1
|
Gong X, Shi X, Deng P, Cheng J. Reactivity of Strontium Hydride Supported by the Superbulky Hydrotris(pyrazolyl)borate Ligand. Inorg Chem 2024; 63:20654-20663. [PMID: 39421973 PMCID: PMC11523258 DOI: 10.1021/acs.inorgchem.4c03296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Hydrogenolysis of [(TpAd,iPr)Sr{CH(SiMe3)2}] (1) (TpAd,iPr = hydrotris(3-adamantyl-5-isopropyl-pyrazolyl)borate) in hexane solution under 20 atm of H2 allowed for the isolation of strontium hydride [(TpAd,iPr)Sr(μ-H)]2 (2) in good yield. Complex 2 exhibits the dimeric nature in solid state, featuring two different bond modes between the Sr center and TpAd,iPr ligand. Treatment of complex 2 with PhC(H)═NtBu or PhCH2Bpin (Bpin = pinacolateborane) afforded the strontium amide complex [(TpAd,iPr)Sr{N(CH2Ph)(tBu)}] (4) and hydroborate complex [(TpAd,iPr)Sr{μ-HBpin(CH2Ph)}] (5), respectively. Reactions of complex 2 with 2-picoline, 2-phenylquinoline, or 2-phenylpyridine led to the formation of strontium 2-pyridylmethylene/2-picoline complex [(TpAd,iPr)Sr(2-CH2-Py)(2-picoline)] (6), reductively coupling diphenyl-biquinolide complex [{(TpAd,iPr)Sr}2(2,2'-Ph2-4,4'-dihydro-4,4'-biquinolide)] (7), and diphenyl-bipyridyl radical complex [(TpAd,iPr)Sr(6,6'-Ph2-2,2'-bipyridyl)] (8), separately. All of the complexes have been well characterized, including NMR spectrum and single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Xun Gong
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianghui Shi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
| | - Peng Deng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhua Cheng
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, No. 5625 Renmin Street, Changchun 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Kennedy DB, Evans MJ, Jones DDL, Parr JM, Hill MS, Jones C. A series of neutral alkaline earth metal hydride complexes supported by a bulky, unsymmetrical β-diketiminate ligand, [{( Dip/TCHPNacnac)M(μ-H)} 2] (M = Mg, Ca, Sr or Ba). Chem Commun (Camb) 2024; 60:10894-10897. [PMID: 39253901 DOI: 10.1039/d4cc04286g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A bulky, unsymmetrical β-diketiminate ligand, [HC{MeCN(Dip)}{MeCN(TCHP)}]- (Dip/TCHPNacnac; Dip = 2,6-diisopropylphenyl, TCHP = 2,4,6-tricyclohexylphenyl), has been utilised in the preparation of a series of magnesium alkyl and calcium, strontium and barium amide complexes. Reaction of these with PhSiH3 afforded the first complete series of β-diketiminato heavier group 2 metal hydride complexes, [{(Dip/TCHPNacnac)M(μ-H)}2] (M = Mg, Ca, Sr or Ba). The unsymmetrical nature of the β-diketiminate ligand seemingly promotes stabilising interactions of ligand Dip groups with the metal centres in the Ca, Sr and Ba hydride complexes.
Collapse
Affiliation(s)
- Dominic B Kennedy
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Matthew J Evans
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Dafydd D L Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Cameron Jones
- School of Chemistry, Monash University, PO Box 23, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Wang R, Martínez S, Schwarzmann J, Zhao CZ, Ramler J, Lichtenberg C, Wang YM. Transition Metal Mimetic π-Activation by Cationic Bismuth(III) Catalysts for Allylic C-H Functionalization of Olefins Using C═O and C═N Electrophiles. J Am Chem Soc 2024; 146:22122-22128. [PMID: 39102739 PMCID: PMC11328129 DOI: 10.1021/jacs.4c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The discovery and utilization of main-group element catalysts that behave similarly to transition metal (TM) complexes have become increasingly active areas of investigation in recent years. Here, we report a series of Lewis acidic bismuth(III) complexes that allow for the catalytic allylic C(sp3)-H functionalization of olefins via an organometallic complexation-assisted deprotonation mechanism to generate products containing new C-C bonds. This heretofore unexplored mode of main-group reactivity was applied to the regioselective functionalization of 1,4-dienes and allylbenzene substrates. Experimental and computational mechanistic studies support the key steps of the proposed catalytic cycle, including the intermediacy of elusive Bi-olefin complexes and allylbismuth species.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sebastián Martínez
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Johannes Schwarzmann
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Kuang M, Chen H, Liu Y, Huang J, Zeng Z, Zhou Z, Li H, Yi W, Wang S. Calcium(II)-Mediated Three-Component Selenylation of gem-Difluoroalkenes: Access to α,α-Difluoroalkyl-β-selenides. Org Lett 2024; 26:6274-6278. [PMID: 39008813 DOI: 10.1021/acs.orglett.4c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A calcium-mediated three-component selenylation of gem-difluoroalkenes using alcohols as nucleophiles and N-(phenylseleno)phthalimide as the selenylation agent has been developed for the efficient synthesis of various α,α-difluoroalkyl-β-selenides. This selenylation reaction exhibits broad substrate and functional group tolerance, along with high levels of chemo- and regioselectivity. Additionally, the synthetic utility of the developed transformation in the late-stage functionalization of drug molecules was demonstrated.
