1
|
Tupally KR, Seal P, Pandey P, Lohman R, Smith S, Ouyang D, Parekh H. Integration of Dendrimer‐Based Delivery Technologies with Computational Pharmaceutics and Their Potential in the Era of Nanomedicine. EXPLORING COMPUTATIONAL PHARMACEUTICS ‐ AI AND MODELING IN PHARMA 4.0 2024:328-378. [DOI: 10.1002/9781119987260.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Hao D, Guo X, Zhu X, Wei C, Gao L, Wang X. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters. Des Monomers Polym 2024; 27:62-86. [PMID: 39077753 PMCID: PMC11285245 DOI: 10.1080/15685551.2024.2376842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hyperbranched polyphosphate polyesters (HPPs) as a special class of hyperbranched polymers have attracted increased interest and have been intensively studied, because of peculiar structures, excellent biocompatibility, flexibility in physicochemical properties, biodegradability, water soluble, thermal stability, and mechanical properties. HPPs can be divided into phosphates as monomers and phosphates as end groups. In this article, the classification, general synthesis, modifications, and applications of HPP are reviewed. In addition, recent developments in the application of HPP are described, such as modified or functionalized by end capping and hypergrafting to improve the performances in polymer blends, coatings, flame retardant, leather. Furthermore, the modifications and application of HPPs in biomedical materials, such as drug delivery and bone regeneration were discussed. In summary, the hyperbranched polymer enlarges its application range and improves its application performance compared with conventional polymer. In the future, more new HPPs composite materials will be developed through hyperbranched technique. This review of HPPs will provide useful theoretical basis and technical support for the development of new hyperbranched polymer material.
Collapse
Affiliation(s)
- Dongyan Hao
- School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, Shaanxi, China
| | - Xiaoxiao Guo
- BioHong Corporation of Xi′an, Product development department, Xi′an, Shaanxi, China
| | - Xing Zhu
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| | - Chao Wei
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| | - Lanchang Gao
- School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, Shaanxi, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Material Engineering, Shaanxi University of Science and Technology, Xi′an, Shaanxi, China
| |
Collapse
|
3
|
Yadav S, Ramesh K, Reddy OS, Karthika V, Kumar P, Jo SH, Yoo SII, Park SH, Lim KT. Redox-Responsive Comparison of Diselenide and Disulfide Core-Cross-Linked Micelles for Drug Delivery Application. Pharmaceutics 2023; 15:pharmaceutics15041159. [PMID: 37111644 PMCID: PMC10144204 DOI: 10.3390/pharmaceutics15041159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, diselenide (Se–Se) and disulfide (S–S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)2k-b-poly(furfuryl methacrylate)1.5k (PEO2k-b-PFMA1.5k), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO2k-b-PFMA1.5k from FMA monomers and PEO2k-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels–Alder reaction. Under physiological conditions, the structural stability of both S–S and Se–Se CCL micelles was maintained; however, treatments with 10 mM GSH induced redox-responsive de-cross-linking of S–S and Se–Se bonds. In contrast, the S–S bond was intact in the presence of 100 mM H2O2, while the Se–Se bond underwent de-crosslinking upon the treatment. DLS studies revealed that the size and PDI of (PEO2k-b-PFMA1.5k-Se)2 micelles varied more significantly in response to changes in the redox environment than (PEO2k-b-PFMA1.5k-S)2 micelles. In vitro release studies showed that the developed micelles had a lower drug release rate at pH 7.4, whereas a higher release was observed at pH 5.0 (tumor environment). The micelles were non-toxic against HEK-293 normal cells, which revealed that they could be safe for use. Nevertheless, DOX-loaded S–S/Se–Se CCL micelles exhibited potent cytotoxicity against BT-20 cancer cells. Based on these results, the (PEO2k-b-PFMA1.5k-Se)2 micelles can be more sensitive drug carriers than (PEO2k-b-PFMA1.5k-S)2 micelles.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kalyan Ramesh
- R&D Center, Devens Lab, SEQENS (CDMO) Pharmaceutical Solutions, Devens, MA 01434, USA
| | - Obireddy Sreekanth Reddy
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Viswanathan Karthika
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Parveen Kumar
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Mohammadi E, Jamal Tabatabaei Rezaei S, Nedaei K, Ramazani A, Ramazani A. PEGylated Redox/pH Dual‐Responsive Dendritic Prodrugs Based on Boltorn® H40 for Tumor Triggered Paclitaxel Delivery. ChemistrySelect 2023. [DOI: 10.1002/slct.202204246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Elham Mohammadi
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology School of Medicine Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials School of Pharmacy Zanjan University of Medical Sciences 4537138791 Zanjan Iran
| | - Ali Ramazani
- Department of Chemistry Faculty of Science University of Zanjan P.O. Box 45195-313 4537138791 Zanjan Iran
| |
Collapse
|
5
|
Zhang X, Wang P, Xu Y, Wang J, Shi Y, Niu W, Song W, Liu R, Yu CY, Wei H. Facile synthesis and self-assembly behaviors of biodegradable amphiphilic hyperbranched copolymers with reducible poly(caprolactone) grafts. Polym Chem 2022. [DOI: 10.1039/d2py01112c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A reducible hydrophobic macromonomer, HEMA-g-PCL, developed herein provides a facile yet robust strategy for biodegradable amphiphilic hyperbranched copolymers.
