1
|
Cao J, Qiu S, Wang M, Xiao Z, Liu J, Du T, Du X. Smart response CO hydrogel "battling" bacterial biofilms and inflammation associated with wounds. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137662. [PMID: 40022918 DOI: 10.1016/j.jhazmat.2025.137662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Bacterial infections accompanied by excessive inflammatory responses and bleeding can significantly impede wound healing, with biofilms further complicating treatment and reducing its effectiveness. Herein, an intelligent carbon monoxide (CO) gas-releasing and hemostatic hydrogel was developed, composed of carboxymethyl chitosan (CMCS), hyaluronic acid (HA), copper-doped mesoporous Prussian blue nanoparticles (named as Cu-HMPB NPs), luteolin, and Mn2(CO)10, through chemical and physical cross-linking. Cu-HMPB is loaded with luteolin, a natural flavonoid, and covalently bonded with the temperature-sensitive CO donor Mn2(CO)10. By utilizing cross-linking agents, CMCS and HA are physically loaded with Cu-HMPB@Lu@Mn nanoparticles (named as Cu-HLM NPs) to form the composite hydrogel (named as CuHLM/C-H). Under near-infrared (NIR) irradiation, the CuHLM/C-H hydrogel exhibited excellent photothermal capabilities and enabled on-demand CO gas release. The CO gas effectively penetrated mature biofilms and promoted their dissipation, synergizing with the photothermal effect to efficiently eradicate biofilms. The antioxidant properties of luteolin effectively prevents redox imbalance. Additionally, the CuHLM/C-H hydrogel demonstrated significant hemostatic effects in mouse liver and tail hemorrhage models. Collectively, the combination of gas therapy and photothermal therapy shows exceptional potential for addressing clinical issues caused by biofilms and associated inflammation.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shaolong Qiu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Meng Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Dolph L, Santa EE, Stoutland IM, Mesa KM, Dickson CC, Blackwell HE, Franz AK. Silyl-Lipid Functionalized N-Acyl Homoserine Lactones as Modulators of Bacterial Cell-Cell Communication. ACS Chem Biol 2025; 20:412-420. [PMID: 39945376 PMCID: PMC11851432 DOI: 10.1021/acschembio.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
We report silyl-lipid derivatives of N-acyl l-homoserine lactones (AHLs) that have nanomolar activities in LuxR-type quorum sensing receptors in Gram-negative bacterial pathogens. A collection of silyl-lipid AHLs were designed and synthesized to represent three general structural classes based on native AHL signals and synthetic LuxR-type receptor modulators. The synthetic routes feature straightforward hydrosilylation and aryl silylation reactions to access silyl-lipid groups that are not readily accessible in analogous all-carbon chemistry. Of the 17 compounds evaluated, eight silyl-lipid AHLs were identified with either nanomolar agonistic or submicromolar antagonistic activities in the LasR receptor from the common pathogen Pseudomonas aeruginosa using E. coli reporter gene assays. Several silyl-lipid AHL agonists retained high activities in LasR in a native P. aeruginosa reporter system and also were active in another related LuxR-type receptor, EsaR from Pantoea stewartii. Light scattering and computational experiments indicate that the silyl-lipid group can alter the aggregation capabilities and lipophilicities of AHLs relative to native all-carbon tails, engendering larger aggregate formation in water and higher lipophilicities on average. These properties, along with their strong activity profiles in LuxR-type receptors, suggest silyl-lipid AHLs could provide value as chemical probes to study the mechanisms of quorum sensing in Gram-negative bacteria and the roles of signal lipophilicity in this chemical communication process.
Collapse
Affiliation(s)
- Linnea
S. Dolph
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Emma E. Santa
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Irene M. Stoutland
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kelsey M. Mesa
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cole C. Dickson
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Annaliese K. Franz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Lim T, Ham S, Kim HS, Yang JE, Lim H, Park HD, Byun Y. Developing Gingerol-Based Analogs against Pseudomonas aeruginosa Infections. ACS OMEGA 2024; 9:50281-50299. [PMID: 39741820 PMCID: PMC11683490 DOI: 10.1021/acsomega.4c06281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, produces virulent factors and forms biofilms through a quorum sensing (QS) mechanism. Modulating QS networks is considered an effective strategy for treating P. aeruginosa infections. Particularly, the rhl system, one of the QS networks, can be a potential target in treating patients with chronic infections. We previously discovered that gingerol acts as a RhlR antagonist of P. aeruginosa. Based on the chemical structure of gingerol, we have designed and synthesized gingerol derivatives by introducing various functional groups in the middle and tail regions. A comprehensive structure-activity relationship study showed that compound 5a substituted with phenyl group in the tail region was the most potent in various biological assessments, such as RhlR binding affinity, rhl gene expression, and virulence factor production of P. aeruginosa. Furthermore, compound 5a decreased the biofilm formation and pathogenicity of P. aeruginosa. Interestingly, compound 5a also influenced las system in addition to the rhl system. Taken together, compound 5a can be utilized as a potent compound for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Taehyeong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Soyoung Ham
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- Department
of Geoscience, University of Tuebingen, Schnarrenbergstraße 94−96, Tuebingen 72076, Germany
| | - Han-Shin Kim
- Division
of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Ji-Eun Yang
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hyunwoong Lim
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
| | - Hee-Deung Park
- School
of Civil, Environmental and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic
of Korea
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Youngjoo Byun
- College
of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic
of Korea
- Biomedical
Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| |
Collapse
|
4
|
Fernandes S, Sousa M, Martins FG, Simões M, Sousa SF. Protocol for in silico characterization of natural-based molecules as quorum-sensing inhibitors. STAR Protoc 2024; 5:103367. [PMID: 39378154 PMCID: PMC11492069 DOI: 10.1016/j.xpro.2024.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The search and development of new quorum-sensing (QS) inhibitors are ongoing processes for biofilm control. Here, we present a protocol for in silico characterization of natural-based molecules as QS inhibitors. We describe steps for preparing models of protein receptors for virtual screening. We then detail procedures for construction and virtual screening of phytochemical libraries and hit picking to be experimentally validated by in vitro assays. This protocol allows exploration of a broad range of potential inhibitors for a specific target. For complete details on the use and execution of this protocol, please refer to Fernandes et al.1.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mariana Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fábio G Martins
- LAQV/REQUIMTE, BioSIM, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
5
|
Tang D, Liu Y, Yao H, Lin Y, Xi Y, Li M, Mao A. Transcriptome Analysis Reveals the Mechanism of Y0-C10-HSL on Biofilm Formation and Motility of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2024; 17:1719. [PMID: 39770562 PMCID: PMC11678461 DOI: 10.3390/ph17121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background:Pseudomonas aeruginosa (P. aeruginosa) is a type of pathogen that takes advantage of opportunities to infect and form biofilm during infection. Inhibiting biofilm formation is a promising approach for the treatment of biofilm-related infections. Methods: Here, Y0-C10-HSL (N-cyclopentyl-n-decanamide) was designed, synthesized, and tested for its effect on biofilm formation, motility, and the Caenorhabditis elegans (C. elegans) survival assay. In addition, the molecular mechanism of Y0-C10-HSL on P. aeruginosa biofilm formation was explored using transcriptome analysis. Results: At a concentration of 200 μmol/L Y0-C10-HSL, biofilm and exopolysaccharides were decreased by 38.5% and 29.3%, respectively; Y0-C10-HSL effectively dispersed the pre-formed biofilm and inhibited the motility ability of P. aeruginosa; and the C. elegans survival assay showed that Y0-C10-HSL was safe and provided protection to C. elegans against P. aeruginosa infection (the survival rates of C. elegans were higher than 74% and increased by 39%, 35.1%, and 47.5%, respectively, when treated with 200 μmol/L Y0-C10-HSL at 24, 48, and 80 h). Transcriptome analysis showed that 585 differentially expressed genes (DEGs) were found after treatment with 200 μmol/L Y0-C10-HSL, including 254 up-regulated DEGs and 331 down-regulated DEGs. The genes involved in the quorum sensing system and biofilm formation were down-regulated. Conclusions: Y0-C10-HSL inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa through down-regulated genes related to quorum sensing pathways and biofilm formation. These findings provide a theoretical foundation for the treatment and prevention of antibiotic resistance in clinical and environmental microorganisms such as P. aeruginosa.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
| | - Aihong Mao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (D.T.)
- Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China
| |
Collapse
|
6
|
Wu S, Zhou Y, Dai L, Yang A, Qiao J. Assembly of functional microbial ecosystems: from molecular circuits to communities. FEMS Microbiol Rev 2024; 48:fuae026. [PMID: 39496507 PMCID: PMC11585282 DOI: 10.1093/femsre/fuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes compete and cooperate with each other via a variety of chemicals and circuits. Recently, to decipher, simulate, or reconstruct microbial communities, many researches have been engaged in engineering microbiomes with bottom-up synthetic biology approaches for diverse applications. However, they have been separately focused on individual perspectives including genetic circuits, communications tools, microbiome engineering, or promising applications. The strategies for coordinating microbial ecosystems based on different regulation circuits have not been systematically summarized, which calls for a more comprehensive framework for the assembly of microbial communities. In this review, we summarize diverse cross-talk and orthogonal regulation modules for de novo bottom-up assembling functional microbial ecosystems, thus promoting further consortia-based applications. First, we review the cross-talk communication-based regulations among various microbial communities from intra-species and inter-species aspects. Then, orthogonal regulations are summarized at metabolites, transcription, translation, and post-translation levels, respectively. Furthermore, to give more details for better design and optimize various microbial ecosystems, we propose a more comprehensive design-build-test-learn procedure including function specification, chassis selection, interaction design, system build, performance test, modeling analysis, and global optimization. Finally, current challenges and opportunities are discussed for the further development and application of microbial ecosystems.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Yongsheng Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
7
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
8
|
Du T, Cao J, Zhang Z, Xiao Z, Jiao J, Song Z, Du X, Wang S. Thermo-responsive cascade antimicrobial platform for precise biofilm removal and enhanced wound healing. BURNS & TRAUMA 2024; 12:tkae038. [PMID: 39323765 PMCID: PMC11422504 DOI: 10.1093/burnst/tkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 09/27/2024]
Abstract
Background Bacterial infection, tissue hypoxia and inflammatory response can hinder infected wound repair. This study aimed to develop a multifunctional specific therapeutic photo-activated release nanosystem [HMPB@MB@AuNPs@PMB@HA (HMAPH)] by loading photosensitizer methylene blue (MB) into hollow mesoporous Prussian blue nanostructures and modifying the surface with gold particles, polymyxin B (PMB) and hydrophilic hyaluronic acid. Methods The HMAPH was characterized using transmission electron microscopy, UV-vis, Fourier-transform infrared spectroscopy, X-ray diffraction and X-ray photon spectroscopy. The photothermal performance, iron ion release and free radical generation of the HMAPH were measured under different conditions to investigate its thermo-responsive cascade reaction. The antibacterial ability of HMAPH was investigated using live/dead fluorescence tests. The morphology and membrane integrity of Pseudomonas aeruginosa (P. aeruginosa) were investigated using transmission electron microscopy. The anti-biofilm activity of HMAPH was evaluated using crystal violet and SYBR Green I staining. Finally, we established a mouse model of a skin wound infected by P. aeruginosa to confirm the in vivo effectiveness of HMAPH. We used immunofluorescent staining, hematoxylin-eosin staining, Masson staining and enzyme-linked immunosorbent assay to examine whether HMAPH promoted wound healing and reduced inflammatory damage. Results In this study, hyaluronic acid was decomposed under the action of hyaluronidase. Also, the exposed nanomaterials specifically bound to the outer membrane of P. aeruginosa through PMB to increase the membrane sensitivity to photodynamic treatment. Under dual-light irradiation, a large amount of iron ions released by HMAPH underwent a Fenton reaction with H2O2 in bacteria to generate hydroxyl radicals (•OH), enabling direct killing of cells by hyperthermia. Additionally, the photodynamic activity of MB released by photo-induced activation led to the generation of reactive oxygen species, achieving synergistic and effective inhibition of P. aeruginosa. HMAPH also inhibited biofilm formation and downregulated the expression of virulence factors. In vivo experiments revealed that HMAPH accelerated the healing of P. aeruginosa-infected wounds by promoting angiogenesis and skin regeneration, inhibiting the inflammatory response and promoting M1 to M2 polarization. Conclusions Our study proposed a strategy against bacteria and biofilms through a synergistic photothermal-photodynamic-Fenton reaction, opening up new prospects for combating biofilm-associated infections.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhannuo Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin 300071, PR China
| |
Collapse
|
9
|
Boakye A, Seidu MP, Adomako A, Laryea MK, Borquaye LS. Marine-Derived Furanones Targeting Quorum-Sensing Receptors in Pseudomonas aeruginosa: Molecular Insights and Potential Mechanisms of Inhibition. Bioinform Biol Insights 2024; 18:11779322241275843. [PMID: 39246683 PMCID: PMC11378241 DOI: 10.1177/11779322241275843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
The quorum-sensing (QS) machinery in disease-causing microorganisms is critical in developing antibiotic resistance. In Pseudomonas aeruginosa, QS is involved in biofilm formation, virulence factors production, and general tolerance to antimicrobials. Owing to the major role QS plays, interference in the process is probably a facile route to overcome antimicrobial resistance. Some furanone-derived compounds from marine sources have shown promising anti-QS activity. However, their protein targets and potential mechanisms of action have not been explored. To elucidate their potential protein targets in this study, marine metabolites with furanone backbones similar to their cognitive autoinducers (AIs) were screened against various QS receptors (LasR, RhlR, and PqsR) using molecular docking and molecular dynamics (MD) simulation techniques. The order by which the compounds bind to the receptors follows LasR > RhlR > PqsR. Compounds exhibited remarkable stability against LasR and RhlR, likely because the AIs of these receptors are structural analogs of furanones. Furanones with shorter alkyl side chains bound strongly against RhlR. The presence of halogens improved binding against various receptors. PqsR, with its hydrophobic-binding site and structurally different AIs, showed weaker binding. This study provides a molecular basis for the design of potent antagonists against QS receptors using marine-derived furanones.
Collapse
Affiliation(s)
- Aaron Boakye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Alice Adomako
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
10
|
Guan M, Zhu D, Wei J, He Z, Xiong LT, Zeng Y, Song G, Deng X, Cui ZN. Design and Synthesis of Aryl Amide Derivatives Containing Thiazole as Type III Secretion System Inhibitors against Pseudomonas aeruginosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17210-17218. [PMID: 39056370 DOI: 10.1021/acs.jafc.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
To identify potent inhibitors of the type III secretion system (T3SS) in the foodborne pathogen Pseudomonas aeruginosa, we synthesized 35 thiazole-containing aryl amides by merging salicylic acid with various heterocycles through active splicing. Screening for exoS promoter activity led to the discovery of a highly effective T3SS inhibitor from these 35 compounds. Through subsequent experiments, it was confirmed that compound II-22 specifically targeted the T3SS of P. aeruginosa. Additionally, compound II-22 inhibited the secretion of the effector protein ExoS by modulating the CyaB-cAMP/Vfr-ExsA and ExsCED-ExsA regulatory pathways. Furthermore, compound II-22 suppressed the transcription of genes involved in the needle complex assembly, leading to reduced bacterial virulence. Further validation through inoculation tests using Galleria mellonella larvae demonstrated the strong in vivo efficacy of compound II-22. The study also revealed that compound II-22 enhanced the bactericidal activity of antibiotics, such as CIP (ciprofloxacin) and TOB (tobramycin). These results could help develop novel antimicrobial drugs to reduce bacterial resistance.
