1
|
Wong WY, Xie Z, Wang Q, Jiang L, Li J, Zhang B, Yi X, Xie Z, Zhao J. Platinum(II) bis(arylacetylide) complexes bearing diarylamino-substituted bipyridine ligands for solution-processable phosphorescent OLED applications. Dalton Trans 2024; 53:16322-16334. [PMID: 39311773 DOI: 10.1039/d4dt01799d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A comprehensive investigation has been carried out on a series of complexes of the type (N^N)Pt(-CC-Ar)2, where N^N represents diarylamino-substituted 2,2'-bipyridine (bpy) ligands and -CC-Ar refers to the substituted arylacetylide ligands. The introduction of trifluoromethyl and methoxy substituents to the phenylacetylide unit results in color tuning of the phosphorescence energy in these complexes. The bulky diarylamino substituents on the bipyridine ligand showed distinctive electronic properties, resulting in improved hole-transporting characteristics. Solution-processed phosphorescent organic light-emitting devices (PHOLEDs) were fabricated using these PtII emissive dopants with poly(9-vinylcarbazole) (PVK) as the host. All the devices exhibit promising performances with the best luminance efficiency being up to 20 cd A-1 and the external quantum efficiency reaching 7%.
Collapse
Affiliation(s)
- Wai-Yeung Wong
- Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Zheng Xie
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Qiwei Wang
- Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
- Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
| | - Lu Jiang
- Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Junlong Li
- Antibiotics Research and Reevaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Baohua Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Xiuyu Yi
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jianzhang Zhao
- School of Chemical Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
2
|
Cui P, Wu Q, Li Z. Harnessing synergistic effects in GQD@Pt(II) nanocomposites for enhanced photovoltaic performance: a computational study. J Mol Model 2024; 30:222. [PMID: 38907083 DOI: 10.1007/s00894-024-06027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
CONTEXT The development of efficient solar energy conversion technologies is crucial for addressing global energy challenges and reducing reliance on fossil fuels. Platinum(II) complexes are promising materials for photovoltaic applications due to their strong light absorption and long-lived excited states. However, their narrow absorption in the visible spectrum and stability issues limit their performance. Combining platinum(II) complexes with graphene quantum dots (GQDs) can enhance photovoltaic performance by leveraging the complementary light harvesting and charge transfer characteristics of the two components. This study utilizes density functional theory (DFT) calculations to explore their electronic structures, charge transfer dynamics, and photoelectric performance. Specifically, it investigates the effects of incorporating different substituents, either electron-donating or electron-withdrawing, onto the fluorene motif of the Pt(II) complex. The findings reveal that combining GQDs with Pt(II) complexes extends light absorption into the UV range, enabling comprehensive solar utilization. Upon photoexcitation, electrons migrate between the GQD conduction band and the Pt(II) complex, stabilizing charges and enhancing extraction. Substituents significantly influence charge transfer dynamics: electron-withdrawing groups promote transfer to the GQD, while electron-donating groups encourage charge separation and delocalization. Nanocomposites featuring electron-donating substituents achieve the highest energy conversion efficiencies, with GQD@Pt(II)-NPh2 reaching 24.6%. This is attributed to improved light harvesting, efficient charge injection, and reduced recombination. These insights guide the rational design of GQD-Pt(II) nanocomposites, optimizing charge separation and transfer processes for enhanced photovoltaic performance. The computational approach employed here provides a robust tool for developing advanced materials in renewable energy technologies. METHODS The computational studies reported in this work were performed using the DFT approach, specifically employing the hybrid functional PBE0. The PBE0 functional's accuracy in describing electronic structures and excited-state properties is essential for understanding charge transfer processes, photoabsorption, and emission characteristics in metal-organic complexes. Geometry optimizations and time-dependent DFT (TD-DFT) calculations were carried out to investigate the properties of the nanocomposites. The effects of solvents were replicated using the conductor-like polarizable continuum model (CPCM). The charge transfer length (ΔL) and interfragment charge transfer (ΔQ) were calculated using the Multiwfn software package, and all calculations were performed using the BDF software package.
Collapse
Affiliation(s)
- Peng Cui
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China.
| | - Qiulan Wu
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China
| | - Zhiwei Li
- School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou, Fujian Province, China
| |
Collapse
|
3
|
Zhu Y, Kong L, Yang JX. Multifunctional behavior of a carbazole derivative: Red phosphorescent emission, aggregation-induced long-life exciton and light-emitting diode application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122208. [PMID: 36566531 DOI: 10.1016/j.saa.2022.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A D-π-A typed cyanyl-carboxylic derivative (named as CECZA) merely produced prompt fluorescence with lifetime at nanosceond scale in dilute solutions, whose solid-state luminescence exhibited 3.36 μs lifetime with 13.80 % quantum yield (QY, captured at 522 nm for powder at nanometer scale) at 298 K and 43.36 ms lifetime with 30.46 % QY (650 nm, 80 K, tiny crystals). Femtosecond transient absorption, Raman spectroscopy and quantum chemical calculation provided valid clues to reveal its excitonic transition mechanism. The results indicated that the restricted vibration of benzene ring on carbazole group and alkyl chain weakened the vibrational modes of CECZA molecule and strengthened inter-molecular interactions between adjacent molecules at low temperatures, which promoted the persistent phosphorescent emission. Due to strong UV-vis absorption, high quantum efficiency and excellent thermal stability, CECZA can be used as a potential candidate in light-emitting diode (LED) application. Combined with a commercial InGaN blue-emitting chip, CECZA-InGaN emitted daylight white light.
Collapse
Affiliation(s)
- Yingzhong Zhu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou 239000, China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China.
