacing of MoS2 NSs and induced the transform of MoS2 crystal phase from 2H to 1T, offering MoS2-TFPy nanocomposite high molar absorption coefficient (5.65 L g-1 cm-1), excellent photothermal conversion efficiency under near-infrared (NIR) laser irradiation (38.3%), and favorable intracellular reactive oxygen species (ROS) generation capacity. The positively charged MoS2-TFPy were mainly distributed in mitochondria after cell up-taking, and achieved 1+1>2 anti-tumor effect attributed to its favorable photothermal and photodynamic properties. The high structure and physiological stability, favorable biocompatibility, excellent photothermal and photodynamic therapy effect make the MoS2-TFPy nanoplatform an promising candidate in biomedical clinical applications.
Collapse
Affiliation(s)
- Jiaxin Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yanzhi Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
20
|
Yin W, Li J, Ma Y, Li W, Huo Y, Zhao Z, Ji S. Precise molecular engineering for the preparation of pyridinium photosensitizers with efficient ROS generation and photothermal conversion. Phys Chem Chem Phys 2024; 26:10156-10167. [PMID: 38495015 DOI: 10.1039/d3cp05718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Organic photosensitizers (PSs) with aggregation-induced emission properties have great development potential in the integrated application of multi-mode diagnosis and treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). However, preparing high-quality PSs with both optical and biological properties, high reactive oxygen species (ROS) and photothermal conversion ability are undoubtedly a great challenge. In this work, a series of pyridinium AIE PSs modified with benzophenone have been synthesized. A wide wavelength range of fluorescent materials was obtained by changing the conjugation and donor-acceptor strength. TPAPs5 has a significant advantage over similar compounds, and we have also identified the causes of high ROS generation and high photothermal conversion in terms of natural transition orbitals, excited state energy levels, ground-excited state configuration differences and recombination energy. Interestingly, migration of target sites was also found in biological imaging experiments, which also provided ideas for the design of double-targeted fluorescent probes. Therefore, the present work proposed an effective molecular design strategy for synergistic PDT and PTT therapy.
Collapse
Affiliation(s)
- Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yucheng Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
21
|
Dai R, Liu Q, Zhang B, Zhang X, Gao M, Li D, Kang W, Chen L, Zhao M, Zheng Z, Zhang R. A Single NIR-II Laser-Triggered Self-Enhancing Photo/Enzyme-coupled Three-in-One Nanosystems for Breast Cancer Phototheranostics. Adv Healthc Mater 2024; 13:e2302783. [PMID: 38016674 DOI: 10.1002/adhm.202302783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Multifunctional phototheranostics, employing precise and non-invasive techniques, is widely developed to enhance theranostic efficiency of breast cancer (BC), reduce side-effects, and improve quality of life. Integrating all phototheranostic modalities into a single photosensitizer for highly effective BC treatment is particularly challenging due to the potential inefficiency and time consumption associated with repeated switching of multiple-wavelength lasers. Herein, a novel single NIR-II laser-triggered three-in-one nanosystem(PdCu NY) is rationally designed, which enables dual-modal (NIR-II FL/NIR-II PA) imaging-guided self-enhancing photothermal-photodynamic therapy (PTT-PDT) in NIR-II window. The PdCu NY based on optimal Pd/Cu molar-ratio(1:11) can be easily fabricated and large-scale production for simultaneous PTT-PDT against BC under a single 1064nm laser irradiation. Significantly, the PdCu NY acted as a promising photocatalyst for decomposition of H2O into O2 upon the same laser irradiation. In addition, the inherent catalase (CAT)-like activity of PdCu NYs enables photo-enzyme dual-catalytic O2 supply to effectively alleviate hypoxia, achieving self-enhanced PDT efficiency. These PTT-PDT self-enhanced nanosystems demonstrate precise lesion localization and complete tumor ablation using a single 1064nm laser source by "one-laser, multi-functions" strategy. More importantly, this study not only reports a three-in-one PdCu-based phototheranostic agent, but also sheds light on the exploration of versatile biosafety nanosystems for clinical applications.