Collapse
Affiliation(s)
- Mingming Guan
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Di Zhu
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wei
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Zeng
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
12
|
Yan X, Hou S, Xing C, Zhang Y, Chang J, Xiao J, Lin F. Design, Synthesis, and Biological Evaluation of the Quorum-Sensing Inhibitors of Pseudomonas aeruginosa PAO1. Molecules 2024; 29:2211. [PMID: 38792073 PMCID: PMC11123961 DOI: 10.3390/molecules29102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Due to the resistance of Gram-negative bacteria Pseudomonas aeruginosa PAO1 to most clinically relevant antimicrobials, the use of traditional antibiotic treatments in hospitals is challenging. The formation of biofilms, which is regulated by the quorum-sensing (QS) system of Pseudomonas aeruginosa (PA), is an important cause of drug resistance. There are three main QS systems in P. aeruginosa: the las system, the rhl system, and the pqs system. The inhibitors of the las system are the most studied. Previously, the compound AOZ-1 was found to have a certain inhibitory effect on the las system when screened. In this study, twenty-four compounds were designed and synthesized by modifying the Linker and Rings of AOZ-1. Using C. violaceum CV026 as a reporter strain, this study first assessed the inhibitory effects of new compounds against QS, and their SAR was investigated. Then, based on the SAR analysis of compound AOZ-1 derivatives, the parent core of AOZ-1 was replaced to explore the structural diversity. Then, nine new compounds were designed and synthesized with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one. The compound Y-31 (IC50 = 91.55 ± 3.35 µM) was found to inhibit the QS of C. violaceum CV026. Its inhibitory effect on C. violaceum CV026 was better than that of compound AOZ-1 (IC50 > 200 µM). Furthermore, biofilm formation is one of the important causes of Pseudomonas aeruginosa PAO1 resistance. In this study, it was found that compound Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, had the highest biofilm inhibition rate (40.44%). The compound Y-31 has a certain inhibitory effect on the production of PAO1 virulence factors (pyocyanin, rhamnolipid, and elastase) and swarming. When the concentration of compound Y-31 was 162.5 µM, the inhibition rates of pyocyanin, rhamnolipid, and elastase were 22.48%, 6.13%, and 22.67%, respectively. In vivo, the lifetime of wildtype Caenorhabditis elegans N2 infected with P. aeruginosa PAO1 was markedly extended by the new parent nucleus Y-31. This study also performed cytotoxicity experiments and in vivo pharmacokinetics experiments on the compound Y-31. In conclusion, this study identified a compound, Y-31, with a new nucleus core component of 3-amino-tetrahydro-l,3-oxazin-2-one, which is a potential agent for treating P. aeruginosa PAO1 that is resistant to antibiotics and offers a way to discover novel antibacterial medications.
Collapse
Affiliation(s)
- Xinlin Yan
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Y.); (S.H.); (J.C.)
| | - Shi Hou
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Y.); (S.H.); (J.C.)
| | - Cheng Xing
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China;
| | - Yuanyuan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jiajia Chang
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Y.); (S.H.); (J.C.)
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Drug, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (X.Y.); (S.H.); (J.C.)
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
13
|
He Z, Guan MM, Xiong LT, Li X, Zeng Y, Deng X, Herron AN, Cui ZN. Discovery of novel amide derivatives as potent quorum sensing inhibitors of Pseudomonas aeruginosa. Eur J Med Chem 2024; 271:116410. [PMID: 38615409 DOI: 10.1016/j.ejmech.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.
Collapse
Affiliation(s)
- Zhe He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Ming-Ming Guan
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xuan Li
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Zeng
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xile Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | | | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Thangaraj M, Lialin K, Dandela R, Adepu R, David S, Mizrachi MS, Meijler MM. Four component Ugi reaction based small-molecule probes for integrated phenotypic screening. Bioorg Chem 2024; 146:107257. [PMID: 38493639 DOI: 10.1016/j.bioorg.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
Quorum-sensing (QS) is a cell density-dependent signaling pathway regulated by gene expression for intra- and interspecies communication. We have targeted QS activity in Pseudomonas aeruginosa, an opportunistic human pathogen that causes disease in immunocompromised patients, with a set of probes containing a variety of functional groups, including photoreactive (diazirine) and affinity (alkyne) moieties, that were synthesized using a four-component Ugi reaction (Ugi-4CR).
Collapse
Affiliation(s)
- Manikandan Thangaraj
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Ksenia Lialin
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Industrial & Engineering Chemistry, Institute of Chemical Technology - Indian Oil Odisha Campus, India
| | - Raju Adepu
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel; Current Adress: Department of Natural Products & Medicinal Chemistry CSIR, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Shimrit David
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Meital Shema Mizrachi
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva, Israel.
| |
Collapse
|
15
|
Zhang P, Ma Y, Wang Y, Dong E, Ma S. Design, Synthesis, and Biological Evaluation of 2-Phenoxyalkylhydrazide Benzoxazole Derivatives as Quorum Sensing Inhibitors with Strong Antibiofilm Effect. J Med Chem 2024; 67:5721-5743. [PMID: 38564271 DOI: 10.1021/acs.jmedchem.3c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With the increasing problem of bacterial resistance to traditional antibiotics, there is an urgent need for new antibacterial agents with novel mechanisms to treat infections caused by drug-resistant bacteria. In this paper, we designed and synthesized 2-phenoxyalkylhydrazide benzoxazole derivatives and evaluated their quorum sensing inhibition activity. Among them, 26c at a concentration of 102.4 μg/mL not only inhibited the production of pyocyanin and rhamnolipid by 45.6% and 38.3%, respectively, but also suppressed 76.6% of biofilm production at 32 μg/mL. In addition, 26c did not affect bacterial growth, but in a mouse model infected with P. aeruginosa PAO1, it could help ciprofloxacin effectively eliminate the living bacteria. In the targeting experiment, 26c could inhibit the fluorescence intensity of PAO1-lasB-gfp and PAO1-pqsA-gfp in a concentration-dependent manner, indicating that the compound acts on the quorum sensing system. Overall, 26c is worthy of further investigation as a quorum sensing inhibitor with strong antibiofilm effect.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yangchun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Enhui Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
16
|
Oh D, Khan F, Park SK, Jo DM, Kim NG, Jung WK, Kim YM. Antimicrobial, antibiofilm, and antivirulence properties of Eisenia bicyclis-extracts and Eisenia bicyclis-gold nanoparticles towards microbial pathogens. Microb Pathog 2024; 188:106546. [PMID: 38278457 DOI: 10.1016/j.micpath.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Nanomaterials derived from seaweed have developed as an alternative option for fighting infections caused by biofilm-forming microbial pathogens. This research aimed to discover potential seaweed-derived nanomaterials with antimicrobial and antibiofilm action against bacterial and fungal pathogens. Among seven algal species, the extract from Eisenia bicyclis inhibited biofilms of Klebsiella pneumoniae, Staphylococcus aureus, and Listeria monocytogenes most effectively at sub-MIC levels. As a result, in the present study, E. bicyclis was chosen as a prospective seaweed for producing E. bicyclis-gold nanoparticles (EB-AuNPs). Furthermore, the mass spectra of E. bicyclis reveal the presence of a number of potentially beneficial chemicals. The polyhedral shape of the synthesized EB-AuNP with a size value of 154.74 ± 33.46 nm was extensively described. The lowest inhibitory concentration of EB-AuNPs against bacterial pathogens (e.g., L.monocytogenes, S. aureus, Pseudomonas aeruginosa, and K. pneumoniae) and fungal pathogens (Candida albicans) ranges from 512 to >2048 μg/mL. Sub-MIC of EB-AuNPs reduces biofilm formation in P. aeruginosa, K. pneumoniae, L. monocytogenes, and S. aureus by 57.22 %, 58.60 %, 33.80 %, and 91.13 %, respectively. EB-AuNPs eliminate the mature biofilm of K. pneumoniae at > MIC, MIC, and sub-MIC concentrations. Furthermore, EB-AuNPs at the sub-MIC level suppress key virulence factors generated by P. aeruginosa, including motility, protease activity, pyoverdine, and pyocyanin, whereas it also suppresses the production of staphyloxanthin virulence factor from S. aureus. The current research reveals that seaweed extracts and a biocompatible seaweed-AuNP have substantial antibacterial, antibiofilm, and antivirulence actions against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- DoKyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nam-Gyun Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
17
|