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| |
Collapse
|
4
|
Li G, Jiang Z, Tang M, Jiang X, Tu H, Zhu S, Liu R, Zhu H. Synthesis, Photophysics and Tunable Reverse Saturable Absorption of Bis-Tridentate Iridium(III) Complexes via Modification on Diimine Ligand. Molecules 2023; 28:molecules28020566. [PMID: 36677626 PMCID: PMC9864372 DOI: 10.3390/molecules28020566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Five novel bis-tridentate Ir(III) complexes (Ir-1−Ir-5) incorporating versatile N^N^C ligands and a N^C^N ligand (1,3-di(2-pyridyl)-4,6-dimethylbenzene) were synthesized. With the combination of experimental and theoretical methods, their steady and transient state characteristics were researched scientifically. The UV-visible absorption spectra show that the broadband charge transfer absorbance of those bis-tridentate Ir(III) complexes can reach 550 nm, all of these complexes reveal the long-lasting phosphorescent emission. Because the excited-state absorption is more powerful than the ground-state absorption, a sturdy reverse saturable absorption (RSA) process can ensue in the visible and near-infrared regions when the complexes are exposed to a 532 nm laser. Therefore, the optical power limiting (OPL) effect follows the trend: Ir-5 > Ir-4 ≈ Ir-3 > Ir-2 > Ir-1. Generally speaking, the expansion of π-conjugation and the introduction of electron donating/withdrawing groups on the N^N^C ligand could effectively elevate the OPL effect. Therefore, these octahedral bis-tridentate Ir(III) complexes might be exploited as potential OPL materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rui Liu
- Correspondence: (S.Z.); (R.L.)
| | | |
Collapse
|
5
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Luo Z, Liu Y, Tong KC, Chang XY, To WP, Che CM. Luminescent Platinum(II) Complexes with Bidentate Diacetylide Ligands: Structures, Photophysical Properties and Application Studies. Chem Asian J 2021; 16:2978-2992. [PMID: 34374225 DOI: 10.1002/asia.202100756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Indexed: 01/19/2023]
Abstract
A series of platinum(II) complexes supported by terphenyl diacetylide as well as diimine or bis-N-heterocyclic carbene (NHC) ligands have been prepared. The diacetylide ligands adopt a cis coordination mode featuring non-planar terphenyl moieties as revealed by X-ray crystallographic analyses. The electrochemical, photophysical and photochemical properties of these platinum(II) complexes have been investigated. These platinum(II) diimine complexes show broad emission with peak maxima from 566 nm to 706 nm, with two of them having emission quantum yields >60% and lifetimes <2 μs in solutions at room temperature, whereas the platinum(II) diacetylide complexes having bis-N-heterocyclic carbene instead of diimine ligand display photoluminescence with quantum yields of up to 28% in solutions and excited state lifetimes of up to 62 μs at room temperature. Application studies revealed that one of the complexes can catalyze photoinduced aerobic dehydrogenation of alcohols and alkenes, and a relatively non-toxic water-soluble Pt(II) complex displays anti-angiogenic activity.
Collapse
Affiliation(s)
- Zaoli Luo
- Department Key Laboratory of Pesticide & Chemical Biology Ministry of Education and Chemical Biology Center College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Ka-Chung Tong
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.,State Key Laboratory of Synthetic Chemistry HKU-CAS Joint Laboratory on New Materials Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
7
|
Zhang Q, Wang S, Zhu Y, Zhang C, Cao H, Ma W, Tian X, Wu J, Zhou H, Tian Y. Functional Platinum(II) Complexes with Four-Photon Absorption Activity, Lysosome Specificity, and Precise Cancer Therapy. Inorg Chem 2021; 60:2362-2371. [PMID: 33494602 DOI: 10.1021/acs.inorgchem.0c03245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphoton materials are in special demand in the field of photodynamic therapy and multiphoton fluorescence imaging. However, rational design methodology for these brands of materials is still nascent. This is despite transition-metal complexes favoring optimized nonlinear-optical (NLO) activity and heavy-atom-effected phosphorescent emission. Here, three four-photon absorption (4PA) platinum(II) complexes (Pt1-Pt3) are achieved by the incorporation of varied functionalized C^N^C ligands with high yields. Pt1-Pt3 exhibit triplet metal-to-ligand charge-transfer transitions at ∼460 nm, which are verified multiple times by transient absorption spectra, time-dependent density functional theory calculations, and low-temperature emission spectra. Further, Pt1-Pt3 undergo 4PA. Notably, one of the complexes, Pt2, has maximum 4PA cross-sectional values of up to 15.2 × 10-82 cm8 s3 photon-3 under excitation of a 1600 nm femtosecond laser (near-IR II window). The 4PA cross sections vary when Pt2 is binding to lecithin and when it displays its lysosome-specific targeting behavior. On the basis of the excellent 4PA property of Pt2, we believe that those 4PA platinum(II) complexes have great potential applications in cancer theranostics.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Shujing Wang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Chengkai Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
8
|
Wu YH, Han DM, Sun T, Jing JC. Theoretical exploration on phosphorescent Pt(II) complexes with 2,2′-bipyridine ligand: Influence of isotope effect and ligand modification on OLED quantum yield. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Wu Y, Wen Z, Wu JIC, Teets TS. Efficient Deep Blue Platinum Acetylide Phosphors with Acyclic Diaminocarbene Ligands. Chemistry 2020; 26:16028-16035. [PMID: 32640058 DOI: 10.1002/chem.202002775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/10/2022]
Abstract
Here we report five blue-phosphorescent platinum bis-phenylacetylide complexes with an investigation of their photophysical and electrochemical attributes. Three of the complexes (1-3) are of the general formula cis-Pt(CNR)2 (C≡CPh)2 , in which CNR is a variably substituted isocyanide and C≡CPh is phenylacetylide. These isocyanide complexes serve as precursors for complexes of the general formula cis-Pt(CNR)(ADC)(C≡CPh)2 (4 and 5), in which ADC is an acyclic diaminocarbene installed by amine nucleophilic addition to one of the isocyanides. All of the complexes exhibit deep blue phosphorescence with λmax ∼430 nm in poly(methyl methacrylate) (PMMA) thin films. Whereas isocyanide complexes 1-3 exhibit modest photoluminescence quantum yields (ΦPL ), incorporation of one acyclic diaminocarbene ligand results in a three-fold to 16-fold increase in ΦPL while still maintaining an identical deep blue color profile.