Collapse
Affiliation(s)
- Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haokun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Jianlian Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
5
|
Kornowicz A, Pietrzak T, Korona K, Terlecki M, Justyniak I, Kubas A, Lewiński J. Fresh Impetus in the Chemistry of Calcium Peroxides. J Am Chem Soc 2024; 146:18938-18947. [PMID: 38847558 PMCID: PMC11258691 DOI: 10.1021/jacs.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024]
Abstract
Redox-inactive metal ions are essential in modulating the reactivity of various oxygen-containing metal complexes and metalloenzymes, including photosystem II (PSII). The heart of this unique membrane-protein complex comprises the Mn4CaO5 cluster, in which the Ca2+ ion acts as a critical cofactor in the splitting of water in PSII. However, there is still a lack of studies involving Ca-based reactive oxygen species (ROS) systems, and the exact nature of the interaction between the Ca2+ center and ROS in PSII still generates intense debate. Here, harnessing a novel Ca-TEMPO complex supported by the β-diketiminate ligand to control the activation of O2, we report the isolation and structural characterization of hitherto elusive Ca peroxides, a homometallic Ca hydroperoxide and a heterometallic Ca/K peroxide. Our studies indicate that the presence of K+ cations is a key factor controlling the outcome of the oxygenation reaction of the model Ca-TEMPO complex. Combining experimental observations with computational investigations, we also propose a mechanistic rationalization for the reaction outcomes. The designed approach demonstrates metal-TEMPO complexes as a versatile platform for O2 activation and advances the understanding of Ca/ROS systems.
Collapse
Affiliation(s)
- Arkadiusz Kornowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Pietrzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzesimir Korona
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Kubas
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Jing B, Zhu C, Song H, Li J, Cui C. Ytterbium(II) Complex-Catalyzed Selective Single and Double Hydrophosphination of 1,3-Enynes. Chemistry 2024; 30:e202401234. [PMID: 38712548 DOI: 10.1002/chem.202401234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
1,3-Enynes with conjugated alkene and alkyne moieties are attractive building blocks in synthetic chemistry. However, neither 4,1-hydrophosphination nor dihydrophosphination of 1,3-enynes has been reported. In this paper, the divalent ytterbium and calcium amide complexes supported by silaimine-functionalized cyclopentadienyl ligands (C5Me4-Si(L)=NR) were developed, which successfully catalyzed the efficient single and double hydrophosphination of 1,3-enynes with diarylphosphines. The hydrophosphination reactions selectively produced homoallenyl phosphines and (E)-propenylene diphosphines, respectively. This work demonstrated the potential of hemilabile silaimine-Cp ligands in the supporting the efficient and selective rare- and alkaline-earth catalysts.
Collapse
Affiliation(s)
- Bing Jing
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Cheng Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Haibin Song
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center of Organic Matters, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Wolff S, Ponsonby A, Dallmann A, Herwig C, Beckmann F, Cula B, Limberg C. Appropriation of group II metals: synthesis and characterisation of the first alkaline earth metal supported transition metal carbonite complexes. Chem Commun (Camb) 2024; 60:5816-5819. [PMID: 38753303 DOI: 10.1039/d4cc01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Nickel carbonite complexes supported by alkaline earth metals have been accessed via salt-metathesis of the corresponding alkali metal precursors. The new complexes undergo Schlenk-like exchange reactions in solution which have been investigated by NMR spectroscopy. Also their reactivity towards epoxides and carbon monoxide was studied.
Collapse
Affiliation(s)
- Siad Wolff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Annabelle Ponsonby
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - André Dallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Christian Herwig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Fabian Beckmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Christian Limberg
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
8
|
Liang Y, Efremenko I, Diskin-Posner Y, Avram L, Milstein D. Calcium-Ligand Cooperation Promoted Activation of N 2O, Amine, and H 2 as well as Catalytic Hydrogenation of Imines, Quinoline, and Alkenes. Angew Chem Int Ed Engl 2024; 63:e202401702. [PMID: 38533687 DOI: 10.1002/anie.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Bond activation and catalysis using s-block metals are of great significance. Herein, a series of calcium pincer complexes with deprotonated side arms have been prepared using pyridine-based PNP and PNN ligands. The complexes were characterized by NMR and X-ray crystal diffraction. Utilizing the obtained calcium complexes, unprecedented N2O activation by metal-ligand cooperation (MLC) involving dearomatization-aromatization of the pyridine ligand was achieved, generating aromatized calcium diazotate complexes as products. Additionally, the dearomatized calcium complexes were able to activate the N-H bond as well as reversibly activate H2, offering an opportunity for the catalytic hydrogenation of various unsaturated molecules. DFT calculations were applied to analyze the electronic structures of the synthesized complexes and explore possible reaction mechanisms. This study is an important complement to the area of MLC and main-group metal chemistry.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irena Efremenko
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
9
|
Rina YA, Schmidt JAR. Alpha-metalated N, N-dimethylbenzylamine rare-earth metal complexes and their catalytic applications. Dalton Trans 2024. [PMID: 38757291 DOI: 10.1039/d4dt00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This perspective summarizes our group's extensive research in the realm of organometallic lanthanide complexes, while also placing the catalytic reactions supported by these species within the context of known lanthanide catalysis worldwide, with a specific focus on phosphorus-based catalytic reactions such as intermolecular hydrophosphination and hydrophosphinylation. α-Metalated N,N-dimethylbenzylamine ligands have been utilized to generate homoleptic lanthanide complexes, which have subsequently proven to be highly active lanthanum-based catalysts. The main goal of our research program has been to enhance the catalytic efficiency of lanthanum-based complexes, which began with initial successes in the stoichiometric synthesis of organometallic lanthanide complexes and utilization of these species in catalytic hydrophosphination reactions. Not only have these species supported traditional lanthanide catalysis, such as the hydrophosphination of heterocumulenes like carbodiimides, isocyanates, and isothiocyanates, but they have also been effective for a plethora of catalytic reactions tested thus far, including the hydrophosphinylation and hydrophosphorylation of nitriles, hydrophosphination and hydrophosphinylation of alkynes and alkenes, and the heterodehydrocoupling of silanes and amines. Each of these catalytic transformations is meritorious in its own right, offering new synthetic routes to generate organic scaffolds with enhanced functionality while concurrently minimizing both waste generation and energy consumption. Objectives: We aim for the research summary presented herein to inspire and encourage other researchers to investigate f-element based stoichiometric and catalytic reactions. Our efforts in this field began with the recognition that potassium salts of benzyldimethylamine preferred deprotonation at the α-position, rather than the ortho-position, and we wondered if this regiochemistry would be retained in the formation of lanthanide complexes. The pursuit of this simple idea led first to a series of structurally fascinating homoleptic organometallic lanthanide complexes with surprisingly good stability. Fundamental studies of the protonolysis chemistry of these complexes ultimately revealed highly versatile lanthanide-based precatalysts that have propelled a catalytic investigation spanning more than a decade. We anticipate that this summative perspective will animate the synthetic as well as biological communities to consider La(DMBA)3-based catalytic methods in the synthesis of functionalized organic scaffolds as an atom-economic, convenient, and efficient methodology. Ultimately, we envision our work making a positive impact on the advancement of novel chemical transformations and contributing to progress in various fields of science and technology.