Liu J, Meng Y, Yang MH, Zhang XY, Zhao JF, Sun PH, Chen WM. Design, synthesis and biological evaluation of novel 3-hydroxypyridin-4(1H)-ones based hybrids as Pseudomonas aeruginosa biofilm inhibitors. Eur J Med Chem 2023; 259:115665. [PMID: 37506546 DOI: 10.1016/j.ejmech.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative pathogenic bacterium, often causative drug-resistance related human infections, given its great capacity to form bioflm. It uses three major quorum sensing (QS) systems, las, rhl, and pqs, to regulate the expression of genes related to virulence and biofilm formation. Consequently, strategies for inhibiting QS have garnered considerable attention as antimicrobial therapies. In this study, we designed and synthesized several 3-hydroxypyridin-4(1H)-one hybrids and assessed their potential as the inhibitors of P. aeruginosa biofilm formation. The most active compound identified was 12h; it exhibited satisfactory biofilm inhibitory activity (IC50: 10.59 ± 1.17 μM). Mechanistic studies revealed that 12h significantly inhibited the fluorescence of the PAO1-lasB-gfp and PAO1-pqsA-gfp fluorescent reporter strains and the production of Las-regulated (elastase) and Pqs-regulated (pyocyanin) virulence factors. These findings indicate that 12h inhibited biofilm formation by suppressing the expression of lasB and pqsA, thereby inactivating the las and pqs pathways. Furthermore, 12h improved the antibiotic susceptibility of P. aeruginosa and reduced the acute virulence of this bacterium in the African green monkey kidney cell line Vero. In conclusion, 3-hydroxypyridin-4(1H)-one hybrids, such as 12h, represent a promising class of antibacterial agents against P. aeruginosa.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ming-Han Yang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Yi Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
18
|
Guo Y, Mao Z, Ran F, Sun J, Zhang J, Chai G, Wang J. Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections. Pharmaceutics 2023; 15:2582. [PMID: 38004561 PMCID: PMC10674810 DOI: 10.3390/pharmaceutics15112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Airway mucus dysfunction and impaired immunological defenses are hallmarks of several lung diseases, including asthma, cystic fibrosis, and chronic obstructive pulmonary diseases, and are mostly causative factors in bacterial-biofilm-associated respiratory tract infections. Bacteria residing within the biofilm architecture pose a complex challenge in clinical settings due to their increased tolerance to currently available antibiotics and host immune responses, resulting in chronic infections with high recalcitrance and high rates of morbidity and mortality. To address these unmet clinical needs, potential anti-biofilm therapeutic strategies are being developed to effectively control bacterial biofilm. This review focuses on recent advances in the development and application of nanoparticulate drug delivery systems for the treatment of biofilm-associated respiratory tract infections, especially addressing the respiratory barriers of concern for biofilm accessibility and the various types of nanoparticles used to combat biofilms. Understanding the obstacles facing pulmonary drug delivery to bacterial biofilms and nanoparticle-based approaches to combatting biofilm may encourage researchers to explore promising treatment modalities for bacterial-biofilm-associated chronic lung infections.
Collapse
Affiliation(s)
- Yutong Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Ran
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Guihong Chai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
19
|
West KHJ, Ma SV, Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry 2023; 62:2878-2892. [PMID: 37699554 PMCID: PMC10676741 DOI: 10.1021/acs.biochem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.
Collapse
Affiliation(s)
- Korbin H J West
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Stella V Ma
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Emma L Eisenbraun
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
20
|
Shi YG, Chen WX, Zheng MZ, Zhao YX, Wang YR, Chu YH, Du ST, Shi ZY, Gu Q, Chen JS. Ultraefficient OG-Mediated Photodynamic Inactivation Mechanism for Ablation of Bacteria and Biofilms in Water Augmented by Potassium Iodide under Blue Light Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13672-13687. [PMID: 37671932 DOI: 10.1021/acs.jafc.3c03182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
While photodynamic inactivation (PDI) has emerged as a novel sterilization strategy for drinking water treatment that recently attracted tremendous attention, its efficiency needs to be further improved. In this study, we aimed to clarify the ultraefficient mechanism by which potassium iodide (KI) potentiates octyl gallate (OG)-mediated PDI against bacteria and biofilms in water. When OG (0.15 mM) and bacteria were exposed to blue light (BL, 420 nm, 210 mW/cm2), complete sterilization (>7.5 Log cfu/mL of killing) was achieved by the addition of KI (250 mM) within only 5 min (63.9 J/cm2). In addition, at lower doses of OG (0.1 mM) with KI (100 mM), the biofilm was completely eradicated within 10 min (127.8 J/cm2). The KI-potentiated mechanism involves in situ rapid photogeneration of a multitude of reactive oxygen species, especially hydroxyl radicals (•OH), reactive iodine species, and new photocytocidal substances (quinone) by multiple photochemical pathways, which led to the destruction of cell membranes and membrane proteins, the cleavage of genomic DNA and extracellular DNA within biofilms, and the degradation of QS signaling molecules. This multitarget synergistic strategy provided new insights into the development of an environmentally friendly, safe, and ultraefficient photodynamic drinking water sterilization technology.
Collapse
Affiliation(s)
- Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yi-Ran Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102 Taiwan, China
| | - Shao-Ting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ze-Yu Shi
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 Zhejiang, China
| |
Collapse
|
21
|
Jenul C, Keim KC, Jens JN, Zeiler MJ, Schilcher K, Schurr MJ, Melander C, Phelan VV, Horswill AR. Pyochelin biotransformation by Staphylococcus aureus shapes bacterial competition with Pseudomonas aeruginosa in polymicrobial infections. Cell Rep 2023; 42:112540. [PMID: 37227819 PMCID: PMC10592502 DOI: 10.1016/j.celrep.2023.112540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S. aureus is equipped with an elegant mechanism to inactivate pyochelin via the yet uncharacterized methyltransferase Spm (staphylococcal pyochelin methyltransferase). Methylation of pyochelin abolishes the siderophore activity of pyochelin and significantly lowers pyochelin-mediated intracellular reactive oxygen species (ROS) production in S. aureus. In a murine wound co-infection model, an S. aureus mutant unable to methylate pyochelin shows significantly lower fitness compared with its parental strain. Thus, Spm-mediated pyochelin methylation is a mechanism to increase S. aureus survival during in vivo competition with P. aeruginosa.
Collapse
Affiliation(s)
- Christian Jenul
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Klara C Keim
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin N Jens
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katrin Schilcher
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Michael J Schurr
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vanessa V Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Zhang P, Chen W, Ma YC, Bai B, Sun G, Zhang S, Chang X, Wang Y, Jiang N, Zhang X, Ma S. Design and Synthesis of 4-Fluorophenyl-5-methylene-2(5 H)-furanone Derivatives as Potent Quorum Sensing Inhibitors. J Med Chem 2023. [PMID: 37310919 DOI: 10.1021/acs.jmedchem.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quorum sensing inhibitors (QSIs) are a class of compounds that can reduce the pathogenicity of bacteria without affecting bacterial growth. In this study, we designed and synthesized four series of 4-fluorophenyl-5-methylene-2(5H)-furanone derivatives and evaluated their QSI activities. Among them, compound 23e not only showed excellent inhibitory activity against various virulence factors but also significantly enhanced the inhibitory activity of antibiotics ciprofloxacin and clarithromycin against two strains of Pseudomonas aeruginosa in vitro. What is even more exciting is that it remarkably increased the antibacterial effect in vivo in combination with ciprofloxacin in the bacteremia model infected with P. aeruginosa PAO1. Moreover, 23e had little hemolytic activity to mouse erythrocytes. Further, the results of GFP reporter fluorescence strain inhibition and β-galactosidase activity inhibition experiments demonstrated that 23e simultaneously targeted the three quorum sensing systems in P. aeruginosa. As a result, compound 23e could be used as an effective QSI for further development against bacterial infections.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yang-Chun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Nan Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
23
|
Miller Conrad LC, Perez LJ. A Geneticist Transcribing the Chemical Language of Bacteria. Isr J Chem 2023; 63:e202200079. [PMID: 37469628 PMCID: PMC10353724 DOI: 10.1002/ijch.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/05/2022]
Abstract
The study of quorum sensing, bacterial cell-to-cell communication mediated by the production and detection of small molecule signals, has skyrocketed since its discovery in the last third of the 20th century. Building from early investigations of bacterial bioluminescence, the process has been characterized to control a numerous and growing number of group behaviors, including virulence and biofilm formation. Bonnie Bassler has made key contributions to the understanding of quorum sensing, leading interdisciplinary efforts to characterize key signaling pathway components and their respective signaling molecules across a range of gram-negative bacteria. This review highlights her work in the field, with a particular emphasis on the chemical contributions of her work.