Collapse
Affiliation(s)
- Rong Dai
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qi Liu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
- Department of Radiology, Shanxi cardiovascular hospital, Taiyuan, 030000, China
| | - Binyue Zhang
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Zhang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Mengting Gao
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dongsheng Li
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Weiwei Kang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Chen
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Mingxin Zhao
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Ziliang Zheng
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- Department of Radiology, First hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
22
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
23
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
24
|
Sun X, Wu C, Tian X, Wang P, Guo J, Shao Z, Wei Q. Activation of Dopamine Receptor D1 and Downstream Cellular Functions by Polydopamine. ACS Biomater Sci Eng 2024; 10:420-428. [PMID: 38142403 DOI: 10.1021/acsbiomaterials.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polydopamine is a remarkable molecule that has gained considerable attention for its role in material surface modification, leading to an abundance of research in the biomaterial domain. While its widespread use is well documented, the molecule's potential cellular interactions have been less explored. In particular, dopamine serves as a neurotransmitter and a hormone that interacts with dopamine receptors in cells. Our study sheds light on the previously unexamined interaction between polydopamine and dopamine receptor D1 (DRD1). We discovered that polydopamine, along with its derivatives, such as levodopa and catechol, can activate DRD1─a function previously attributed solely to dopamine. Moreover, we found that polydopamine has the ability to influence cell behavior through the cAMP/PKA pathway, thereby affecting RhoA activity and stress fiber formation. These observations invite further consideration regarding the biological safety of polydopamine in biomedical contexts and also open avenues for new research directions in designing bioactive functional materials.
Collapse
Affiliation(s)
- Xin Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Junling Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, University of British, Columbia Vancouver, BC V6T 1Z4, Canada
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
26
|
Zhang X, He Z. Cell Membrane Coated pH-Responsive Intelligent Bionic Delivery Nanoplatform for Active Targeting in Photothermal Therapy. Int J Nanomedicine 2023; 18:7729-7744. [PMID: 38115989 PMCID: PMC10729683 DOI: 10.2147/ijn.s436940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Aim To produce pH-responsive bionic high photothermal conversion nanoparticles actively targeting tumors for sensitizing photothermal therapy (PTT). Materials and Methods The bionic nanoparticles (ICG-PEI@HM NPs) were prepared by electrostatic adsorption of indocyanine green (ICG) coupled to polyethyleneimine (PEI) and modified with tumor cell membranes. In vitro and in vivo experiments were conducted to investigate the efficacy of ICG-PEI@HM-mediated PTT. Results The intelligent responsiveness of ICG-PEI@HM to pH promoted the accumulation of ICG and enhanced the PTT performance of ICG-PEI@HM NPs. Compared with free ICG, NPs exhibited great photothermal stability, cellular uptake, and active tumor targeting for PTT. Conclusion ICG-PEI@HM NPs can enhance the efficacy of PTT and can be used as a new strategy for the construction of photothermal agents.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Zelai He
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College & Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
27
|
Zhang G, Lu Y, Song J, Huang D, An M, Chen W, Han P, Yao X, Zhang X. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration. J Colloid Interface Sci 2023; 652:1673-1684. [PMID: 37666199 DOI: 10.1016/j.jcis.2023.08.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
After resection of bone tumour, the risk of cancer recurrence and numerous bone defects continues to threaten the health of patients. To overcome the challenge, we developed a novel multifunctional scaffold material consisting mainly of nano-hydroxyapatite particles (n-HA), MXene nanosheets and g-C3N4 to prevent tumour recurrence and promote bone formation. N-HA has the potential to restrict the growth of osteosarcoma cells, and the combination of MXene and g-C3N4 enables the scaffolds to produce photodynamic and photothermal effects simultaneously under near infrared (NIR) irradiation. Surprisingly, n-HA can further enhance the synergistic anti-tumour function of photodynamic and photothermal, and the scaffolds can eradicate osteosarcoma cells in only 10 min at a mild temperature of 45 ℃. Moreover, the scaffold exhibit exceptional cytocompatibility and possesses the capacity to induce osteogenic differentiation of bone marrow mesenchymal stem cells. Therefore, this multifunctional scaffold can not only inhibits the proliferation of bone tumour cells and rapidly eradicate bone tumour through NIR irradiation, but also enhances osteogenic activity. This promising measure can be used to treat tissue damage after bone tumour resection.
