1
|
Gültekin D, Şen S, Elmalı A, Karatay A, Köse ME, Harriman A, Bozdemir ÖA. Mono- and Bichromophores Formed from Perylene Monoimide Diesters: Competition between Intramolecular Charge Transfer and Intermolecular Singlet Exciton Fission. J Phys Chem A 2024; 128:9614-9626. [PMID: 39442075 PMCID: PMC11551949 DOI: 10.1021/acs.jpca.4c05424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Perylene monoimide diesters and the corresponding phenyl-linked bichromophores are strongly fluorescent in dilute solution with minimal triplet population after relaxation of the initial Franck-Condon state. The monomer forms nonemissive face-to-face dimers in solution, wherein illumination leads to formation of a spin-correlated, triplet pair with a yield of ca. 13% and with a time constant of 4 ± 1 ps. The triplet pair, which is localized on the aggregate, cannot separate and decays with a mean lifetime of 80 ± 10 ps. The relaxed S1 state of the weakly coupled, phenyl-linked bichromophores establishes an equilibrium with an intramolecular charge-transfer state over a hundred picoseconds or so, depending on the solvent and the geometry of the linkage. This equilibrium mixture, being dominated by the relaxed S1 state, decays on the nanosecond time scale in solution at room temperature without implication of a triplet state. Self-association occurs at higher concentration and, for the para-bridged bichromophore, leads to inefficient triplet formation in tetrahydrofuran at room temperature.
Collapse
Affiliation(s)
- Demet
Demirci Gültekin
- Department
of Chemistry and Chemical Process Technologies, Technical Sciences
Vocational School, Ataturk University, Erzurum 25240, Turkey
| | - Serkan Şen
- Department
of Chemistry, Faculty of Science, Ordu University, Ordu 52200, Turkey
| | - Ayhan Elmalı
- Department
of Physics Engineering, Ankara University, Ankara 06100, Turkey
| | - Ahmet Karatay
- Department
of Physics Engineering, Ankara University, Ankara 06100, Turkey
| | | | - Anthony Harriman
- Molecular
Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | | |
Collapse
|
2
|
Volek TS, Verkamp MA, Ruiz GN, Staat AJ, Li BC, Rose MJ, Eaves JD, Roberts ST. Slowed Singlet Exciton Fission Enhances Triplet Exciton Transport in Select Perylenediimide Crystals. J Am Chem Soc 2024; 146:29575-29587. [PMID: 39422542 DOI: 10.1021/jacs.4c09923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Singlet fission (SF) materials used in light-harvesting devices must not only efficiently produce spin-triplet excitons but also transport them to an energy acceptor. N,N'-Bis(2-phenylethyl)-3,4,9,10-perylenedicarboximide (EP-PDI) is a promising SF chromophore due to its photostability, large extinction coefficient, and high triplet yield, but the energy transport mechanisms in EP-PDI solids are minimally understood. Herein, we use transient absorption microscopy to directly characterize exciton transport in EP-PDI crystals. We find evidence for singlet-mediated transport in which pairs of triplet excitons undergo triplet fusion (TF), producing spin-singlet excitons that rapidly diffuse. This interchange of singlet and triplet excitons shuttles triplets as far as 205 nm within the first 500 ps after photoexcitation. This enhanced transport comes at a cost, however, as it necessitates favoring triplet recombination and thus requires fine-tuning of SF dynamics to balance triplet yields with triplet transport lengths. Through numerical modeling, we predict tuning the ratio of SF and TF rate constants, kSF/kTF, to between 1.9 and 3.8 allows for an optimized triplet transport length (425-563 nm) with minimal loss (7-10%) in triplet yield. Interestingly, by adjusting the size of EP-PDI crystals, we find that we can subtly tune their crystal structure and thereby alter their SF and TF rates. By slowing SF within small EP-PDI crystals, we are able to boost their triplet transport length by ∼20%. Although counterintuitive, our work suggests slowing SF by introducing moderate structural distortions can be preferential when optimizing triplet exciton transport, provided singlet exciton transport is not significantly hindered.
Collapse
Affiliation(s)
- Tanner S Volek
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Max A Verkamp
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Hanover College, Hanover, Indiana 47243, United States
| | - Gabriella N Ruiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Staat
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Boxi Cam Li
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joel D Eaves
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Singh A, Röhr MIS. Configuration Interaction in Frontier Molecular Orbital Basis for Screening the Spin-Correlated, Spatially Separated Triplet Pair State 1(T···T) Formation. J Chem Theory Comput 2024; 20:8624-8633. [PMID: 39376073 DOI: 10.1021/acs.jctc.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In the theoretical screening of Singlet Fission rates in molecular aggregates, often the frontier molecular orbital model for dimers is employed. However, the dimer approach fails to account for recent experimental findings that suggest singlet fission progresses through a further intermediate state featuring two spatially separated, spin-correlated triplets, specifically a 1(T···T) state. We address this limitation by generalizing the often used frontier molecular orbital model for singlet fission by incorporation of both separated Charge Transfer (C···T) and 1(T···T) states as well as mixed triplet-charge transfer states, delivering analytic expressions for the diabatic matrix elements. Applying the methodology to the perylene diimide trimer, we examine the packing dependence of competing formation pathways of the 1(T···T) state by evaluation of diabatic matrix elements.
Collapse
Affiliation(s)
- Anurag Singh
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Sr. 42, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Theodor-Boveri Weg,97074 Würzburg, Germany
| | - Merle I S Röhr
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Sr. 42, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Theodor-Boveri Weg,97074 Würzburg, Germany
| |
Collapse
|
4
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
5
|
Wang X, Gao S, Luo Y, Liu X, Tom R, Zhao K, Chang V, Marom N. Computational Discovery of Intermolecular Singlet Fission Materials Using Many-Body Perturbation Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:7841-7864. [PMID: 38774154 PMCID: PMC11103713 DOI: 10.1021/acs.jpcc.4c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Intermolecular singlet fission (SF) is the conversion of a photogenerated singlet exciton into two triplet excitons residing on different molecules. SF has the potential to enhance the conversion efficiency of solar cells by harvesting two charge carriers from one high-energy photon, whose surplus energy would otherwise be lost to heat. The development of commercial SF-augmented modules is hindered by the limited selection of molecular crystals that exhibit intermolecular SF in the solid state. Computational exploration may accelerate the discovery of new SF materials. The GW approximation and Bethe-Salpeter equation (GW+BSE) within the framework of many-body perturbation theory is the current state-of-the-art method for calculating the excited-state properties of molecular crystals with periodic boundary conditions. In this Review, we discuss the usage of GW+BSE to assess candidate SF materials as well as its combination with low-cost physical or machine learned models in materials discovery workflows. We demonstrate three successful strategies for the discovery of new SF materials: (i) functionalization of known materials to tune their properties, (ii) finding potential polymorphs with improved crystal packing, and (iii) exploring new classes of materials. In addition, three new candidate SF materials are proposed here, which have not been published previously.