Collapse
Affiliation(s)
- Yanyu Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA
| | - Zhili Wen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA
| | - Judy I-Chia Wu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, TX, 77204-5003, USA
| |
Collapse
|
10
|
Kamatsuki T, Bhattacharjee I, Hirata S. The Substituent-Induced Symmetry-Forbidden Electronic Transition Allows Significant Optical Limiting under Weak Sky-Blue Irradiance. J Phys Chem Lett 2020; 11:8675-8681. [PMID: 32991813 DOI: 10.1021/acs.jpclett.0c02694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a novel material containing a rare metal-free dopant chromophore with controlled electronic symmetry, which exhibits strong optical limiting (OL) capabilities under weak, continuous, sky-blue irradiance. Electron-donating substituents at positions C2 and C7 of pyrene allow significant triplet generation because of the symmetrically forbidden transition between the ground state and the lowest singlet excited state, which leads to accumulation of triplet excitons in the dopant chromophore. This also leads to a small ground state absorption coefficient and induces greater absorption of sky-blue wavelengths when triplet excitons of the chromophore accumulate. Consequently, molecular glass doped with the designed chromophore displays stronger OL characteristics compared with those of the rare element-containing glass that previously demonstrated the greatest OL performance under continuous sky-blue irradiance at sunlight power levels. The described approach to developing cost-effective, state-of-the-art OL materials is crucial for nonlinear optical applications working at a large scale under sunlight or room lights.
Collapse
Affiliation(s)
- Takuya Kamatsuki
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Indranil Bhattacharjee
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shuzo Hirata
- Department of Engineering Science and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
11
|
Li H, Liu S, Lystrom L, Kilina S, Sun W. Improving triplet excited-state absorption and lifetime of cationic iridium(III) complexes by extending π-conjugation of the 2-(2-quinolinyl)quinoxaline ligand. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Chen K, Hussain M, Razi SS, Hou Y, Yildiz EA, Zhao J, Yaglioglu HG, Donato MD. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet-Triplet-Annihilation Upconversion. Inorg Chem 2020; 59:14731-14745. [PMID: 32864961 DOI: 10.1021/acs.inorgchem.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 μs/87% and 18.2 μs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 μs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 μs (Pt-2An) or 163 μs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 μs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).
Collapse
Affiliation(s)
- Kepeng Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Syed S Razi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China.,Department of Chemistry, Gaya College, Gaya, Constituent Unit of Magadh University, Bodhgaya, Bihar 823001, India
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Halime Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, Bes̨evler, Ankara 06100, Turkey
| | - Mariangela Di Donato
- European Laboratory for Non-Linear Spectroscopy, via North Carrara 1, Sesto Fiorentino, Florence 50019, Italy.,ICCOM-CNR via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
13
|
Liu B, Jabed MA, Kilina S, Sun W. Synthesis, Photophysics, and Reverse Saturable Absorption of trans-Bis-cyclometalated Iridium(III) Complexes (C^N^C)Ir(R-tpy) + (tpy = 2,2':6',2″-Terpyridine) with Broadband Excited-State Absorption. Inorg Chem 2020; 59:8532-8542. [PMID: 32497429 DOI: 10.1021/acs.inorgchem.0c00961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extending the bandwidth of triplet excited-state absorption in transition-metal complexes is appealing for developing broadband reverse saturable absorbers. Targeting this goal, five bis-terdentate iridium(III) complexes (Ir1-Ir5) bearing trans-bis-cyclometalating (C^N^C) and 4'-R-2,2':6',2″-terpyridine (4'-R-tpy) ligands were synthesized. The effects of the structural variation in cyclometalating ligands and substituents at the tpy ligand on the photophysics of these complexes have been systematically explored using spectroscopic methods (i.e., UV-vis absorption, emission, and transient absorption spectroscopy) and time-dependent density functional theory (TDDFT) calculations. All complexes exhibited intensely structured 1π,π* absorption bands at <400 nm and broad charge transfer (1CT)/1π,π* transitions at 400-600 nm. Ligand structural variations exerted a very small effect on the energies of the 1CT/1π,π* transitions; however, they had a significant effect on the molar extinction coefficients of these absorption bands. All complexes emitted featureless deep red phosphorescence in solutions at room temperature and gave broad-band and strong triplet excited-state absorption ranging from the visible to the near-infrared (NIR) spectral regions, with both originating from the 3π,π*/3CT states. Although alteration of the ligand structures influenced the emission energies slightly, these changes significantly affected the emission lifetimes and quantum yields, transient absorption spectral features, and the triplet excited-state quantum yields of the complexes. Except for Ir3, the other four complexes all manifested reverse saturable absorption (RSA) upon nanosecond laser pulse excitation at 532 nm, with the decreasing trend of RSA following Ir2 ≈ Ir4 > Ir1 > Ir5 > Ir3. The RSA trend corresponded well with the strength of the excited-state and ground-state absorption differences (ΔOD) at 532 nm for these complexes.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota58108-6050, United States
| |
Collapse
|
14
|
Wei F, Huang X, Lian Z, Zhu Y, Guo F. Computational and experimental assessment on the nonlinear optical properties of platinum(II) arylacetylides with donor-acceptor structures. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.121003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu B, Lystrom L, Cameron CG, Kilina S, McFarland SA, Sun W. Monocationic Iridium(III) Complexes with Far‐Red Charge‐Transfer Absorption and Near‐IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Levi Lystrom
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| |
Collapse
|
16
|
Po C, Tao CH, Li KF, Chan CKM, Fu HLK, Cheah KW, Yam VWW. Design, luminescence and non-linear optical properties of truxene-containing alkynylplatinum(II) terpyridine complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Design, synthesis, luminescence and non-linear optical properties of 1,3,5-triethynylbenzene-based alkynylplatinum(II) terpyridine complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Tang M, Zhu S, Liu R, Wang J, Zhang Z, Zhu H. Synthesis, characterization and optical properties of novel Ir(III) complexes bearing N-heterocycle substituents. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhong F, Zhao J, Hayvali M, Elmali A, Karatay A. Effect of Molecular Conformation Restriction on the Photophysical Properties of N^N Platinum(II) Bis(ethynylnaphthalimide) Complexes Showing Close-Lying 3MLCT and 3LE Excited States. Inorg Chem 2019; 58:1850-1861. [PMID: 30672269 DOI: 10.1021/acs.inorgchem.8b02558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using naphthalimide (NI), complexes (Pt-PhNI and Pt-PhMeNI) based on the N^N platinum(II) bis(phenylacetylide) coordination framework were prepared, in which there are two close-lying triplet states, i.e., the metal-to-ligand-charge-transfer (3MLCT) and the NI localized emissive state (3LE). Pt-PhNI has better electronic communication between the Pt coordination center and the NI moiety, whereas in Pt-PhMeNI, they are more isolated by orthogonal geometry. For Pt-PhMeNI, the S0 → 1MLCT and S0 → 1LE absorption bands are separated by 5655 cm-1, while they are more overlapped in Pt-PhNI. The 3MLCT → S0 and 3LE → S0 dual phosphorescence emissions were observed for both Pt-PhNI (in toluene) and Pt-PhMeNI (in benzonitrile). The molecular conformation tunes the 3MLCT/3LE state population ratio, and the orthogonal geometry makes the 3LE state in Pt-PhMeNI basically a dark state (in toluene). Switching of the relative energy levels of the 3MLCT/3LE states by variation of the solvent polarity and temperature was achieved. For Pt-PhMeNI, the energy level of 3MLCT state is higher in a polar solvent; thus, the 3MLCT emission decreases, while the phosphorescence lifetime is prolonged from 9.5 μs (in toluene) to 58 μs (in benzonitrile) because of the different equilibria with the nonemissive 3LE state. Conversely, increasing the temperature enhances the upward transition from the nonemissive 3LE state to the emissive 3MLCT state; as such, the phosphorescence of Pt-PhMeNI was intensified at higher temperature (which is unusual), and the phosphorescence lifetime decreased from 58 μs (298 K) to ca. 5 μs (348 K). The ultrafast intersystem crossing (ca. 0.5 ps) and intramolecular triplet-triplet energy transfer (3-11 ps) were studied by femtosecond transient absorption spectroscopy. These results are useful for an in-depth understanding of the photophysics of multichromophore transition-metal complexes and for the design of external stimuli-responsive sensing materials, for instance, temperature or microenvironment sensing materials.
