1
|
Guo QY, Wang Z, Fan Y, Zheng H, Lin W. A Stable Site-Isolated Mono(phosphine)-Rhodium Catalyst on a Metal-Organic Layer for Highly Efficient Hydrogenation Reactions. Angew Chem Int Ed Engl 2024; 63:e202409387. [PMID: 38925605 DOI: 10.1002/anie.202409387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Phosphine-ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low-coordinate mono(phosphine)-Rh catalyst on a metal-organic layer (MOL), P-MOL • Rh, and its applications in the hydrogenation of mono-, di-, and tri-substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site-isolated mono(phosphine)-Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P-MOL • Rh in catalytic hydrogenation reactions.
Collapse
Affiliation(s)
- Qing-Yun Guo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Haifeng Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Singh S, Hernández-Lobato JM. Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins. J Org Chem 2024; 89:12467-12478. [PMID: 39149801 PMCID: PMC11382158 DOI: 10.1021/acs.joc.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The transition-metal-catalyzed asymmetric hydrogenation of olefins is one of the key transformations with great utility in various industrial applications. The field has been dominated by the use of noble metal catalysts, such as iridium and rhodium. The reactions with the earth-abundant cobalt metal have increased only in recent years. In this work, we analyze the large amount of literature data available on iridium- and rhodium-catalyzed asymmetric hydrogenation. The limited data on reactions using Co catalysts are then examined in the context of Ir and Rh to obtain a better understanding of the reactivity pattern. A detailed data-driven study of the types of olefins, ligands, and reaction conditions such as solvent, temperature, and pressure is carried out. Our analysis provides an understanding of the literature trends and demonstrates that only a few olefin-ligand combinations or reaction conditions are frequently used. The knowledge of this bias in the literature data toward a certain group of substrates or reaction conditions can be useful for practitioners to design new reaction data sets that are suitable to obtain meaningful predictions from machine-learning models.
Collapse
Affiliation(s)
- Sukriti Singh
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K
| | | |
Collapse
|
3
|
Jian Y, Singh T, Andersson PG, Zhou T. Asymmetric Synthesis and Applications of Chiral Organoselenium Compounds: A Review. Molecules 2024; 29:3685. [PMID: 39125088 PMCID: PMC11314500 DOI: 10.3390/molecules29153685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The synthesis and application of organoselenium compounds have developed rapidly, and chiral organoselenium compounds have become an important intermediate in the field of medicine, materials, organic synthesis. The strategy of developing a green economy is still a challenge in the synthesis of chiral organoselenium compounds with enantioselective properties. This review covers in detail the synthesis of chiral organoselenium compounds from 1979 to 2024 and their application in the fields of asymmetric synthesis and catalysis.
Collapse
Affiliation(s)
- Yanyu Jian
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
| | - Thishana Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Pher G. Andersson
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu 610500, China;
- Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
4
|
Alshammari OAO, Alhar MSO, Elsayed NH, Monier M, Youssef I. Synthesis of furan-modified cationic cellulose for stereo-specific imprinting and separation of S-indacrinone via Diels-Alder reaction. Int J Biol Macromol 2024; 275:133384. [PMID: 38917927 DOI: 10.1016/j.ijbiomac.2024.133384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
This study introduces a novel approach for the separation of indacrinone (IC) enantiomers, crucial in treating edema, hypertension, and hyperuricemia. A cationic biopolymer from furan-2-ylmethylhydrazine-cellulose (FUH-CE), derived from cyanoethyl cellulose (CEC), serving as a substrate in molecular imprinting. A key innovation is the use of the Diels-Alder reaction for efficient cross-linking with bis(maleimido)ethane (BME). This chemical strategy resulted in molecularly imprinted microparticles with high selectivity for the S-IC enantiomer, which can be eluted by adjusting the solution's pH. Extensive characterization confirmed the chemical modifications and selective binding efficacy of these biopolymers. Utilizing separation columns, our method achieved an impressive chiral resolution of (±)-IC, with an enantiomeric excess (ee) of 95 % for R-IC during the loading phase and 97 % for S-IC during elution. Under optimized conditions, the biopolymer demonstrated a maximum binding capacity of 131 mg/g at pH 6. This advanced approach represents a significant advancement in chiral separation technology, offering a robust and efficient technique for the selective isolation of enantiomers. This method not only enhances potential targeted therapeutic applications but also provides a scalable solution for industrial chiral separations.
Collapse
Affiliation(s)
- Odeh A O Alshammari
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Munirah S O Alhar
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Nadia H Elsayed
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Ibrahim Youssef
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt; Neuroradiation and Neuro-intervention Section, Department of Radiology, UTSW Medical Center, Dallas, TX 75390. USA
| |
Collapse
|
5
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
6
|
Alharbi HY, Alnoman RB, Aljohani MS, Monier M, Tawfik EH. Design and synthesis of S-citalopram-imprinted polymeric sorbent: Characterization and application in enantioselective separation. J Chromatogr A 2024; 1727:464925. [PMID: 38776603 DOI: 10.1016/j.chroma.2024.464925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The current work describes the efficient creation and employment of a new S-citalopram selective polymeric sorbent, made from poly(divinylbenzene-maleic anhydride-styrene). The process began by using suspension polymerization technique in the synthesis of poly(styrene-maleic anhydride-divinylbenzene) microparticles. These were then modified with ethylenediamine, developing an amido-succinic acid-based polymer derivative. The S-citalopram, a cationic molecule, was loaded onto these developed anionic polymer particles. Subsequently, the particles were post-crosslinked using glyoxal, which reacts with the amino group residues of ethylenediamine. S-citalopram was extracted from this matrix using an acidic solution, which also left behind stereo-selective cavities in the S-citalopram imprinted polymer, allowing for the selective re-adsorption of S-citalopram. The attributes of the polymer were examined through methods such as 13C NMR, FTIR, thermogravemetric and elemental analyses. SEM was used to observe the shapes and structures of the particles. The imprinted polymers demonstrated a significant ability to adsorb S-citalopram, achieving a capacity of 878 mmol/g at a preferred pH level of 8. It proved efficient in separating enantiomers of (±)-citalopram via column methods, achieving an enantiomeric purity of 97 % for R-citalopram upon introduction and 92 % for S-citalopram upon release.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Eman H Tawfik
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Pan T, Yuan Q, Xu D, Zhang W. Iridium-Catalyzed Asymmetric Hydrogenation of Unfunctionalized Cycloalkenes to Access Chiral 2-Aryl Tetralins. Org Lett 2024; 26:5850-5855. [PMID: 38950380 DOI: 10.1021/acs.orglett.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The transition-metal catalyzed asymmetric hydrogenation of unfunctionalized alkenes is challenging. Herein, we report an efficient iridium-catalyzed asymmetric hydrogenation of unfunctionalized cycloalkenes, delivering chiral 2-aryl tetralins in excellent yields and with moderate to excellent enantioselectivities. The reaction can be performed on a gram-scale with a low catalyst loading (S/C = 1000), and the reduced product was obtained without erosion of the enantioselectivity. Deuterium experiments indicated that the C═C bond in the substrate is hydrogenated directly without isomerization.