Collapse
Affiliation(s)
- Xianshuo Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenxu Niu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Wenjing Song
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ruru Liu
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Fu S, Rempson CM, Puche V, Zhao B, Zhang F. Construction of disulfide containing redox-responsive polymeric nanomedicine. Methods 2021; 199:67-79. [PMID: 34971759 DOI: 10.1016/j.ymeth.2021.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/21/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Disulfide bonds (S-S) are widely found in chemistry, biology, and materials science. Polymer nanomaterials containing disulfide bonds with a variety of excellent properties have great potential as drug and gene delivery carriers. The disulfide bond can exist stably in extracellular environment, but upon entering cancer cells, it will undergo a sulfhydryl-disulfide bond exchange reaction with glutathione (GSH) in the cytoplasm, causing the disulfide bond cleavage. Therefore, polymeric nanomaterials containing disulfide bonds are promising in cancer treatment due to the elevated GSH concentration inside cancer cells. This review highlights various synthetic approaches to prepare disulfide containing redox-responsive polymeric nanomedicine, including synthesis of disulfide bonds containing polymers, construction of polymeric nanoparticle with shell or core crosslinked disulfide bonds, preparation of polymer-drug conjugates via disulfide linkers, and disulfide linked responsive payloads.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Caitlin M Rempson
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Vanessa Puche
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States; The Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
7
|
Jin J, Miao J, Cheng C. Mono-mercapto-functionalized pillar[5]arene: a host-guest complexation accelerated reversible redox dimerization. Chem Commun (Camb) 2021; 57:7950-7953. [PMID: 34286743 DOI: 10.1039/d1cc03010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mono-mercapto-functionalized pillar[5]arene and its dimer, capable of being reversibly interconverted, were successfully synthesized. Fascinatingly, a faster reversible redox conversion involving a dynamic disulfide bond was observed between their host-guest complexes compared with the hosts themselves.
Collapse
Affiliation(s)
- Jianbing Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS NANO 2021; 15:8039-8068. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| |
Collapse
|
9
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Shi Y, Wang M, Zhou L, Shen X, Wang J, Mo N, Zhao G, Yang S, Zhu X, Smith AM. Construction, release and cellular imaging application of triethylamine-responsive fluorescent quantum dots based on supramolecular self-assembly. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wang X, Wu D. Reduction‐Responsive Disulfide‐Containing Polymers for Biomedical Applications. SULFUR‐CONTAINING POLYMERS 2021:393-428. [DOI: 10.1002/9783527823819.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
13
|
Katoh T, Ogawa Y, Ohta Y, Yokozawa T. Synthesis of polyester by means of polycondensation of diol ester and dicarboxylic acid ester through ester–ester exchange reaction. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takayoshi Katoh
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Yukiko Ogawa
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry Kanagawa University Yokohama Japan
| |
Collapse
|
14
|
Liu B, Gao X, Han B, Chen G, Song S, Bo H. Mouse Model to Explore the Therapeutic Effect of Nano-Doxorubicin Drug Delivery System on Bladder Cancer. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:914-920. [PMID: 33183424 DOI: 10.1166/jnn.2021.18651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To study the therapeutic effect of nano-dosin-loaded drug system in mouse bladder cancer, a luciferase-labeled mouse bladder cancer cell line and a mouse bladder cancer model were constructed. In vivo imaging monitors tumor growth and uses a combination of photothermal, immune, and chemotherapy to treat the mouse model. With doxorubicin as an antitumor drug carrier, the drug loading, in vitro drug release, cytotoxicity and behavior in cells of mesoporous nano particle-targeted drug delivery system were studied. The cells were injected into the bladder through the urethra, and the mouse bladder cancer subcutaneous model was treated with gelatin-coated single-walled carbon nanotube-encapsulated mouse granulocytes-macrophage colony-stimulating factor and doxorubicin. In the process of using, the use of near-infrared light for irradiation, thereby achieving the combined effect of photothermal, immune and chemotherapy. The experimental results show that the prepared doxorubicin prodrug delivery system can enhance the targeted therapeutic effect and reduce the toxicity and side effects of the drug. Especially for those cancer cells or tissues with overexpression of folate receptors, it has a better therapeutic effect and provides reference for the treatment of subsequent bladder cancer.