Collapse
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| | - Joseph A R Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo, Ohio 43606-3390, USA.
| |
Collapse
|
10
|
Mondal S, Sarkar S, Mandal C, Mallick D, Mukherjee D. Fluorenyl-tethered N-heterocyclic carbene (NHC): an exclusive C-donor ligand for heteroleptic calcium and strontium chemistry. Chem Commun (Camb) 2024; 60:4553-4556. [PMID: 38568715 DOI: 10.1039/d4cc00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Exclusive C-donating ligands are rarely used with kinetically labile heavier alkaline earths (Ca, Sr, Ba). We report herein the aptitude of a combination of NHC with fluorenyl connected by a flexible -(CH2)2- linker as a ligand support for heteroleptic Ca- and Sr-N(SiMe3)2 and iodides. The Ca-N(SiMe3)2 complex even catalyzes the intramolecular hydroamination of aminoalkenes to showcase the effectiveness of this ligand framework.
Collapse
Affiliation(s)
- Sumana Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Subham Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
11
|
Lyubov DM, Zakaria H, Nelyubina YV, Aysin RR, Bukalov SS, Trifonov AA. Ca(II) and Yb(II) complexes featuring M(C≡C) 4 structural motif: enforced proximity or genuine η 2 -bonding? Chemistry 2024; 30:e202303533. [PMID: 38070175 DOI: 10.1002/chem.202303533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/12/2024]
Abstract
Bis(carbazolide) complexes M[3,6-tBu2 -1,8-(RC≡C)2 Carb]2 (THF)n (R=SiMe3 , n=0, M=Ca, Yb; R=Ph, n=1, M=Ca, Yb; n=0, M=Yb) were synthesized through transamination reaction of M[N(SiMe3 )2 ]2 (THF)2 with two molar equivalents of carbazoles. The complexes feature M(η2 -C≡C)4 structural motif composed of M(II) ions encapsulated by four acetylene fragments due to atypical for alkaline- and rare-earth metals η2 -interactions with triple C≡C bond. This interaction is evidenced experimentally by X-ray diffraction, Raman spectroscopy in the solid state and by NMR-spectroscopy in the solution. According to QTAIM analysis there are 4 bond critical points (3;-1) between the metal atom and each of the triple bonds, which are connected by a strongly curved, almost T-shaped bond pathway.
Collapse
Affiliation(s)
- Dmitry M Lyubov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
| | - Hamza Zakaria
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
- N. I. Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Rinat R Aysin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Sergey S Bukalov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| | - Alexander A Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Russia, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Gagarina Avenue 23, 603950, Nizhny Novgorod, Russia
- 28 Vavilova str., 119334, Moscow, Russia
| |
Collapse
|
12
|
Patro AG, Sahoo RK, Nembenna S. Zinc hydride catalyzed hydroboration of esters. Dalton Trans 2024; 53:3621-3628. [PMID: 38289250 DOI: 10.1039/d3dt04084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The conjugated bis-guanidinate (CBG)-supported zinc hydride {LZnH}2; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3} (I) is utilized as a catalyst for the hydroboration of esters with pinacolborane (HBpin) under mild reaction conditions. Various aryl and alkyl substrates containing electron-donating, withdrawing, and cyclic groups of esters are effectively converted into alkoxy boronate esters as products upon hydroboration. Furthermore, stoichiometric experiments have been performed to understand the plausible reaction mechanism for the hydroboration of esters. Additionally, complex (I) was used for the hydroboration of carbonate, carboxylic acid, and anhydride substrates to showcase the broad substrate scope.
Collapse
Affiliation(s)
- A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| |
Collapse
|
13
|
Eaton M, Zhang Y, Liu SY. Borataalkenes, boraalkenes, and the η 2-B,C coordination mode in coordination chemistry and catalysis. Chem Soc Rev 2024; 53:1915-1935. [PMID: 38190152 PMCID: PMC10922737 DOI: 10.1039/d3cs00730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Borataalkenes and boraalkenes are the boron-containing isoelectronic analogues of alkenes and vinyl cations respectively. Compared with alkenes, the borataalkene and boraalkene ligand motifs in transition metal coordination chemistry are relatively underexplored. In this review, the synthesis of borataalkene and boraalkene complexes and other transition metal complexes featuring the η2-B,C coordination mode is described. The diversity of coordination modes and geometry in these complexes, and the spectroscopic and structural evidence supporting their assignments is disclosed as well as computational analysis of bonding. The applications of the borataalkene ligand motif in synthetic organic homogeneous catalysis, especially those involving geminal bis(pinacolatoboronates) and 1,4-azaborines, are discussed.
Collapse
Affiliation(s)
- Maxwell Eaton
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, 02467-3860, USA.