Collapse
Affiliation(s)
- Tierui Pan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Zhao S, Peters BBC, Zhang H, Xue R, Yang Y, Wu L, Huang T, He L, Andersson PG, Zhou T. Asymmetric and Chemoselective Iridium Catalyzed Hydrogenation of Conjugated Unsaturated Oxime Ethers. Chemistry 2024; 30:e202401333. [PMID: 38779790 DOI: 10.1002/chem.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20 bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.
Collapse
Affiliation(s)
- Shaohu Zhao
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Haili Zhang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Ruize Xue
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Yixin Yang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Liuying Wu
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Tianrui Huang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Lei He
- Tianfu Yongxing Laboratory, Chengdu, Sichuan, 610000, China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
- Tianfu Yongxing Laboratory, Chengdu, Sichuan, 610000, China
| |
Collapse
|
9
|
Chandra A, Basu P, Raha S, Dhibar P, Bhattacharya S. Development of ruthenium complexes with S-donor ligands for application in synthesis, catalytic acceptorless alcohol dehydrogenation and crossed-aldol condensation. Dalton Trans 2024; 53:10675-10685. [PMID: 38860941 DOI: 10.1039/d4dt00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The reaction of [Ru(dmso)4Cl2] with a potassium salt of four xanthate (RO-C(S)S-; R = Me, Et, iPr and tBu) ligands (depicted as Ln; n = 1-4) in hot methanol afforded a group of mixed-ligand complexes of type [Ru(Ln)2(dmso)2]. The crystal structures of all the four complexes have been determined, which show that the xanthate ligands are bound to the metal center forming four-membered chelates and dmso is coordinated through sulfur and they are mutually cis. The relative thermodynamic stability of this cis and the other possible trans-isomers of these complexes has been assessed with the help of DFT calculations, which have revealed that the cis-isomer is the more stable isomer. The coordinated dmso in the [Ru(Ln)2(dmso)2] complexes could be easily displaced by chelating bidentate ligands (depicted as L') to furnish complexes of type [Ru(Ln)2(L')], as demonstrated through isolation of two such complexes, viz. [Ru(L3)2(bpy)] and [Ru(L2)2(phen)] (bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline). The crystal structure of [Ru(L3)2(bpy)] has been determined and the structure of [Ru(L2)2(phen)] has been optimized by the DFT method. The electronic spectra of the four [Ru(Ln)2(dmso)2] complexes and the two derivatives ([Ru(Ln)2(L')]; n = 3, L' = bpy; n = 2, L' = phen), recorded in dichloromethane solutions, show intense absorptions spanning the visible and ultraviolet regions, which have been analyzed by the TDDFT method. The [Ru(Ln)2(dmso)2] complexes are found to serve as efficient catalyst precursors for the acceptorless dehydrogenation of 2-propanol followed by crossed-aldol condensation with substituted benzaldehydes (and related aldehydes), using tert-butoxide as the co-catalyst, producing dibenzylideneacetone derivatives in good yields.
Collapse
Affiliation(s)
- Anushri Chandra
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Pousali Basu
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Shreya Raha
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
- Department of Chemistry, Brainware University, Kolkata 700 125, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata - 700032, India.
| |
Collapse
|
10
|
Lu HX, Wang C, Gao TT, Lin EZ, Lu SL, Hong X, Li BJ. Rhodium-Catalyzed Highly Enantioselective Hydroboration of Acyclic Tetrasubstituted Alkenes Directed by an Amide. J Am Chem Soc 2024; 146:16194-16202. [PMID: 38832699 DOI: 10.1021/jacs.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Swann WA, Yadav A, Colvin NB, Freundl NK, Li CW. Diastereoselective Hydrogenation of Tetrasubstituted Olefins using a Heterogeneous Pt-Ni Alloy Catalyst. Angew Chem Int Ed Engl 2024; 63:e202317710. [PMID: 38407502 PMCID: PMC11098551 DOI: 10.1002/anie.202317710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Stereoselective hydrogenation of tetrasubstituted olefins is an attractive method to access compounds with two contiguous stereocenters. However, homogeneous catalysts for enantio- and diastereoselective hydrogenation exhibit low reactivity toward tetrasubstituted olefins due to steric crowding between the ligand scaffold and the substrate. Monometallic heterogeneous catalysts, on the other hand, provide accessible surface active sites for hindered olefins but exhibit unpredictable and inconsistent stereoinduction. In this work, we develop a Pt-Ni bimetallic alloy catalyst that can diastereoselectively hydrogenate unactivated, sterically-bulky tetrasubstituted olefins, utilizing the more oxophilic Ni atoms to adsorb a hydroxyl directing group and direct facially-selective hydrogen addition to the olefin via the Pt atoms. Structure-activity studies on several Pt-Ni compositions underscore the importance of exposing a uniform PtNi alloy surface to achieve high diastereoselectivity and minimize side reactions. The optimized Pt-Ni/SiO2 catalyst exhibits good functional group tolerance and broad scope for tetrasubstituted olefins in a cyclopentene scaffold, generating cyclopentanol products with three contiguous stereocenters. The synthetic utility of the method is demonstrated in a four-step synthesis of (1R,2S)-(+)-cis-methyldihydrojasmonate with high yield and enantiopurity.