Collapse
Affiliation(s)
- Bing Liu
- Department of Urology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaosong Gao
- Department of Urology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bing Han
- Department of Surgery, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Guohong Chen
- Department of Urology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Shuqi Song
- Department of Urology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hai Bo
- Department of Urology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
15
|
Korake S, Shaikh A, Salve R, Gajbhiye KR, Gajbhiye V, Pawar A. Biodegradable dendritic Boltorn™ nanoconstructs: A promising avenue for cancer theranostics. Int J Pharm 2020; 594:120177. [PMID: 33333177 DOI: 10.1016/j.ijpharm.2020.120177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
The family of Boltorn™ H40 dendrimers is an imperative subclass of hyperbranched biodegradable polymers (HBPs), which has received mounting attention as a result of its inimitable chemical, physical and biodegradable properties. These properties embrace three-dimensional dendrimeric nanoarchitecture to avert tanglement between polymer branches, adequate spatial cavities for increased encapsulation of guest molecules, good solubility as well as low viscosity to improve processability, and a huge number of surface functional groups for chemical manipulations. Similarly, low toxicity, non-immunogenicity, and natural biodegradation are significant and critical advantages in therapeutic applications as compared to other dendritic polymers. All these characteristics of Boltorn™ H40 are of pronounced importance for planning and developing advanced targeted cargo delivery carriers for cancer therapy. The present review highlights the applications of Boltorn™ H40 HBPs for the transport of chemotherapeutic agents to manage various types of cancers.
Collapse
Affiliation(s)
- S Korake
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune 411038, India
| | - A Shaikh
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | - R Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | - K R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune 411038, India
| | - V Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India.
| | - A Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune 411038, India.
| |
Collapse
|
16
|
Kumar P, Behl G, Kaur S, Yadav N, Liu B, Chhikara A. Tumor microenvironment responsive nanogels as a smart triggered release platform for enhanced intracellular delivery of doxorubicin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:385-404. [PMID: 33054642 DOI: 10.1080/09205063.2020.1837504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of novel and intelligent delivery systems that can effectively deliver therapeutics to the targeted site and release payload in enhanced/controlled manner is highly desired to overcome the multiple challenges in chemotherapy. The present article demonstrates the potential application of dual stimuli responsive nanogels as tumor microenvironment targeted drug delivery carrier. Disulfide cross-linked pH and redox responsive PEG-PDMAEMA nanogels were synthesized by atom transfer radical polymerization (ATRP). The nanogels were characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The PEG-PDMAEMA nanogels exhibited dual stimuli-responsive release of the encapsulated model anticancer drug (doxorubicin, DOX) due to the acidic pH-response of dimethyl amine group in PDMAEMA and reductive cleavage of the disulfide linkages. A relatively higher release of DOX was observed from the nanogels at pH 5.0 than at pH 7.4. DOX release was further accelerated in tumor simulated environment of pH 5.0 and 10 mM glutathione (GSH). Confocal microscopy images revealed that DOX-loaded PEG-PDMAEMA nanogels can rapidly internalize and effectively deliver the drug into the cells. The nanogels exhibited higher cytotoxicity in GSH-OEt pretreated HeLa cells than untreated cells. The dual stimuli responsive nanogels synthesized in this study exhibited many favorable traits, such as pH and redox dependent controlled release of drug, biodegradability, biocompatibility, and enhanced cytotoxicity, which endow them as a promising candidate for anticancer drug delivery.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China.,Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| | - Gautam Behl
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India.,Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Sumeet Kaur
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Nalini Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China
| | - Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India
| |
Collapse
|
17
|
Lin YN, Khan S, Song Y, Dong M, Shen Y, Tran DK, Pang C, Zhang F, Wooley KL. A Tale of Drug-Carrier Optimization: Controlling Stimuli Sensitivity via Nanoparticle Hydrophobicity through Drug Loading. NANO LETTERS 2020; 20:6563-6571. [PMID: 32787153 DOI: 10.1021/acs.nanolett.0c02319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Interactions between drug molecules, nanocarrier components, and surrounding media influence the properties and therapeutic efficacies of nanomedicines. In this study, we investigate the role that reversible covalent loading of a hydrophobic drug exerts on intra-nanoparticle physical properties and explore the utility of this payload control strategy for tuning the access of active agents and, thereby, the stimuli sensitivity of smart nanomaterials. Glutathione sensitivity was controlled via altering the degree of hydrophobic payload loading of disulfide-linked camptothecin-conjugated sugar-based nanomaterials. Increases in degrees of camptothecin conjugation (fCPT) decreased aqueous accessibility and reduced glutathione-triggered release. Although the lowest fCPT gave the fastest camptothecin release, it resulted in the lowest camptothecin concentration. Remarkably, the highest fCPT resulted in a 5.5-fold improved selectivity against cancer vs noncancerous cells. This work represents an advancement in drug carrier design by demonstrating the importance of controlling the amount of drug loading on the overall payload and its availability.