Collapse
Affiliation(s)
- Xiaopeng Wang
- School
of Foundational Education, University of
Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao
Institute for Theoretical and Computational Sciences, Institute of
Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yiqun Luo
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xingyu Liu
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent Chang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Wang K, You X, Miao X, Yi Y, Peng S, Wu D, Chen X, Xu J, Sfeir MY, Xia J. Activated Singlet Fission Dictated by Anti-Kasha Property in a Rylene Imide Dye. J Am Chem Soc 2024; 146:13326-13335. [PMID: 38693621 DOI: 10.1021/jacs.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A key challenge in the search of new materials capable of singlet fission (SF) arises from the primary energy conservation criterion, i.e., the energy of the triplet exciton has to be half that of the singlet (E(S1) ≥ 2E(T1)), which excludes most photostable organic materials from consideration and confines the design strategy to materials with low energy triplet states. One potential way to overcome this energy requirement and improve the triplet energy is to enable a SF channel from higher energy ("hot") excitonic states (Sn) in a process called activated SF. Herein, we demonstrate that efficient activated SF is achieved in a rylene imide-based derivative acenaphth[l, 2-a]acenaphthylene diimide (AADI). This process is enabled by an increase in the energy gap to greater than 1.0 eV between the S3 and S1 states due to the incorporation of an antiaromatic pentalene unit, which leads to the emergence of anti-Kasha properties in the isolated molecule. Transient spectroscopy studies show that AADI undergoes ultrafast SF from higher singlet excited states in thin film, with excitation wavelength-dependent SF yields. The SF yield of ∼200% is observed upon higher energy excitation, and long-lived free triplets persist on the μs time scale suggesting that AADI can be used in SF-enhanced devices. Our results suggest that enlarging the Sn-S1 energy gap is an effective way to turn on the activated SF channel and shed light on the development of novel, stable SF materials with high triplet energies.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Matthew Y Sfeir
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10016, United States
- Department of Physics, Graduate Center, City University of New York, New York 10031, United States
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
8
|
Kim J, Teo HT, Hong Y, Cha H, Kim W, Chi C, Kim D. Elucidating Singlet-Fission-Born Multiexciton Dynamics via Molecular Engineering: A Dilution Principle Extended to Quintet Triplet Pair. J Am Chem Soc 2024; 146:10833-10846. [PMID: 38578848 DOI: 10.1021/jacs.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hyojung Cha
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
9
|
Mencaroni L, Elisei F, Marrocchi A, Spalletti A, Carlotti B. Intramolecular Singlet Fission Coupled with Intermolecular Triplet Separation as a Strategy to Achieve High Triplet Yields in Fluorene-Based Small Molecules. J Phys Chem B 2024; 128:3442-3453. [PMID: 38544417 DOI: 10.1021/acs.jpcb.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, detailed experimental proof and in-depth analysis of the singlet fission (SF) mechanism, operative in fluorene-based small molecules, are carried out by employing advanced time-resolved spectroscopies with nanosecond and femtosecond resolution. The investigation of the effect of solution concentration and solvent viscosity together with temperature and excitation wavelength demonstrates INTRAmolecular formation of the correlated triplet pair followed by INTERmolecular independent triplet separation via a "super-diffusional" triplet-triplet transfer process. This unconventional INTRA- to INTERmolecular SF may be considered an "ideal" mechanism. Indeed, intramolecular formation of the correlated triplet pair is here interestingly proved for small molecules rather than large multichromophoric systems, allowing easy synthesis and processability while maintaining good control over the SF process. On the other hand, the intermolecular triplet separation may be exploited to achieve high triplet quantum yields in these new SF small molecules.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and CEMIN, University of Perugia, via dell'Elce di sotto n.8, Perugia 06123, Italy
| |
Collapse
|
10
|
Thakur K, Datta S, Blom PWM, Chaudhuri D, Ramanan C. Competitive Charge Separation Pathways in a Flexible Molecular Folda-Dimer. J Phys Chem B 2024; 128:1760-1770. [PMID: 38340068 PMCID: PMC10895663 DOI: 10.1021/acs.jpcb.3c07134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
We report the photophysical properties of a molecular folda-dimer system PDI-AnEt2-PDI, where the electron-donating N,N-diethylaniline (AnEt2) moiety bridges two electron-accepting perylene diimide (PDI) chromophores. The conformationally flexible PDI-AnEt2-PDI adopts either an open (two PDIs far apart) or folded (two PDIs within π-stacking distance) conformation, depending on the solvent environment. We characterized the photoinduced charge separation dynamics of both open and folded forms in solvents of varying polarity. The open form undergoes charge separation to give PDI•--AnEt2•+-PDI (Bridge electron transfer) independent of solvent polarity. The folded form exhibits two charge separation photoproducts, yielding both PDI•--AnEt2•+-PDI and PDI•--AnEt2-PDI•+, the latter of which is formed via symmetry-breaking charge separation (SBCS) between the two π-stacked PDI chromophores. Our results further indicate that the conformational flexibility of the folda-dimer leads to unexpected excimer formation in some open form conditions. In contrast, no excimer formation is observed in the folded form, indicating that this geometry preferentially yields the SBCS instead. Our results provide insight into how conformationally flexible folda-dimer systems can be designed and built to tune competitive photophysical pathways.