Collapse
Affiliation(s)
- Laura C. Miller Conrad
- Department of Chemistry, San José State University, 1 Washington Sq, San Jose, CA 95192, USA
| | - Lark J. Perez
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
24
|
Jonkergouw C, Beyeh NK, Osmekhina E, Leskinen K, Taimoory SM, Fedorov D, Anaya-Plaza E, Kostiainen MA, Trant JF, Ras RHA, Saavalainen P, Linder MB. Repurposing host-guest chemistry to sequester virulence and eradicate biofilms in multidrug resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Nat Commun 2023; 14:2141. [PMID: 37059703 PMCID: PMC10104825 DOI: 10.1038/s41467-023-37749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
The limited diversity in targets of available antibiotic therapies has put tremendous pressure on the treatment of bacterial pathogens, where numerous resistance mechanisms that counteract their function are becoming increasingly prevalent. Here, we utilize an unconventional anti-virulence screen of host-guest interacting macrocycles, and identify a water-soluble synthetic macrocycle, Pillar[5]arene, that is non-bactericidal/bacteriostatic and has a mechanism of action that involves binding to both homoserine lactones and lipopolysaccharides, key virulence factors in Gram-negative pathogens. Pillar[5]arene is active against Top Priority carbapenem- and third/fourth-generation cephalosporin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, suppressing toxins and biofilms and increasing the penetration and efficacy of standard-of-care antibiotics in combined administrations. The binding of homoserine lactones and lipopolysaccharides also sequesters their direct effects as toxins on eukaryotic membranes, neutralizing key tools that promote bacterial colonization and impede immune defenses, both in vitro and in vivo. Pillar[5]arene evades both existing antibiotic resistance mechanisms, as well as the build-up of rapid tolerance/resistance. The versatility of macrocyclic host-guest chemistry provides ample strategies for tailored targeting of virulence in a wide range of Gram-negative infectious diseases.
Collapse
Affiliation(s)
- Christopher Jonkergouw
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry, 146 Library Drive, Rochester, MI, 48309-4479, USA
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Ekaterina Osmekhina
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Katarzyna Leskinen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland
| | - S Maryamdokht Taimoory
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
- University of Michigan, Department of Chemistry, Ann Arbor, MI, USA
| | - Dmitrii Fedorov
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Eduardo Anaya-Plaza
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - Mauri A Kostiainen
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
| | - John F Trant
- University of Windsor, Department of Chemistry and Biochemistry, Windsor, ON, N9B 3P4, Canada
| | - Robin H A Ras
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland
- Aalto University, School of Science, Department of Applied Physics, Puumiehenkuja 2, Espoo, Finland
| | - Päivi Saavalainen
- University of Helsinki, Translational Immunology Research Program, Haartmaninkatu 8, 0014, Helsinki, Finland.
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
| | - Markus B Linder
- Aalto University, School of Chemical Engineering, Department of Bioproducts and Biosystems, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
25
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
26
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
27
|
Beenker WAG, Hoeksma J, Bannier-Hélaouët M, Clevers H, den Hertog J. Paecilomycone Inhibits Quorum Sensing in Gram-Negative Bacteria. Microbiol Spectr 2023; 11:e0509722. [PMID: 36920212 PMCID: PMC10100902 DOI: 10.1128/spectrum.05097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes major health care concerns due to its virulence and high intrinsic resistance to antimicrobial agents. Therefore, new treatments are greatly needed. An interesting approach is to target quorum sensing (QS). QS regulates the production of a wide variety of virulence factors and biofilm formation in P. aeruginosa. This study describes the identification of paecilomycone as an inhibitor of QS in both Chromobacterium violaceum and P. aeruginosa. Paecilomycone strongly inhibited the production of virulence factors in P. aeruginosa, including various phenazines, and biofilm formation. In search of the working mechanism, we found that paecilomycone inhibited the production of 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), but not 2'-aminoacetophenone (2-AA). Therefore, we suggest that paecilomycone affects parts of QS in P. aeruginosa by targeting the PqsBC complex and alternative targets or alters processes that influence the enzymatic activity of the PqsBC complex. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research. IMPORTANCE Antibiotics are becoming less effective against bacterial infections due to the evolution of resistance among bacteria. Pseudomonas aeruginosa is a Gram-negative pathogen that causes major health care concerns and is difficult to treat due to its high intrinsic resistance to antimicrobial agents. Therefore, new targets are needed, and an interesting approach is to target quorum sensing (QS). QS is the communication system in bacteria that regulates multiple pathways, including the production of virulence factors and biofilm formation, which leads to high toxicity in the host and low sensitivity to antibiotics, respectively. We found a compound, named paecilomycone, that inhibited biofilm formation and the production of various virulence factors in P. aeruginosa. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research.
Collapse
Affiliation(s)
- Wouter A. G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie Bannier-Hélaouët
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
28
|
Jia J, Parmar D, Ellis JF, Cao T, Cutri AR, Shrout JD, Sweedler JV, Bohn PW. Effect of Micro-Patterned Mucin on Quinolone and Rhamnolipid Profiles of Mucoid Pseudomonas aeruginosa under Antibiotic Stress. ACS Infect Dis 2023; 9:150-161. [PMID: 36538577 PMCID: PMC10116410 DOI: 10.1021/acsinfecdis.2c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is commonly implicated in hospital-acquired infections where its capacity to form biofilms on a variety of surfaces and the resulting enhanced antibiotic resistance seriously limit treatment choices. Because surface attachment sensitizes P. aeruginosa to quorum sensing (QS) and induces virulence through both chemical and mechanical cues, we investigate the effect of surface properties through spatially patterned mucin, combined with sub-inhibitory concentrations of tobramycin on QS and virulence factors in both mucoid and non-mucoid P. aeruginosa strains using multi-modal chemical imaging combining confocal Raman microscopy and matrix-assisted laser desorption/ionization-mass spectrometry. Samples comprise surface-adherent static biofilms at a solid-water interface, supernatant liquid, and pellicle biofilms at an air-water interface at various time points. Although the presence of a sub-inhibitory concentration of tobramycin in the supernatant retards growth and development of static biofilms independent of strain and surface mucin patterning, we observe clear differences in the behavior of mucoid and non-mucoid strains. Quinolone signals in a non-mucoid strain are induced earlier and are influenced by mucin surface patterning to a degree not exhibited in the mucoid strain. Additionally, phenazine virulence factors, such as pyocyanin, are observed in the pellicle biofilms of both mucoid and non-mucoid strains but are not detected in the static biofilms from either strain, highlighting the differences in stress response between pellicle and static biofilms. Differences between mucoid and non-mucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected biofilms.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joanna F Ellis
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allison R Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
29
|