Collapse
Affiliation(s)
- Yen-Nan Lin
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
- College of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - Sarosh Khan
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Mei Dong
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Yidan Shen
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - David K Tran
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Ching Pang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
18
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
19
|
Liu Y, Cong Y, Ma W, Kang G, Meng C, Liu F, Yu C, Wei H. Triple Functional AB 2 Unit-Modulated Facile Preparation of Bioreducible Hyperbranched Copolymers. ACS Biomater Sci Eng 2020; 6:2812-2821. [PMID: 33463294 DOI: 10.1021/acsbiomaterials.0c00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Facile preparation of hyperbranched polymers (HPs) has been advanced tremendously by the use of either various multifunctional agent-mediated controlled living radical polymerizations or a highly reactive ABx unit-modulated self-stepwise polymerizations. However, it remains, to our knowledge, a significant challenge to prepare HPs with simultaneously precisely controlled degree of branching (DB) and biorelevant signal-triggered degradation property for controlled release applications due to the respective limitations of the aforementioned two strategies. For this purpose, a triple functional AB2 unit, A-SS-B2 chain transfer agent (AB2 CTA), that integrates the merits of both multifunctional agents and highly reactive ABx units was designed and synthesized successfully to include a disulfide bond for reduction-triggered polymer degradation toward promoted intracellular release of encapsulated cargoes, a trithiocarbonate group for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-based monomer, and three terminal groups consisting of one azide and two alkyne functions for the generation of hyperbranched topology via a self-click coupling-based polymerization. A subsequent self-click polymerization of the resulting AB2 CTA by click coupling in the presence of CuSO4·5H2O and sodium ascorbate (NaVc) generated a hyperbranched polymer template (HPT) with precisely modulated DB and a plurality of CTA units for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-containing monomer. The HPT was next used as a multimacro-CTA for RAFT polymerization of a typical hydrophilic monomer, oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), to demonstrate the potential of this HPT for a robust and facile production of bioreducible hyperbranched polymers for controlled release applications. The synthesized HPT-4-POEGMA can form unimolecular micelles with enhanced stability due to the hyperbranched structure, and the size of micelles varied in the range from 82.4 to 140.3 nm by a modulation of the molar feed ratio of monomer to HPT and polymerization time. More importantly, HPT-POEGMA micelles incubated with 10 mM glutathione (GSH) showed reduction-triggered cleavage of the disulfide links and polymer degradation for promoted intracellular doxorubicin (DOX) release and enhanced therapeutic efficiency. Taken together, this triple functional AB2 CTA provided a powerful means for the facile preparation of bioreducible hyperbranched polymers with precisely controlled DB for controlled release applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yong Cong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Guiying Kang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Chao Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
20
|
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Gyurin Kim
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea; DWI-Leibniz Institute for Interactive Materials, Aachen 52056, Germany.
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
21
|
Lv L, Li X, Qian W, Li S, Jiang Y, Xiong Y, Xu J, Lv W, Liu X, Chen Y, Tang Y, Xin H. Enhanced Anti-Glioma Efficacy by Borneol Combined With CGKRK-Modified Paclitaxel Self-Assembled Redox-Sensitive Nanoparticles. Front Pharmacol 2020; 11:558. [PMID: 32425792 PMCID: PMC7203528 DOI: 10.3389/fphar.2020.00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/14/2020] [Indexed: 01/26/2023] Open
Abstract
The serious therapeutic obstacles to glioma treatment include poor penetration across the blood-brain barrier (BBB) and low accumulation of therapeutic drugs at tumor sites. In this study, borneol combined with CGKRK peptide (a ligand of the heparan sulfate which overexpress on the glioma cells) modified paclitaxel prodrug self-assembled redox-responsive nanoparticles (CGKRK-PSNPs) were hypothesized to enhance the BBB penetration ability and active tumor targeting efficiency, respectively. The resulting CGKRK-PSNPs possessed a spherical shape with a small particle size (105.61 ± 1.53 nm) and high drug loading for PTX (54.18 ± 1.13%). The drug release behavior proved that CGKRK-PSNPs were highly sensitive to glutathione (GSH) redox environment. The in vitro cell experiments suggested that CGKRK-PSNPs significantly increased the cellular uptake and cytotoxicity of U87MG cells, meanwhile CGKRK-PSNPs showed the low cytotoxicity against BCEC cells. Combined with borneol, CGKRK-PSNPs exhibited enhanced transportation across in vitro BBB model. In intracranial U87MG glioma-bearing nude mice, the higher accumulation of CGKRK-PSNPs combined with borneol was observed through real-time fluorescence image. Moreover, the in vivo anti-glioma results confirmed that CGKRK-PSNPs combined with borneol could improve the anti-glioma efficacy with the prolonged medium survival time (39 days). In conclusion, the collaborative strategy of CGKRK-PSNPs combined with borneol provided a promising drug delivery routine for glioblastoma therapy.
