1
|
Drummond GJ, Grant PS, Geurts AM, Furkert DP, Brimble MA. Synthesis of the bicyclic butenolide core of pallamolide A: a biomimetic approach. Org Biomol Chem 2024; 22:8032-8036. [PMID: 39259177 DOI: 10.1039/d4ob01380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Pallamolide A is a 7,8-seco-labdane terpenoid possessing a unique bicyclo[2.2.2]octane core and a spiro-butenolide moiety. A biomimetic synthesis of the bicyclic butenolide core over 10 steps is reported, featuring an unexpected autoxidation ring opening, and a vinylogous Mukaiyama aldol reaction which was spontaneously followed by an unusual intramolecular vinylogous aldol reaction to assemble the spiro-butenolide moiety and bicyclic core of pallamolide A.
Collapse
Affiliation(s)
- Grace J Drummond
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Phillip S Grant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Alisha M Geurts
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
2
|
Xiang S, Li J, Wang F, Yang Y, Yang H, Cai R, Tan W. Ultrasensitive Electrochemiluminescence Biosensing Platform Based on Polymer Dots with Aggregation-Induced Emission for Dual-Biotoxin Assay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37748-37756. [PMID: 38990678 DOI: 10.1021/acsami.4c08302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Multitarget assay has always been a hot topic in electrochemiluminescence (ECL) methods. Herein, a "on-off-on" ECL aptasensor was developed for the ultrasensitive and sequential detection of possible biological warfare agents, deoxynivalenol (DON) and abrin (ABR). As a luminophore, polymer dots (Pdots) with aggregation-induced emission exhibit high ECL efficiency in the aptasensor, i.e., the signal "on" state. The DON assays mainly depend on ECL quenching due to the efficient quenching effect between ferrocene-H2-ferrocene (Fc-H2-Fc) and Pdots, i.e., the signal "off" state. When the aptasensor is incubated with the oligonucleotide sequence S2 to replace Fc-H2-Fc, obvious ECL recovery occurs, i.e., the signal "on" state, which can be used to sequentially detect ABR. The limit of detection (LOD) for DON is 0.73 fg·mL-1 in the range of 5.0 to 50 ng·mL-1; and the LOD for ABR is ∼0.38 pg·mL-1 in the range of 1.25 pg·mL-1 to 1.25 μg·mL-1. The as-designed ECL aptasensor exhibits good stability and reproducibility, high specificity, and favorable practicality. Therefore, this work provides a new approach for assays of DON and ABR in food safety and can be used as a model to design an ultrasensitive ECL biosensor for multitarget detection.
Collapse
Affiliation(s)
- Shi Xiang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Sun Z, Jin S, Song J, Niu L, Zhang F, Gong H, Shu X, Wang Y, Hu X. Enantioselective Total Synthesis of (-)-Cephalotanin B. Angew Chem Int Ed Engl 2023; 62:e202312599. [PMID: 37821726 DOI: 10.1002/anie.202312599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Cephalotaxus diterpenoids are attractive natural products with intriguing molecular frameworks and promising biological features. As a structurally unusual member, (-)-cephalotanin B possesses an extraordinarily congested heptacyclic skeleton, three lactone units, and nine consecutive stereocenters. Herein, we report an enantioselective total synthesis of (-)-cephalotanin B based on a divergent asymmetric Michael addition reaction, a novel Pauson-Khand/deacyloxylation process discovered in the development of a second-generation stereoselective Pauson-Khand reaction protocol, and an epoxide-opening/elimination/dual-lactonization cascade to construct the challenging propeller-shaped A-B-C ring system as key transformations.
Collapse
Affiliation(s)
- Zezhong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Shuang Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Jianing Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Lihua Niu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Han Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Xin Shu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Yunxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, China
| |
Collapse
|
4
|
Tang J, Li W, Chiu TY, Martínez-Peña F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023; 622:507-513. [PMID: 37730997 PMCID: PMC10699793 DOI: 10.1038/s41586-023-06535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.
Collapse
Affiliation(s)
- Junchen Tang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Tzu-Yuan Chiu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Zengwei Luo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Qijia Wei
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Thomas J West
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yi Yang See
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
5
|
Linne Y, Lohrberg D, Struwe H, Linne E, Stohwasser A, Kalesse M. 1,2-Metallate Rearrangement as a Toolbox for the Synthesis of Allylic Alcohols. J Org Chem 2023; 88:12623-12629. [PMID: 37594929 PMCID: PMC10476192 DOI: 10.1021/acs.joc.3c01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/20/2023]
Abstract
The development of new methods and protocols for the synthesis of biologically active substances remains one of the most important pillars in organic chemistry, and one of these privileged structural motifs are allylic alcohols. The method of choice to date for the synthesis of these is the Nozaki-Hiyama-Takai-Kishi reaction. We describe here a valuable alternative to the synthesis of allylic alcohols via 1,2-metallate rearrangement. In this work, various vinyl boronic esters with different functional groups have been applied in the Hoppe-Matteson-Aggarwal reaction. In addition, two monoterpenoids were constructed via this convergent synthetic strategy.