Collapse
Affiliation(s)
- Fangfang Zhong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , E-208 West Campus, 2 Ling Gong Road , Dalian 116024 , P. R. China
| | | | | | | |
Collapse
|
20
|
Liu B, Lystrom L, Kilina S, Sun W. Effects of Varying the Benzannulation Site and π Conjugation of the Cyclometalating Ligand on the Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) Complexes. Inorg Chem 2018; 58:476-488. [PMID: 30525520 DOI: 10.1021/acs.inorgchem.8b02714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of monocationic iridium(III) complexes, [Ir(C^N)2(pqu)]+PF6- [pqu = 2-(pyridin-2-yl)quinoline, C^N = 2-phenylquinoline (1), 3-phenylisoquinoline (2), 1-phenylisoquinoline (3), benzo[ h]quinoline (4), 2-(pyridin-2-yl)naphthalene (5), 1-(pyridin-2-yl)naphthalene (6), 2-(phenanthren-9-yl)pyridine (7), 2-phenylbenzo[ g]quinoline (8), 2-(naphthalen-2-yl)quinoline (9), and 2-(naphthalen-2-yl)benzo[ g]quinoline (10)], were synthesized in this work. These complexes bear C^N ligands with varied degrees of π conjugation and sites of benzannulation, allowing for elucidation of the effects of the benzannulation site at the C^N ligand on the photophysics of the complexes. Ultraviolet-visible (UV-vis) absorption and emission of the complexes were systematically investigated via spectroscopic techniques and time-dependent density functional theory calculations. Their triplet excited-state absorption and reverse saturable absorption (RSA) were studied by nanosecond transient absorption (TA) spectroscopy and nonlinear transmission techniques. The fusion of phenyl ring(s) to the phenyl ring or the 4 and 5 positions of the pyridyl ring of the C^N ligand resulted in red-shifted UV-vis absorption and emission spectra in complexes 2, 5-7, 9, and 10 compared to those of the parent complex 0, while their triplet lifetimes and emission quantum yields were significantly reduced. In contrast, the fusion of one phenyl ring to the other sites of the pyridyl group of the C^N ligand showed an insignificant impact on the energies of the lowest singlet (S1) and triplet (T1) excited states in complexes 1, 3, and 4 but noticeably affected their TA spectral features. The fusion of the naphthyl group to the 5 and 6 and positions at the pyridyl ring did not influence the S1 energy of complex 8 but altered the nature of the T1 states in 8 and 10 by switching them to the benzo[ g]quinoline-localized 3π,π* state, which resulted in completely different emission and TA spectra in these two complexes. The site-dependent variations of the ground- and excited-state absorption induced strong but varied RSA from these complexes for 4.1-ns laser pulses at 532 nm, with the RSA strength decreasing in the trend of 3 > 7 ≈ 4 ≈ 9 ≈ 6 > 8 ≈ 1 ≈ 2 ≈ 5 > 10.
Collapse
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108-6050 , United States
| | - Levi Lystrom
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108-6050 , United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108-6050 , United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108-6050 , United States
| |
Collapse
|
21
|
Dissanayake DAS, Cifuentes MP, Humphrey MG. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Yarnell JE, Chakraborty A, Myahkostupov M, Wright KM, Castellano FN. Long-lived triplet excited state in a platinum(ii) perylene monoimide complex. Dalton Trans 2018; 47:15071-15081. [PMID: 30303214 DOI: 10.1039/c8dt02496k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the synthesis and solution based photophysical properties of a new Pt(ii)-terpyridine complex coupled to a perylene monoimide (PMI) chromophoric unit through an acetylene linkage. This structural arrangement resulted in quantitative quenching of the highly fluorescent PMI chromophore by introducing metal character into the lowest energy singlet state, thereby leading to the formation of a long-lived PMI-ligand localized triplet excited state (τ = 8.4 μs). Even though the phosphorescence from this triplet state was not observed, highly efficient quenching of this excited state by dissolved oxygen and the observation of singlet oxygen photoluminescence in the near-IR at 1270 nm initially pointed towards triplet excited state character. Additionally, the coincidence of the excited state absorbance difference spectra from the sensitized PMI ligand using a triplet donor and the Pt-PMI complex provided strong evidence for this triplet state assignment, which was further supported by TD-DFT calculations.