Collapse
Affiliation(s)
- Lingyan Lv
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Qian
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Shennan Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yaokun Xiong
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianpei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Lv
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Xiaoyan Liu
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yulin Tang
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hongliang Xin
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Song X, Yuan K, Li H, Xu S, Li Y. Dual Pseudo and Chemical Crosslinked Polymer Micelles for Effective Paclitaxel Delivery and Release. ACS APPLIED BIO MATERIALS 2020; 3:2455-2465. [PMID: 35025295 DOI: 10.1021/acsabm.0c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fabrication of polymer micelles, both with ample intracorporeal circulation stability and fast release within cancerous cells, is still facing challenges. Herein, we fabricated a strategy to improve the stability of polymer micelles using pseudo- and chemical crosslinking jointly. To be specific, a star-shaped polymer (TMP-PGMA-g-PEG) with trimethylolpropane (TMP) as the inner core was synthesized with glycidyl methacrylate (GMA), followed by the graft reaction with amine-terminated poly(ethylene glycol) (mPEG-NH2). Star polymer micelle-based nanomedicines (TPP/paclitaxel (PTX)) were obtained using paclitaxel (PTX) as a model drug and polymer micelles (TPP) as carriers, which were constructed by TMP-PGMA-g-PEG. The star core and arms behaved as pseudo crosslinkers, which reduced their critical micelle concentration (CMC) values and improved their stability; profoundly, cystamine was used as a chemical crosslinker to react with the rest of the epoxy groups of TPP or TPP/PTX and further improve their stability. Finally, dual pseudo and chemical crosslinked star polymer micelles (CTPP) and micelle-based nanomedicines (CTPP/PTX) were obtained. The results demonstrated that CTPP/PTX with combined stability design presented excellent stability both in vitro and in vivo physiological conditions. Notably, cystamine not only served as a crosslinker but also had a reduction-responsive disulfide bond to achieve fast release inside cancer cells with a high level of glutathione (GSH). This smart design effectively resolved the antinomy that the polymer micelle delivery system could not cause rapid release in tumor sites when it possesses extreme stability resulted from chemical crosslinking. Both in vitro and in vivo experiments clearly stated the advantages of CTPP/PTX, including excellent stability, fast reduction-responsive release, and remarkable antitumor efficacy.
Collapse
Affiliation(s)
- Xiaotong Song
- School of Materials Science and Engineering, Linyi University, Linyi 276000, People's Republic of China
| | - Ke Yuan
- School of Materials Science and Engineering, Linyi University, Linyi 276000, People's Republic of China
| | - Hongyan Li
- School of Materials Science and Engineering, Linyi University, Linyi 276000, People's Republic of China
| | - Shoufang Xu
- School of Materials Science and Engineering, Linyi University, Linyi 276000, People's Republic of China
| | - Yinwen Li
- School of Materials Science and Engineering, Linyi University, Linyi 276000, People's Republic of China
| |
Collapse
|
23
|
Shaw Z, Patel A, Butcher T, Banerjee T, Bean R, Santra S. Pseudo-branched polyester copolymer: an efficient drug delivery system to treat cancer. Biomater Sci 2020; 8:1592-1603. [PMID: 32051980 DOI: 10.1039/c9bm01475f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, a new hyperbranched polyester copolymer was designed using a proprietary monomer and diethylene glycol or triethylene glycol as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by p-tolulenesulfonic acid. The progress of the reaction was monitored with respect to time and negative pressure, with samples being subjected to standard characterization protocols. The resulting polymers were purified using the solvent precipitation method and characterized using various chromatographic and spectroscopic methods including GPC, MALDI-TOF, and NMR. We have observed polymers with a molecular weight of 29 643 Da and 33 996 Da, which is ideal to be used as a drug delivery system. Thus, these polymers were chosen for further modification into folate-functionalized polymeric nanoparticles for the targeted treatment of cancer, in this case we have chosen prostate cancer cells as a model. We hypothesized that due to the 3D structure of the A2B monomer, we expect a pseudo-branched polymer that is globular in shape which will be ideal for drug carrying and delivery. We used a solvent diffusion method for the one-pot formulation of water-dispersable polymeric nanoparticles as well as theraputic drug (doxorubicin) encapsulation. The efficacy of this delivery system was gauged by treating LNCaP cells with the drug-loaded nanoparticles and assessing the results of the treatment. The results were analyzed by cytotoxicity (MTT) assays, drug release studies, and fluorescence microscopy. The experimental results collectively show a nanoparticle that was biocompatible, target-specific, and successfully initiated apoptosis in an in vitro prostate cancer model.