Collapse
Affiliation(s)
- Yannick Linne
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Daniel Lohrberg
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Henry Struwe
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Elvira Linne
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Anastasia Stohwasser
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
- Centre
of Biomolecular Drug Research (BMWZ), Gottfried
Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
6
|
Dakkouri M. A Theoretical Investigation of Novel Sila- and Germa-Spirocyclic Imines and Their Relevance for Electron-Transporting Materials and Drug Discovery. Molecules 2023; 28:6298. [PMID: 37687127 PMCID: PMC10489060 DOI: 10.3390/molecules28176298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine groups (two π bonds) and the incorporation of the isosteres carbon, silicon, or germanium spiro centers. Additional peculiarities of these novel SCIs are mirrored by their three-dimensionality, the simultaneous occurrence of nucleophilic and electrophilic centers, and the cross-hyperconjugative (spiro-conjugation) interactions, which provoke charge mobility along the spirocyclic scaffold. Substitution of SCIs with strong electron-withdrawing substituents, like the cyano group or fluorine, enhances their docking capability and impacts their reactivity and charge mobility. To gain thorough knowledge about the molecular properties of these SCIs, their structures have been optimized and various quantum chemical concepts and models were applied, e.g., full NBO analysis and the frontier molecular orbitals (FMOs) theory (HOMO-LUMO energy gap) and the chemical reactivity descriptors derived from them. For the assessment of the charge density distribution along the SCI framework, additional complementary quantum chemical methods were used, e.g., molecular electrostatic potential (MESP) and Bader's QTAIM. Additionally, using the aromaticity index NICS (nuclear independent chemical shift) and other criteria, it could be shown that the investigated cross-hyperconjugated sila and germa SCIs are spiro-aromatics of the Heilbronner Craig-type Möbius aromaticity.
Collapse
Affiliation(s)
- Marwan Dakkouri
- Department of Electrochemistry, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
7
|
Earl ADW, Li FF, Ma C, Furkert DP, Brimble MA. Stereoselective synthesis of the spirocyclic core of 13-desmethyl spirolide C using an aza-Claisen rearrangement and an exo-selective Diels-Alder cycloaddition. Org Biomol Chem 2023; 21:1222-1234. [PMID: 36633001 DOI: 10.1039/d2ob01992b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
13-Desmethyl spirolide C is a marine natural product of the cyclic imine class that demonstrates remarkable bioactivity against several biomarkers of Alzheimer's Disease, which renders its [7,6]-spirocyclic imine pharmacophore of significant synthetic interest. This work describes a facile and efficient synthesis of the [7,6]-spirocyclic core of 13-desmethyl spirolide C from inexpensive starting materials, featuring an aza-Claisen rearrangement to simultaneously set both stereocentres of the dimethyl moiety with complete atom economy, and a highly exo-selective Diels-Alder cycloaddition to construct the challenging contiguous tertiary and quaternary stereocentres of the spirocyclic core of 13-desmethyl spirolide C. A comprehensive study of the key Diels-Alder reaction was also performed to evaluate the stereoselectivity and reactivity of various functionalised dienes and protected lactam dienophiles, wherein the first successful exo-selective Diels-Alder cycloaddition to construct spirocyclic structures using a bromodiene and α-exo-methylene dienophiles is reported. This strategy not only establishes a more efficient stereoselective access to the spirocyclic core that can be used for the total synthesis of 13-desmethyl spirolide C, but also serves as a sound platform for convenient preparations of a range of spirocyclic analogues required for a comprehensive biological evaluation of this desirable pharmacophore.
Collapse
Affiliation(s)
- Andrew D W Earl
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Freda F Li
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Chao Ma
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Rossignoli AE, Lamas JP, Mariño C, Martín H, Blanco J. Enzymatic Biotransformation of 13-desmethyl Spirolide C by Two Infaunal Mollusk Species: The Limpet Patella vulgata and the Cockle Cerastoderma edule. Toxins (Basel) 2022; 14:toxins14120848. [PMID: 36548745 PMCID: PMC9786092 DOI: 10.3390/toxins14120848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The presence of a 13-desmethyl Spirolide C isomer (Iso-13-desm SPX C) is very common in some infaunal mollusks in Galicia contaminated with this toxin. Its possible origin by biological transformation was investigated by incubating homogenates of the soft tissues of limpets and cockles spiked with 13-desmethyl Spirolide C (13-desm SPX C). The involvement of an enzymatic process was also tested using a raw and boiled cockle matrix. The enzymatic biotransformation of the parent compound into its isomer was observed in the two species studied, but with different velocities. The structural similarity between 13-desm SPX C and its isomer suggests that epimerization is the most likely chemical process involved. Detoxification of marine toxins in mollusks usually implies the enzymatic biotransformation of original compounds, such as hydroxylation, demethylation, or esterification; however, this is the first time that this kind of transformation between spirolides in mollusks has been demonstrated.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
- Correspondence: (A.E.R.); (J.B.); Tel.: +34-886-206344 (A.E.R.); +34-886-206340 (J.B.)