Collapse
Affiliation(s)
- Kalyani Thakur
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Saptarshi Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Debangshu Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, Netherlands
| |
Collapse
|
11
|
Strain JM, Ruiz GN, Roberts ST, Rose MJ. Methylation of Si(111) Modulates Molecular Orientation in Perylenediimide Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2519-2530. [PMID: 38284168 DOI: 10.1021/acs.langmuir.3c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Singlet fission produces a pair of low-energy spin-triplet excitons from a single high-energy spin-singlet exciton. While this process offers the potential to enhance the efficiency of silicon solar cells by ∼30%, meeting this goal requires overlayer materials that can efficiently transport triplet excitons to an underlying silicon substrate. Herein, we demonstrate that the chemical functionalization of silicon surfaces controls the structure of vapor-deposited thin films of perylenediimide (PDI) dyes, which are prototypical singlet fission materials. Using a combination of atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS), we find terminating Si(111) with either a thin, polar oxide layer (SiOx) or with hydrophobic methyl groups (Si-CH3) alters the structures of the resulting PDI films. While PDI films grown on SiOx are comprised of small crystalline grains that largely adopt an "edge-on" orientation with respect to the silicon surface, films grown on Si-CH3 contain large grains that prefer to align in a "face-on" manner with respect to the substrate. This "face-on" orientation is expected to enhance exciton transport to silicon. Interestingly, we find that the preferred mode of growth for different PDIs correlates with the space group associated with bulk crystals of these compounds. While PDIs that inhabit a monoclinic (P21/c) space group nucleate films by forming tall and sparse crystalline columns, PDIs that inhabit triclinic (P1̅) space groups afford films comprised of uniform, lamellar PDI domains. The results highlight that silicon surface functionalization profoundly impacts PDI thin film growth, and rational selection of a hydrophobic surface that promotes "face-on" adsorption may improve energy transfer to silicon.
Collapse
Affiliation(s)
- Jacob M Strain
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriella N Ruiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Herbert JM. Visualizing and characterizing excited states from time-dependent density functional theory. Phys Chem Chem Phys 2024; 26:3755-3794. [PMID: 38226636 DOI: 10.1039/d3cp04226j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method for excited states, due to a favorable combination of low cost and semi-quantitative accuracy in many contexts, even if there are well recognized limitations. This Perspective describes various ways in which excited states from TD-DFT calculations can be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and densities but also well-defined statistical measures of electron-hole separation and of Frenkel-type exciton delocalization. Emphasis is placed on mathematical connections between methods that have often been discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators of when TD-DFT may not be trustworthy due to its categorical failure to describe long-range electron transfer. Measures of exciton size and charge separation that are directly connected to the underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer character.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
Wang K, Chen X, Xu J, Peng S, Wu D, Xia J. Recent Advance in the Development of Singlet-Fission-Capable Polymeric Materials. Macromol Rapid Commun 2024; 45:e2300241. [PMID: 37548255 DOI: 10.1002/marc.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
14
|
Sousa C, Sánchez-Mansilla A, Broer R, Straatsma TP, de Graaf C. A Nonorthogonal Configuration Interaction Approach to Singlet Fission in Perylenediimide Compounds. J Phys Chem A 2023; 127:9944-9958. [PMID: 37964533 PMCID: PMC10694806 DOI: 10.1021/acs.jpca.3c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Perylenediimide molecules constitute a family of chromophores that undergo singlet fission, a process in which an excited singlet state converts into lower energy triplets on two neighboring molecules, potentially increasing the efficiency of organic solar cells. Here, the nonorthogonal configuration interaction method is applied to study the effect of the different crystal packing of various perylenediimide derivatives on the relative energies of the singlet and triplet states, the intermolecular electronic couplings, and the relative rates for singlet fission. The analysis of the wave functions and electronic couplings reveals that charge transfer states play an important role in the singlet fission mechanism. Dimer conformations where the PDI molecules are at large displacements along the long axis and short on the short axis are posed as the most favorable for singlet fission. The role of the substituent at the imide group has been inspected concluding that, although it has no effect in the energies, for some conformations it significantly influences the electronic couplings, and therefore, replacing this substituent with hydrogen may introduce artifacts in the computational modeling of the PDI molecules.
Collapse
Affiliation(s)
- C. Sousa
- Departament
de Ciència de Materials i Química Física and
Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - A. Sánchez-Mansilla
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - R. Broer
- Zernike
Institute of Advanced Materials, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - T. P. Straatsma
- National
Center for Computational Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831-6373, United States
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - C. de Graaf
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Kim J, Teo HT, Hong Y, Liau YC, Yim D, Han Y, Oh J, Kim H, Chi C, Kim D. Leveraging Charge-Transfer Interactions in Through-Space-Coupled Pentacene Dendritic Oligomer for Singlet Exciton Fission. J Am Chem Soc 2023; 145:19812-19823. [PMID: 37656929 DOI: 10.1021/jacs.3c05660] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.
Collapse
Affiliation(s)
- Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Hao Ting Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yongseok Hong
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Yuan Cheng Liau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Daniel Yim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Juwon Oh
- Department of ICT Environmental Health System and Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Hyungjun Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Korea
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
16
|
Kefer O, Ahrens L, Han J, Wollscheid N, Misselwitz E, Rominger F, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Efficient Intramolecular Singlet Fission in Spiro-Linked Heterodimers. J Am Chem Soc 2023; 145:17965-17974. [PMID: 37535495 DOI: 10.1021/jacs.3c05518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Erik Misselwitz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Mencaroni L, Alebardi M, Elisei F, Škorić I, Spalletti A, Carlotti B. Unveiling the double triplet nature of the 2Ag state in conjugated stilbenoid compounds to achieve efficient singlet fission. Phys Chem Chem Phys 2023; 25:21089-21099. [PMID: 37527269 DOI: 10.1039/d3cp02805d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In this investigation, the excited-state evolution in a series of all-trans stilbenoid compounds, displaying a low-lying dark singlet state of 2Ag-like symmetry nearly degenerate with the bright 1Bu state, was unveiled by employing advanced ultrafast spectroscopies while probing the effect of solvent polarizability. Together with the dual emission, femtosecond transient absorption and broadband fluorescence up-conversion disclosed the double nature of the 2Ag-like state showing both singlet features, a lifetime typical of a singlet and the ability to emit, and a triplet character, exhibiting a triplet-like absorption spectrum. The ultrafast formation (in hundreds of femtoseconds) from the non-relaxed upper singlet state led to the identification of 2Ag as the correlated triplet pair of singlet fission. The spectral difference obtained by comparison of transient absorption peaks of the 2Ag (1TT) and the triplet states was found to be in remarkable agreement with the observed triplet yield and the 1(TT) separation rate constant. Indeed, this spectral shift provided an experimental method to gain qualitative insight into the ease of separation of the 1(TT) and the relative SF efficiency. The highly conjugated polyene-like structures enable the ultrafast formation of the double triplet, but then the large binding energy prevents the triplet separation and thus the effective completion of singlet fission. Even though thermodynamically feasible for all the investigated stilbenoids according to TD-DFT calculations, singlet fission resulted to occur efficiently in the case of 1-(pyridyl-4-ylethenyl)-4-(p-nitrostyryl)benzene and nitro-styrylfuran with the triplet yield reaching 120% and 140%, respectively, triggered by their greatly enhanced intramolecular charge transfer character relative to the other compounds in the series.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.