Collapse
Affiliation(s)
- Guannan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China
| | - Ying Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China
| | - Jianbo Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Meiwen An
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiangyu Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
28
|
Lei L, Dai W, Man J, Hu H, Jin Q, Zhang B, Tang Z. Lonidamine liposomes to enhance photodynamic and photothermal therapy of hepatocellular carcinoma by inhibiting glycolysis. J Nanobiotechnology 2023; 21:482. [PMID: 38102658 PMCID: PMC10724989 DOI: 10.1186/s12951-023-02260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has great promise in the treatment of cancer. However, there are many obstacles that can restrict the therapeutic efficacy of phototherapy. The hypoxic tumor microenvironment can restrict the production of reactive oxygen species (ROS) in PDT. As for PTT, the thermotolerance of cancer cells may lead to ineffective PTT. In this study, IR780 and glycolysis inhibitor lonidamine (LND)-encapsulated liposomes are prepared for photodynamic and photothermal therapy of hepatocellular carcinoma. IR780 can be used as a photosensitizer and photothermal agent for simultaneous PDT and PTT after being irradiated with 808 nm laser. LND can reduce the oxygen consumption of cancer cells by inhibiting glycolysis, which will relieve tumor hypoxia and produce more ROS for PDT. On the other hand, energy supply can be blocked by LND-induced glycolysis inhibition, which will inhibit the production of heat shock proteins (HSPs), reduce the thermotolerance of tumor cells, and finally enhance the therapeutic efficacy of PTT. The enhanced PTT is studied by measuring intracellular HSPs, ATP level, and mitochondrial membrane potential. The antitumor effect of IR780 and LND co-loaded liposomes is extensively investigated by in vitro and in vivo experiments. This research provides an innovative strategy to simultaneously enhance the therapeutic efficacy of PDT and PTT by inhibiting glycolysis, which is promising for future creative approaches to cancer phototherapy.
Collapse
Affiliation(s)
- Lei Lei
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaping Man
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Guo Y, Li L, Huang S, Sun H, Shao Y, Li Z, Song F. Exploring Linker-Group-Guided Self-Assembly of Ultrathin 2D Supramolecular Nanosheets in Water for Synergistic Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54851-54862. [PMID: 37968254 DOI: 10.1021/acsami.3c13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Water is ubiquitous in natural systems where it builds an essential environment supporting biological supramolecular polymers to function, transport, and exchange. However, this extreme polar environment becomes a hindrance for the superhydrophobic functional π-conjugated molecules, causing significant negative impacts on regulating their aggregation pathways, structures, and properties of the subsequently assembled nanomaterials. It especially makes the self-assembly of ultrathin two-dimensional (2D) functional nanomaterials by π-conjugated molecules a grand challenge in water, although ultrathin 2D functional nanomaterials have exhibited unique and superior properties. Herein, we demonstrate the organic solvent-free self-assembly of one-molecule-thick 2D nanosheets based on exploring how side chain modifications rule the aggregation behaviors of π-conjugated macrocycles in water. Through an in-depth understanding of the roles of linking groups for side chains on affecting the aggregation behaviors of porphyrins in water, the regulation of molecular arrangement in the aggregated state (H- or J-type aggregation) was attained. Moreover, by arranging ionic porphyrins into 2D single layers through J-aggregation, the ultrathin nanosheets (thickness ≈ 2 nm) with excellent solubility and stability were self-assembled in pure water, which demonstrated both outstanding 1O2 generation and photothermal capability. The ultrathin nanosheets were further investigated as metal- and carrier-free nanodrugs for synergetic phototherapies of cancers both in vitro and in vivo, which are highly desirable by combining the advantages and avoiding the disadvantages of the single use of PDT or PTT.
Collapse
Affiliation(s)
- Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lukun Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yutong Shao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
30
|
Yang Z, Yang X, Guo Y, Kawasaki H. A Review on Gold Nanoclusters for Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2023; 6:4504-4517. [PMID: 37828759 DOI: 10.1021/acsabm.3c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.
Collapse
Affiliation(s)
- Zhuoren Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| |
Collapse
|
31
|
Shen K, Li L, Tan F, Wu S, Jin T, You J, Chee MY, Yan Y, Lew WS. Hollow spherical Mn 0.5Zn 0.5Fe 2O 4 nanoparticles with a magnetic vortex configuration for enhanced magnetic hyperthermia efficacy. NANOSCALE 2023; 15:17946-17955. [PMID: 37905375 DOI: 10.1039/d3nr03655c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Conventional magnetic nanoagents in cancer hyperthermia therapy suffer from a low magnetic heating efficiency. To address this issue, researchers have pursued magnetic nanoparticles with topological magnetic domain structures, such as the vortex-domain structure, to enhance the magnetic heating performance of conventional nanoparticles while maintaining excellent biocompatibility. In this study, we synthesized hollow spherical Mn0.5Zn0.5Fe2O4 (MZF-HS) nanoparticles using a straightforward solvothermal method, yielding samples with an average outer diameter of approximately 350 nm and an average inner diameter of about 220 nm. The heating efficiency of the nanoparticles was experimentally verified, and the specific absorption rate (SAR) value of the hollow MZF was found to be approximately 1.5 times that of solid MZF. The enhanced heating performance is attributed to the vortex states in the hollow MZF structure as validated with micromagnetic simulation studies. In vitro studies demonstrated the lower cell viability of breast cancer cells (MCF-7, BT549, and 4T1) after MHT in the presence of MZF-HS. The synthesized MZF caused 51% cell death after MHT, while samples of MZF-HS resulted in 77% cell death. Our findings reveal that magnetic particles with a vortex state demonstrate superior heating efficiency, highlighting the potential of hollow spherical particles as effective heat generators for MHT applications.