| | - Juan Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain
- Correspondence: (A.E.R.); (J.B.); Tel.: +34-886-206344 (A.E.R.); +34-886-206340 (J.B.)
| |
Collapse
|
9
|
Wang H, Qian H, Zhang J, Ma S. Catalytic Asymmetric Axially Chiral Allenyl C-P Bond Formation. J Am Chem Soc 2022; 144:12619-12626. [PMID: 35802534 DOI: 10.1021/jacs.2c04931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chiral organophosphorous compounds are very important in catalysis, organic syntheses, and medicinal chemistry. However, catalytic enantioselective protocols for the axially chiral allenyl phosphorus compounds have never been reported. Herein, a palladium-catalyzed enantioselective carbon-phosphorus bond formation reaction affording axially chiral allenyl phosphonates has been developed. The reaction enjoys high yields and ees accommodating a wide range of functional groups. Mechanistic studies have unveiled an overwhelming kinetic resolution process.
Collapse
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Rao CN, Reissig HU. Samarium(II)‐Promoted Cyclizations of Non‐activated Indolyl Sulfinyl Imines to Polycyclic Tertiary Carbinamines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chintada Nageswara Rao
- Freie Universität Berlin: Freie Universitat Berlin Institut für Chemie und Biochemie 14195 Berlin GERMANY
| | - Hans-Ulrich Reissig
- Freie Universität Berlin Institut für Chemie und Biochemie Takustr. 3 14195 Berlin GERMANY
| |
Collapse
|
11
|
Tang Z, Qiu J, Wang G, Ji Y, Hess P, Li A. Development of an Efficient Extraction Method for Harvesting Gymnodimine-A from Large-Scale Cultures of Karenia selliformis. Toxins (Basel) 2021; 13:793. [PMID: 34822577 PMCID: PMC8621799 DOI: 10.3390/toxins13110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Gymnodimine-A (GYM-A) is a fast-acting microalgal toxin and its production of certified materials requires an efficient harvesting technology from the large-scale cultures of toxigenic microalgae. In this study the recoveries of GYM-A were compared between several liquid-liquid extraction (LLE) treatments including solvents, ratios and stirring times to optimize the LLE technique for harvesting GYM-A from Karenia selliformis cultures, of which the dichloromethane was selected as the extractant and added to microalgal cultures at the ratio 55 mL L-1 (5.5%, v/v). The recovery of GYM-A obtained by the LLE technique was also compared with filtration and centrifugation methods. The stability of GYM-A in culture media were also tested under different pH conditions. Results showed that both the conventional filter filtration and centrifugation methods led to fragmentation of microalgal cells and loss of GYM-A in the harvesting processes. A total of 5.1 µg of GYM-A were obtained from 2 L of K. selliformis cultures with a satisfactory recovery of 88%. Interestingly, GYM-A obviously degraded in the culture media with the initial pH 8.2 and the adjusted pH of 7.0 after 7 days, but there was no obvious degradation in the acidic medium at pH 5.0. Therefore, the LLE method developed here permits the collection of large-volume cultures of K. selliformis and the high-efficiency extraction of GYM-A. This work provides a simple and valuable technique for harvesting toxins from large-scale cultures of GYM-producing microalgae.
Collapse
Affiliation(s)
- Zhixuan Tang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Philipp Hess
- Ifremer, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France;
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| |
Collapse
|
12
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Mu Y, Zhang T, Cheng Y, Fu W, Wei Z, Chen W, Liu G. Efficient synthesis of tetrahydrofurans with chiral tertiary allylic alcohols catalyzed by Ni/P-chiral ligand DI-BIDIME. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02470h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient nickel-catalyzed stereoselective asymmetric intramolecular reductive cyclization of O-alkynones with P-chiral bisphosphorus ligand DI-BIDIME is reported.