| | - Martina Alebardi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via elce di sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
18
|
Kumar S, Dunn IS, Deng S, Zhu T, Zhao Q, Williams OF, Tempelaar R, Huang L. Exciton annihilation in molecular aggregates suppressed through qu antum interference. Nat Chem 2023:10.1038/s41557-023-01233-x. [PMID: 37337112 DOI: 10.1038/s41557-023-01233-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Exciton-exciton annihilation (EEA), an important loss channel in optoelectronic devices and photosynthetic complexes, has conventionally been assumed to be an incoherent, diffusion-limited process. Here we challenge this assumption by experimentally demonstrating the ability to control EEA in molecular aggregates using the quantum phase relationships of excitons. We employed time-resolved photoluminescence microscopy to independently determine exciton diffusion constants and annihilation rates in two substituted perylene diimide aggregates featuring contrasting excitonic phase envelopes. Low-temperature EEA rates were found to differ by more than two orders of magnitude for the two compounds, despite comparable diffusion constants. Simulated rates based on a microscopic theory, in excellent agreement with experiments, rationalize this EEA behaviour based on quantum interference arising from the presence or absence of spatial phase oscillations of delocalized excitons. These results offer an approach for designing molecular materials using quantum interference where low annihilation can coexist with high exciton concentrations and mobilities.
Collapse
Affiliation(s)
- Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ian S Dunn
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Shibin Deng
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Roel Tempelaar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
19
|
Wang K, Huang H, Xu K, Peng S, You X, Chen X, Xu J, Wu D, Xia J. Veil of the Charge Transfer State in Bay-Annulated Indigo-Based Donor-Acceptor Systems: Charge Separation versus Singlet Fission. J Phys Chem Lett 2023; 14:4822-4829. [PMID: 37191450 DOI: 10.1021/acs.jpclett.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bay-annulated indigo (BAI) is a new potential SF-active building block, which has aroused great interest in the design of highly stable singlet fission materials. However, singlet fission of unfunctionalized BAI is inactive due to the inappropriate energy levels. Herein, we seek to develop a new design strategy by introducing the charge transfer interaction to tune the exciton dynamics of BAI derivatives. A new donor-acceptor molecule (TPA-2BAI) and two control molecules (TPA-BAI and 2TPA-BAI) were designed and synthesized to unravel the veil of CT states in tuning the excited-state dynamics of BAI derivatives. Transient absorption spectroscopy studies show that CT states are generated immediately following the excitation. However, the low-lying CT states induced by strong donor-acceptor interactions result in them acting as trap states and inhibiting the SF process. These results show that the low-lying CT state is detrimental to SF and provide insight into the design of CT-mediated BAI-based SF materials.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Ke Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
20
|
Wu Y, Lu L, Yu B, Zhang S, Luo P, Chen M, He J, Li Y, Zhang C, Zhu J, Yao J, Fu H. Dynamic Evolving Exothermicity Steers Ultrafast Formation of a Correlated Triplet Pair State. J Phys Chem Lett 2023; 14:4233-4240. [PMID: 37126526 DOI: 10.1021/acs.jpclett.3c00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.
Collapse
Affiliation(s)
- Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Lina Lu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Pengdong Luo
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing 100871, People's Republic of China
| | - Jingping He
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yongyao Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
21
|
Tang N, Zhou J, Wang L, Stolte M, Xie G, Wen X, Liu L, Würthner F, Gierschner J, Xie Z. Anomalous deep-red luminescence of perylene black analogues with strong π-π interactions. Nat Commun 2023; 14:1922. [PMID: 37024474 PMCID: PMC10079835 DOI: 10.1038/s41467-023-37171-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Perylene bisimide (PBI) dyes are known as red, maroon and black pigments, whose colors depend on the close π-π stacking arrangement. However, contrary to the luminescent monomers, deep-red and black PBI pigments are commonly non- or only weakly fluorescent due to (multiple) quenching pathways. Here, we introduce N-alkoxybenzyl substituted PBIs that contain close π stacking arrangement (exhibiting dπ-π ≈ 3.5 Å, and longitudinal and transversal displacements of 3.1 Å and 1.3 Å); however, they afford deep-red emitters with solid-state fluorescence quantum yields (ΦF) of up to 60%. Systematic photophysical and computational studies in solution and in the solid state reveal a sensitive interconversion of the PBI-centred locally excited state and a charge transfer state, which depends on the dihedral angle (θ) between the benzyl and alkoxy groups. This effectively controls the emission process, and enables high ΦF by circumventing the common quenching pathways commonly observed for perylene black analogues.
Collapse
Affiliation(s)
- Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Matthias Stolte
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xinbo Wen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain.
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| |
Collapse
|
22
|
Peng S, Shao G, Wang K, Chen X, Xu J, Wang H, Wu D, Xia J. Efficient Energy Transfer in a Rylene Imide-Based Heterodimer: The Role of Intramolecular Electronic Coupling. J Phys Chem Lett 2023; 14:3249-3257. [PMID: 36975134 DOI: 10.1021/acs.jpclett.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of antenna molecules with simplified structures can effectively avoid the complex exciton dynamics resulting from conformational mobility. Two distinct heterodimers TP and TBP comprising a perylenediimide (PDI) donor and terrylenediimide (TDI) acting as an energy sink were investigated. Tuned by varying functionalization positions, the bay-to-bay-linked TP offers a strong chromophore coupling, while the bay-to-N-linked TBP exhibits a weak chromophore coupling. Using transient absorption spectroscopy, we found that TP underwent ultrafast vibrational relaxation (τVR < 400 fs) from upper vibrational energy levels of the singlet states after pumping at 490 nm, and followed by electron transfer (ET, τET = 2.5 ps) from TDI to PDI. TBP exhibited ultrafast excitation energy transfer (EET, τEET = 0.48 ± 0.1 ps) from the excited PDI donor to TDI acceptor, and the subsequent charge transfer (CT) process was almost quenched. This result provides insight into designing novel small molecules capable of efficient energy transfer.