Collapse
Affiliation(s)
- Zachary Shaw
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Arth Patel
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Thai Butcher
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Ren Bean
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| |
Collapse
|
24
|
Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. SOFT MATTER 2020; 16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic nature of the disulfide bond has enhanced the potential for disulfide based amphiphiles in the emerging biomedical field. Disulfide containing amphiphiles have extensively been used for constructing wide ranging soft nanostructures as potential candidates for delivery of drugs, proteins and genes owing to their degradable nature in the presence of intracellular glutathione (present in a many fold excess compared to the extracellular milieu). This degradable nature of amphiphiles is not only useful to deliver therapeutics but it also eliminates the toxicity issues associated with the carrier after delivery of such therapeutics. Therefore, these bioreducible and biocompatible nano-aggregates inspired researchers to use them as vehicles for therapeutic delivery and as a result the literature of disulfide containing amphiphiles has been intensified. This review article highlights the structural diversity in disulfide containing amphiphilic small molecule and polymeric systems, structural effects on their aqueous aggregation, redox-responsive disassembly and biological applications. Furthermore, the use of disulfide chemistry towards the design of cell penetrating polymers has also been discussed. Finally a brief perspective on some future opportunities of these systems is provided.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
25
|
Zhang X, Dai Y, Dai G. Advances in amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core. Polym Chem 2020. [DOI: 10.1039/c9py01608b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core were highlighted.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake
- Jiangxi Institute of Water Sciences
- Nanchang 330029
- China
| |
Collapse
|
26
|
Zhang L, Shi D, Gao Y, Zhou T, Chen M. Phenylboronic acid-functionalized unimolecular micelles based on a star polyphosphoester random copolymer for tumor-targeted drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00008f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phenylboronic acid-functionalized unimolecular micellar drug delivery system based on a star phosphoester random copolymer synthesized by a one-pot ring-opening polymerization strategy.
Collapse
Affiliation(s)
- Li Zhang
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yunyun Gao
- Max-Planck Institute for the structure and dynamics of matter
- 22607 Hamburg
- Germany
| | - Tianyang Zhou
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
27
|
|
28
|
Li W, Xu C, Li S, Chen X, Fan X, Hu Z, Wu YL, Li Z. Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110047. [DOI: 10.1016/j.msec.2019.110047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
|
29
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
30
|
Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Preparation and Controlled Degradation of Model Amphiphilic Long-Subchain Hyperbranched Copolymers: Hyperblock versus Hypergraft. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jinxian Yang
- Shenzhen Key Laboratory for Functional Polymer, School of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Designing heparan sulfate-based biocompatible polymers and their application for intracellular stimuli-sensitive drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:465-476. [DOI: 10.1016/j.msec.2018.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/04/2018] [Accepted: 09/20/2018] [Indexed: 01/20/2023]
|
32
|
Kwon K, Park D, Kim JC. Disulfide proteinoid micelles responsive to reduction. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kyeongnan Kwon
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Danbi Park
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
33
|
Wang Y, Wei H, Zheng L, Wu Z, Zhang X, Zhang X. One-Pot Synthesis of Dual-Responsive Hyperbranched Polymeric Prodrugs Using an All-in-One Chain Transfer Monomer. ACS Macro Lett 2018; 7:1203-1207. [PMID: 35651255 DOI: 10.1021/acsmacrolett.8b00603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decades, tremendous progress has been advanced in the preparation of hyperbranched polymers (HPs), especially for the one-pot synthesis of segmented HPs by using self-condensing vinyl polymerization based on controlled living radical polymerization techniques. However, the fabrication of hyperbranched polymeric prodrugs (HPPs) still requires multistep postpolymerization conjugations, which generally suffer from low and uncontrolled conjugation efficacy of drug molecules due to the steric hindrance, low yields because of multistep synthesis, and scale-up difficulties attributed to batch-to-batch variations. To further address these issues and provide a highly straightforward and robust strategy toward HPPs, we reported in this study the one-pot preparation of dual-responsive hyperbranched polymeric prodrugs (DRHPPs) using an all-in-one chain transfer monomer that integrates a drug molecule with both acidic pH- and reduction-sensitive links. The resulting DRHPPs with precisely regulated drug loading content and great therapeutic efficacy offered a highly promising platform for efficient anticancer drug delivery.