Collapse
Affiliation(s)
- Yu Mu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Tao Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Yaping Cheng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wenzhen Fu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zuting Wei
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Wanjun Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- China
| |
Collapse
|
14
|
Saridakis I, Kaiser D, Maulide N. Unconventional Macrocyclizations in Natural Product Synthesis. ACS CENTRAL SCIENCE 2020; 6:1869-1889. [PMID: 33274267 PMCID: PMC7706100 DOI: 10.1021/acscentsci.0c00599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/12/2023]
Abstract
Over the past several decades, macrocyclic compounds have emerged as increasingly significant therapeutic candidates in drug discovery. Their pharmacological activity hinges on their rotationally restricted three-dimensional orientation, resulting in a unique conformational preorganization and a high enthalpic gain as a consequence of high-affinity macrocycle-protein binding interactions. Synthetic access to macrocyclic drug candidates is therefore crucial. From a synthetic point of view, the efficiency of macrocyclization events commonly suffers from entropic penalties as well as undesired intermolecular couplings (oligomerization). Although over the past several decades ring-closing metathesis, macrolactonization, or macrolactamization have become strategies of choice, the toolbox of organic synthesis provides a great number of versatile transformations beyond the aforementioned. This Outlook focuses on a selection of examples employing what we term unconventional macrocyclizations toward the synthesis of natural products or analogues.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
- Research
Platform for Next Generation Macrocycles, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
15
|
Zurhelle C, Harder T, Tillmann U, Tebben J. In Silico Modeling of Spirolides and Gymnodimines: Determination of S Configuration at Butenolide Ring Carbon C-4. Toxins (Basel) 2020; 12:toxins12110685. [PMID: 33138275 PMCID: PMC7692061 DOI: 10.3390/toxins12110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Only few naturally occurring cyclic imines have been fully structurally elucidated or synthesized to date. The configuration at the C-4 carbon plays a pivotal role in the neurotoxicity of many of these metabolites, for example, gymnodomines (GYMs) and spirolides (SPXs). However, the stereochemistry at this position is not accessible by nuclear Overhauser effect-nuclear magnetic resonance spectroscopy (NOE-NMR) due to unconstrained rotation of the single carbon bond between C-4 and C-5. Consequently, the relative configuration of GYMs and SPXs at C-4 and its role in protein binding remains elusive. Here, we determined the stereochemical configuration at carbon C-4 in the butenolide ring of spirolide- and gymnodimine-phycotoxins by comparison of measured 13C NMR shifts with values obtained in silico using force field, semiempirical and density functional theory methods. This comparison demonstrated that modeled data support S configuration at C-4 for all studied SPXs and GYMs, suggesting a biosynthetically conserved relative configuration at carbon C-4 among these toxins.
Collapse
Affiliation(s)
- Christian Zurhelle
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.Z.); (T.H.); (U.T.)
| | - Tilmann Harder
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.Z.); (T.H.); (U.T.)
- Faculty of Biology and Chemistry, University of Bremen, Leobener Straße 6, 28359 Bremen, Germany
| | - Urban Tillmann
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.Z.); (T.H.); (U.T.)
| | - Jan Tebben
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.Z.); (T.H.); (U.T.)
- Correspondence: ; Tel.: +49-471-4831-1086
| |
Collapse
|
16
|
Nazeri MT, Farhid H, Mohammadian R, Shaabani A. Cyclic Imines in Ugi and Ugi-Type Reactions. ACS COMBINATORIAL SCIENCE 2020; 22:361-400. [PMID: 32574488 DOI: 10.1021/acscombsci.0c00046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ugi four-component reactions (U-4CRs) are widely recognized as being highly efficient for the synthesis of pseudopeptides. However, the products of these reactions are not so interesting as drug candidates because they are not conformationally restricted enough for a potent interaction with biological targets. One possible way to overcome this problem is to replace amine and oxo components in the U-4CRs with cyclic imines in so-called Joullié-Ugi three-component reactions (JU-3CRs). This approach provides a robust single-step route to peptide moieties connected to N-heterocyclic motifs that are found as core skeletons in many natural products and pharmaceutical compounds. JU-3CRs also provide much better diastereoselectivity than their four-component analogues. We survey here the redesign of many synthetic routes for the efficient preparation of a wide variety of three-, five-, six-, and seven-membered heterocyclic compounds connected to the peptide backbone. Additionally, in the Ugi reactions based on the cyclic imines, α-acidic isocyanides, or azides can be replaced with normal isocyanides or acids, respectively, leading to the synthesis of N-heterocycles attached to oxazoles or tetrazoles, which are of great pharmaceutical significance. This Review includes all research articles related to Ugi reactions based on the cyclic imines to the year 2020 and will be useful to chemists in designing novel synthetic routes for the synthesis of individual and combinatorial libraries of natural products and drug-like compounds.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Hassan Farhid
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Reza Mohammadian
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19396-4716, 1983963113 Tehran, Iran
| |
Collapse
|
17
|
|
18
|
De A, Santra S, Zyryanov GV, Majee A. Self-Catalyzed Rapid Synthesis of N-Acylated/ N-Formylated α-Aminoketones and N-Hydroxymethylated Formamides from 3-Aryl-2 H-Azirines and 2-Me/Ph-3-Aryl-2 H-Azirines. Org Lett 2020; 22:3926-3930. [PMID: 32356998 DOI: 10.1021/acs.orglett.0c01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A rapid and effective method has been established for the synthesis of N-acylated α-aminoketone derivatives by the reaction of 3-aryl-2H-azirines and highly substituted 2-Me/Ph-3-aryl-2H-azirines with various carboxylic acids under ambient air within 10 min at room temperature. N-Trifluoroacetylated α-aminoketones with different substituents have been reported in the presence of trifluoroacetic acid. This protocol is equally effective to synthesize N-formylated α-aminoketone and N-hydroxymethylated formamide derivatives.