Collapse
Affiliation(s)
- Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
23
|
Lin C, Qi Y, Brown PJ, Williams ML, Palmer JR, Myong M, Zhao X, Young RM, Wasielewski MR. Singlet Fission in Perylene Monoimide Single Crystals and Polycrystalline Films. J Phys Chem Lett 2023; 14:2573-2579. [PMID: 36880847 DOI: 10.1021/acs.jpclett.2c03621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a photogenerated singlet exciton down-converts into two triplet excitons. Perylene-3,4-dicarboximide (PMI) has singlet and triplet state energies of 2.4 and 1.1 eV, respectively; thus making SF slightly exoergic and providing triplet excitons that have sufficient energy to raise the efficiency of single-junction solar cells by reducing thermalization losses from hot excitons formed when absorbed photons have energies higher than the semiconductor bandgap. However, PMI SF in the solid state has not been studied previously. Here, we show that 2,5-diphenyl-N-(2-ethylhexyl)perylene-3,4-dicarboximide (dp-PMI) crystallizes into a slip-stacked intermolecular morphology favorable for SF. Transient absorption microscopy and spectroscopy show that dp-PMI SF occurs in ≤50 ps in both single crystals and polycrystalline thin films with a triplet yield of 150 ± 20%. Ultrafast SF in the solid state, the high triplet yield, and its photostability make dp-PMI an attractive candidate for SF-enhanced solar cells.
Collapse
Affiliation(s)
- Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paige J Brown
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michele Myong
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Xingang Zhao
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113 United States
| |
Collapse
|
24
|
Singlet fission as a polarized spin generator for dynamic nuclear polarization. Nat Commun 2023; 14:1056. [PMID: 36859419 PMCID: PMC9977948 DOI: 10.1038/s41467-023-36698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.
Collapse
|
25
|
Sonoda Y, Kamada K. Synthesis, Characterization, and Fluorescence Properties of a Series of Trifluoromethylated Diphenylhexatrienes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
26
|
Tom R, Gao S, Yang Y, Zhao K, Bier I, Buchanan EA, Zaykov A, Havlas Z, Michl J, Marom N. Inverse Design of Tetracene Polymorphs with Enhanced Singlet Fission Performance by Property-Based Genetic Algorithm Optimization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1373-1386. [PMID: 36999121 PMCID: PMC10042130 DOI: 10.1021/acs.chemmater.2c03444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Indexed: 06/19/2023]
Abstract
The efficiency of solar cells may be improved by using singlet fission (SF), in which one singlet exciton splits into two triplet excitons. SF occurs in molecular crystals. A molecule may crystallize in more than one form, a phenomenon known as polymorphism. Crystal structure may affect SF performance. In the common form of tetracene, SF is experimentally known to be slightly endoergic. A second, metastable polymorph of tetracene has been found to exhibit better SF performance. Here, we conduct inverse design of the crystal packing of tetracene using a genetic algorithm (GA) with a fitness function tailored to simultaneously optimize the SF rate and the lattice energy. The property-based GA successfully generates more structures predicted to have higher SF rates and provides insight into packing motifs associated with improved SF performance. We find a putative polymorph predicted to have superior SF performance to the two forms of tetracene, whose structures have been determined experimentally. The putative structure has a lattice energy within 1.5 kJ/mol of the most stable common form of tetracene.
Collapse
Affiliation(s)
- Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Siyu Gao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Yi Yang
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Kaiji Zhao
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Imanuel Bier
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Eric A. Buchanan
- Department
of Chemistry, University of Colorado, Boulder, Colorado80309, United States
| | - Alexandr Zaykov
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology, 166 28Prague 6, Czech Republic
| | - Zdeněk Havlas
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
| | - Josef Michl
- Department
of Chemistry, University of Colorado, Boulder, Colorado80309, United States
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, 16610Prague 6, Czech
Republic
| | - Noa Marom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
27
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
28
|
Shi Y, Bao XY. QSPR Modeling for the Prediction of the Triplet Yield of Singlet Fission Materials. JOURNAL OF SAUDI CHEMICAL SOCIETY 2023. [DOI: 10.1016/j.jscs.2023.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Andrusenko I, Hall CL, Mugnaioli E, Potticary J, Hall SR, Schmidt W, Gao S, Zhao K, Marom N, Gemmi M. True molecular conformation and structure determination by three-dimensional electron diffraction of PAH by-products potentially useful for electronic applications. IUCRJ 2023; 10:131-142. [PMID: 36598508 PMCID: PMC9812223 DOI: 10.1107/s205225252201154x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings. The molecular structure of the third molecule was previously considered provisional. These compounds were isolated as by-products in the synthesis of similar products and were at the same time nanocrystalline and available only in very limited amounts. 3D electron diffraction data, taken from submicrometric single crystals, allowed for direct ab initio structure solution and the unbiased determination of the internal molecular conformation. Detailed synthetic routes and spectroscopic analyses are also discussed. Based on many-body perturbation theory simulations, benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene may be a promising candidate for triplet-triplet annihilation and 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene may be a promising candidate for intermolecular singlet fission in the solid state.
Collapse
Affiliation(s)
- Iryna Andrusenko
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
| | - Charlie L. Hall
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Enrico Mugnaioli
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
- Department of Earth Sciences, University of Pisa, Pisa 56126, Italy
| | - Jason Potticary
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Simon R. Hall
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Siyu Gao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Kaiji Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Noa Marom
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Mauro Gemmi
- Center for Material Interfaces, Electron Crystallography, Instituto Italiano di Tecnologia, Pontedera 56025, Italy
| |
Collapse
|
30
|
Fallon K, Sawhney N, Toolan DTW, Sharma A, Zeng W, Montanaro S, Leventis A, Dowland S, Millington O, Congrave D, Bond A, Friend R, Rao A, Bronstein H. Quantitative Singlet Fission in Solution-Processable Dithienohexatrienes. J Am Chem Soc 2022; 144:23516-23521. [PMID: 36575926 PMCID: PMC9801381 DOI: 10.1021/jacs.2c10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 12/29/2022]
Abstract
Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.1 eV). Herein, we examine a series of a short-chain polyene, dithienohexatriene (DTH), with tailored material properties and triplet (T1) energy levels greater than 1.1 eV. We find that these highly soluble materials can be easily spin-cast to create thin films of high crystallinity that exhibit ultrafast singlet fission with near perfect triplet yields of up to 192%. We believe that these materials are the first solution-processable singlet fission materials with quantitative triplet formation and energy levels appropriate for use in conjunction with silicon PVs.