Collapse
Affiliation(s)
- Kaiming Shen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Funan Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Shuo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Jingxiang You
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Yunfei Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
32
|
Fang L, Meng Q, Zhang Y, Su R, Xing F, Yang H, Hou Y, Ma P, Huang K, Feng S. π Bridge Engineering-Boosted Dual Enhancement of Type-I Photodynamic and Photothermal Performance for Mitochondria-Targeting Multimodal Phototheranostics of Tumor. ACS NANO 2023; 17:21553-21566. [PMID: 37910516 DOI: 10.1021/acsnano.3c06542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Designing mitochondria-targeting phototheranostic agents (PTAs), which can simultaneously possess exceptional and balanced type-I photodynamic therapy (PDT) and photothermal therapy (PTT) performance, still remains challenging. Herein, benzene, furan, and thiophene were utilized as π bridges to develop multifunctional PTAs. STB with thiophene as a π bridge, in particular, benefiting from stronger donor-accepter (D-A) interactions, reduced the singlet-triplet energy gap (ΔES1-T1), allowed more free intramolecular rotation, and exhibited outstanding near-infrared (NIR) emission, effective type-I reactive oxygen species (ROS) generation, and relatively high photothermal conversion efficiency (PCE) of 51.9%. In vitro and in vivo experiments demonstrated that positive-charged STB not only can actively target the mitochondria of tumor cells but also displayed strong antitumor effects and excellent in vivo imaging ability. This work subtly established a win-win strategy by π bridge engineering, breaking the barrier of making a balance between ROS generation and photothermal conversion, boosting a dual enhancement of PDT and PTT performance, and stimulating the development of multimodal imaging-guided precise cancer phototherapy.
Collapse
Affiliation(s)
- Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, People's Republic of China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Hualei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Yuzhu Hou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Jingyue Street 1035, Changchun 130012, People's Republic of China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, People's Republic of China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, People's Republic of China
| |
Collapse
|
33
|
Yang M, Zhang Y, Hu Z, Xie H, Tian W, Liu Z. Application of hyaluronic acid-based nanoparticles for cancer combination therapy. Int J Pharm 2023; 646:123459. [PMID: 37778513 DOI: 10.1016/j.ijpharm.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Cancer is a significant public health problem in the world. The treatment methods include surgery, chemotherapy, phototherapy, and immunotherapy. Due to their respective limitations, the treatment effect is often unsatisfactory, laying hidden dangers for metastasis and recurrence. Since their exceptional biocompatibility and excellent targeting capabilities, hyaluronic acid-based biomaterials have generated great interest as drug delivery methods for tumor therapy. Moreover, modified HA can self-assemble into hydrogels or nanoparticles (NPs) for precise drug administration. This article summarizes the application of HA-based NPs in combination therapy. Ultimately, it is anticipated that this research will offer guidance for creating various HA-based NPs utilized in numerous cancer therapies.