Collapse
Affiliation(s)
- Aramita De
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation.,I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 Sofi Kovalevskoy Street, 620219 Yekaterinburg, Russian Federation
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
19
|
Curti C, Battistini L, Sartori A, Zanardi F. New Developments of the Principle of Vinylogy as Applied to π-Extended Enolate-Type Donor Systems. Chem Rev 2020; 120:2448-2612. [PMID: 32040305 PMCID: PMC7993750 DOI: 10.1021/acs.chemrev.9b00481] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/19/2022]
Abstract
The principle of vinylogy states that the electronic effects of a functional group in a molecule are possibly transmitted to a distal position through interposed conjugated multiple bonds. As an emblematic case, the nucleophilic character of a π-extended enolate-type chain system may be relayed from the legitimate α-site to the vinylogous γ, ε, ..., ω remote carbon sites along the chain, provided that suitable HOMO-raising strategies are adopted to transform the unsaturated pronucleophilic precursors into the reactive polyenolate species. On the other hand, when "unnatural" carbonyl ipso-sites are activated as nucleophiles (umpolung), vinylogation extends the nucleophilic character to "unnatural" β, δ, ... remote sites. Merging the principle of vinylogy with activation modalities and concepts such as iminium ion/enamine organocatalysis, NHC-organocatalysis, cooperative organo/metal catalysis, bifunctional organocatalysis, dicyanoalkylidene activation, and organocascade reactions represents an impressive step forward for all vinylogous transformations. This review article celebrates this evolutionary progress, by collecting, comparing, and critically describing the achievements made over the nine year period 2010-2018, in the generation of vinylogous enolate-type donor substrates and their use in chemical synthesis.
Collapse
Affiliation(s)
| | | | | | - Franca Zanardi
- Dipartimento di Scienze degli
Alimenti e del Farmaco, Università
di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| |
Collapse
|
20
|
Takemoto Y, Masakado S, Kobayashi Y. Photo-Irradiation-Promoted Aminoetherification of Glycals with N-Acyliminoiodinane and Alcohols. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Minamino K, Murata M, Tsuchikawa H. Synthesis of 7,6-Spirocyclic Imine with Butenolide Ring Provides Evidence for the Relative Configuration of Marine Toxin 13-desMe Spirolide C. Org Lett 2019; 21:8970-8975. [DOI: 10.1021/acs.orglett.9b03373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kou Minamino
- Department of Chemistry, Faculty of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Faculty of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Faculty of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Research Promotion Institute, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| |
Collapse
|
22
|
Qin S, Cao Y, Luo Y, Jiang S, Clark JS, Wang X, Yang G. Multi‐Gram Scale Synthesis of Chiral 3‐Methyl‐2,5‐
trans
‐tetrahydrofurans. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shuanglin Qin
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 P. R. China
- The State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai University Tianjin 300071 P. R. China
| | - Yuting Cao
- The State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai University Tianjin 300071 P. R. China
| | - Yunhao Luo
- The State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai University Tianjin 300071 P. R. China
| | - Shende Jiang
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 P. R. China
| | - J. Stephen Clark
- WestCHEM, School of Chemistry, Joseph Black Building, University of GlasgowUniversity Avenue Glasgow G12 8QQ UK
| | - Xiaoji Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy TechnologyDongguan University of Technology Dongguan 523808, Guangdong Province P. R. China
- School of Life ScienceJiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of PharmacyNankai University Tianjin 300071 P. R. China
| |
Collapse
|
23
|
Weinhofer AM, Cole HD, Mitchell BA, Ritz AJ, Vogt DB, Rabinovitch JE, Goess BC, Goforth SK. Ruthenium-catalyzed oxidation of silyl ethers to silyl esters. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Hermawan I, Higa M, Hutabarat PUB, Fujiwara T, Akiyama K, Kanamoto A, Haruyama T, Kobayashi N, Higashi M, Suda S, Tanaka J. Kabirimine, a New Cyclic Imine from an Okinawan Dinoflagellate. Mar Drugs 2019; 17:E353. [PMID: 31200525 PMCID: PMC6627061 DOI: 10.3390/md17060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/30/2023] Open
Abstract
On our quest for new bioactive molecules from marine sources, two cyclic imines (1, 2) were isolated from a dinoflagellate extract, inhibiting the growth of the respiratory syncytial virus (RSV). Compound 1 was identified as a known molecule portimine, while 2 was elucidated to be a new cyclic imine, named kabirimine. The absolute stereochemistry of 1 was determined by crystallographic work and chiral derivatization, whereas the structure of 2 was elucidated by means of spectroscopic analysis and computational study on all the possible isomers. Compound 1 showed potent cytotoxicity (CC50 < 0.097 µM) against HEp2 cells, while 2 exhibited moderate antiviral activity against RSV with IC50 = 4.20 µM (95% CI 3.31-5.33).