Collapse
Affiliation(s)
- William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Anish Yadav
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas B. Colvin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole K. Freundl
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Chakrabortty S, de Bruin B, de Vries JG. Cobalt-Catalyzed Asymmetric Hydrogenation: Substrate Specificity and Mechanistic Variability. Angew Chem Int Ed Engl 2024; 63:e202315773. [PMID: 38010301 DOI: 10.1002/anie.202315773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.
Collapse
Affiliation(s)
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
13
|
Faiges J, Biosca M, Pericàs MA, Besora M, Pàmies O, Diéguez M. Unlocking the Asymmetric Hydrogenation of Tetrasubstituted Acyclic Enones. Angew Chem Int Ed Engl 2024; 63:e202315872. [PMID: 38093613 DOI: 10.1002/anie.202315872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Asymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air-stable Ir-P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI /IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cβ and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.
Collapse
Affiliation(s)
- Jorge Faiges
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Biosca
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Miquel A Pericàs
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Besora
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Oscar Pàmies
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Montserrat Diéguez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| |
Collapse
|
14
|
Qian L, Yu C, Gan L, Tang X, Wang Y, Liu G, Leng X, Sun Z, Guo Y, Xue XS, Huang Z. Iridium-Catalyzed Enantioselective Transfer Hydrogenation of 1,1-Dialkylethenes with Ethanol: Scope and Mechanism. J Am Chem Soc 2024; 146:3427-3437. [PMID: 38243892 DOI: 10.1021/jacs.3c12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Despite half a century's advance in the field of transition-metal-catalyzed asymmetric alkene hydrogenation, the enantioselective hydrogenation of purely alkyl-substituted 1,1-dialkylethenes has remained an unmet challenge. Herein, we describe a chiral PCNOx-pincer iridium complex for asymmetric transfer hydrogenation of this alkene class with ethanol, furnishing all-alkyl-substituted tertiary stereocenters. High levels of enantioselectivity can be achieved in the reactions of substrates with secondary/primary and primary/primary alkyl combinations. The catalyst is further applied to the redox isomerization of disubstituted alkenols, producing a tertiary stereocenter remote to the resulting carbonyl group. Mechanistic studies reveal a dihydride species, (PCNOx)Ir(H)2, as the catalytically active intermediate, which can decay to a dimeric species (κ3-PCNOx)IrH(μ-H)2IrH(κ2-PCNOx) via a ligand-remetalation pathway. The catalyst deactivation under the hydrogenation conditions with H2 is much faster than that under the transfer hydrogenation conditions with EtOH, which explains why the (PCNOx)Ir catalyst is effective for the transfer hydrogenation but ineffective for the hydrogenation. The suppression of di-to-trisubstituted alkene isomerization by regioselective 1,2-insertion is partly responsible for the success of this system, underscoring the critical role played by the pincer ligand in enantioselective transfer hydrogenation of 1,1-dialkylethenes. Moreover, computational studies elucidate the significant influence of the London dispersion interaction between the ligand and the substrate on enantioselectivity control, as illustrated by the complete reversal of stereochemistry through cyclohexyl-to-cyclopropyl group substitution in the alkene substrates.
Collapse
Affiliation(s)
- Lu Qian
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Cui Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Lan Gan
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xixia Tang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yulei Wang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Xuebing Leng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhao Sun
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
15
|
Umanzor A, Garcia NA, Roberts CC. Ligand-Controlled Regioinduction in a PHOX-Ni Aryne Complex. ACS ORGANIC & INORGANIC AU 2024; 4:97-101. [PMID: 38344017 PMCID: PMC10853916 DOI: 10.1021/acsorginorgau.3c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 04/12/2024]
Abstract
Phosphinooxazoline (PHOX) ligands have been used to control the regio- and enantioselectivity in a wide variety of metal-catalyzed reactions. Despite their widespread use, PHOX ligands have never been studied in metal-aryne complexes. Herein we report the first example of a PHOX-Ni aryne complex. As demonstrated in other systems, the differentiated P versus N donors and different steric environments of the unsymmetric ligand are able to induce regiocontrol. A 81:19 mixture of o-methoxy substituted aryne complexes is observed. Single-crystal X-ray crystallographic analysis, UV/vis spectroscopy, and cyclic voltammetry are used to gain further insight into the molecular and electronic structure of these complexes. Lastly, a methylation/deuteration sequence shows retention of the PHOX ligand-induced regiocontrol in the difunctionalized products and that the regiospecificity of these difunctionalizations is due to the trans influence of the P donor.