Collapse
Affiliation(s)
- Kealan
J. Fallon
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nipun Sawhney
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Daniel T. W. Toolan
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Ashish Sharma
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Weixuan Zeng
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | | | - Anastasia Leventis
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Simon Dowland
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oliver Millington
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Daniel Congrave
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Andrew Bond
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Richard Friend
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
31
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Shushin A. Manifestation of geminate and bimolecular stages of triplet-exciton annihilation in the kinetics of singlet fission in organic semiconductors. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Sun S, Conrad-Burton FS, Liu Y, Ng F, Steigerwald M, Zhu X, Nuckolls C. Inducing Singlet Fission in Perylene Thin Films by Molecular Contortion. J Phys Chem A 2022; 126:7559-7565. [PMID: 36240052 DOI: 10.1021/acs.jpca.2c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Singlet fission occurs only in a limited number of molecules, and expanding the molecular toolbox is necessary for progress. Here, we apply the molecular contortion strategy to tune singlet and triplet energies and observe changes in the excited-state dynamics that are consistent with singlet fission playing a role in thin films of contorted perylene. Perylene is a prototypical molecular chromophore, which does not undergo singlet fission in its planar form from its S1 state. The tuning of the energetics that control singlet fission through molecular contortion can be applied to a large repertoire of established molecular chromophores.
Collapse
Affiliation(s)
- Shantao Sun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Yufeng Liu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fay Ng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Isukapalli SVK, Vennapusa SR. Core-Twist Reduces the Triplet Formation Efficiency in Brominated Perylene Diimides. J Phys Chem A 2022; 126:7606-7612. [PMID: 36223553 DOI: 10.1021/acs.jpca.2c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bromination is a recent approach to achieve intersystem crossing (ISC) in perylene diimides (PDIs). Herein, we explore the triplet formation dynamics in two tetrabrominated PDI (PDI-Br4) positional isomers with planar (P-PDI) and twisted (T-PDI) π-conjugated frameworks. In contrast to the known effect where the planar geometry favors fluorescence, T-PDI shows higher fluorescence (ϕf = 0.64) than the planar counterpart P-PDI (ϕf = 0.42). P-PDI possesses near-degenerate S1 and T3/T4 states and a larger spin-orbit coupling (SOC). Core-twisting has a pronounced effect on the absorption spectra due to symmetry breaking and would open up multiple ISC pathways, albeit with a lower SOC. Low-energy singlet-triplet state crossings within the Franck-Condon region would facilitate ultrafast triplet generation via the S1-T3/T4 ISC pathway in P-PDI. In comparison, such crossings occur at relatively higher energy, reducing the triplet formation efficiency in T-PDI.
Collapse
Affiliation(s)
- Sai Vamsi Krishna Isukapalli
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram695551, India
| | - Sivaranjana Reddy Vennapusa
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram695551, India
| |
Collapse
|
35
|
Bansal D, Kundu A, Singh VP, Pal AK, Datta A, Dasgupta J, Mukhopadhyay P. A highly contorted push-pull naphthalenediimide dimer and evidence of intramolecular singlet exciton fission. Chem Sci 2022; 13:11506-11512. [PMID: 36320404 PMCID: PMC9555572 DOI: 10.1039/d2sc04187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 08/05/2023] Open
Abstract
Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.
Collapse
Affiliation(s)
- Deepak Bansal
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Vijay Pal Singh
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
36
|
Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196612. [PMID: 36235149 PMCID: PMC9571668 DOI: 10.3390/molecules27196612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Molecular aggregates are of interest to a broad range of fields including light harvesting, organic optoelectronics, and nanoscale computing. In molecular aggregates, nonradiative decay pathways may emerge that were not present in the constituent molecules. Such nonradiative decay pathways may include singlet fission, excimer relaxation, and symmetry-breaking charge transfer. Singlet fission, sometimes referred to as excitation multiplication, is of great interest to the fields of energy conversion and quantum information. For example, endothermic singlet fission, which avoids energy loss, has been observed in covalently bound, linear perylene trimers and tetramers. In this work, the electronic structure and excited-state dynamics of dimers of a perylene derivative templated using DNA were investigated. Specifically, DNA Holliday junctions were used to template the aggregation of two perylene molecules covalently linked to a modified uracil nucleobase through an ethynyl group. The perylenes were templated in the form of monomer, transverse dimer, and adjacent dimer configurations. The electronic structure of the perylene monomers and dimers were characterized via steady-state absorption and fluorescence spectroscopy. Initial insights into their excited-state dynamics were gleaned from relative fluorescence intensity measurements, which indicated that a new nonradiative decay pathway emerges in the dimers. Femtosecond visible transient absorption spectroscopy was subsequently used to elucidate the excited-state dynamics. A new excited-state absorption feature grows in on the tens of picosecond timescale in the dimers, which is attributed to the formation of perylene anions and cations resulting from symmetry-breaking charge transfer. Given the close proximity required for symmetry-breaking charge transfer, the results shed promising light on the prospect of singlet fission in DNA-templated molecular aggregates.