Collapse
Affiliation(s)
- Idam Hermawan
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Mikako Higa
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Philipus Uli Basa Hutabarat
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Takeshi Fujiwara
- OP Bio Factory Co., Ltd., Okinawa Life Science Center 107, 5-8 Suzaki, Uruma, Okinawa 904-02234, Japan.
| | - Kiyotaka Akiyama
- OP Bio Factory Co., Ltd., Okinawa Life Science Center 107, 5-8 Suzaki, Uruma, Okinawa 904-02234, Japan.
| | - Akihiko Kanamoto
- OP Bio Factory Co., Ltd., Okinawa Life Science Center 107, 5-8 Suzaki, Uruma, Okinawa 904-02234, Japan.
| | - Takahiro Haruyama
- Central Research Center, AVSS Corporation, Nagasaki 852-8137, Japan.
| | | | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | - Shoichiro Suda
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
25
|
Cheema ZM, Gondal HY, Raza AR, Abbaskhan A. Nucleophilic phenylation: a remarkable application of alkoxymethyltriphenylphosphonium salts. Mol Divers 2019; 24:455-462. [PMID: 31154589 DOI: 10.1007/s11030-019-09966-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
A new application of α-alkoxymethylphosphonium salts in the nucleophilic phenylation of carbonyl compounds is demonstrated. Phenylation of aldehydes, ketones and acyl halides were studied by employing α-alkoxymethyltriphenylphosphonium halides in the presence of lithium hydroxide. New application of α-alkoxymethyltriphenylphosphonium salts. Metal-free, mild and selective phenylation. Easy preparation and handling of the reagent.
Collapse
Affiliation(s)
| | | | - Abdul Rauf Raza
- Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Ahmed Abbaskhan
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
26
|
Harada S, Nishida A. Catalytic and Enantioselective Diels‐Alder Reaction of Siloxydienes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinji Harada
- Graduate School of Pharmaceutical SciencesChiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research CenterChiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical SciencesChiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research CenterChiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
27
|
Freeman JL, Brimble MA, Furkert DP. Convenient access to 5-membered cyclic iminium ions: evidence for a stepwise [4 + 2] cycloaddition mechanism. Org Biomol Chem 2019; 17:2705-2714. [PMID: 30768089 DOI: 10.1039/c9ob00262f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ generation and reaction of novel 5-membered N-tosyl cyclic α,β-unsaturated iminium ions from readily prepared stable precursors is demonstrated. Formal iminium Diels-Alder cycloaddition proceeded in good yield via a stepwise rather than concerted cycloaddition process, confirmed through the isolation of a Mukaiyama-Michael type intermediate. Relative stereochemistry was determined upon subsequent intramolecular cyclisation under Lewis acid catalysis to afford formal endo 5,6-spirobicyclic adducts, as confirmed by crystallography. Further synthetic elaboration towards complex molecular scaffolds based on the dinoflagellate metabolite portimine, a potent apoptosis inducer, were also developed.
Collapse
Affiliation(s)
- Jared L Freeman
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| | | | | |
Collapse
|
28
|
Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat Commun 2019; 10:413. [PMID: 30679427 PMCID: PMC6345859 DOI: 10.1038/s41467-018-08280-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/28/2018] [Indexed: 01/26/2023] Open
Abstract
Although cyclic imines are present in various bioactive secondary metabolites, their degradative metabolism remains unknown. Here, we report that copper amine oxidases, which are important in metabolism of primary amines, catalyze a cyclic imine cleavage reaction. We isolate a microorganism (Arthrobacter sp. C-4A) which metabolizes a β-carboline alkaloid, harmaline. The harmaline-metabolizing enzyme (HarA) purified from strain C-4A is found to be copper amine oxidase and catalyze a ring-opening reaction of cyclic imine within harmaline, besides oxidative deamination of amines. Growth experiments on strain C-4A and Western blot analysis indicate that the HarA expression is induced by harmaline. We propose a reaction mechanism of the cyclic imine cleavage by HarA containing a post-translationally-synthesized cofactor, topaquinone. Together with the above results, the finding of the same activity of copper amine oxidase from E. coli suggests that, in many living organisms, these enzymes may play crucial roles in metabolism of ubiquitous cyclic imines.