Collapse
Affiliation(s)
- Alexander Umanzor
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas A. Garcia
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C. Roberts
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Wang X, Wang K, Song H, Niu Y, Hou W, Hu M. Electrocatalysis-Enabled Defluorinative Cross-Coupling of gem-Difluoroalkenes with Aldehydes and Ketones. Org Lett 2024; 26:160-165. [PMID: 38147591 DOI: 10.1021/acs.orglett.3c03788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
An electrochemical defluorinative cross-coupling of gem-difluoroalkenes with carbonyl compounds was described, by which highly stereoselective monofluoroalkene allyl alcohols were synthesized. The reaction tolerates a broad range of functional groups and has successfully been applied to synthesize complex molecules. Mechanistic studies indicate that the reaction starts from electron reduction of gem-difluoroalkenes to generate radical negative ions, which undergo β-fluoride elimination and subsequent reduction to form anions. These anions are subsequently trapped by carbonyl compounds to furnish target products.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kaiteng Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haixia Song
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuhui Niu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weiwei Hou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Zhang Y, Guo J, VanNatta P, Jiang Y, Phipps J, Roknuzzaman R, Rabaâ H, Tan K, AlShahrani T, Ma S. Metal-Free Heterogeneous Asymmetric Hydrogenation of Olefins Promoted by Chiral Frustrated Lewis Pair Framework. J Am Chem Soc 2024; 146:979-987. [PMID: 38117691 DOI: 10.1021/jacs.3c11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The development of metal-free and recyclable catalysts for significant yet challenging transformations of naturally abundant feedstocks has long been sought after. In this work, we contribute a general strategy of combining the rationally designed crystalline covalent organic framework (COF) with a newly developed chiral frustrated Lewis pair (CFLP) to afford chiral frustrated Lewis pair framework (CFLPF), which can efficiently promote the asymmetric olefin hydrogenation in a heterogeneous manner, outperforming the homogeneous CFLP counterpart. Notably, the metal-free CFLPF exhibits superior activity/enantioselectivity in addition to excellent stability/recyclability. A series of in situ spectroscopic studies, kinetic isotope effect measurements, and density-functional theory computational calculations were also performed to gain an insightful understanding of the superior asymmetric hydrogenation catalysis performances of CFLPF. Our work not only increases the versatility of catalysts for asymmetric catalysis but also broadens the reactivity of porous organic materials with the addition of frustrated Lewis pair (FLP) chemistry, thereby suggesting a new approach for practical and substantial transformations through the advancement of novel catalysts from both concept and design perspectives.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Peter VanNatta
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Yao Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Roknuzzaman Roknuzzaman
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Hassan Rabaâ
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
- Department of Chemistry, Ibn Tofail University, ESCTM, Kenitra 14000, Morocco
| | - Kui Tan
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Thamraa AlShahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
18
|
Hakkennes MA, Buda F, Bonnet S. MetalDock: An Open Access Docking Tool for Easy and Reproducible Docking of Metal Complexes. J Chem Inf Model 2023; 63:7816-7825. [PMID: 38048559 PMCID: PMC10751784 DOI: 10.1021/acs.jcim.3c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
Despite the proven potential of metal complexes as therapeutics, the lack of computational tools available for the high-throughput screening of their interactions with proteins is a limiting factor toward clinical developments. To address this challenge, we introduce MetalDock, an easy-to-use, open access docking software for docking metal complexes to proteins. Our tool integrates the AutoDock docking engine with three well-known quantum software packages to automate the docking of metal-organic complexes to proteins. We used a Monte Carlo sampling scheme to obtain the missing Lennard-Jones parameters for 12 metal atom types and demonstrated that these parameters generalize exceptionally well. Our results show that the poses obtained by MetalDock are highly accurate, as they predict the binding geometries experimentally determined by crystal structures with high spatial reproducibility. Three different case studies are presented that demonstrate the versatility of MetalDock for the docking of diverse metal-organic compounds to different biomacromolecules, including nucleic acids.
Collapse
Affiliation(s)
- Matthijs
L. A. Hakkennes
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Zheng J, Peters BBC, Jiang W, Suàrez LA, Ahlquist MSG, Singh T, Andersson PG. The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones. Chemistry 2023:e202303406. [PMID: 38109038 DOI: 10.1002/chem.202303406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Jiang
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lluís Artús Suàrez
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
20
|
Xie C, Guo Q, Wu X, Ye W, Hou G. Efficient Rh-Catalyzed Chemo- and Enantioselective Hydrogenation of 2-CF 3-Chromen/Thiochromen-4-ones. J Org Chem 2023; 88:15726-15738. [PMID: 37921031 DOI: 10.1021/acs.joc.3c01723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
A Rh-catalyzed highly chemo- and enantioselective hydrogenation of 2-CF3-chromen/thiochromen-4-ones was successfully established achieving excellent selectivity and high turnover numbers. Under mild conditions, a series of 2-CF3-chromen-4-ones were hydrogenated to provide the corresponding chiral 2-CF3-chroman-4-ones with excellent enantioselectivities (up to 99.9% ee) and achieve high turnover numbers (TON of up to 11,800). Moreover, the obtained hydrogenation products were also successfully transformed into other derivatives including the important intermediate of plasmepsin inhibitors with maintained enantiopurity.
Collapse
Affiliation(s)
- Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Helmchen G. Mechanistic Aspects of the Crabtree-Pfaltz Hydrogenation of Olefins - An Interplay of Experimentation and Quantum Chemical Computation. Chemistry 2023; 29:e202301488. [PMID: 37363889 DOI: 10.1002/chem.202301488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
Introduction of Crabtree's iridium-based hydrogenation catalyst in 1977 marked a paradigm shift both with respect to the role of iridium in homogeneous catalysis as well as catalytic hydrogenation of olefins. In 1998, Pfaltz introduced an improved catalyst, by use of BARF- as anion, and established the first chiral variant of the Crabtree catalyst. This led to numerous practical highly enantioselective syntheses. Elucidation of mechanistic details posed great problems because of instability of the crucial intermediates. A remarkable breakthrough was achieved by Brandt, Andersson et al. in 2003, based on dft calculations. These authors replaced a previously assumed IrI /IrIII catalytic cycle by a novel IrIII /IrV cycle. The proposal was experimentally verified by Pfaltz in 2014 and corroborated by advanced quantum chemical calculations. This essay is an attempt to describe a fascinating interplay of experiments and quantum chemical calculations for an important synthetic method.
Collapse
Affiliation(s)
- Günter Helmchen
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Nie Y, Yuan Q, Zhang W. Axis-Unfixed Biphenylphosphine-Oxazoline Ligands: Design and Applications in Asymmetric Catalytic Reactions. CHEM REC 2023; 23:e202300133. [PMID: 37166412 DOI: 10.1002/tcr.202300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Indexed: 05/12/2023]
Abstract
The design and synthesis of chiral ligands plays an important role in asymmetric catalytic reactions. Over the past decades, various types of chiral phosphine-oxazolines (PHOX ligands) have been developed and have greatly advanced the field of asymmetric catalysis. Novel chiral PHOX ligand with an axis-unfixed biphenyl backbone, developed by our group, have shown interesting coordination behavior and excellent chiral inducing ability in various transition-metal-catalyzed asymmetric reactions. This personal account focuses on our developed axis-unfixed biphenylphosphine-oxazoline ligand (BiphPHOX), including an overview of its design and applications, which will provide inspiration for the exploration of novel ligands and related reactions.