Collapse
Affiliation(s)
- James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | | | | | | | | |
Collapse
|
23
|
Fang B, Zhu Y, Hu L, Shen Y, Jiang G, Zhang Q, Tian X, Li S, Zhou H, Wu J, Tian Y. Series of C^N^C Cyclometalated Pt(II) Complexes: Synthesis, Crystal Structures, and Nonlinear Optical Properties in the Near-Infrared Region. Inorg Chem 2018; 57:14134-14143. [DOI: 10.1021/acs.inorgchem.8b01967] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bin Fang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Lei Hu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yu Shen
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Guoqing Jiang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230039, China
| | - Shengli Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, China
| |
Collapse
|
24
|
Kotturi K, Masson E. Directional Self-Sorting with Cucurbit[8]uril Controlled by Allosteric π-π and Metal-Metal Interactions. Chemistry 2018; 24:8670-8678. [PMID: 29601113 DOI: 10.1002/chem.201800856] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 12/14/2022]
Abstract
To maximize Coulombic interactions, cucurbit[8]uril (CB[8]) typically forms ternary complexes that distribute the positive charges of the pair of guests (if any) over both carbonylated portals of the macrocycle. We present here the first exception to this recognition pattern. Platinum(II) acetylides flanked by 4'-substituted terpyridyl ligands (tpy) form 2:1 complexes with CB[8] in an exclusively stacked head-to-head orientation in a water/acetonitrile mixture. The host encapsulates the pair of tpy substituents, and both positive Pt centers sit on top of each other at the same CB[8] rim, leaving the other rim free of any interaction with the guests. This dramatic charge imbalance between the CB[8] rims would be electrostatically penalizing, were it not for allosteric π-π interactions between the stacked tpy ligands, and possible metal-metal interactions between both Pt centers. When both tpy and acetylides are substituted with aryl units, the metal-ligand complexes form 2:2 assemblies with CB[8] in aqueous medium, and the directionality of the assembly (head-to-head or head-to-tail) can be controlled, both kinetically and thermodynamically.
Collapse
Affiliation(s)
- Kondalarao Kotturi
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University, 181 Clippinger Hall, Athens, Ohio, 45701, USA
| |
Collapse
|
25
|
Spain M, Wong JKH, Nagalingam G, Batten JM, Hortle E, Oehlers SH, Jiang XF, Murage HE, Orford JT, Crisologo P, Triccas JA, Rutledge PJ, Todd MH. Antitubercular Bis-Substituted Cyclam Derivatives: Structure-Activity Relationships and in Vivo Studies. J Med Chem 2018; 61:3595-3608. [PMID: 29558124 DOI: 10.1021/acs.jmedchem.7b01569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently reported the discovery of nontoxic cyclam-derived compounds that are active against drug-resistant Mycobacterium tuberculosis. In this paper we report exploration of the structure-activity relationship for this class of compounds, identifying several simpler compounds with comparable activity. The most promising compound identified, possessing significantly improved water solubility, displayed high levels of bacterial clearance in an in vivo zebrafish embryo model, suggesting this compound series has promise for in vivo treatment of tuberculosis.
Collapse
Affiliation(s)
- Malcolm Spain
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Joseph K-H Wong
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Gayathri Nagalingam
- Microbial Immunity and Pathogenesis Group, Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - James M Batten
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Elinor Hortle
- Tuberculosis Research Program , Centenary Institute, Royal Prince Alfred Hospital , Missenden Road , Camperdown, Sydney , NSW 2050 , Australia
| | - Stefan H Oehlers
- Central Clinical School, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Xiao Fan Jiang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Hasini E Murage
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Jack T Orford
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Patrick Crisologo
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - James A Triccas
- Microbial Immunity and Pathogenesis Group, Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Peter J Rutledge
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Matthew H Todd
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
26
|
Wang C, Lystrom L, Yin H, Hetu M, Kilina S, McFarland SA, Sun W. Increasing the triplet lifetime and extending the ground-state absorption of biscyclometalated Ir(iii) complexes for reverse saturable absorption and photodynamic therapy applications. Dalton Trans 2018; 45:16366-16378. [PMID: 27711764 DOI: 10.1039/c6dt02416e] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The synthesis, photophysics, reverse saturable absorption, and photodynamic therapeutic effect of six cationic biscyclometalated Ir(iii) complexes (1-6) with extended π-conjugation on the diimine ligand and/or the cyclometalating ligands are reported in this paper. All complexes possess ligand-localized 1π,π* absorption bands below 400 nm and charge-transfer absorption bands above 400 nm. They are all emissive in the 500-800 nm range in deoxygenated solutions at room temperature. All complexes exhibit strong and broad triplet excited-state absorption at 430-800 nm, and thus strong reverse saturable absorption for ns laser pulses at 532 nm. Complexes 1-4 are strong reverse saturable absorbers at 532 nm, while complex 6 could be a good candidate as a broadband reverse saturable absorber at 500-850 nm. The degree of π-conjugation of the diimine ligand mainly influences the 1π,π* transitions in their UV-vis absorption spectra, while the degree of π-conjugation of the cyclometalating ligand primarily affects the nature and energies of the lowest singlet and emitting triplet excited states. However, the lowest-energy triplet excited states for complexes 3-6 that contain the same benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (dppn) diimine ligand but different cyclometalating ligands remain the same as the dppn ligand-localized 3π,π* state, which gives rise to the long-lived, strong excited-state absorption in the visible to the near-IR region. All of the complexes exhibit a photodynamic therapeutic effect upon visible or red light activation, with complex 6 possessing the largest phototherapeutic index reported to date (>400) for an Ir(iii) complex. Interactions with biological targets such as DNA suggest that a novel mechanism of action may be at play for the photosensitizing effect. These Ir(iii) complexes also produce strong intracellular luminescence that highlights their potential as theranostic agents.
Collapse
Affiliation(s)
- Chengzhe Wang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Levi Lystrom
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Huimin Yin
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
| | - Marc Hetu
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada.
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada. and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA.
| |
Collapse
|
27
|
Hu L, Hussain S, Liu T, Yue Y, Liu J, Tian Y, Tian X. A molecular probe based on pyrimidine imidazole derivatives for stable super-resolution endoplasmic reticulum imaging in living cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj03986k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-functional florescent dyes capable of acting as molecular probes in living systems under two-photon microscopy, as well as super-resolution nanoscopy, are of great interest.