- Université de Pau et des Pays de l'Adour, E2S UPPA/CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux IPREM UMR 5254. Hélioparc, 2 avenue P. Angot, 64053 Pau cedex 09, France
| |
Collapse
|
14
|
Boronski JT. Alkaline earth metals: homometallic bonding. Dalton Trans 2023; 53:33-39. [PMID: 38031468 DOI: 10.1039/d3dt03550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The study of alkaline earth metal complexes is undergoing a renaissance. Stable molecular species featuring Mg-Mg bonds were reported in 2007 and their reactivity has since been intensively investigated. Motivated by this work, efforts have also been devoted to the synthesis of complexes featuring Be-Be and Ca-Ca bonds. These collective endeavours have revealed that the chemistry of the group 2 metals is richer and more complex than had previously been appreciated. Here, a discussion of the nature of homometallic alkaline earth bonding is presented, recent synthetic advances are described, and future directions are considered.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory, Department of Chemistry, Oxford, OX1 3TA, UK.
| |
Collapse
|
15
|
Kuang M, Li H, Zeng Z, Gao H, Zhou Z, Hong X, Yi W, Wang S. Calcium(II)-Mediated Three-Component Selenofunctionalization of Alkenes under Mild Conditions. Org Lett 2023; 25:8095-8099. [PMID: 37938814 DOI: 10.1021/acs.orglett.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A mild and general protocol involving amnio- and oxyselenation of diverse alkenes for the efficient synthesis of organo-Se compounds is achieved via an environmentally benign calcium-catalyzed three-component reaction. This selenofunctionalization reaction exhibits excellent substrate/functional group tolerance and high levels of chemo- and regioselectivity. Its utility was exemplified in the late-stage functionalization and even aggregation-induced emission luminogen labeling of organo-Se compounds.
Collapse
Affiliation(s)
- Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xujia Hong
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
16
|
Kong RY, Parry JB, Anello GR, Ong ME, Lancaster KM. Accelerating σ-Bond Metathesis at Sn(II) Centers. J Am Chem Soc 2023; 145:24136-24144. [PMID: 37870565 DOI: 10.1021/jacs.3c07997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Molecular main-group hydride catalysts are attractive as cheap and Earth-abundant alternatives to transition-metal analogues. In the case of the latter, specific steric and electronic tuning of the metal center through ligand choice has enabled the iterative and rational development of superior catalysts. Analogously, a deeper understanding of electronic structure-activity relationships for molecular main-group hydrides should facilitate the development of superior main-group hydride catalysts. Herein, we report a modular Sn-Ni bimetallic system in which we systematically vary the ancillary ligand on Ni, which, in turn, tunes the Sn center. This tuning is probed using Sn L1 XAS as a measure of electron density at the Sn center. We demonstrate that increased electron density at Sn centers accelerates the rate of σ-bond metathesis, and we employ this understanding to develop a highly active Sn-based catalyst for the hydroboration of CO2 using pinacolborane. Additionally, we demonstrate that engineering London dispersion interactions within the secondary coordination sphere of Sn allows for further rate acceleration. These results show that the electronics of main-group catalysts can be controlled without the competing effects of geometry perturbations and that this manifests in substantial reactivity differences.
Collapse
Affiliation(s)
- Richard Y Kong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Joseph B Parry
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Guy R Anello
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Matthew E Ong
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, 162 Sciences Drive, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Pearce KG, Dinoi C, Schwamm RJ, Maron L, Mahon MF, Hill MS. Variable Ca-C aryl Hapticity and its Consequences in Arylcalcium Dimers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304765. [PMID: 37715248 PMCID: PMC10625118 DOI: 10.1002/advs.202304765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Indexed: 09/17/2023]
Abstract
The dimeric β-diketiminato calcium hydride, [(Dipp BDI)CaH]2 (Dipp BDI = HC{(Me)CN-2,6-i-Pr2 C6 H3 }2 ), reacts with ortho-, meta- or para-tolyl mercuric compounds to afford hydridoarylcalcium compounds, [(Dipp BDI)2 Ca2 (μ-H)(μ-o-,m-,p-tolyl)], in which dimer propagation occurs either via μ2 -η1 -η1 or μ2 -η1 -η6 bridging between the calcium centers. In each case, the orientation and hapticity of the aryl units is dependent upon the position of the methyl substituent. While wholly organometallic meta- and para-tolyl dimers, [(Dipp BDI)Ca(m-tolyl)]2 and [(Dipp BDI)Ca(p-tolyl)]2 , can be prepared and are stable, the ortho-tolyl isomer is prone to isomerization to a calcium benzyl analog. Computational analysis of this latter process with density functional theory (DFT) highlights an unusual mechanism invoking the generation of an intermediate dicalcium species in which the group 2 centers are bridged by a toluene dianion formed by the formal attachment of the original hydride anion to the initially generated ortho-tolyl substituent. Use of a more sterically encumbered aryl substituent, {3,5-t-Bu2 C6 H3 }, facilitates the selective formation of [(Dipp BDI)Ca(μ-H)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)], which can be converted into the unsymmetrically-substituted σ-aryl calcium complexes, [(Dipp BDI)Ca(μ-Ph)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] and [(Dipp BDI)Ca(μ-p-tolyl)(μ-3,5-t-Bu2 C6 H3 )Ca(Dipp BDI)] by reaction with the appropriate mercuric diaryl. Conversion of [(Dipp BDI)Ca(H)(Ph)Ca(Dipp BDI)] to afford [{{(Dipp BDI)Ca}2 (μ2 -Cl)}2 (C6 H5 -C6 H5 )], comprising a biphenyl dianion, is also reported. Although this latter transformation is serendipitous, AIM analysis highlights that, in a related manner to the ortho-tolyl to benzyl isomerization, the requisite C-C coupling may be facilitated in an "across dimer" fashion by the experimentally-observed polyhapto engagement of the aryl substituents with each calcium.