Collapse
|
29
|
|
30
|
Zhang J, Liang Z, Wang J, Guo Z, Liu C, Xie M. Metal-Free Synthesis of Functionalized Tetrasubstituted Alkenes by Three-Component Reaction of Alkynes, Iodine, and Sodium Sulfinates. ACS OMEGA 2018; 3:18002-18015. [PMID: 31458390 PMCID: PMC6643681 DOI: 10.1021/acsomega.8b02966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 05/15/2023]
Abstract
An operationally simple, efficient, and metal-/peroxide-free three-component reaction of alkynes, iodine, and sodium sulfinates has been developed for the construction of highly functionalized tetrasubstituted alkenes. Iodo- and sulfonyl-containing tetrasubstituted alkenes, such as vinyl ketones, allylic alcohols, and conjugated enynes, could be obtained regio- and stereoselectively in up to 96% yield.
Collapse
|
31
|
Ishihara J, Usui F, Kurose T, Baba T, Kawaguchi Y, Watanabe Y, Hatakeyama S. Synthetic Studies on Spirolides A and B: Formation of the Upper Carbon Framework Based on a Lewis Acid Template-Catalyzed Diels-Alder Reaction. Chemistry 2018; 25:1543-1552. [DOI: 10.1002/chem.201804977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Fuma Usui
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Kurose
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Baba
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yasunori Kawaguchi
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yuki Watanabe
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Susumi Hatakeyama
- Medical Innovation Center; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
32
|
Dubbu S, Bardhan A, Chennaiah A, Vankar YD. A Cascade of Prins Reaction and Pinacol-Type Rearrangement: Access to 2,3-Dideoxy-3C-Formyl β-C
-Aryl/Alkyl Furanosides and 2-Deoxy-2C-Branched β-C
-Aryl Furanoside. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Anirban Bardhan
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Ande Chennaiah
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
33
|
Gondal HY, Cheema ZM, Siddiqui H, Iqbal Choudhary M. Facile Efficient Synthesis of New Alkoxymethylphosphonium Tetrafluoroborates; Valuable Alternative to Their Halide Analogues. CHEMISTRY AFRICA 2018. [DOI: 10.1007/s42250-018-0009-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Metal-catalyzed synthesis of cyclic imines: a versatile scaffold in organic synthesis. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2264-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kobayashi Y, Masakado S, Takemoto Y. Photoactivated
N
‐Acyliminoiodinanes Applied to Amination: an
ortho
‐Methoxymethyl Group Stabilizes Reactive Precursors. Angew Chem Int Ed Engl 2018; 57:693-697. [DOI: 10.1002/anie.201710277] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Yusuke Kobayashi
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| | - Sota Masakado
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
36
|
Kobayashi Y, Masakado S, Takemoto Y. PhotoactivatedN‐Acyliminoiodinanes Applied to Amination: anortho‐Methoxymethyl Group Stabilizes Reactive Precursors. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yusuke Kobayashi
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| | - Sota Masakado
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical SciencesKyoto University Yoshida Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
37
|
Zhu H, Meng X, Zhang Y, Chen G, Cao Z, Sun X, You J. Chemoselective α-Methylenation of Aromatic Ketones Using the NaAuCl 4/Selectfluor/DMSO System. J Org Chem 2017; 82:12059-12065. [PMID: 29076735 DOI: 10.1021/acs.joc.7b01790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gold-catalyzed chemoselective α-methylenation of aromatic ketones was developed through the use of Selectfluor as a methylenating agent. A variety of useful 1,2-disubstituted propenone derivatives can be prepared in good yields via the present protocol. This reaction features a simple operation, good functional group tolerance, and broad scope of substrates.