Collapse
Affiliation(s)
- Ling Hu
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Sajid Hussain
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Tianyan Liu
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Yuanzhen Yue
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Jiejie Liu
- Department of Chemistry
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230601
- P. R. China
| | - Yupeng Tian
- Department of Chemistry
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province
- Anhui University
- Hefei 230601
- P. R. China
| | - Xiaohe Tian
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| |
Collapse
|
28
|
Zhu X, Cui P, Kilina S, Sun W. Multifunctional Cationic Iridium(III) Complexes Bearing 2-Aryloxazolo[4,5-f][1,10]phenanthroline (N^N) Ligand: Synthesis, Crystal Structure, Photophysics, Mechanochromic/Vapochromic Effects, and Reverse Saturable Absorption. Inorg Chem 2017; 56:13715-13731. [PMID: 29083889 DOI: 10.1021/acs.inorgchem.7b01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 2-aryloxazolo[4,5-f][1,10]phenanthroline ligands (N^N ligands) and their cationic iridium(III) complexes (1-11, aryl = 4-NO2-phenyl (1), 4-Br-phenyl (2), Ph (3), 4-NPh2-phenyl (4), 4-NH2-phenyl (5), pyridin-4-yl (6), naphthalen-1-yl (7), naphthalen-2-yl (8), phenanthren-9-yl (9), anthracen-9-yl (10), and pyren-1-yl (11)) were synthesized and characterized. By introducing different electron-donating or electron-withdrawing substituents at the 4-position of the 2-phenyl ring (1-5), or different aromatic substituents with varied degrees of π-conjugation (6-11) on oxazolo[4,5-f][1,10]phenanthroline ligand, we aim to understand the effects of terminal substituents at the N^N ligands on the photophysics of cationic Ir(III) complexes using both spectroscopic methods and quantum chemistry calculations. Complexes with the 4-R-phenyl substituents adopted an almost coplanar structure with the oxazolo[4,5-f][1,10]phenanthroline motif, while the polycyclic aryl substituents (except for naphthalen-2-yl) were twisted away from the oxazolo[4,5-f][1,10]phenanthroline motif. All complexes possessed strong absorption bands below 350 nm that emanated from the ligand-localized 1π,π*/1ILCT (intraligand charge transfer) transitions, mixed with 1LLCT (ligand-to-ligand charge transfer)/1MLCT (metal-to-ligand charge transfer) transitions. At the range of 350-570 nm, all complexes exhibited moderately strong 1ILCT/1LLCT/1MLCT transitions at 350-450 nm, and broad but very weak 3LLCT/3MLCT absorption at 450-570 nm. Most of the complexes demonstrated moderate to strong room temperature phosphorescence both in solution and in the solid state. Among them, complex 7 also manifested a drastic mechanochromic and vapochromic luminescence effect. Except for complexes 1 and 4 that contain NO2 or NPh2 substituent at the phenyl ring, respectively, all other complexes exhibited moderate to strong triplet excited-state absorption in the spectral region of 440-750 nm. Moderate to very strong reverse saturable absorption (RSA) of these complexes appeared at 532 nm for 4.1 ns laser pulses. The RSA strength followed the trend of 7 > 11 > 9 > 3 > 2 ≈ 4 > 5 ≈ 10 ≈ 6 ≈ 8 > 1. The photophysical studies revealed that the different 2-aryl substituents on the oxazole ring impacted the singlet and triplet excited-state characteristics dramatically, which in turn notably influenced the RSA of these complexes.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Peng Cui
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States.,Materials and Nanotechnology Program, North Dakota State University , Fargo, North Dakota 58105, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
29
|
Hirata S, Vacha M. Large Reverse Saturable Absorption at the Sunlight Power Level Using the Ultralong Lifetime of Triplet Excitons. J Phys Chem Lett 2017; 8:3683-3689. [PMID: 28726417 DOI: 10.1021/acs.jpclett.7b01456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large reverse saturable absorption (RSA) at the sunlight power level was observed from a host-guest amorphous material composed of d12-coronene as a guest and β-estradiol as a rigid amorphous host. The large highly symmetric two-dimensional (2D) aromatic structure of d12-coronene doped into the rigid host causes ultralong triplet lifetime as well as high triplet yield, serving efficient accumulation of the triplet excitons of d12-coronene under weak excitation light. The high absorption coefficient of the triplet state (σ34) compared with that of the ground state (σ01) for d12-coronene is also caused by the highly symmetric 2D aromatic structure. The efficient accumulation of the triplet excitons and high σ34 - σ01 led to an onset of the RSA characteristics under irradiance below 10-1 mW cm-2. A film of the amorphous material showed a large decrease of transmittance from 66% at 0.02 mW cm-2 to 24% at 50 mW cm-2 for continuous light at 405 nm.
Collapse
Affiliation(s)
- Shuzo Hirata
- Department of Materials Science and Engineering, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
30
|
Liu R, Shu M, Shi H, Zhu S, Hu J, Zhu H. Synthesis and photophysical properties of cyclometalated 4′-phenyl-2,2′:6′,2″-terpyridyl Pt(II) chloride complexes with different aryl substituents. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Chakraborty C, Rana U, Pandey RK, Moriyama S, Higuchi M. One-Dimensional Anhydrous Proton Conducting Channel Formation at High Temperature in a Pt(II)-Based Metallo-Supramolecular Polymer and Imidazole System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13406-13414. [PMID: 28368106 DOI: 10.1021/acsami.6b12963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One dimensional (1D) Pt(II)-based metallo-supramolecular polymer with carboxylic acids (polyPtC) was synthesized using a new asymmetrical ditopic ligand with a pyridine moiety bearing two carboxylic acids. The carboxylic acids in the polymer successfully served as apohosts for imidazole loaded in the polymer interlayer scaffold to generate highly ordered 1D imidazole channels through the metallo-supramolecular polymer chains. The 1D structure of imidazole loaded polymer (polyPtC-Im) was analyzed in detail by thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible and photoluminescence spectroscopic measurements. PolyPtC-Im exhibited proton conductivity of 1.5 × 10-5 S cm-1 at 120 °C under completely anhydrous conditions, which is 6 orders of magnitude higher than that of the pristine metallo-supramolecular polymer.
Collapse
Affiliation(s)
- Chanchal Chakraborty
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Rakesh K Pandey
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Satoshi Moriyama
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| |
Collapse
|
32
|
Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Calcium carbide catalytically activated with tetra-n-butyl ammonium fluoride for Sonogashira cross coupling reactions. Org Biomol Chem 2017; 15:6800-6807. [DOI: 10.1039/c7ob01334e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report a novel method for the direct synthesis of mono- and bis-arylated alkynes utilizing catalytically activated CaC2 as the alkyne component.