Collapse
Affiliation(s)
- Kyle G. Pearce
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Chiara Dinoi
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilToulouseF‐31077France
| | - Ryan J. Schwamm
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Laurent Maron
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de RangueilToulouseF‐31077France
| | - Mary F. Mahon
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Michael S. Hill
- Department of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
18
|
Li T, Liu R, Liu X, Chen Y. Organocalcium-Complex-Catalyzed Dehydrogenative Silylation and Mono/Dihydrosilylation Tandem Reactions of Terminal Alkynes. Org Lett 2023; 25:761-765. [PMID: 36700929 DOI: 10.1021/acs.orglett.2c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In principle, catalytic dehydrogenative silylation and mono/dihydrosilylation tandem reactions of terminal alkynes with hydrosilanes provide gem-disilylated alkenes or gem-trisilylated alkanes, but very little progress has been made. Herein, we report organocalcium-complex-catalyzed dehydrogenative silylation and mono/dihydrosilylation tandem reactions of terminal alkynes with hydrosilanes in one pot, which produce gem-disilylated alkenes in moderate yields and gem-trisilylated alkanes in high yields. We also briefly demonstrate that the synthesized gem-disilylated alkenes can be easily transformed into other organosilanes.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Ruixin Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiaojuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
19
|
Lapshin IV, Cherkasov AV, Trifonov AA. Heteroleptic Bis(amido) Ca(II) and Yb(II) NHC Pincer Complexes: Synthesis, Characterization, and Catalytic Activity in Intermolecular Hydrofunctionalization of C═C Bonds. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ivan V. Lapshin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Alexander A. Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, GSP-1, Russia
| |
Collapse
|
20
|
Li S, Xu X, Sun Q, Xu X. Organocalcium Hydride-Catalyzed Intramolecular C(sp 3)-H Annulation of Functionalized 2,6-Lutidines. J Org Chem 2023; 88:1742-1748. [PMID: 36645347 DOI: 10.1021/acs.joc.2c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work reports an intramolecular C(sp3)-H annulation of functionalized 2,6-lutidines catalyzed by an organocalcium hydride [{(DIPPnacnac)CaH(thf)}2] (DIPPnacnac = CH{(CMe)(2,6-iPr2-C6H3N)}2). This reaction constitutes a streamlined approach for producing a new family of tetrahydro-1,5-naphthyridines and hexahydropyrido[3,2-b]azocines derivatives in good to excellent yields with high atom efficiency and broad substrates scope. A calcium alkyl complex was isolated from the stoichiometric reaction between calcium hydride and the substrate through deprotonation, which was structurally characterized and confirmed as the catalytic intermediate.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Boumekla Y, Xia F, Vidal L, Totée C, Raynaud C, Ouali A. Calcium-catalysed synthesis of amines through imine hydrosilylation: an experimental and theoretical study. Org Biomol Chem 2023; 21:1038-1045. [PMID: 36625298 DOI: 10.1039/d2ob02243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A method to reduce aldimines through hydrosilylation is reported. The catalytic system involves calcium triflimide (Ca(NTf2)2) and potassium hexafluorophosphate (KPF6) which have been shown to act in a synergistic manner. The expected amines are obtained in fair to very high yields (40-99%) under mild conditions (room temperature in most cases). To illustrate the potential of this method, a bioactive molecule with antifungal properties was prepared on the gram scale and in high yield in environmentally friendly 2-methyltetrahydrofuran. Moreover, it is shown in this example that the imine can be prepared in situ from the aldehyde and the amine without isolating the imine. The mechanism involved has been explored experimentally and through DFT calculations, and the results are in accordance with an electrophilic activation of the silane by the calcium catalyst.
Collapse
Affiliation(s)
| | - Fengjie Xia
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lucas Vidal
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Cédric Totée
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
22
|
Qu ZW, Zhu H, Grimme S. Calcium Hydride Cation Dimer Catalyzed Hydrogenation of Unactivated 1-Alkenes and H 2 Isotope Exchange: Competitive Ca-H-Ca Bridges and Terminal Ca-H Bonds. Chemistry 2023; 29:e202202602. [PMID: 36214655 PMCID: PMC10100058 DOI: 10.1002/chem.202202602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/16/2022]
Abstract
Recently, it was shown that the double Ca-H-Ca bridged calcium hydride cation dimer complex [LCaH2 CaL]2+ (macrocyclic ligand L=NNNN-tetradentate Me4 TACD) exhibited remarkable activity in catalyzing the hydrogenation of unactivated 1-alkenes as well as the H2 isotope exchange under mild conditions, tentatively via the terminal Ca-H bond of cation monomer LCaH+ . In this DFT mechanistic work, a novel substrate-dependent catalytic mechanism is disclosed involving cooperative Ca-H-Ca bridges for H2 isotope exchange, competitive Ca-H-Ca bridges and terminal Ca-H bonds for anti-Markovnikov addition of unactivated 1-alkenes, and terminal Ca-H bonds for Markovnikov addition of conjugation-activated styrene. THF-coordination plays a key role in favoring the anti-Markovnikov addition while strong cation-π interactions direct the Markovnikov addition to terminal Ca-H bonds.
Collapse
Affiliation(s)
- Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
23
|
Liu Y, Zhu K, Chen L, Liu S, Ren W. Azobenzenyl Calcium Complex: Synthesis and Reactivity Studies of a Ca(I) Synthon. Inorg Chem 2022; 61:20373-20384. [DOI: 10.1021/acs.inorgchem.2c03008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yumiao Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kang Zhu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Song Liu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Zhu H, Qu Z, Grimme S. Origin of the Ligand Ring-Size Effect on the Catalytic Activity of Cationic Calcium Hydride Dimers in the Hydrogenation of Unactivated 1-Alkenes. ChemistryOpen 2022; 11:e202200240. [PMID: 36524742 PMCID: PMC9756592 DOI: 10.1002/open.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, it was shown that the double Ca-H-Ca-bridged calcium hydride cation dimer [LCaH2 CaL]2+ when stabilized by a larger macrocyclic N,N',N'',N''',N''''-pentadentate ligand showed evidently higher activity than when stabilized by a smaller N,N',N'',N'''-tetradentate ligand in the catalytic hydrogenation of unactivated 1-alkenes. In this DFT-mechanistic work, the origin of the observed ring-size effect is examined in detail using 1-hexene, CH2 =CH2 and H2 as substrates. It is shown that, at room temperature, both the N,N',N'',N''',N''''-stabilized dimer and the monomer are not coordinated by THF in solution, while the corresponding N,N',N'',N'''-stabilized structures are coordinated by one THF molecule mimicking the fifth N-coordination. Catalytic 1-alkene hydrogenation may occur via anti-Markovnikov addition over the terminal Ca-H bonds of transient monomers, followed by faster Ca-C bond hydrogenolysis. The higher catalytic activity of the larger N,N',N'',N''',N''''-stabilized dimer is due to not only easier formation of but also due to the higher reactivity of the catalytic monomeric species. In contrast, despite unfavorable THF-coordination in solution, the smaller N,N',N'',N'''-stabilized dimer shows a 3.2 kcal mol-1 lower barrier via a dinuclear cooperative Ca-H-Ca bridge for H2 isotope exchange than the large N,N',N'',N''',N''''-stabilized dimer, mainly due to less steric hindrance. The observed ring-size effect can be understood mainly by a subtle interplay of solvent, steric and cooperative effects that can be resolved in detail by state-of-the-art quantum chemistry calculations.