Collapse
Affiliation(s)
- Yunfei Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Luping Zheng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhizhen Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaolong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xianshuo Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
34
|
Ban Q, Sun W, Kong J, Wu S. Hyperbranched Polymers with Controllable Topologies for Drug Delivery. Chem Asian J 2018; 13:3341-3350. [DOI: 10.1002/asia.201800812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Qingfu Ban
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 China
| | - Wen Sun
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
| | - Jie Kong
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology; School of Science; Northwestern Polytechnical University; Xi'an 710072 China
| | - Si Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
35
|
Wang M, Wang Y, Zhao S, Zhang X, Wei H. Fabrication of Reduction-Responsive Star-Shaped Amphiphilic Block Copolymers with Click Coupling-Generated Block Junctions toward Enhanced Therapeutic Efficacy. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mingqi Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Yunfei Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Sijie Zhao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiaolong Zhang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| |
Collapse
|
36
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
37
|
Yang H, Zhao X, Zhang X, Ma L, Wang B, Wei H. Optimization of bioreducible micelles self-assembled from amphiphilic hyperbranched block copolymers for drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huiru Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xuezhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Xiaolong Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Baoyan Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou Gansu 730000 China
| |
Collapse
|
38
|
Zhao Y, Guo W, Lu Q, Zhang S. Preparation of poly(butylene succinate)-poly[2-(dimethylamino)ethyl methacrylate] copolymers and their applications as carriers for drug delivery. POLYM INT 2018. [DOI: 10.1002/pi.5559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuping Zhao
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Weihong Guo
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Qian Lu
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Shiping Zhang
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| |
Collapse
|
39
|
Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release. J Colloid Interface Sci 2018; 514:122-131. [DOI: 10.1016/j.jcis.2017.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
|
40
|
Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018; 38:1485-1510. [PMID: 29341223 DOI: 10.1002/med.21485] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Increasing numbers of disulfide linkage-employing polymeric drug carriers that utilize the reversible peculiarity of this unique covalent bond have been reported. The reduction-sensitive disulfide bond is usually employed as a linkage between hydrophilic and hydrophobic polymers, polymers and drugs, or as cross-linkers in polymeric drug carriers. These polymeric drug carriers are designed to exploit the significant redox potential difference between the reducing intracellular environments and relatively oxidizing extracellular spaces. In addition, these drug carriers can release a considerable amount of anticancer drug in response to the reducing environment when they reach tumor tissues, effectively improving antitumor efficacy. This review focuses on various disulfide linkage-employing polymeric drug carriers. Important redox thiol pools, including GSH/GSSG, Cys/CySS, and Trx1, as well as redox environments in mammals, will be introduced.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Jilian Wu
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Fengmei Xiao
- Binzhou Tuberculosis Prevention and Treatment Hospital, Binzhou, P. R. China
| | - Dujuan Zhao
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| |
Collapse
|
41
|
Wang P, Yu N, Wang Y, Sun H, Yang Z, Zhou S. Co-delivery of PLK1-specific shRNA and doxorubicin via core-crosslinked pH-sensitive and redox ultra-sensitive micelles for glioma therapy. J Mater Chem B 2018; 6:112-124. [DOI: 10.1039/c7tb02160g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anticancer drug delivery encounters many biological barriers, including mucosal barriers, nonspecific uptake and intracellular drug resistance.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Nengwei Yu
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Huili Sun
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Zhenglin Yang
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| |
Collapse
|
42
|
Wang X, Wei J, Chen J, Tang S. Improvement of surface hydrophilicity, water uptake, biodegradability, and cytocompatibility through the incorporation of chitosan oligosaccharide into poly(l
-lactide). J Appl Polym Sci 2017. [DOI: 10.1002/app.45724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Jianding Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
43
|
Ju M, Pang J, Xu L. Photodynamic Therapy of Oligoethylene Glycol-Dendronized Reduction-Sensitive Porphyrins. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingjie Ju
- School of Sports Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| | - Jundi Pang