Collapse
|
37
|
Parallel triplet formation pathways in a singlet fission material. Nat Commun 2022; 13:5244. [PMID: 36068233 PMCID: PMC9448805 DOI: 10.1038/s41467-022-32844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Collapse
|
38
|
Yi P, Zuo X, Liang N, Wu M, Chen Q, Zhang L, Pan B. Molecular clusters played an important role in the adsorption of polycyclic aromatic hydrocarbons (PAHs) on carbonaceous materials. CHEMOSPHERE 2022; 302:134772. [PMID: 35526686 DOI: 10.1016/j.chemosphere.2022.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most frequently detected hydrophobic organic contaminants (HOCs) in the environment. They may form clusters because of the strong hydrophobic and π-π electron-donor-acceptor (EDA) interactions among PAHs molecules. However, previous experimental studies and theoretical simulations generally ignored the impact of molecular clusters on the adsorption, which may result in the misunderstanding of the environmental fate and risk. In this work, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) were selected to investigate intermolecular interaction as well as the consequent impact on their adsorption on graphene. The density field of C atoms in equilibrium configurations of self-interacted PAHs suggested that the formation of PAHs molecular clusters was a spontaneous process, and was favored in solvents with stronger polarity and for PAHs with more benzene rings. It should be noted that the molecular dynamics simulations with the initial state of molecular clusters matched better with the published experimental results compared with those of individual PAHs. The formed compact PAHs clusters in polar solvents increased the apparent PAHs adsorption, because of their higher hydrophobic and π-π EDA interactions. This study emphasized that the self-interaction of PAHs should be carefully considered in both experimental and theoretical simulation studies.
Collapse
Affiliation(s)
- Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Xiangzhi Zuo
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Ni Liang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
39
|
Lin YC, She NZ, Chen CH, Yabushita A, Lin H, Li MH, Chang B, Hsueh TF, Tsai BS, Chen PT, Yang Y, Wei KH. Perylene Diimide-Fused Dithiophenepyrroles with Different End Groups as Acceptors for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37990-38003. [PMID: 35904802 DOI: 10.1021/acsami.2c06135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.
Collapse
Affiliation(s)
- Yu-Che Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Nian-Zu She
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Heng Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Hua Li
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bin Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Fang Hsueh
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bing-Shiun Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yang Yang
- Department of Materials Science and Engineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
40
|
Zhou J, Liu H, Liu S, Su P, Wang W, Li Z, Liu Z, Chen Y, Dong Y, Li X. Singlet Fission in Colloidal Nanoparticles of Amphipathic Diketopyrrolopyrrole Derivatives: Probing the Role of the Charge Transfer State. J Phys Chem B 2022; 126:6483-6492. [PMID: 35979942 DOI: 10.1021/acs.jpcb.2c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the role of the charge transfer (CT) state in the singlet fission (SF) process, we prepared three 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) derivatives with zero (Ph2TDPP), one (Ph2TDPP-COOH), and two (Ph2TDPP-(COOH)2) carboxylic groups, respectively. Their colloidal nanoparticles were also prepared by a simple precipitation method. The SF dynamics and mechanism in these colloid nanoparticles were investigated by using steady-state/transient absorption and fluorescence spectroscopy. Steady-state absorption spectra reveal that the strength of the CT resonance interactions between the adjacent DPP units is increased gradually from Ph2TDPP to Ph2TDPP-COOH and then to Ph2TDPP-(COOH)2. Fluorescence and transient absorption spectra demonstrate that SF is proceeded via a CT-assisted superexchange mechanism in these three nanoparticles. Furthermore, SF rate and yield are enhanced gradually with the increase of the number of the carboxylic group, which may be attributed to the enhancement of the CT coupling strength. The result of this work not only provides a better understanding of the SF mechanism especially for the role of the CT state but also gives some new insights for the design of efficient SF materials based on DPP derivatives.
Collapse
Affiliation(s)
- Jun Zhou
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Shanshan Liu
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Pengkun Su
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weijie Wang
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhi Li
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Zhaobin Liu
- Shandong Energy Group Co., Ltd., Jinan, Shandong 250014, China
| | - Yanli Chen
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yunqin Dong
- College of Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Xiyou Li
- College of Chemical Engineering, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
41
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
42
|
Sun J, Huang C, Cheng Y. Simple Evaluation of Singlet Fission Couplings for Interacting Dimer Systems. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Sun
- Department of Chemistry National Taiwan University Taiwan
| | | | - Yuan‐Chung Cheng
- Department of Chemistry and Center for Quantum Science and Engineering National Taiwan University Taiwan
- Physics Division National Center for Theoretical Sciences Taipei City Taiwan
| |
Collapse
|
43
|
Silori Y, Yadav A, Chawla S, De AK. Effect of nanoscale confinement on ultrafast dynamics of singlet fission in TIPS-pentacene. Chemphyschem 2022; 23:e202200454. [PMID: 35830606 DOI: 10.1002/cphc.202200454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from a singlet excited molecule interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium. Here, we report the ultrafast SF dynamics of triisopropylsilylethynyl pentacene (TIPS-Pn) in micellar nanocavity of varying sizes (prepared from TX-100, CTAB, and SDS surfactants). The nanoparticle with a smaller size contains weakly coupled chromophores and is shown to be more efficient for SF followed by triplet generation as compared to the nanoparticles of larger size which contain strongly coupled chromophores and are less efficient due to the presence of singlet exciton traps. Through these studies, we delineate how a subtle interplay between short-range and long-range interaction among chromophores confined within nanoparticles, fine-tuned by the curvature of the micellar interface but irrespective of the nature of the micelle (cationic or anionic or neutral), play a crucial role in SF through and generation of triplets.
Collapse
Affiliation(s)
- Yogita Silori
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Anita Yadav
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Sakshi Chawla
- IISER Mohali: Indian Institute of Science Education and Research Mohali, Chemical Sciences, INDIA
| | - Arijit Kumar De
- Indian Institute of Science Education and Research Mohali, Chemical Sciences, Knowledge City, Sector 81, 140306, SAS Nagar,, INDIA
| |
Collapse
|
44
|
Pensack RD, Purdum GE, Mazza SM, Grieco C, Asbury JB, Anthony JE, Loo YL, Scholes GD. Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9784-9793. [PMID: 35756579 PMCID: PMC9210346 DOI: 10.1021/acs.jpcc.2c00897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/20/2022] [Indexed: 05/16/2023]
Abstract
Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission. In this work, we report a molecular packing arrangement in crystalline films of 5,14-bis(triisopropylsilylethynyl)-substituted pentacene, specifically a local (pairwise) packing arrangement, responsible for complete quenching of triplet pairs generated via singlet fission. We first demonstrate that the energetic condition necessary for singlet fission is satisfied in amorphous films of the 5,14-substituted pentacene derivative. However, while triplet pairs form highly efficiently in the amorphous films, only a modest yield of independent triplets is observed. In crystalline films, triplet pairs also form highly efficiently, although independent triplets are not observed because triplet pairs decay rapidly and are quenched completely. We assign the quenching to a rapid nonadiabatic transition directly to the ground state. Detrimental quenching is observed in crystalline films of two additional 5,14-bis(trialkylsilylethynyl)-substituted pentacenes with either ethyl or isobutyl substituents. Developing a better understanding of the losses identified in this work, and associated molecular packing, may benefit overcoming losses in solids of other singlet fission materials.