Collapse
Affiliation(s)
- Hui Zhu
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| | - Zheng‐Wang Qu
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 453115BonnGermany
| |
Collapse
|
25
|
Rina YA, Schmidt JAR. Heterodehydrocoupling of Silanes and Amines Catalyzed by a Simple Lanthanum-Based Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yesmin Akter Rina
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo 43606-3390, Ohio, United States
| | - Joseph A. R. Schmidt
- Department of Chemistry & Biochemistry, School of Green Chemistry and Engineering, College of Natural Sciences and Mathematics, The University of Toledo, 2801 W. Bancroft St. MS 602, Toledo 43606-3390, Ohio, United States
| |
Collapse
|
26
|
Obi AD, Freeman LA, Coates SJ, Alexis AJH, Frey NC, Dickie DA, Webster CE, Gilliard RJ. Carbene–Calcium Silylamides and Amidoboranes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Lucas A. Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Samuel J. Coates
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Andrew J. H. Alexis
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Nathan C. Frey
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, Mississippi 39762, United States
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
27
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon–Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022; 61:e202207118. [DOI: 10.1002/anie.202207118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Pan Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
28
|
Yaragorla S, Latha DS. Chemo- and Stereoselective Synthesis of Substituted Thiazoles from tert-Alcohols Bearing Alkene and Alkyne Groups with Alkaline Earth Catalysts. ACS OMEGA 2022; 7:34693-34706. [PMID: 36188313 PMCID: PMC9520744 DOI: 10.1021/acsomega.2c05085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
We report here that thioamides can distinguish C-C double bonds and C-C triple bonds chemoselectively when subjected to a reaction with pent-1-en-4-yn-3-ol derivatives in the presence of Ca(OTf)2. This protocol offers a fast, efficient, and high-yielding synthesis of functionalized thiazoles. Interestingly, this reaction offers a time-dependent formation of kinetic and thermodynamic products. The products showed stereoselectivity concerning the alkene geometry. Further, we extended this protocol to synthesize oxazoles from propargyl alcohols and ibuprofen (NSAID) was converted into amide and then subjected to oxazole formation with tert-propargyl alcohols.
Collapse
|
29
|
Basson AJ, Halcovitch NR, McLaughlin MG. Unified Approach to Diverse Fused Fragments via Catalytic Dehydrative Cyclization. Chemistry 2022; 28:e202201107. [PMID: 35642626 PMCID: PMC9542485 DOI: 10.1002/chem.202201107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/17/2022]
Abstract
A range of highly functionalized polycyclic fragments have been synthesized, employing a catalytic dehydrative cyclization. A range of nucleophiles are shown to be successful, with the reaction producing numerous high value motifs.
Collapse
Affiliation(s)
- Ashley J. Basson
- Department of ChemistryLancaster University BailriggLancasterLA1 4YBUK
| | | | | |
Collapse
|
30
|
Synthesis and reactivity of the complexes [(dpp-bian)SiCl2] and [(dpp-bian)Si{FeCp(CO)}2(μ-CO)] (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene). Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Sa S, Ponniah S J, Biswal P, Sathesh V, Murali AC, Venkatasubbaiah K. Distannadithiophenes and their application towards hydroboration of carbonyl compounds. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shreenibasa Sa
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Joseph Ponniah S
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Priyabrata Biswal
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Venkatesan Sathesh
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | | | - Krishnan Venkatasubbaiah
- National Institute of Science Education and Research School of Chemical Sciences NISER 752050 Bhubaneswar INDIA
| |
Collapse
|
32
|
Stevens MP, Spray E, Vitorica-Yrezabal IJ, Singh K, Timmermann VM, Sotorrios L, Macgregor SA, Ortu F. Synthesis, characterisation and reactivity of group 2 complexes with a thiopyridyl scorpionate ligand. Dalton Trans 2022; 51:11922-11936. [PMID: 35876311 DOI: 10.1039/d2dt02012b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the reactivity of the proligand tris(2-pyridylthio)methane (HTptm) with various Alkaline Earth (AE) reagents: (1) dialkylmagnesium reagents and (2) AE bis-amides (AE = Mg-Ba). Heteroleptic complexes of general formulae [Mg(Tptm)(R)] (R = Me, nBu; Tptm = {C(S-C5H4N)3}-) and [AE(Tptm)(N'')] (AE = Mg-Ba; N'' = {N(SiMe3)2}-) were targeted from the reaction of HTptm with R2Mg or [AE(N'')2]2. Reaction of the proligand with dialkylmagnesium reagents led to formation of [{Mg(κ3C,N,N-C{Bu}{S-C5H4N}2)(μ-S-C5H4N)}2] (1) and [{Mg(κ3C,N,N-C{Me}{S-C5H4N}2)(μ-OSiMe3)}2] (2) respectively, as a result of a novel transfer of an alkyl group onto the methanide carbon with concomitant C-S bond cleavage. However, reactivity of bis-amide precursors for Mg and Ca did afford the target species [AE(Tptm)(N'')] (3-AE; AE = Mg-Ca), although these proved susceptible to ligand degradation processes. DFT calculations show that alkyl transfer in the putative [Mg(Tptm)(nBu)] (1m') system and amide transfer in 3-Ca is a facile process that induces C-S bond cleavage in the Tptm ligand. 3-Mg and 3-Ca were also tested as catalysts for the hydrophosphination of selected alkenes and alkynes, including the first example of mono-hydrophosphination of 4-ethynylpyridine which was achieved with high conversions and excellent regio- and stereochemical control.