Sikdar R, Elias MH. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0126922. [PMID: 36314960 PMCID: PMC9769976 DOI: 10.1128/spectrum.01269-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Quorum sensing (QS) is a cell-density-dependent, intercellular communication system mediated by small diffusible signaling molecules. QS regulates a range of bacterial behaviors, including biofilm formation, virulence, drug resistance mechanisms, and antibiotic tolerance. Enzymes capable of degrading signaling molecules can interfere in QS-a process termed as quorum quenching (QQ). Remarkably, previous work reported some cases where enzymatic interference in QS was synergistic to antibiotics against Pseudomonas aeruginosa. The premise of combination therapy is attractive to fight against multidrug-resistant bacteria, yet comprehensive studies are lacking. Here, we evaluate the effects of QS signal disruption on the antibiotic resistance profile of P. aeruginosa by testing 222 antibiotics and antibacterial compounds from 15 different classes. We found compelling evidence that QS signal disruption does indeed affect antibiotic resistance (40% of all tested compounds; 89/222), albeit not always synergistically (not synergistic for 19% of compounds; 43/222). For some tested antibiotics, such as sulfathiazole and trimethoprim, we were able to relate the changes in resistance caused by QS signal disruption to the modulation of the expression of key genes of the folate biosynthetic pathway. Moreover, using a P. aeruginosa-based Caenorhabditis elegans killing model, we confirmed that enzymatic QQ modulates the effects of antibiotics on P. aeruginosa's pathogenicity in vivo. Altogether, these results show that signal disruption has profound and complex effects on the antibiotic resistance profile of P. aeruginosa. This work suggests that combination therapy including QQ and antibiotics should be discussed not globally but, rather, in case-by-case studies. IMPORTANCE Quorum sensing (QS) is a cell-density-dependent communication system used by a wide range of bacteria to coordinate behaviors. Strategies pertaining to the interference in QS are appealing approaches to control microbial behaviors that depend on QS, including virulence and biofilms. Interference in QS was previously reported to be synergistic with antibiotics, yet no systematic assessment exists. Here, we evaluate the potential of combination treatments using the model opportunistic human pathogen Pseudomonas aeruginosa PA14. In this model, collected data demonstrate that QS largely modulates the antibiotic resistance profile of PA14 (for more than 40% of the tested drugs). However, the outcome of combination treatments is synergistic for only 19% of them. This research demonstrates the complex relationship between QS and antibiotic resistance and suggests that combination therapy including QS inhibitors and antibiotics should be discussed not globally but, rather, in case-by-case studies.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
30
|
Chen W, Zhang P, Guo T, Gu X, Bai B, zhang S, Chang X, Wang Y, Ma S. Design, synthesis and evaluation of oxazolopyridinone derivatives as quorum sensing inhibitors. Bioorg Chem 2022; 130:106266. [DOI: 10.1016/j.bioorg.2022.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
31
|
Attenuation of Pseudomonas aeruginosa Quorum Sensing Virulence of Biofilm and Pyocyanin by mBTL-Loaded Calcium Alginate Nanoparticles. Polymers (Basel) 2022; 14:polym14173655. [PMID: 36080730 PMCID: PMC9459901 DOI: 10.3390/polym14173655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa contributes to many chronic infections and has been found to be resistant to multiple antibiotics. Pseudomonas use a quorum sensing system (QS) to control biofilm establishment and virulence factors, and, thus, quorum sensing inhibitors (QSIs), such as meta-bromo-thiolactone (mBTL), are promising anti-infective agents. Accordingly, this study intended to investigate the antibacterial and anti-virulence activity of mBTL-loaded calcium alginate nanoparticles (CANPs) against Pseudomonas aeruginosa and different QS mutants. The results show that the mBTL-CANPs had higher antibacterial activity, which was made evident by decreases in all tested strains except the ∆lasR/∆rhlR double mutant, with MIC50 (0.5 mg/mL) of mBTL-CANPs compared with free mBTL at MIC50 (˃1 mg/mL). The biofilm formation of P. aeruginosa and some QS-deficient mutants were reduced in response to 0.5-0.125 mg/mL of mBTL-encapsulating CANPs. The pyocyanin production of the tested strains except ∆lasA and ∆rhlR decreased when challenged with 0.5 mg/mL of mBTL-loaded NPs. The subsequent characterization of the cytotoxic effect of these NPs on human lung epithelial cells (A549) and cystic fibrosis fibroblast cells (LL 29) demonstrated that synthesized NPs were cytocompatible at MIC50 in both cell lines and markedly reduced the cytotoxic effect observed with mBTL alone on these cells. The resulting formulation reduced the P. aeruginosa strains' adhesion to A549 comparably with mBTL, suggesting their potential anti-adhesive effect. Given the virulence suppressing action, cytocompatibility, and enhanced anti-biofilm effect of mBTL-CANPs, and the advantage of alginate-based NPs as an antimicrobial delivery system these nanoparticles have great potential in the prophylaxis and treatment of infection caused by Pseudomonas aeruginosa.
Collapse
|
32
|
Taylor IR, Jeffrey PD, Moustafa DA, Goldberg JB, Bassler BL. The PqsE Active Site as a Target for Small Molecule Antimicrobial Agents against Pseudomonas aeruginosa. Biochemistry 2022; 61:1894-1903. [PMID: 35985643 PMCID: PMC9454246 DOI: 10.1021/acs.biochem.2c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The opportunistic pathogen Pseudomonas
aeruginosa causes antibiotic-resistant, nosocomial
infections in immuno-compromised
individuals and is a high priority for antimicrobial development.
Key to pathogenicity in P. aeruginosa are biofilm formation and virulence factor production. Both traits
are controlled by the cell-to-cell communication process called quorum
sensing (QS). QS involves the synthesis, release, and population-wide
detection of signal molecules called autoinducers. We previously reported
that the activity of the RhlR QS transcription factor depends on a
protein–protein interaction with the hydrolase, PqsE, and PqsE
catalytic activity is dispensable for this interaction. Nonetheless,
the PqsE–RhlR interaction could be disrupted by the substitution
of an active site glutamate residue with tryptophan [PqsE(E182W)].
Here, we show that disruption of the PqsE–RhlR interaction
via either the E182W change or alteration of PqsE surface residues
that are essential for the interaction with RhlR attenuates P. aeruginosa infection in a murine host. We use
crystallography to characterize the conformational changes induced
by the PqsE(E182W) substitution to define the mechanism underlying
disruption of the PqsE–RhlR interaction. A loop rearrangement
that repositions the E280 residue in PqsE(E182W) is responsible for
the loss of interaction. We verify the implications garnered from
the PqsE(E182W) structure using mutagenic, biochemical, and additional
structural analyses. We present the next generation of molecules targeting
the PqsE active site, including a structure of the tightest binding
of these compounds, BB584, in complex with PqsE. The findings presented
here provide insights into drug discovery against P.
aeruginosa with PqsE as the target.
Collapse
Affiliation(s)
- Isabelle R Taylor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Dina A Moustafa
- School of Medicine, Children's Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Emory University, Atlanta, Georgia 30322, United States
| | - Joanna B Goldberg
- School of Medicine, Children's Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Emory University, Atlanta, Georgia 30322, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
33
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|
34
|
Choi HY, Le DD, Kim WG. Curvularin Isolated From Phoma macrostoma Is an Antagonist of RhlR Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2022; 13:913882. [PMID: 35903467 PMCID: PMC9315252 DOI: 10.3389/fmicb.2022.913882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Quorum sensing (QS) is an attractive target for the treatment of multidrug-resistant Pseudomonas aeruginosa, against which new antibiotics are urgently needed. Because LasR is at the top of the QS hierarchy controlling Rhl and PQS systems, most QS inhibitors have been targeted to LasR. However, it has recently been reported that in clinical isolates of P. aeruginosa, LasR is frequently mutated and nonfunctional, and RhlR independently acts to produce virulent factors that maintain toxicity. Thus, for effective treatment of chronic cystic fibrosis infections, RhlR antagonists is needed to prevent the LasR-independent Rhl system, but RhlR antagonists have rarely been reported. In this study, we found that curvularin, an aromatic compound with a cyclized alkyl side chain isolated from Phoma macrostoma, at a low micromolar concentration of 1–30 μM potently and selectively inhibited pyocyanin and rhamnolipid production without affecting the cell viability of P. aeruginosa. Only high concentration (more over 100 μM) curvularin negligibly inhibited biofilm formation and elastase production, suggesting that curvularin at low concentrations selectively inhibits RhlR. The QS antagonism by curvularin was investigated in experiments using QS competition and signaling molecules assays with QS gene expression analysis, and the results showed that, indeed, at low concentrations, curvularin selectively antagonized RhlR; in contrast, it negligibly antagonized LasR only when applied at a high concentration. The exclusive RhlR antagonizing activity of curvularin at low concentrations was confirmed using QS mutants; specifically, curvularin at low concentrations inhibited pyocyanin and rhamnolipid production by selectively antagonizing N-butanoyl homoserine lactone (BHL)-activated RhlR. Moreover, by targeting RhlR, curvularin reduced the in vivo virulence of wild-type P. aeruginosa as well as lasR mutants in Caenorhabditis elegans. Overall, low-concentration curvularin is a pure RhlR antagonist in P. aeruginosa, and to the best of our knowledge, this is the first report describing an RhlR antagonist from natural resources. Hence, curvularin has great potential for the development of chronic P. aeruginosa infection therapeutics and for the study of RhlR function in the complex QS system.