Collapse
Affiliation(s)
- Ryan D. Pensack
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Geoffrey E. Purdum
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Samuel M. Mazza
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher Grieco
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B. Asbury
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yueh-Lin Loo
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Wang T, Zhang BY, Zhang HL. Singlet Fission Materials for Photovoltaics: from Small Molecules to Macromolecules. Macromol Rapid Commun 2022; 43:e2200326. [PMID: 35703581 DOI: 10.1002/marc.202200326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Indexed: 11/08/2022]
Abstract
Singlet fission (SF) is a spin-allowed process in which a singlet state splits into two triplet states. Materials that enable SF have attracted great attention in the last decade, mainly stemming from the potential of overcoming the Shockley-Queisser (SQ) limit in photoenergy conversion. In the past decade, a large number of new molecules exhibiting SF have been explored and many devices based on SF materials have been studied, though the mechanistic understanding is still obscure. This review focuses on the recent developments of SF materials, including small molecules, oligomers and polymers. The molecular design strategies and related mechanisms of SF are discussed. Then the dynamics of charge transfer and energy transfer between SF materials and other materials are introduced. Further, we discuss the progresses of implementing SF in photovoltaics. It is hoped that a comprehensive understanding to the SF materials, devices and mechanism may pave a new way for the design of next generation photovoltaics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bo-Yang Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.,Prof. H. L. Zhang, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
46
|
Mayländer M, Nolden O, Franz M, Chen S, Bancroft L, Qiu Y, Wasielewski MR, Gilch P, Richert S. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem Sci 2022; 13:6732-6743. [PMID: 35756510 PMCID: PMC9172295 DOI: 10.1039/d2sc01899c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S1 state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC. The triplet state of PDI can be sensitized efficiently by radical-enhanced intersystem crossing. A detailed study of several related structures allows us to propose new strategies to optimize triplet formation in materials for optoelectronic devices.![]()
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Oliver Nolden
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Michael Franz
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| | - Su Chen
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Laura Bancroft
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Peter Gilch
- Institute of Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225 Düsseldorf Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
47
|
Alam B, Jiang H, Zimmerman PM, Herbert JM. State-specific solvation for restricted active space spin-flip (RAS-SF) wave functions based on the polarizable continuum formalism. J Chem Phys 2022; 156:194110. [PMID: 35597663 DOI: 10.1063/5.0091636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The restricted active space spin-flip (RAS-SF) formalism is a particular form of single-reference configuration interaction that can describe some forms of strong correlation at a relatively low cost and which has recently been formulated for the description of charge-transfer excited states. Here, we introduce both equilibrium and nonequilibrium versions of a state-specific solvation correction for vertical transition energies computed using RAS-SF wave functions, based on the framework of a polarizable continuum model (PCM). Ground-state polarization is described using the solvent's static dielectric constant and in the nonequilibrium solvation approach that polarization is modified upon vertical excitation using the solvent's optical dielectric constant. Benchmark calculations are reported for well-studied models of photo-induced charge transfer, including naphthalene dimer, C2H4⋯C2F4, pentacene dimer, and perylene diimide (PDI) dimer, several of which are important in organic photovoltaic applications. For the PDI dimer, we demonstrate that the charge-transfer character of the excited states is enhanced in the presence of a low-dielectric medium (static dielectric constant ɛ0 = 3) as compared to a gas-phase calculation (ɛ0 = 1). This stabilizes mechanistic traps for singlet fission and helps to explain experimental singlet fission rates. We also examine the effects of nonequilibrium solvation on charge-separated states in an intramolecular singlet fission chromophore, where we demonstrate that the energetic ordering of the states changes as a function of solvent polarity. The RAS-SF + PCM methodology that is reported here provides a framework to study charge-separated states in solution and in photovoltaic materials.
Collapse
Affiliation(s)
- Bushra Alam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
48
|
Wang K, Shao G, Peng S, You X, Chen X, Xu J, Huang H, Wang H, Wu D, Xia J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J Phys Chem B 2022; 126:3758-3767. [PMID: 35559687 DOI: 10.1021/acs.jpcb.2c02387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
49
|
Zhi Q, Zhou J, Liu W, Gong L, Liu W, Liu H, Wang K, Jiang J. Covalent Microporous Polymer Nanosheets for Efficient Photocatalytic CO 2 Conversion with H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201314. [PMID: 35363425 DOI: 10.1002/smll.202201314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 06/14/2023]
Abstract
It is still a challenging target to achieve photocatalytic CO2 conversion to valuable chemicals with H2 O as an electron donor. Herein, 2D imide-based covalent organic polymer nanosheets (CoPcPDA-CMP NSs), which integrate cobalt phthalocyanine (CoPc) moiety for reduction half-reaction and 3,4,9,10-perylenetetracarboxylic diimide moiety for oxidation half-reaction, are constructed as a Z-scheme artificial photosynthesis system to complete the overall CO2 reduction reaction. Owing to the outstanding light absorption capacity, charge separation efficiency, and electronic conductivity, CoPcPDA-CMP NSs exhibit excellent photocatalytic activity to reduce CO2 to CO using H2 O as a sacrificial agent with a CO production rate of 14.27 µmol g-1 h-1 and a CO selectivity of 92%, which is competitive to the state-of-the-art visible-light-driven organic photocatalysts towards the overall CO2 reduction reaction. According to a series of spectroscopy experiments, the authors also verify the photoexcited electron transfer processes in the CoPcPDA-CMP NSs photocatalytic system, confirming the Z-scheme photocatalytic mechanism. The present results should be helpful for fabricating high-performance organic photocatalysts for CO2 conversion.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jun Zhou
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenping Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Heyuan Liu
- College of Science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
50
|
Fan S, Li W, Li T, Gao F, Hu W, Liu S, Wang X, Liu H, Liu Z, Li Z, Chen Y, Li X. Singlet fission in colloid nanoparticles of amphipathic 9,10-bis(phenylethynyl)anthracene derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|