Collapse
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
23
|
Wu X, Su Y, Zi G, Ye W, Hou G. Rh-Catalyzed Asymmetric Hydrogenation of α-Substituted Alkenyl Sulfones: Highly Chemo- and Enantioselective Access to Chiral Sulfones. Org Lett 2023; 25:6858-6862. [PMID: 37703279 DOI: 10.1021/acs.orglett.3c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Rh-(R,R)-f-spiroPhos complex-catalyzed asymmetric hydrogenation of α-substituted alkenyl sulfones has been achieved, affording the chiral γ-keto sulfones and simple α-alkyl-substituted sulfones in high yields (96-99%) with excellent chemo-/enantioselectivities (86-96% ee) and high turnover numbers (TONs) of up to 4000. The method provides an efficient and high-enantioselectivity strategy for chiral γ-keto sulfones and simple α-substituted sulfones under mild conditions. Moreover, the obtained hydrogenation product was transformed into other important chiral α-substituted sulfones.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanhao Su
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
25
|
Ma S, Hartwig JF. Progression of Hydroamination Catalyzed by Late Transition-Metal Complexes from Activated to Unactivated Alkenes. Acc Chem Res 2023; 56:1565-1577. [PMID: 37272995 DOI: 10.1021/acs.accounts.3c00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ConspectusCatalytic intermolecular hydroamination of alkenes is an atom- and step-economical method for the synthesis of amines, which have important applications as pharmaceuticals, agrochemicals, catalysts, and materials. However, hydroaminations of alkenes in high yield with high selectivity are challenging to achieve because these reactions often lack a thermodynamic driving force and often are accompanied by side reactions, such as alkene isomerization, telomerization, and oxidative amination. Consequently, early examples of hydroamination were generally limited to the additions of N-H bonds to conjugated alkenes or strained alkenes, and the catalytic hydroamination of unactivated alkenes with late transition metals has only been disclosed recently. Many classes of catalysts, including early transition metals, late transition metals, rare-earth metals, acids, and photocatalysts, have been reported for catalytic hydroamination. Among them, late transition-metal complexes possess several advantages, including their relative ease of handling and their high compatibility of substrates containing polar or sensitive functional groups.This Account describes the progression in our laboratory of hydroaminations catalyzed by late transition-metal complexes from the initial additions of N-H bonds to activated alkenes to the more recent additions to unactivated alkenes. Our developments include the Markovnikov and anti-Markovnikov hydroamination of vinylarenes with palladium, rhodium, and ruthenium, the hydroamination of dienes and trienes with nickel and palladium, the hydroanimation of bicyclic strained alkenes with neutral iridium, and the hydroamination of unactivated terminal and internal alkenes with cationic iridium and ruthenium. Enantioselective hydroaminations of these classes of alkenes to form enantioenriched, chiral amines also have been developed.Mechanistic studies have elucidated the elementary steps and the turnover-limiting steps of these catalytic reactions. The hydroamination of conjugated alkenes catalyzed by palladium, rhodium, nickel, and ruthenium occurs by turnover-limiting nucleophilic attack of the amine on a coordinated benzyl, allyl, alkene, or arene ligand. On the other hand, the hydroamination of unconjugated alkenes catalyzed by ruthenium and iridium occurs by turnover-limiting migratory insertion of the alkene into a metal-nitrogen bond. In addition, pathways for the formation of side products, including isomeric alkenes and enamines, have been identified during our studies. During studies on enantioselective hydroamination, the reversibility of the hydroamination has been shown to erode the enantiopurity of the products. Based on our mechanistic understandings, new generations of catalysts that promote catalytic hydroaminations with higher rates, chemoselectivity, and enantioselectivity have been developed. We hope that our discoveries and mechanistic insights will facilitate the further development of catalysts that promote selective, practical, and efficient hydroamination of alkenes.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Peagno GSG, Salles AG. Oxidative transformations of olefins employing persulfate/visible light irradiation in water. Org Biomol Chem 2023; 21:4210-4215. [PMID: 37144677 DOI: 10.1039/d3ob00538k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a green and economical approach for the photooxidation of diverse olefins through the use of ammonium persulfate and blue light irradiation, resulting in the formation of vicinal diols from styrenes and aliphatic alkenes, and vinyl esters and diacids from α,β-unsaturated ketones. The involvement of sulfate radicals in the reaction medium was established as the primary species responsible for the selective generation of the products. A significant advantage of the method lies in its broad substrate scope and economic feasibility, making it a promising alternative to conventional transition metal photocatalysis.
Collapse
Affiliation(s)
- Gabriel S G Peagno
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| | - Airton G Salles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| |
Collapse
|
27
|
Li K, Wu WQ, Lin Y, Shi H. Asymmetric hydrogenation of 1,1-diarylethylenes and benzophenones through a relay strategy. Nat Commun 2023; 14:2170. [PMID: 37061515 PMCID: PMC10105712 DOI: 10.1038/s41467-023-37882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/29/2023] [Indexed: 04/17/2023] Open
Abstract
Homogenous transition-metal catalysts bearing a chiral ligand are widely used for asymmetric hydrogenation of unsaturated compounds such as olefins and ketones, providing efficient concise access to products with chiral carbon centers. However, distinguishing the re and si prochiral faces of a double bond bearing two substituents that are sterically and electronically similar is challenging for these catalysts. Herein, we report a relay strategy for constructing compounds with a chiral gem-diaryl carbon center by means of a combination of selective arene exchange between 1,1-diarylethylenes or benzophenones with (naphthalene)Cr(CO)3 and subsequent asymmetric hydrogenation. During the hydrogenation, the Cr(CO)3 unit facilitate differentiation of the two prochiral faces of the substrate double bond via formation of a three-dimensional complex with one of the aromatic rings by selective arene exchange. Density functional theory calculations reveal that during the hydrogenation, chromium coordination affected π-π stacking of the substrate and the catalyst ligand, leading to differentiation of the prochiral faces.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, P. R. China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, P. R. China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, P. R. China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, P. R. China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, P. R. China.