Collapse
Affiliation(s)
- Abolfazl Hosseini
- Institute of Organic Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| | - Afsaneh Pilevar
- Institute of Organic Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| | - Eimear Hogan
- Institute of Organic Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| | - Boris Mogwitz
- Institute of Physical Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| | - Anne S. Schulze
- Institute of Inorganic and Analytical Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry
- Justus-Liebig University
- 35392 Giessen
- Germany
| |
Collapse
|
33
|
Yu HL, Wang WY, Hong B, Si YL, Ma TL, Zheng R. First hyperpolarizabilities of Pt(4-ethynylbenzo-15-crown-5)2(bpy) derivatives with the complexation of mono-cations (Li+, Na+, K+) and di-cations (Mg2+, Ca2+): development of a cation detector. RSC Adv 2017. [DOI: 10.1039/c7ra04919f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The coordination of mono-cations and di-cations onto the crown merits the design of the NLO-based cation detector.
Collapse
Affiliation(s)
- Hai-Ling Yu
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Wen-Yong Wang
- JiangSu XinHai Senior High School
- Lianyungang City 222000
- People's Republic of China
| | - Bo Hong
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Yan-Ling Si
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Tian-Liang Ma
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| | - Ran Zheng
- College of Resources and Environmental Science
- Jilin Agricultural University
- Changchun 130118
- People's Republic of China
| |
Collapse
|
34
|
Yang W, Zhao J. Photophysical Properties of Visible-Light-Harvesting PtIIBis(acetylide) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Wenbo Yang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; E-208 Western Campus, 2 Ling-Gong Road 116024 Dalian China
| |
Collapse
|
35
|
Zhu X, Lystrom L, Kilina S, Sun W. Tuning the Photophysics and Reverse Saturable Absorption of Heteroleptic Cationic Iridium(III) Complexes via Substituents on the 6,6′-Bis(fluoren-2-yl)-2,2′-biquinoline Ligand. Inorg Chem 2016; 55:11908-11919. [DOI: 10.1021/acs.inorgchem.6b02028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaolin Zhu
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Levi Lystrom
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Svetlana Kilina
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Wenfang Sun
- Department
of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
36
|
Shi P, Jiang Q, Zhang Q, Tian Y. Synthesis, characterization, emission and DNA binding properties of four alkynylplatinum(II) terpyridine complexes. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Photophysical and optical power limiting behaviors of Au(I) acetylides with diethynyl aromatic ligands showing different electronic features. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2015.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Zhang Q, Luo L, Xu H, Hu Z, Brommesson C, Wu J, Sun Z, Tian Y, Uvdal K. Design, synthesis, linear and nonlinear photophysical properties of novel pyrimidine-based imidazole derivatives. NEW J CHEM 2016. [DOI: 10.1039/c5nj02874d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel pyrimidine imidazole derivatives with flexible ether chains have been synthesised and evaluated for their cell imaging performanceviaphotophysical investigations and theoretical calculations.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Chemistry
- Anhui University
- Hefei 230039
- P. R. China
- School of Physics and Material Science
| | - Lei Luo
- College of Pharmaceutical Science
- Southwest University
- China
| | - Hong Xu
- Department of Chemistry
- Anhui University
- Hefei 230039
- P. R. China
| | - Zhangjun Hu
- Division of Molecular Surface Physics & Nanoscience
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 58183 Linköping
| | - Caroline Brommesson
- Division of Molecular Surface Physics & Nanoscience
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 58183 Linköping
| | - Jieying Wu
- Department of Chemistry
- Anhui University
- Hefei 230039
- P. R. China
| | - Zhaoqi Sun
- School of Physics and Material Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Yupeng Tian
- Department of Chemistry
- Anhui University
- Hefei 230039
- P. R. China
| | - Kajsa Uvdal
- Division of Molecular Surface Physics & Nanoscience
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 58183 Linköping
| |
Collapse
|
39
|
Lu T, Wang C, Lystrom L, Pei C, Kilina S, Sun W. Effects of extending the π-conjugation of the acetylide ligand on the photophysics and reverse saturable absorption of Pt(ii) bipyridine bisacetylide complexes. Phys Chem Chem Phys 2016; 18:28674-28687. [DOI: 10.1039/c6cp02628a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Extending the acetylide ligand π-conjugation diminishes the terminal substituent effect on the lowest excited states, but expands the triplet excited-state absorption to the near-IR region.
Collapse
Affiliation(s)
- Taotao Lu
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Chengzhe Wang
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Levi Lystrom
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Chengkui Pei
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| |
Collapse
|
40
|
Li Z, Li H, Gifford BJ, Peiris WDN, Kilina S, Sun W. Synthesis, photophysics, and reverse saturable absorption of 7-(benzothiazol-2-yl)-9,9-di(2-ethylhexyl)-9H-fluoren-2-yl tethered [Ir(bpy)(ppy)2]PF6 and Ir(ppy)3 complexes (bpy = 2,2′-bipyridine, ppy = 2-phenylpyridine). RSC Adv 2016. [DOI: 10.1039/c5ra20084a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Both the charges and benzothiazolylfluorenyl pendant on the 2-phenylpyridine ligand influence the photophysics and reverse saturable absorption of Ir(iii) complexes.