Collapse
Affiliation(s)
- Matthew P Stevens
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Emily Spray
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | | | - Kuldip Singh
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Vanessa M Timmermann
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| | - Lia Sotorrios
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Fabrizio Ortu
- School of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, UK.
| |
Collapse
|
33
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon−Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pan Gao
- Hokkaido University: Hokkaido Daigaku Institute for Chemical Reaction Design and Discovery JAPAN
| | - Julong Jiang
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Satoshi Maeda
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Koji Kubota
- Hokkaido University: Hokkaido Daigaku Division of Applied Chemistry JAPAN
| | - Hajime Ito
- Hokkaido University Division of Applied Chemistry Kita-13 Nishi-8Kita-ku 060-8628 Sapporo JAPAN
| |
Collapse
|
34
|
Gu Z, Comito RJ. Binucleating Bis(pyrazolyl)alkane Ligands and Their Cationic Dizinc Complexes: Modular, Bimetallic Catalysts for Ring-Opening Polymerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zipeng Gu
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Robert J. Comito
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
35
|
Choi TH, Leung WP, Lee HK, Chan YC. Metalation of 2‐quinolyl‐linked (boranophosphinoyl)methane. Alkali Metal, Alkaline Earth Metal and Ytterbium(II) Complexes of Monoanionic [CH(iPr2P–BH3)(C9H6N‐2)]– Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsz-Hei Choi
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Wing-Por Leung
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Hung Kay Lee
- The Chinese University of Hong Kong Chemistry The Chinese University of Hong Kong 1 Shatin HONG KONG
| | - Yuk-Chi Chan
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| |
Collapse
|
36
|
Han B, Khasnavis SR, Nwerem M, Bertagna M, Ball ND, Ogba OM. Calcium Bistriflimide-Mediated Sulfur(VI)-Fluoride Exchange (SuFEx): Mechanistic Insights toward Instigating Catalysis. Inorg Chem 2022; 61:9746-9755. [PMID: 35700314 PMCID: PMC9241145 DOI: 10.1021/acs.inorgchem.2c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We report a mechanistic
investigation of calcium bistriflimide-mediated
sulfur(VI)–fluoride exchange (SuFEx) between sulfonyl fluorides
and amines. We determine the likely pre-activation resting state—a
calcium bistriflimide complex with ligated amines—thus allowing
for corroborated calculation of the SuFEx activation barrier at ∼21
kcal/mol, compared to 21.5 ± 0.14 kcal/mol derived via kinetics
experiments. Transition state analysis revealed: (1) a two-point calcium-substrate
contact that activates the sulfur(VI) center and stabilizes the leaving
fluoride and (2) a 1,4-diazabicyclo[2.2.2]octane additive that provides
Brønsted-base activation of the nucleophilic amine. Stable Ca–F
complexes upon sulfonamide formation are likely contributors to inhibited
catalytic turnover, and a proof-of-principle redesign provided evidence
that sulfonamide formation is feasible with 10 mol % calcium bistriflimide. We report a computational and experimental
mechanistic study
of sulfur(VI)-fluoride exchange mediated by a calcium salt. Ca2+ activates the substrate via two critical Lewis acid−base
interactions. Stable fluoride-ligated Ca2+ complexes are
formed upon sulfonamide formation, and computations indicate that
heat and/or fluoride scavengers will facilitate regeneration of the
active Ca2+ species. These calculations guided an experimental
redesign, thus demonstrating improved catalytic efficiency using 10
mol % Ca2+.
Collapse
Affiliation(s)
- Brian Han
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - Matthew Nwerem
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Michael Bertagna
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Nicholas D Ball
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, California 91711, United States
| | - O Maduka Ogba
- Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| |
Collapse
|
37
|
Zhao L, Deng P, Gong X, Kang X, Cheng J. Regioselective C–H Alkylation of Aromatic Ethers with Alkenes by a Half-Sandwich Calcium Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lanxiao Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xun Gong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Teaming up main group metals with metallic iron to boost hydrogenation catalysis. Nat Commun 2022; 13:3210. [PMID: 35680902 PMCID: PMC9184469 DOI: 10.1038/s41467-022-30840-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Hydrogenation of unsaturated bonds is a key step in both the fine and petrochemical industries. Homogeneous and heterogeneous catalysts are historically based on noble group 9 and 10 metals. Increasing awareness of sustainability drives the replacement of costly, and often harmful, precious metals by abundant 3d-metals or even main group metals. Although not as efficient as noble transition metals, metallic barium was recently found to be a versatile hydrogenation catalyst. Here we show that addition of finely divided Fe0, which itself is a poor hydrogenation catalyst, boosts activities of Ba0 by several orders of magnitude, enabling rapid hydrogenation of alkynes, imines, challenging multi-substituted alkenes and non-activated arenes. Metallic Fe0 also boosts the activity of soluble early main group metal hydride catalysts, or precursors thereto. This synergy originates from cooperativity between a homogeneous, highly reactive, polar main group metal hydride complex and a heterogeneous Fe0 surface that is responsible for substrate activation. Elemental iron turns alkaline-earth metal complexes into highly active catalysts for the hydrogenation of alkenes, alkynes, imines and arenes. The proposed mechanism combines homogeneous catalysis by a soluble main group metal hydride complex with heterogeneous catalysis at the iron surface.