Collapse
Affiliation(s)
- Mengru Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Haonan Xie
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenli Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Ya Z, Guo S, Li Y, Zhu M, Zhang L, Zong Y, Wan M. Focused acoustic vortex-mediated sonochemotherapy for the amplification of immunogenic cell death combined with checkpoint blockade to potentiate cancer immunotherapy. Biomaterials 2023; 301:122278. [PMID: 37598439 DOI: 10.1016/j.biomaterials.2023.122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Sonodynamic therapy (SDT) as an auxiliary modality of cancer immunotherapy enhances systemic anti-tumor immunity. However, the efficiency of SDT-mediated immunotherapy based on conventional focused ultrasound (FUS) is restricted by the tiny focal region of FUS. Focused acoustic vortex (FAV) possessing a larger focal region, can induce stronger cavitation and thermal effects than FUS with the same parameters, having the potential to overcome this issue. This research investigated the feasibility of FAV-mediated sonochemotherapy combined with the immune checkpoint blockade (ICB) to reshape immunosuppressive tumor microenvironment (TME), inhibit tumor growth and lung metastasis. Sonosensitizer chlorin e6 (Ce6) and chemotherapeutic agent doxorubicin (Dox) were co-loaded into microbubble-liposome complex to compose Ce6/Dox@Lip@MBs (CDLM) for "all-in-one" synergistic sonochemotherapy, whose main components were clinical approved. FAV-activated CDLM significantly enriched immunogenic cell death (ICD) inducers in tumors and amplified ICD of cancer cells compared with FUS-activated CDLM. Furthermore, the amplified-ICD combined with ICB increased the infiltration of cytotoxic T lymphocytes and natural killer cells, polarized M2 macrophages to M1 macrophages, and decreased regulatory T cells. This study provides a multifunctional strategy for enriching ICD inducers in tumors and amplifying ICD to ameliorate immunosuppressive TME and potentiate systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Zhen Ya
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yan Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Mingting Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
35
|
Chen Z, Yue Z, Yang K, Shen C, Cheng Z, Zhou X, Li S. Four Ounces Can Move a Thousand Pounds: The Enormous Value of Nanomaterials in Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2300882. [PMID: 37539730 DOI: 10.1002/adhm.202300882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The application of nanomaterials in healthcare has emerged as a promising strategy due to their unique structural diversity, surface properties, and compositional diversity. In particular, nanomaterials have found a significant role in improving drug delivery and inhibiting the growth and metastasis of tumor cells. Moreover, recent studies have highlighted their potential in modulating the tumor microenvironment (TME) and enhancing the activity of immune cells to improve tumor therapy efficacy. Various types of nanomaterials are currently utilized as drug carriers, immunosuppressants, immune activators, immunoassay reagents, and more for tumor immunotherapy. Necessarily, nanomaterials used for tumor immunotherapy can be grouped into two categories: organic and inorganic nanomaterials. Though both have shown the ability to achieve the purpose of tumor immunotherapy, their composition and structural properties result in differences in their mechanisms and modes of action. Organic nanomaterials can be further divided into organic polymers, cell membranes, nanoemulsion-modified, and hydrogel forms. At the same time, inorganic nanomaterials can be broadly classified as nonmetallic and metallic nanomaterials. The current work aims to explore the mechanisms of action of these different types of nanomaterials and their prospects for promoting tumor immunotherapy.
Collapse
Affiliation(s)
- Ziyin Chen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Congrong Shen
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, 150001, Harbin, P. R. China
| | - Xiaofeng Zhou
- Department of Urology, China-Japan Friendship Hospital, 100029, Beijing, P. R. China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 110042, Shenyang, P. R. China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, 110042, China
| |
Collapse
|
36
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
37
|
Jin M, Xiang J, Chen C, Zhang Z, Li Y, Tang J, Guo C. Multifunctional Antibacterial Nanoplatform Bi 2WO 6:Nd 3+/Yb 3+/Er 3+@MoS 2 with Self-Monitoring Photothermal and Photodynamic Treatment. J Phys Chem Lett 2023; 14:8213-8220. [PMID: 37672646 DOI: 10.1021/acs.jpclett.3c02042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Synergistic therapy combining photothermal therapy and photodynamic therapy is considered to be a promising approach to treat cancer, but the precise temperature control of deep tissue remains a great challenge in achieving effective treatment. Herein, a two-dimensional Bi2WO6:Nd3+/Yb3+/Er3+@MoS2 nanoplatform with photothermal and photodynamic functions was constructed, where semiconductor MoS2 serves as both a photothermal agent and a photosensitizer. The photothermal conversion performance and the reactive oxygen species generation capacity of the nanoplatform were validated under the irradiation of 808 nm laser; meanwhile, the two sets of luminescence intensity ratios (IYb3+/INd3+ and IEr3+/INd3+) in the biological window region were selected as near-infrared temperature probes to monitor the heat generated during the photosynergistic process in real time. The feasibility of nanoplatform as an intratissue temperature probe and antibacterial agent was further assessed by vitro experiments, which provides an idea for designing multifunctional photosynergistic therapy nanoplatform.