Collapse
Affiliation(s)
- Ha-Young Choi
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Duc Dat Le
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won-Gon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
- *Correspondence: Won-Gon Kim,
| |
Collapse
|
35
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
36
|
Patil PD, Zheng H, Burns FN, Ibanez ACS, Jin Y, Luk YY. Chimeric Ligands of Pili and Lectin A Inhibit Tolerance, Persistence, and Virulence Factors of Pseudomonas aeruginosa over a Wide Range of Phenotypes. ACS Infect Dis 2022; 8:1582-1593. [PMID: 35658414 PMCID: PMC9379910 DOI: 10.1021/acsinfecdis.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Bacteria readily
form resilient phenotypes to counter environmental
and antibiotic stresses. Here, we demonstrate a class of small molecules
that inhibit a wide range of Pseudomonas aeruginosa phenotypes and enable antibiotics to kill previously tolerant bacteria,
preventing the transition of tolerant bacteria into a persistent population.
We identified two proteins, type IV pili and lectin LecA, as receptors
for our molecules by methods including a new label-free assay based
on bacterial motility sensing the chemicals in the environment, the
chemical inhibition of bacteriophage adsorption on pili appendages
of bacteria, and fluorescence polarization. Structure–activity
relationship studies reveal a molecule that inhibits only pili appendage
and a class of chimeric ligands that inhibit both LecA and pili. Important
structural elements of the ligand are identified for each protein.
This selective ligand binding identifies the phenotypes each protein
receptor controls. Inhibiting LecA results in reducing biofilm formation,
eliminating small colony variants, and is correlated with killing
previously tolerant bacteria. Inhibiting pili appendages impedes swarming
and twitching motilities and pyocyanin and elastase production. Because
these phenotypes are controlled by a broad range of signaling pathways,
this approach simultaneously controls the multiple signaling mechanisms
preventing bacteria to elude antibiotic treatments.
Collapse
Affiliation(s)
- Pankaj D Patil
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Hewen Zheng
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Felicia N Burns
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Arizza C S Ibanez
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Yuchen Jin
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, 1-014 Center of Science and Technology, Syracuse, New York 13244-4100, United States
| |
Collapse
|
37
|
Biswas L, Götz F. Molecular Mechanisms of Staphylococcus and Pseudomonas Interactions in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 11:824042. [PMID: 35071057 PMCID: PMC8770549 DOI: 10.3389/fcimb.2021.824042] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder that is characterized by recurrent and chronic infections of the lung predominantly by the opportunistic pathogens, Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. While S. aureus is the main colonizing bacteria of the CF lungs during infancy and early childhood, its incidence declines thereafter and infections by P. aeruginosa become more prominent with increasing age. The competitive and cooperative interactions exhibited by these two pathogens influence their survival, antibiotic susceptibility, persistence and, consequently the disease progression. For instance, P. aeruginosa secretes small respiratory inhibitors like hydrogen cyanide, pyocyanin and quinoline N-oxides that block the electron transport pathway and suppress the growth of S. aureus. However, S. aureus survives this respiratory attack by adapting to respiration-defective small colony variant (SCV) phenotype. SCVs cause persistent and recurrent infections and are also resistant to antibiotics, especially aminoglycosides, antifolate antibiotics, and to host antimicrobial peptides such as LL-37, human β-defensin (HBD) 2 and HBD3; and lactoferricin B. The interaction between P. aeruginosa and S. aureus is multifaceted. In mucoid P. aeruginosa strains, siderophores and rhamnolipids are downregulated thus enhancing the survival of S. aureus. Conversely, protein A from S. aureus inhibits P. aeruginosa biofilm formation while protecting both P. aeruginosa and S. aureus from phagocytosis by neutrophils. This review attempts to summarize the current understanding of the molecular mechanisms that drive the competitive and cooperative interactions between S. aureus and P. aeruginosa in the CF lungs that could influence the disease outcome.
Collapse
Affiliation(s)
- Lalitha Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
39
|
Liu J, Hou JS, Chang YQ, Peng LJ, Zhang XY, Miao ZY, Sun PH, Lin J, Chen WM. New Pqs Quorum Sensing System Inhibitor as an Antibacterial Synergist against Multidrug-Resistant Pseudomonas aeruginosa. J Med Chem 2021; 65:688-709. [PMID: 34951310 DOI: 10.1021/acs.jmedchem.1c01781] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of new bacterial biofilm inhibitors as antibacterial synergists is an effective strategy to solve the resistance of Pseudomonas aeruginosa. In this paper, a series of 3-hydroxy-pyridin-4(1H)-ones were synthesized and evaluated, and the hit compound (20p) was identified with the effects of inhibiting the production of pyocyanin (IC50 = 8.6 μM) and biofilm formation (IC50 = 4.5 μM). Mechanistic studies confirmed that 20p inhibits the formation of bacterial biofilm by inhibiting the expression of pqsA, blocking pqs quorum sensing system quinolone biosynthesis. Moreover, we systematically investigated the bactericidal effects of combining currently approved antibiotics for CF including tobramycin, ciprofloxacin, and colistin E with 20p, which showed obvious antibacterial synergy to overcome antibiotics resistance in multidrug-resistant P. aeruginosa biofilms. The result indicates that compound 20p may be used in the future as a potentially novel antibacterial synergist candidate for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jin-Song Hou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Li-Jun Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Yi Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhi-Ying Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ping-Hua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
40
|
Polaske TJ, Gahan CG, Nyffeler KE, Lynn DM, Blackwell HE. Identification of small molecules that strongly inhibit bacterial quorum sensing using a high-throughput lipid vesicle lysis assay. Cell Chem Biol 2021; 29:605-614.e4. [PMID: 34932995 PMCID: PMC9035047 DOI: 10.1016/j.chembiol.2021.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023]
Abstract
Strategies to both monitor and block bacterial quorum sensing (QS), and thus associated infections, are of significant interest. We developed a straightforward assay to monitor biosurfactants and lytic agents produced by bacteria under the control of QS. The method is based on the lysis of synthetic lipid vesicles containing the environmentally sensitive fluorescent dye calcein. This assay allows for the in situ screening of compounds capable of altering biosurfactant production by bacteria, and thereby the identification of molecules that could potentially modulate QS pathways, and avoids the constraints of many of the cell-based assays in use today. Application of this assay in a high-throughput format revealed five molecules capable of blocking vesicle lysis by S. aureus. Two of these compounds were found to almost completely inhibit agr-based QS in S. aureus and represent the most potent small-molecule-derived QS inhibitors reported in this formidable pathogen.
Collapse
Affiliation(s)
- Thomas J Polaske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Curran G Gahan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Kayleigh E Nyffeler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - David M Lynn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA.
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA.
| |
Collapse
|
41
|
Ruiz CH, Osorio-Llanes E, Trespalacios MH, Mendoza-Torres E, Rosales W, Gómez CMM. Quorum Sensing Regulation as a Target for Antimicrobial Therapy. Mini Rev Med Chem 2021; 22:848-864. [PMID: 34856897 DOI: 10.2174/1389557521666211202115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/20/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.