Collapse
|
39
|
Khuntia AP, Sarkar N, Patro AG, Sahoo RK, Nembenna S. Germanium Hydride Catalyzed Selective Hydroboration and Cyanosilylation of Ketones. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anwesh Prasad Khuntia
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - A Ganesh Patro
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|
40
|
Jędrzkiewicz D, Langer J, Harder S. Low‐valent Mg(I) complexes by ball‐milling. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dawid Jędrzkiewicz
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Universität Erlangen-Nürnberg Egerlandstrasse 1 91058 Erlangen Germany
| |
Collapse
|
41
|
Qu ZW, Zhu H, Streubel R, Grimme S. C‐H Deprotonation and C=C Hydrogenation of N‐heterocyclic Olefin with Calcium Hydride Complexes: Cooperative Ca‐H‐Ca Bridge versus Terminal Ca‐H bond. ChemCatChem 2022. [DOI: 10.1002/cctc.202200508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zheng-Wang Qu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Beringstr. 4 D-53115 Bonn GERMANY
| | - Hui Zhu
- Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemsitry Bonn GERMANY
| | - Rainer Streubel
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institut für Anorganische Chemie Bonn GERMANY
| | - Stefan Grimme
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| |
Collapse
|
42
|
Pearce KG, Dinoi C, Hill MS, Mahon MF, Maron L, Schwamm RS, Wilson ASS. Synthesis of Molecular Phenylcalcium Derivatives: Application to the Formation of Biaryls. Angew Chem Int Ed Engl 2022; 61:e202200305. [PMID: 35212128 PMCID: PMC9315018 DOI: 10.1002/anie.202200305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Hydrocarbon-soluble β-diketiminato phenylcalcium derivatives, which display various modes of Ca-μ2 -Ph-Ca bridging, are accessible from reactions of Ph2 Hg and [(BDI)CaH]2 . Although the resultant compounds are inert toward the C-H bonds of benzene, they yield selective and uncatalyzed biaryl formation when reacted with readily available aryl bromides.
Collapse
Affiliation(s)
- Kyle G. Pearce
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Chiara Dinoi
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de Rangueil31077ToulouseFrance
| | - Michael S. Hill
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Mary F. Mahon
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | - Laurent Maron
- Université de Toulouse et CNRSINSAUPSUMR 5215LPCNO135 Avenue de Rangueil31077ToulouseFrance
| | - Ryan S. Schwamm
- Department of ChemistryUniversity of BathClaverton Down, BathUK
| | | |
Collapse
|
43
|
Gong X, Deng P, Cheng J. Calcium Mediated C—H Silylation of Aromatic Heterocycles with Hydrosilanes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xun Gong
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Peng Deng
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jianhua Cheng
- Changchun Institute of Applied Chemistry State Key Laboratory of Polymer Physics and Chemistry Renmin Street. No. 5625 130022 Changchun CHINA
| |
Collapse
|
44
|
Abstract
The number of rare earth (RE) starting materials used in synthesis is staggering, ranging from simple binary metal-halide salts to borohydrides and "designer reagents" such as alkyl and organoaluminate complexes. This review collates the most important starting materials used in RE synthetic chemistry, including essential information on their preparations and uses in modern synthetic methodologies. The review is divided by starting material category and supporting ligands (i.e., metals as synthetic precursors, halides, borohydrides, nitrogen donors, oxygen donors, triflates, and organometallic reagents), and in each section relevant synthetic methodologies and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Ortu
- School of Chemistry, University of Leicester, LE1 7RH Leicester, U.K.
| |
Collapse
|
45
|
Kumar R, Sharma V, Jain S, Sharma H, Vanka K, Sen SS. A Well‐Defined Calcium Compound Catalyzes Trimerization of Arylisocyanates into 1,3,5‐Triarylisocyanurates. ChemCatChem 2022. [DOI: 10.1002/cctc.202101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rohit Kumar
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Vishal Sharma
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Inorganic chemistry and Catalysis INDIA
| | - Shailja Jain
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and materials chemistry INDIA
| | - Himanshu Sharma
- CSIR-NCL: National Chemical Laboratory CSIR Physical and Materials Chemistry INDIA
| | - Kumar Vanka
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and Material Chemistry INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
46
|
Abstract
The addition of a B-H bond to an unsaturated bond (polarized or unpolarized) is a powerful and atom-economic tool for the synthesis of organoboranes. In recent years, s-block organometallics have appeared as alternative catalysts to transition-metal complexes, which traditionally catalyze the hydroboration of unsaturated bonds. Because of the recent and rapid development in the field of hydroboration of unsaturated bonds catalyzed by alkali (Li, Na, K) and alkaline earth (Mg, Ca, Sr, Ba) metals, we provide a detailed and updated comprehensive review that covers the synthesis, reactivity, and application of s-block metal catalysts in the hydroboration of polarized as well as unsaturated carbon-carbon bonds. Moreover, we describe the main reaction mechanisms, providing valuable insight into the reactivity of the s-block metal catalysts. Finally, we compare these s-block metal complexes with other redox-neutral catalytic systems based on p-block metals including aluminum complexes and f-block metal complexes of lanthanides and early actinides. In this review, we aim to provide a comprehensive, authoritative, and critical assessment of the state of the art within this highly interesting research area.
Collapse
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
|
48
|
Hill MS, Pearce KG, Dinoi C, Mahon MF, Maron L, Schwamm RS, Wilson ASS. Synthesis of Molecular Phenylcalcium Derivatives: Application to the Formation of Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Stephen Hill
- University of Bath Chemistry Department of ChemistryUniversity of BathClaverton Down BA2 7AY Bath UNITED KINGDOM
| | | | - Chiara Dinoi
- Toulouse 3 University: Universite Toulouse III Paul Sabatier Chemistry FRANCE
| | | | - Laurent Maron
- Toulouse 3 University: Universite Toulouse III Paul Sabatier Chemistry FRANCE
| | | | | |
Collapse
|
49
|
Chapple P, Roisnel T, Cordier M, Carpentier JF, Sarazin Y. Heteroleptic Carbazolato-Barium Hydroborates and a Related Separated Ion Pair. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Sarkar N, Sahoo RK, Mukhopadhyay S, Nembenna S. Organoaluminum Cation Catalyzed Selective Hydrosilylation of Carbonyls, Alkenes, and Alkyne. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nabin Sarkar
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Rajata Kumar Sahoo
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sayantan Mukhopadhyay
- National Institute of Science Education and Research School of Chemical Sciences SCS NISERbhubaneswar 752050 bhubaneswar INDIA
| | - Sharanappa Nembenna
- National Institute of Science Education and Research (NISER) School of Chemical Sciences Jatni CampusNISER, BhubaneswarINDIA 752050 Bhubaneswar INDIA
| |
Collapse
|