Collapse
Affiliation(s)
- Minkun Jin
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Jinmeng Xiang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Changheng Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Zhiyu Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yuexin Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Jingjing Tang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Chongfeng Guo
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
38
|
Gao S, Liu M, Liu D, Kong X, Fang Y, Li Y, Wu H, Ji J, Yang X, Zhai G. Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation. Asian J Pharm Sci 2023; 18:100851. [PMID: 37915760 PMCID: PMC10616143 DOI: 10.1016/j.ajps.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023] Open
Abstract
Growing evidence suggests that the presence of cancer stem cells (CSCs) is a major challenge in current tumor treatments, especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis. Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy. In this work, we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid (ATRA) via biomineralization. This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters, which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration. With the help of CSC differentiation induced by ATRA, IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner. Furthermore, ATRA can boost immunogenic cell death induced by phototherapy, thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells. Taken together, this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation, improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hang Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
39
|
Zhang C, Hu X, Jin L, Lin L, Lin H, Yang Z, Huang W. Strategic Design of Conquering Hypoxia in Tumor for Advanced Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2300530. [PMID: 37186515 DOI: 10.1002/adhm.202300530] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT), with its advantages of high targeting, minimally invasive, and low toxicity side effects, has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment (TME) presents hypoxia due to the low oxygen (O2 ) supply caused by abnormal vascularization in neoplastic tissues and high O2 consumption induced by the rapid proliferation of tumor cells. The efficacy of oxygen-consumping PDT can be hampered by a hypoxic TME. To address this problem, researchers have been developing advanced nanoplatforms and strategies to enhance the therapeutic effect of PDT in tumor treatment. This review summarizes recent advanced PDT therapeutic strategies to against the hypoxic TME, thus enhancing PDT efficacy, including increasing O2 content in TME through delivering O2 to the tumors and in situ generations of O2 ; decreasing the O2 consumption during PDT by design of type I photosensitizers. Moreover, recent synergistically combined therapy of PDT and other therapeutic methods such as chemotherapy, photothermal therapy, immunotherapy, and gas therapy is accounted for by addressing the challenging problems of mono PDT in hypoxic environments, including tumor resistance, proliferation, and metastasis. Finally, perspectives of the opportunities and challenges of PDT in future clinical research and translations are provided.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaoming Hu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P. R. China
| | - Long Jin
- Department of Pathology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Lisheng Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongxin Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zhen Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an, Xi'an, 710072, P. R. China
| |
Collapse
|
40
|
Zhang G, Chen X, Chen X, Du K, Ding K, He D, Ding D, Hu R, Qin A, Tang BZ. Click-Reaction-Mediated Chemotherapy and Photothermal Therapy Synergistically Inhibit Breast Cancer in Mice. ACS NANO 2023; 17:14800-14813. [PMID: 37486924 DOI: 10.1021/acsnano.3c03005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The development of functional materials for tumor immunogenicity enhancement is desirable for overcoming the low therapeutic efficiency and easy metastasis during tumor treatments. Herein, the thermoresponsive nanoparticles composed of photothermal agent (PTA) and click reactive reagent are developed for enhanced immunotherapy application. A Ni-bis(dithiolene)-containing PTA with intense near-infrared absorption and efficient photothermal conversion is developed for thermoresponsive nanoparticles construction. The generated heat by encapsulated PTA further induces the phase transition of thermoresponsive nanoparticles with the release of chemotherapy reagent to react with the amino groups on functional proteins, realizing PTT and chemotherapy simultaneously. Moreover, the immunogenic cell death (ICD) of cancer cells evoked by PTT could be further enhanced by the released reactive reagent. As a result, the synergistic effect of photothermal treatment and reaction-mediated chemotherapy can suppress the growth of a primary tumor, and the evoked ICD could further activate the immune response with the suppression of a distant tumor. This synergistic treatment strategy provides a reliable and promising approach for cancer immunotherapy in clinic.