| |
Collapse
|
28
|
Billion A, Schorpp M, Feser R, Schmitt M, Eisele L, Scherer H, Sonoda T, Kawa H, Butschke B, Krossing I. The perfluoroadamantoxy aluminate as an ideal weakly coordinating anion? - synthesis and first applications. Dalton Trans 2023; 52:4355-4370. [PMID: 36924178 DOI: 10.1039/d3dt00199g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Weakly coordinating anions (WCAs) facilitate the stabilization and isolation of highly reactive and almost "naked" cations. Alkoxyaluminate-based WCAs such as [Al(OC(CF3)3)4]- ([pf]-) are widely used due to their synthetic accessibility and their high stability. However, small cations are still able to coordinate the oxygen atoms of the [pf]- anion or even to abstract an alkoxy ligand. The novel WCA [Al(OC10F15)4]- ([pfAd]-; OC10F15 = perfluoro-1-adamantoxy) is characterized by a very rigid core framework, thus indicating a higher stability towards fluoride-ion abstraction (DFT calculations) and providing hope to generate less disordered crystal structures. The [pfAd]- anion was generated by the reaction of the highly acidic alcohol perfluoro-1-adamantanol C10F15OH with LiAlH4 in o-DFB. Li[pfAd] could not be synthesized free of impurities (and still contains unreacted alcohol). Yet, starting from contaminated Li[pfAd], the very useful pure salts Ag[pfAd], [Ph3C][pfAd] and [H(OEt2)2][pfAd] could be synthesized. The salts were characterized by NMR spectroscopy, single-crystal X-ray diffraction and IR spectroscopy. Additionally, [NO][pfAd] could be synthesized containing alcohol impurities but nonetheless enabled the synthesis of the salt P9+[pfAd]-. The synthesis of Tl[pfAd] in a mixture of H2O/acetone/o-DFB demonstrated the water stability of the [pfAd]- anion.
Collapse
Affiliation(s)
- Andreas Billion
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Marcel Schorpp
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Rebecca Feser
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Manuel Schmitt
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Lea Eisele
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Harald Scherer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Takaaki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga koen, Kasuga-shi, Fukuoka, 816-8580, Japan
| | - Hajimu Kawa
- Exfluor Research Corporation, 2350 Double Creek Drive, Round Rock, Texas 78664, USA
| | - Burkhard Butschke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum FMF, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Zhang R, Xu S, Luo Z, Liu Y, Zhang J. Enantiodivergent Hydrogenation of Exocyclic α,β-Unsaturated Lactams Enabled by Switching the N-Chirality of Iridium Catalyst. Angew Chem Int Ed Engl 2023; 62:e202213600. [PMID: 36629743 DOI: 10.1002/anie.202213600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Central chirality is an important chiral element used in the design of chiral ligands and catalysts. Mostly, the attention of organic chemists is focused on developing of chiral ligands with stable stereogenic centers. However, the N-chirality in chiral ligand design has been rarely explored due to its flexibility. Here we demonstrate the design, synthesis, and application of a class of simple P,N-ligands with flexible N-chirality and their derived iridium complexes with fixed N-chiral stereocenters. Both fixed configurations of the N-stereocenter of the iridium complexes could be selectively formed from the same chiral ligand. This pair of diastereoisomeric iridium complexes showed good performance in the enantiodivergent asymmetric hydrogenation of exocyclic α,β-unsaturated lactams. The N-H group plays an impressive role in catalytic activity. Computational studies emphasized the importance of N-chirality and N-H group.
Collapse
Affiliation(s)
- Ronghua Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shan Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhou Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
30
|
Biosca M, de la Cruz-Sánchez P, Faiges J, Margalef J, Salomó E, Riera A, Verdaguer X, Ferré J, Maseras F, Besora M, Pàmies O, Diéguez M. P-Stereogenic Ir-MaxPHOX: A Step toward Privileged Catalysts for Asymmetric Hydrogenation of Nonchelating Olefins. ACS Catal 2023; 13:3020-3035. [PMID: 36910869 PMCID: PMC9990153 DOI: 10.1021/acscatal.2c05579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Indexed: 02/16/2023]
Abstract
The Ir-MaxPHOX-type catalysts demonstrated high catalytic performance in the hydrogenation of a wide range of nonchelating olefins with different geometries, substitution patterns, and degrees of functionalization. These air-stable and readily available catalysts have been successfully applied in the asymmetric hydrogenation of di-, tri-, and tetrasubstituted olefins (ee's up to 99%). The combination of theoretical calculations and deuterium labeling experiments led to the uncovering of the factors responsible for the enantioselectivity observed in the reaction, allowing the rationalization of the most suitable substrates for these Ir-catalysts.
Collapse
Affiliation(s)
- Maria Biosca
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Pol de la Cruz-Sánchez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jorge Faiges
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ernest Salomó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac, 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Joan Ferré
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Maria Besora
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Oscar Pàmies
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Montserrat Diéguez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
31
|
Zhang H, He X, Yuan XA, Yu S. Kinetic Resolution of 2-Cinnamylpyrrolines Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E → Z Isomerization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian He
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Nie Y, Yuan Q, Gao F, Terada M, Zhang W. Iridium-Catalyzed Double Asymmetric Hydrogenation of 2,5-Dialkylienecyclopentanones for the Synthesis of Chiral Cyclopentanones. Org Lett 2022; 24:7878-7882. [PMID: 36264061 DOI: 10.1021/acs.orglett.2c02656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report an efficient iridium-catalyzed double asymmetric hydrogenation of 2,5-dialkylienecyclopentanones, delivering the chiral 2,5-disubstituted cyclopentanones in excellent yields and stereoselectivities. The results of the kinetic experiments and control experiments indicated that the two C═C bonds were hydrogenated in a stepwise manner and the second stereocenter was synergistically controlled by the chiral catalyst and the chirality of monohydrogenated product. The hydrogenated products can be prepared on a gram-scale and are easily derivatized.