Collapse
Affiliation(s)
- Zhongjing Li
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Hui Li
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Brendan J. Gifford
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | | | - Svetlana Kilina
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry
- North Dakota State University
- Fargo
- USA
| |
Collapse
|
41
|
Yang B, Huang S, Zhong J, Zhang H. A comparison of excited state properties between two different N-heterocyclic platinum(II) complexes. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Chakraborty C, Pandey RK, Hossain MD, Futera Z, Moriyama S, Higuchi M. Platinum(II)-Based Metallo-Supramolecular Polymer with Controlled Unidirectional Dipoles for Tunable Rectification. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19034-19042. [PMID: 26285226 DOI: 10.1021/acsami.5b03434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A platinum(II)-based, luminescent, metallo-supramolecular polymer (PolyPtL1) having an inherent dipole moment was synthesized via complexation of Pt(II) ions with an asymmetric ligand L1, containing terpyridyl and pyridyl moieties. The synthesized ligand and polymer were well characterized by various NMR techniques, optical spectroscopy, and cyclic voltammetry studies. The morphological study by atomic force microscopy revealed the individual and assembled polymer chains of 1-4 nm height. The polymer was specifically attached on Au-electrodes to produce two types of film (films 1 and 2) in which the polymer chains were aligned with their dipoles in opposite directions. The Au-surface bounded films were characterized by UV-vis, Raman spectroscopy, cyclic voltammetry, and atomic force microscopy study. The quantum mechanical calculation determined the average dipole moment for each monomer unit in PolyPtL1 to be about 5.8 D. The precise surface derivatization permitted effective tuning of the direction dipole moment, as well as the direction of rectification of the resulting polymer-attached molecular diodes. Film 1 was more conductive in positive bias region with an average rectification ratio (RR = I(+4 V)/I(-4 V)) ≈ 20, whereas film 2 was more conducting in negative bias with an average rectification ratio (RR = I(-4 V)/I(+4 V)) ≈ 18.
Collapse
Affiliation(s)
- Chanchal Chakraborty
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba, Japan
- JST-CREST , Chiyoda-ku, Tokyo 102-0076, Japan
| | - Rakesh K Pandey
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Md Delwar Hossain
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Zdenek Futera
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba, Japan
| | - Satoshi Moriyama
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba, Japan
- JST-CREST , Chiyoda-ku, Tokyo 102-0076, Japan
| | - Masayoshi Higuchi
- Electronic Functional Materials Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
- JST-CREST , Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
43
|
Joshi K, Krishnamurty S, Singh I, Selvaraj K. A DFT based assay for tailor-made terpyridine ligand–metal complexation properties. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1067368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Bankole OM, Nyokong T. Mercaptopyridine-substituted indium, zinc, and metal-free phthalocyanines: nonlinear optical studies in solution and on polymer matrices. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1077237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
45
|
Zhong F, Karatay A, Zhao L, Zhao J, He C, Zhang C, Yaglioglu HG, Elmali A, Küçüköz B, Hayvali M. Broad-Band N∧N Pt(II) Bisacetylide Visible Light Harvesting Complex with Heteroleptic Bodipy Acetylide Ligands. Inorg Chem 2015; 54:7803-17. [PMID: 26230144 DOI: 10.1021/acs.inorgchem.5b00822] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangfang Zhong
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | - Liang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Cheng He
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | - Caishun Zhang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, People’s Republic of China
| | | | | | | | | |
Collapse
|
46
|
Yam VWW, Au VKM, Leung SYL. Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem Rev 2015; 115:7589-728. [DOI: 10.1021/acs.chemrev.5b00074] [Citation(s) in RCA: 1065] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vonika Ka-Man Au
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Sammual Yu-Lut Leung
- Institute of Molecular Functional
Materials (Areas of Excellence Scheme, University Grants Committee
(Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
47
|
Bankole OM, Nyokong T. Photophysical and nonlinear optical studies of tetraakynyl zincphthalocyanine and its “clicked” analogue. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.01.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Zhang ZH, Liu J, Wan LQ, Jiang FR, Lam CK, Ye BH, Qiao Z, Chao HY. Synthesis, characterization, photophysics, and anion binding properties of platinum(ii) acetylide complexes with urea group. Dalton Trans 2015; 44:7785-96. [DOI: 10.1039/c5dt00307e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between the structure and anion-binding ability of platinum(ii) acetylide complexes with urea group has been studied.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jiewei Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Li-Qi Wan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Fang-Ru Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Chi-Keung Lam
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Zhengping Qiao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hsiu-Yi Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
49
|
Boixel J, Guerchais V, Le Bozec H, Chantzis A, Jacquemin D, Colombo A, Dragonetti C, Marinotto D, Roberto D. Sequential double second-order nonlinear optical switch by an acido-triggered photochromic cyclometallated platinum(ii) complex. Chem Commun (Camb) 2015; 51:7805-8. [DOI: 10.1039/c5cc01893e] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first example of a sequential double nonlinear optical switch, induced first by protonation and next upon irradiation with UV light.
Collapse
Affiliation(s)
- Julien Boixel
- UMR 6226 CNRS-Université de Rennes 1
- Institut des Sciences Chimiques de Rennes
- Campus de Beaulieu
- 35042 Rennes
- France
| | - Véronique Guerchais
- UMR 6226 CNRS-Université de Rennes 1
- Institut des Sciences Chimiques de Rennes
- Campus de Beaulieu
- 35042 Rennes
- France
| | - Hubert Le Bozec
- UMR 6226 CNRS-Université de Rennes 1
- Institut des Sciences Chimiques de Rennes
- Campus de Beaulieu
- 35042 Rennes
- France
| | | | - Denis Jacquemin
- UMR CNRS 6230
- Université de Nantes
- CEISAM
- 44322 Nantes cedex 3
- France
| | - Alessia Colombo
- Dipartimento di Chimica dell'Università degli Studi di Milano
- UdR dell'INSTM
- 20133 Milano
- Italy
| | - Claudia Dragonetti
- Dipartimento di Chimica dell'Università degli Studi di Milano
- UdR dell'INSTM
- 20133 Milano
- Italy
- ISTM-CNR
| | | | - Dominique Roberto
- Dipartimento di Chimica dell'Università degli Studi di Milano
- UdR dell'INSTM
- 20133 Milano
- Italy
- ISTM-CNR
| |
Collapse
|
50
|
Yang X, Xu X, Zhao J, Dang JS, Huang Z, Yan X, Zhou G, Wang D. Phosphorescent Platinum(II) Complexes Bearing 2-Vinylpyridine-type Ligands: Synthesis, Electrochemical and Photophysical Properties, and Tuning of Electrophosphorescent Behavior by Main-Group Moieties. Inorg Chem 2014; 53:12986-3000. [DOI: 10.1021/ic502122t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaolong Yang
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xianbin Xu
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jiang Zhao
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jing-shuang Dang
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zuan Huang
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xiaogang Yan
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Guijiang Zhou
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Dongdong Wang
- MOE Key Laboratory for Nonequilibrium
Synthesis and Modulation of Condensed Matter, State Key Laboratory
for Mechanical Behavior of Materials, and Institute of Chemistry for
New Energy Materials, Department of Chemistry, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|