Collapse
Affiliation(s)
- Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xu Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Kaihong Du
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of SooChow University, Jiangsu 215006, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of SooChow University, Jiangsu 215006, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
41
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
42
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
43
|
Chen Z, Wang X, Zhao N, Chen H, Guo G. Advancements in pH-responsive nanocarriers: enhancing drug delivery for tumor therapy. Expert Opin Drug Deliv 2023; 20:1623-1642. [PMID: 38059646 DOI: 10.1080/17425247.2023.2292678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Tumors pose a significant global economic and health burden, with conventional cancer treatments lacking tumor specificity, leading to limited efficiency and undesirable side effects. Targeted tumor therapy is imminent. Tumor cells produce lactate and hydrogen ions (H+) by Warburg effect, forming an acidic tumor microenvironment (TME), which can be employed to design targeted tumor therapy. Recently, progress in nanotechnology has led to the development of pH-responsive nanocarriers, which have gathered significant attention. Under acidic tumor conditions, they exhibit targeted accumulation within tumor sites and controlled release profiles of therapeutic reagents, enabling precise tumor therapy. AREAS COVERED This review comprehensively summarize the principles underlying pH-responsive features, discussing various types of pH-responsive nanocarriers, their advantages, and limitations. Innovative therapeutic drugs are also examined, followed by an exploration of recent advancements in applying various pH-responsive nanocarriers as delivery systems for enhanced tumor therapy. EXPERT OPINIONS pH-responsive nanocarriers have garnered significant attention for their capability to achieve targeted accumulation of therapeutic agents at tumor sites and controlled drug delivery profiles, ultimately increasing the efficiency of tumor eradication. It is anticipated that the employment of pH-responsive nanocarriers will elevate the effectiveness and safety of tumor therapy, contributing to improved overall outcomes.
Collapse
Affiliation(s)
- Zhouyun Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxiao Wang
- West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, Shihezi, China
| | - Haifeng Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Zhu H, Huang C, Di J, Chang Z, Li K, Zhang S, Li X, Wu D. Doxorubicin-Fe(III)-Gossypol Infinite Coordination Polymer@PDA:CuO 2 Composite Nanoparticles for Cost-Effective Programmed Photothermal-Chemodynamic-Coordinated Dual Drug Chemotherapy Trimodal Synergistic Tumor Therapy. ACS NANO 2023. [PMID: 37354436 DOI: 10.1021/acsnano.3c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
To achieve the maximum therapeutic effects and minimize adverse effects of trimodal synergistic tumor therapies, a cost-effective programmed photothermal (PTT)-chemodynamic (CDT)-coordinated dual drug chemotherapy (CT) trimodal synergistic therapy strategy in chronological order is proposed. According to the status or volumes of the tumors, the intensity and time of each therapeutic modality are optimized, and three modalities are combined programmatically and work in chronological order. The optimal synergistic therapy begins with high-intensity PTT for 10 min to ablate larger tumors, followed by medium-intensity CDT for several hours to eliminate medium-sized tumors, and then low-intensity coordinated dual drugs CT lasts over 48 h to clear smaller residual tumors. Composite nanoparticles, made of Fe-coordinated polydopamine mixed with copper peroxide as the cores and their surface dotted with lots of doxorubicin-Fe(III)-gossypol infinite coordination polymers (ICPs), have been developed to implement the strategy. These composite nanoparticles show excellent synergistic effects with the minimum dose of therapeutic agents and result in nearly 100% tumor inhibition for mice bearing PC-3 tumors and no observed recurrence within 60 days of treatment. The ratios of the different therapeutic agents in the composite nanoparticles can be adjusted to accommodate different types of tumors with this cost-effective programmed trimodal therapy strategy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zepu Chang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xueping Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
45
|
Liu N, Lin Q, Zuo W, Chen W, Huang S, Han Y, Liang XJ, Zhu X, Huo S. Carbonic anhydrase IX-targeted nanovesicles potentiated ferroptosis by remodeling the intracellular environment for synergetic cancer therapy. NANOSCALE HORIZONS 2023; 8:783-793. [PMID: 36960609 DOI: 10.1039/d2nh00494a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ferroptosis is one critical kind of regulated cell death for tumor suppression, yet it still presents challenges of low efficiency due to the intracellular alkaline pH and aberrant redox status. Herein, we reported a carbonic anhydrase IX (CA IX)-targeted nanovesicle (PAHC NV) to potentiate ferroptosis by remodeling the intracellular environment. CA IX inhibitor 4-(2-aminoethyl) benzene sulfonamide (AEBS) was anchored onto nanovesicles loaded with hemoglobin (Hb) and chlorin e6 (Ce6). Upon reaching tumor regions, PAHC could be internalized by cancer cells specifically by means of CA IX targeting and intervention. Afterwards, the binding of AEBS could elicit intracellular acidification and alter redox homeostasis to boost the lipid peroxidation (LPO) level, thus aggravating the ferroptosis process. Meanwhile, Hb served as an iron reservoir that could efficiently evoke ferroptosis and release O2 to ameliorate tumor hypoxia. With the help of self-supplied O2, Ce6 produced a plethora of 1O2 for enhanced photodynamic therapy, which in turn favored LPO accumulation to synergize ferroptosis. This study presents a promising paradigm for designing nanomedicines to heighten ferroptosis-based synergetic therapeutics through remodeling the intracellular environment.