Collapse
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
33
|
Peters BBC, Andersson PG. The Implications of the Brønsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins. J Am Chem Soc 2022; 144:16252-16261. [PMID: 36044252 PMCID: PMC9479089 DOI: 10.1021/jacs.2c07023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral iridium complexes derived from Crabtree's catalyst are highly useful in modern hydrogenations of olefins attributed to high reactivity, stereoselectivity, and stability. Despite that these precatalysts are pH neutral, the reaction mixtures turn acidic under hydrogenation conditions. This Perspective is devoted to the implications of the intrinsic Brønsted acidity of catalytic intermediates in asymmetric hydrogenation of olefins. Despite that the acidity has often been used only as a rationale for side-product formation, more recent methodologies have started to use this property advantageously. We hope that this Perspective serves as a stimulant for the development of such compelling and new asymmetric hydrogenations. The inherent scientific opportunities in utilizing or annihilating the generated Brønsted acid are enormous, and potential new innovations are outlined toward the end.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
34
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
35
|
Abstract
The asymmetric hydroaminocarbonylation of olefins represents a straightforward approach for the synthesis of enantioenriched amides, but is hampered by the necessity to employ CO gas, often at elevated pressures. We herein describe, as an alternative, an enantioselective hydrocarbamoylation of alkenes leveraging dual copper hydride and palladium catalysis to enable the use of readily available carbamoyl chlorides as a practical carbamoylating reagent. The protocol is applicable to various types of olefins, including alkenyl arenes, terminal alkenes, and 1,1-disubstituted alkenes. Substrates containing a diverse range of functional groups as well as heterocyclic substructures undergo functionalization to provide α- and β-chiral amides in good yields and with excellent enantioselectivities.
Collapse
Affiliation(s)
- Sheng Feng
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Yuyang Dong
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA 02139USA
| |
Collapse
|
36
|
Yang J, Ponra S, Li X, Peters BBC, Massaro L, Zhou T, Andersson PG. Catalytic enantioselective synthesis of fluoromethylated stereocenters by asymmetric hydrogenation. Chem Sci 2022; 13:8590-8596. [PMID: 35974749 PMCID: PMC9337738 DOI: 10.1039/d2sc02685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fluoromethyl groups possess specific steric and electronic properties and serve as a bioisostere of alcohol, thiol, nitro, and other functional groups, which are important in an assortment of molecular recognition processes. Herein we report a catalytic method for the asymmetric synthesis of a variety of enantioenriched products bearing fluoromethylated stereocenters with excellent yields and enantioselectivities. Various N,P-ligands were designed and applied in the hydrogenation of fluoromethylated olefins and vinyl fluorides.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Xingzhen Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
37
|
Carroll TG, Ryan DE, Erickson JD, Bullock RM, Tran BL. Isolation of a Cu–H Monomer Enabled by Remote Steric Substitution of a N-Heterocyclic Carbene Ligand: Stoichiometric Insertion and Catalytic Hydroboration of Internal Alkenes. J Am Chem Soc 2022; 144:13865-13873. [DOI: 10.1021/jacs.2c05376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Timothy G. Carroll
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David E. Ryan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy D. Erickson
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - R. Morris Bullock
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ba L. Tran
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
38
|
Saudan CM, Berrocosa A, Quintaine J, Spoehrle S, Maggi L, Mosimann H, Saudan L. Highly Selective Rhodium Catalyzed 1,4‐Hydrogenation of Conjugated Dienals. ChemCatChem 2022. [DOI: 10.1002/cctc.202200671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | | | - Lionel Saudan
- FIRMENICH Research & Development 7 rue de la Bergère 1242 Satigny SWITZERLAND
| |
Collapse
|
39
|
Jones M, Harris D, Struble J, Hayes M, Koeller K, Chepiga Özgün K, Schirmer H, Heinrich J, Baechle F, Goudedranche S, Schotes C. Development of a Practical Process for the Large-Scale Preparation of the Chiral Pyridyl-Backbone for the Crabtree/Pfaltz-Type Iridium Complex Used in the Industrial Production of the Novel Fungicide Inpyrfluxam. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle Jones
- Crop Science Division, Bayer AG, 800 N. Lindbergh Blvd., Saint Louis, Missouri 63167, United States
| | - Dave Harris
- Crop Science Division, Bayer AG, 800 N. Lindbergh Blvd., Saint Louis, Missouri 63167, United States
| | - Justin Struble
- Crop Science Division, Bayer AG, 800 N. Lindbergh Blvd., Saint Louis, Missouri 63167, United States
| | - Michael Hayes
- Crop Science Division, Bayer AG, 800 N. Lindbergh Blvd., Saint Louis, Missouri 63167, United States
| | - Kevin Koeller
- Crop Science Division, Bayer AG, 800 N. Lindbergh Blvd., Saint Louis, Missouri 63167, United States
| | - Kathryn Chepiga Özgün
- Pharmaceuticals Division, Bayer AG, Friedrich-Ebert-Straße 217/333, Wuppertal, Nordrhein-Westfalen 42117, Germany
| | - Heiko Schirmer
- Crop Science Division, Bayer AG, Alfred-Nobel-Str. 50, Monheim, Nordrhein-Westfalen 51368, Germany
| | - Jens Heinrich
- Crop Science Division, Bayer AG, Alfred-Nobel-Str. 50, Monheim, Nordrhein-Westfalen 51368, Germany
| | - Florian Baechle
- Solvias AG, Römerpark 2, Kaiseraugst, Aargau CH 4303, Switzerland
| | | | - Christoph Schotes
- Crop Science Division, Bayer AG, Bayerstr. 0001, Dormagen 41538, Germany
| |
Collapse
|
40
|
Hong W, Swann WA, Yadav V, Li CW. Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vamakshi Yadav
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Feng S, Dong Y, Buchwald SL. Enantioselective Hydrocarbamoylation of Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sheng Feng
- Massachusetts Institute of Technology Chemistry 235 Albany St1050 02139 Cambridge CHINA
| | - Yuyang Dong
- Massachusetts Institute of Technology Chemistry CHINA
| | - Stephen L. Buchwald
- Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts AvenueRoom18-490 2139 Cambridge UNITED STATES
| |
Collapse
|
42
|
Das D, Saha M, Das AR. Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Luminescent quantum dots (QDs) represent a new form of carbon nanomaterials which have gained widespread attention in recent years, especially in the area of chemical sensing, bioimaging, nanomedicine, solar cells, light-emitting diode (LED), and electrocatalysis. Their extremely small size renders some unusual properties such as quantum confinement effects, good surface binding properties, high surface‐to‐volume ratios, broad and intense absorption spectra in the visible region, optical and electronic properties different from those of bulk materials. Apart from, during the past few years, QDs offer new and versatile ways to serve as photocatalysts in organic synthesis. Quantum dots (QD) have band gaps that could be nicely controlled by a number of factors in a complicated way, mentioned in the article. Processing, structure, properties and applications are also reviewed for semiconducting quantum dots. Overall, this review aims to summarize the recent innovative applications of QD or its modified nanohybrid as efficient, robust, photoassisted redox catalysts in C–C and C-heteroatom bond forming reactions. The recent structural modifications of QD or its core structure in the development of new synthetic methodologies are also highlighted. Following a primer on the structure, properties, and bio-functionalization of QDs, herein selected examples of QD as a recoverable sustainable nanocatalyst in various green media are embodied for future reference.