- Kunming Medical University; Kunming Yunnan 650500 China
| | - Ligong Xu
- School of Sports Science and Engineering; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
44
|
John JV, Uthaman S, Augustine R, Chen H, Park IK, Kim I. pH/redox dual stimuli-responsive sheddable nanodaisies for efficient intracellular tumour-triggered drug delivery. J Mater Chem B 2017; 5:5027-5036. [PMID: 32264019 DOI: 10.1039/c7tb00030h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of dual stimuli-responsive poly(l-histidine)n-S-S-polyurethane-S-S-poly(l-histidine)n [p(His)n-SS-PU-SS-p(His)n; n = 25, 35, 50, and 75] triblock copolymers that bear two pH-responsive p(His)n end-blocks and PU middle-blocks tethered by a redox-responsive disulphide linker have been synthesized. The resulting triblock copolymers self-assemble to form micelles, nanodaisies (NDs), of uniform size (∼100 nm) and efficiently encapsulate the anticancer drug doxorubicin (Dox) with a high drug loading content (∼19%). The in vitro release profile shows an enhanced release of Dox in an acidic environment in the presence of 10 mM glutathione. The in vitro cell viability assays performed in various cell lines show that the NDs have no acute or intrinsic toxicity. Confocal microscopy images and flow cytometry results show the pH-responsive cellular uptake of Dox-loaded NDs, accelerated at pH ≤ 5.0. The tumour accumulation and in vivo bio-distribution studies of near-infrared dye (IR-820)-labeled NDs show higher tumour accumulation in CT26 tumour-bearing mice within 72 h. Furthermore, the Dox-loaded NDs effectively inhibit the CT26 tumours, suggesting that they are promising nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Johnson V John
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
45
|
Synthesis and micellization of block copolymer based on host–guest recognition and double disulphide linkage for intracellular drug delivery. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2086-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharm 2017; 14:2460-2474. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kamaljeet K. Bawa
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
47
|
Wang W, Wang B, Liu S, Shang X, Yan X, Liu Z, Ma X, Yu X. Bioreducible Polymer Nanocarrier Based on Multivalent Choline Phosphate for Enhanced Cellular Uptake and Intracellular Delivery of Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15986-15994. [PMID: 28481098 DOI: 10.1021/acsami.7b03317] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited cellular uptake and inefficient intracellular drug release severely hamper the landscape of polymer drug nanocarriers in cancer chemotherapy. Herein, to address these urgent challenges in tumor treatment simultaneously, we integrated the multivalent choline phosphate (CP) and bioreducible linker into a single polymer chain, designed and synthesized a neoteric bioreducible polymer nanocarrier. The excellent hydrophility of these zwitterionic CP groups endowed high drug loading content and drug loading efficiency of doxorubicin to this drug delivery system (∼22.1 wt %, ∼95.9%). Meanwhile, we found that the multivalent choline phosphate can effectively enhance the internalization efficiency of this drug-loaded nanocarrier over few seconds, and the degree of improvement depended on the CP density in a single polymer chain. In addition, after these nanocarriers entered into the tumor cells, the accelerated cleavage of bioreducible linker made it possible for more cargo escape from the delivery system to cytoplasm to exert their cytostatic effects more efficiently. The enhanced therapeutic efficacy in various cell lines indicated the great potential of this system in anticancer drug delivery applications.
Collapse
Affiliation(s)
- Wenliang Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Bo Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Sanrong Liu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xudong Shang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - XinXin Yan
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University , Guangzhou 510632, P.R. China
| | - Xiaojing Ma
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xifei Yu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| |
Collapse
|
48
|
Enhance chemotherapy efficacy and minimize anticancer drug side effects by using reversibly pH- and redox-responsive cross-linked unimolecular micelles. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Yang Z, Li Y, Gao J, Cao Z, Jiang Q, Liu J. pH and redox dual-responsive multifunctional gene delivery with enhanced capability of transporting DNA into the nucleus. Colloids Surf B Biointerfaces 2017; 153:111-122. [DOI: 10.1016/j.colsurfb.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 12/16/2022]
|
50
|
Zhang L, Shi D, Shi C, Dong L, Li X, Chen M. Controllable Synthesis of Multiarm Star-Shaped Copolymers Composed of Phosphoester Chains and Their Application on Drug Delivery. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhang
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Dongjian Shi
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Chunling Shi
- School of Chemistry and Chemical Engineering; Xuzhou Institute of Technology; Xuzhou Jiangsu 221111 China
| | - Liangliang Dong
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Xiaojie Li
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Mingqing Chen
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|