Collapse
Affiliation(s)
- Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Wenbao Zuo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shan Huang
- Xiamen Key Laboratory of Respiratory Diseases, Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China
| | - Yinshu Han
- Xiamen Key Laboratory of Respiratory Diseases, Department of Basic Medicine, Xiamen Medical College, Xiamen 361023, China
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
46
|
Liu F, Lin J, Luo Y, Xie D, Bian J, Liu X, Yue J. Sialic acid-targeting multi-functionalized silicon quantum dots for synergistic photodynamic and photothermal cancer therapy. Biomater Sci 2023; 11:4009-4021. [PMID: 37129163 DOI: 10.1039/d3bm00339f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To explore the potential of silicon quantum dots (SiQDs) in combined photodynamic therapy (PDT) and photothermal therapy (PTT), we engineered the surface of SiQDs with the photosensitizer Ce6 and the tumor-cell-targeting ligand phenylboronic acid (PBA) via polydopamine-mediated chemistry. Upon irradiation with light of specific wavelengths, SiQDs@Ce6/PBA could generate high levels of reactive oxygen species (ROS) and trigger effective photo-to-thermal conversion. PBA-conjugation could not only increase the cellular uptake and transcellular transport capability of nanoparticles, but also enhance their tumor accumulation. In the presence of a 635 nm laser, SiQDs@Ce6/PBA was able to trigger intracellular ROS production, which further altered the mitochondrial membrane potential and promoted apoptosis of tumor cells. Finally, combined PDT/PTT treatments led to synergistically enhanced cancer cell killing and tumor-growth inhibition effects. This study demonstrates the surface engineering of silicon quantum dots for synergistic PDT/PTT cancer therapy.
Collapse
Affiliation(s)
- Fei Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiayi Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Yao Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Donglin Xie
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Xiaobo Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
47
|
Cheng F, Huang QF, Li YH, Huang ZJ, Wu QX, Wang W, Liu Y, Wang GH. Combined chemo and photo therapy of programmable prodrug carriers to overcome delivery barriers against nasopharyngeal carcinoma. BIOMATERIALS ADVANCES 2023; 151:213451. [PMID: 37150081 DOI: 10.1016/j.bioadv.2023.213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.
Collapse
Affiliation(s)
- Fan Cheng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zeng-Jin Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Quan-Xin Wu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wei Wang
- Scientific Research Service Center, Guangdong Medical University, Dongguan 523808, China
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Sun Yet-Sen University, Guangzhou 510275, China.
| |
Collapse
|
48
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
49
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
50
|
Liu Z, Zhang Z, Huang C, Di J, Lu Z, Gan Z, Cui Y, Wu D. IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels as dual-enzyme immobilized micro-systems: Preparations, photothermal-responsive dual-enzyme release, and highly efficient recycling. J Colloid Interface Sci 2023; 644:81-94. [PMID: 37094475 DOI: 10.1016/j.jcis.2023.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
To solve the problems of separating dual enzymes from the carriers of dual-enzyme immobilized micro-systems and greatly increase the carriers' recycling times, photothermal-responsive micro-systems of IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels (CFNPs-IR780@MGs) are prepared. A novel two-step recycling strategy is proposed based on the CFNPs-IR780@MGs. First, the dual enzymes and the carriers are separated from the reaction system as a whole via magnetic separation. Second, the dual enzymes and the carriers are separated through photothermal-responsive dual-enzyme release so that the carriers can be reused. Results show that CFNPs-IR780@MGs is 281.4 ± 9.6 nm with a shell of 58.2 nm, and the low critical solution temperature is 42 °C, and the photothermal conversion efficiency increases from 14.04% to 58.41% by doping 1.6% of IR780 into the CFNPs-IR780 clusters. The dual-enzyme immobilized micro-systems and the carriers are recycled 12 and 72 times, respectively, and the enzyme activity remains above 70%. The micro-systems can realize whole recycling of the dual enzymes and carriers and further recycling of the carriers, thus providing a simple and convenient recycling method for dual-enzyme immobilized micro-systems. The findings reveal the micro-systems' important application potential in biological detection and industrial production.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziwei Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yali Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|