Collapse
Affiliation(s)
- Dwaipayan Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Moumita Saha
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| | - Asish. R. Das
- Department of Chemistry , University of Calcutta , Kolkata 700009 , India
| |
Collapse
|
43
|
Peters BBC, Zheng J, Krajangsri S, Andersson PG. Stereoselective Iridium-N,P-Catalyzed Double Hydrogenation of Conjugated Enones to Saturated Alcohols. J Am Chem Soc 2022; 144:8734-8740. [PMID: 35511116 PMCID: PMC9121388 DOI: 10.1021/jacs.2c02422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Asymmetric hydrogenation
of prochiral substrates such as ketones
and olefins constitutes an important instrument for the construction
of stereogenic centers, and a multitude of catalytic systems have
been developed for this purpose. However, due to the different nature
of the π-system, the hydrogenation of olefins and ketones is
normally catalyzed by different metal complexes. Herein, a study on
the effect of additives on the Ir-N,P-catalyzed hydrogenation of enones
is described. The combination of benzamide and the development of
a reactive catalyst unlocked a novel reactivity mode of Crabtree-type
complexes toward C=O bond hydrogenation. The role of benzamide
is suggested to extend the lifetime of the dihydridic iridium intermediate,
which is prone to undergo irreversible trimerization, deactivating
the catalyst. This unique reactivity is then coupled with C=C
bond hydrogenation for the facile installation of two contiguous stereogenic
centers in high yield and stereoselectivity (up to 99% ee, 99/1 d.r.) resulting in a highly stereoselective reduction of enones.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Jia Zheng
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000Durban, South Africa
| |
Collapse
|
44
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022; 61:e202201099. [DOI: 10.1002/anie.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
45
|
Mo L, Barr HI, Odom AL. Investigation of Phosphine Donor Properties to Vanadium(V) Nitrides. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Ou W, Qiu C, Su C. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: A review. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Nikam S, S. K A. Enantioselective Separation of Amino Acids Using Chiral Polystyrene Microspheres Synthesized by a Post-Polymer Modification Approach. ACS POLYMERS AU 2022; 2:257-265. [PMID: 36855562 PMCID: PMC9955280 DOI: 10.1021/acspolymersau.2c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective separation of a racemic mixture of amino acids was achieved by chiral amino acid-modified polystyrene (PS) that was developed by a post-polymer modification approach. Styrene was polymerized using the reversible addition-fragmentation chain-transfer (RAFT) polymerization technique and further post-polymer modification was applied by Friedel-Crafts acylation reaction with chiral N-phthaloyl-l-leucine acid chloride to obtain the protected PS-l-Leu. The chiral PS (protected PS-l-Leu) was assembled into microspheres using a surfactant and was used for carrying out the enantioselective separation of amino acid racemic mixtures by enantioselective adsorption followed by a simple filtration process. Compared to as-precipitated chiral PS (protected PS-l-Leu) powder, the protected PS-l-Leu microspheres exhibited a better enantioselective separation efficiency (ee %). Furthermore, the protected PS-l-Leu was deprotected to obtain the amine-functionalized deprotected PS-l-Leu chiral PS, which was also assembled into microspheres and used for carrying out enantioselective separation. Deprotected PS-l-Leu-functionalized chiral PS microspheres could achieve up to 81.6 ee % for the enantioselective separation of a racemic mixture of leucine. This is one of the first reports of the synthesis of amino acid-modified chiral PS microspheres and their application to the simple filtration-based enantioselective separation of native amino acids from their racemic mixtures.
Collapse
Affiliation(s)
- Shrikant
B. Nikam
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India
| | - Asha S. K
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India,. Fax: 0091-20-25902615
| |
Collapse
|
48
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
49
|
Peters BBC, Andersson PG, Ruchirawat S, Ieawsuwan W. Synthesis of Chiral Tetrahydro-3-benzazepine Motifs by Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Ene-carbamates. Org Lett 2022; 24:1969-1973. [PMID: 35238569 PMCID: PMC8938950 DOI: 10.1021/acs.orglett.2c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient N,P-ligated iridium complex is presented for the simple preparation of chiral tetrahydro-3-benzazepine motifs by catalytic asymmetric hydrogenation. Substrates bearing both 1-aryl and 1-alkyl substituents were smoothly converted to the corresponding hydrogenated product with excellent enantioselectivity (91-99% ee) and in isolated yield (92-99%). The synthetic value of this transformation was demonstrated by a gram-scale hydrogenation and application in the syntheses of trepipam and fenoldopam.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand.,Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Winai Ieawsuwan
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
50
|
Wang Z, Li B. Iridium‐Catalyzed Regiodivergent and Enantioselective Hydroalkynylation of Unactivated 1,1‐Disubstituted Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|