Collapse
Affiliation(s)
- Hongbo Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China
| | - Xin Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China
| | - Yanhui Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China
| | - Guang Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China.,Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , Qufu, Shandong 273165, China
| | - Ziping Cao
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China.,Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , Qufu, Shandong 273165, China
| | - Xuejun Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China.,Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , Qufu, Shandong 273165, China
| | - Jinmao You
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu, Shandong 273165, China.,Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , Qufu, Shandong 273165, China
| |
Collapse
|
38
|
Tsuchikawa H, Minamino K, Hayashi S, Murata M. Efficient Access to the Functionalized Bicyclic Pharmacophore of Spirolide C by Using a Selective Diels–Alder Reaction. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroshi Tsuchikawa
- Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Kou Minamino
- Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Sho Hayashi
- Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Michio Murata
- Graduate School of Science Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
- ERATO Lipid Active Structure Project Science and Technology Agency 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
39
|
Gil A, Albericio F, Álvarez M. Role of the Nozaki–Hiyama–Takai–Kishi Reaction in the Synthesis of Natural Products. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.7b00144] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alejandro Gil
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Fernando Albericio
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- University of Kwa-Zulu-Natal, 4001, Durban, South Africa
| | - Mercedes Álvarez
- ChemBio Lab, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
- CIBER-BBN,
Networking
Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Molgó J, Marchot P, Aráoz R, Benoit E, Iorga BI, Zakarian A, Taylor P, Bourne Y, Servent D. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. J Neurochem 2017; 142 Suppl 2:41-51. [PMID: 28326551 DOI: 10.1111/jnc.13995] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
Abstract
We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR 9197, Centre National de la Recherche Scientifique (CNRS)/Université Paris-Sud, Gif-sur-Yvette Cedex, France
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, Gif-sur-Yvette, France
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yves Bourne
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut de Biologie et Technologies de Saclay (IBITECS), Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Tikad A, Delbrouck JA, Vincent SP. Debenzylative Cycloetherification: An Overlooked Key Strategy for Complex Tetrahydrofuran Synthesis. Chemistry 2016; 22:9456-76. [DOI: 10.1002/chem.201600655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Abdellatif Tikad
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| | - Julien A. Delbrouck
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur (UNamur); Département de Chimie; Laboratoire de Chimie Bio-Organique; rue de Bruxelles 61 5000 Namur Belgium
| |
Collapse
|
42
|
Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep 2015; 32:411-35. [PMID: 25338021 DOI: 10.1039/c4np00089g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.
Collapse
Affiliation(s)
- Craig E Stivala
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lavinda O, Tran VT, Woerpel KA. Effect of conformational rigidity on the stereoselectivity of nucleophilic additions to five-membered ring bicyclic oxocarbenium ion intermediates. Org Biomol Chem 2015; 12:7083-91. [PMID: 25087588 DOI: 10.1039/c4ob01251h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleophilic substitution reactions of five-membered ring acetals bearing fused rings reveal that subtle changes in the structure of the fused ring can exert dramatic influences on selectivity. If the fused ring did not constrain the five-membered ring undergoing substitution, selectivity was comparable to what was observed for an unconstrained system (≥92% diastereoselectivity, favoring the product of inside attack on the oxocarbenium ion). If the ring were more constrained by including at least one oxygen atom in the ring, selectivity dropped considerably (to 60% diastereoselectivity in one case). Transition states of the nucleophilic addition of allyltrimethylsilane to selected oxocarbenium ions were calculated using DFT methods. These computational models reproduced the correlation between additional conformational rigidity and selectivity.
Collapse
Affiliation(s)
- Olga Lavinda
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
44
|
Pace V, Holzer W, Olofsson B. Increasing the Reactivity of Amides towards Organometallic Reagents: An Overview. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400630] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Silwal S, Rahaim RJ. Regioselective Synthesis of Enones via a Titanium-Promoted Coupling of Unsymmetrical Alkynes with Weinreb Amides. J Org Chem 2014; 79:8469-76. [DOI: 10.1021/jo5014417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sajan Silwal
- Department
of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater, Oklahoma 74078, United States
| | - Ronald J. Rahaim
- Department
of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
46
|
Jun He R, Chun Zhu B, Wang YG. Lewis base-catalyzed electrophilic lactonization of selenyl bromide resin and facile solid-phase synthesis of furan-2(5H)-one derivatives. Appl Organomet Chem 2014. [DOI: 10.1002/aoc.3157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rong Jun He
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| | - Bing Chun Zhu
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
- Zhejiang Research Institute of Chemical Industry; Hangzhou Zhejiang 310023 People's Republic of China
| | - Yu Guang Wang
- College of Biological and Environmental Engineering; Zhejiang University of Technology; Hangzhou Zhejiang 310014 People's Republic of China
| |
Collapse
|
47
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
48
|
Majumdar KC, Sinha B. Coinage metals (Cu, Ag and Au) in the synthesis of natural products. RSC Adv 2014. [DOI: 10.1039/c3ra44336a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
49
|
Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov 2013; 8:1203-23. [DOI: 10.1517/17460441.2013.822365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Touchet S, Macé A, Roisnel T, Carreaux F, Bouillon A, Carboni B. [3,3]-Sigmatropic Rearrangement of Boronated Allylcyanates: A New Route to α-Aminoboronate Derivatives and Trisubstituted Tetrahydrofurans. Org Lett 2013; 15:2712-5. [DOI: 10.1021/ol401016x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Touchet
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| | - Aurélie Macé
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| | - François Carreaux
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| | - Alexandre Bouillon
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| | - Bertrand Carboni
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, CS 74205, 35042 Rennes Cedex, France, and BoroChem SAS, 7 rue Alfred Kastler, 14000 Caen, France
| |
Collapse
|