Collapse
Affiliation(s)
- Caterine Henríquez Ruiz
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Estefanie Osorio-Llanes
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Mayra Hernández Trespalacios
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Evelyn Mendoza-Torres
- Faculty of Health Sciences. Grupo de Investigación Avanzada en Biomedicina-Universidad Libre. Barranquilla. Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| |
Collapse
|
42
|
Yang D, Hao S, Zhao L, Shi F, Ye G, Zou Y, Song X, Li L, Yin Z, He X, Feng S, Chen H, Zhang Y, Gao Y, Li Y, Tang H. Paeonol Attenuates Quorum-Sensing Regulated Virulence and Biofilm Formation in Pseudomonas aeruginosa. Front Microbiol 2021; 12:692474. [PMID: 34421847 PMCID: PMC8371487 DOI: 10.3389/fmicb.2021.692474] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
With the prevalence of multidrug-resistant bacteria and clinical -acquired pathogenic infections, the development of quorum-sensing (QS) interfering agents is one of the most potential strategies to combat bacterial infections and antibiotic resistance. Chinese herbal medicines constitute a valuable bank of resources for the identification of QS inhibitors. Accordingly, in this research, some compounds were tested for QS inhibition using indicator strains. Paeonol is a phenolic compound, which can effectively reduce the production of violacein without affecting its growth in Chromobacterium violaceum ATCC 12472, indicating its excellent anti-QS activity. This study assessed the anti-biofilm activity of paeonol against Gram-negative pathogens and investigated the effect of paeonol on QS-regulated virulence factors in Pseudomonas aeruginosa. A Caenorhabditis elegans infection model was used to explore the anti-infection ability of paeonol in vivo. Paeonol exhibited an effective anti-biofilm activity against Gram-negative bacteria. The ability of paeonol to interfere with the AHL-mediated quorum sensing systems of P. aeruginosa was determined, found that it could attenuate biofilm formation, and synthesis of pyocyanin, protease, elastase, motility, and AHL signaling molecule in a concentration- and time-dependent manner. Moreover, paeonol could significantly downregulate the transcription level of the QS-related genes of P. aeruginosa including lasI/R, rhlI/R, pqs/mvfR, as well as mediated its virulence factors, lasA, lasB, rhlA, rhlC, phzA, phzM, phzH, and phzS. In vivo studies revealed that paeonol could reduce the pathogenicity of P. aeruginosa and enhance the survival rate of C. elegans, showing a moderate protective effect on C. elegans. Collectively, these findings suggest that paeonol attenuates bacterial virulence and infection of P. aeruginosa and that further research elucidating the anti-QS mechanism of this compound in vivo is warranted.
Collapse
Affiliation(s)
- Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, Chengdu, China
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Yaan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanze Gao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
43
|
Zhang Q, Li S, Hachicha M, Boukraa M, Soulère L, Efrit ML, Queneau Y. Heterocyclic Chemistry Applied to the Design of N-Acyl Homoserine Lactone Analogues as Bacterial Quorum Sensing Signals Mimics. Molecules 2021; 26:molecules26175135. [PMID: 34500565 PMCID: PMC8433848 DOI: 10.3390/molecules26175135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/02/2022] Open
Abstract
N-acyl homoserine lactones (AHLs) are small signaling molecules used by many Gram-negative bacteria for coordinating their behavior as a function of their population density. This process, based on the biosynthesis and the sensing of such molecular signals, and referred to as Quorum Sensing (QS), regulates various gene expressions, including growth, virulence, biofilms formation, and toxin production. Considering the role of QS in bacterial pathogenicity, its modulation appears as a possible complementary approach in antibacterial strategies. Analogues and mimics of AHLs are therefore biologically relevant targets, including several families in which heterocyclic chemistry provides a strategic contribution in the molecular design and the synthetic approach. AHLs consist of three main sections, the homoserine lactone ring, the central amide group, and the side chain, which can vary in length and level of oxygenation. The purpose of this review is to summarize the contribution of heterocyclic chemistry in the design of AHLs analogues, insisting on the way heterocyclic building blocks can serve as replacements of the lactone moiety, as a bioisostere for the amide group, or as an additional pattern appended to the side chain. A few non-AHL-related heterocyclic compounds with AHL-like QS activity are also mentioned.
Collapse
Affiliation(s)
- Qiang Zhang
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
| | - Sizhe Li
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
| | - Maha Hachicha
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
| | - Mohamed Boukraa
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
| | - Laurent Soulère
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| | - Mohamed L. Efrit
- Laboratoire de Synthèse Organique Sélective et Hétérocyclique, Faculté des Sciences de Tunis, Université de Tunis El Manar, El Manar, Tunis 2092, Tunisia
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| | - Yves Queneau
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Bât. E. Lederer, 1 Rue Victor Grignard, F-69622 Villeurbanne, France; (Q.Z.); (S.L.); (M.H.); (M.B.)
- Correspondence: (L.S.); (M.L.E.); (Y.Q.)
| |
Collapse
|
44
|
Díaz-Nuñez JL, García-Contreras R, Castillo-Juárez I. The New Antibacterial Properties of the Plants: Quo vadis Studies of Anti-virulence Phytochemicals? Front Microbiol 2021; 12:667126. [PMID: 34025622 PMCID: PMC8137972 DOI: 10.3389/fmicb.2021.667126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The recent increase in bacterial resistance to antibiotics has motivated the resurgence of the study of natural antimicrobial products. For centuries, plants have been recognized for their bactericidal properties. However, in the last two decades, it has been reported that several plant derived metabolites at growth subinhibitory concentrations also tend to have anti-virulence properties, since they reduce the expression of factors that cause damage and the establishment of pathogenic bacteria. In this area of study, plants have been positioned as one of the main natural sources of anti-virulence molecules, but only a small portion of the plant species that exist have been investigated. Also, anti-virulence studies have been primarily focused on analyzing the ability of extracts and compounds to inhibit quorum sensing and biofilms formation in vitro. This mini-review discusses the current panorama, the trends in the study of anti-virulence phytochemicals, as well as their potential for the development of antibacterial therapies.
Collapse
Affiliation(s)
- José Luis Díaz-Nuñez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Israel Castillo-Juárez
- Laboratorio de Fitoquímica, Posgrado de Botánica, Colegio de Postgraduados, Texcoco, Mexico
| |
Collapse
|
45
|
Hao S, Yang D, Zhao L, Shi F, Ye G, Fu H, Lin J, Guo H, He R, Li J, Chen H, Khan MF, Li Y, Tang H. EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22094946. [PMID: 34066609 PMCID: PMC8125375 DOI: 10.3390/ijms22094946] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.
Collapse
Affiliation(s)
- Suqi Hao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Dan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China;
| | - Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
- Correspondence: (Y.L.); (H.T.)
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; (S.H.); (D.Y.); (L.Z.); (F.S.); (G.Y.); (H.F.); (J.L.); (H.G.); (R.H.)
- Correspondence: (Y.L.); (H.T.)
| |
Collapse
|
46
|
Design, synthesis, and evaluation of transition-state analogs as inhibitors of the bacterial quorum sensing autoinducer synthase CepI. Bioorg Med Chem Lett 2021; 39:127873. [PMID: 33631369 DOI: 10.1016/j.bmcl.2021.127873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Quorum sensing is a bacterial signaling system that involves the synthesis, secretion and detection of signal molecules called autoinducers. The main autoinducer in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthases and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.
Collapse
|
47
|
PA1426 regulates Pseudomonas aeruginosa quorum sensing and virulence: an in vitro study. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Ziegler EW, Brown AB, Nesnas N, Chouinard CD, Mehta AK, Palmer AG. β-Cyclodextrin Encapsulation of Synthetic AHLs: Drug Delivery Implications and Quorum-Quenching Exploits. Chembiochem 2020; 22:1292-1301. [PMID: 33238068 DOI: 10.1002/cbic.202000773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/23/2020] [Indexed: 12/22/2022]
Abstract
Many bacteria, such as Pseudomonas aeruginosa, regulate phenotypic switching in a population density-dependent manner through a phenomenon known as quorum sensing (QS). For Gram-negative bacteria, QS relies on the synthesis, transmission, and perception of low-molecular-weight signal molecules that are predominantly N-acyl-l-homoserine lactones (AHLs). Efforts to disrupt AHL-mediated QS have largely focused on the development of synthetic AHL analogues (SAHLAs) that are structurally similar to native AHLs. However, like AHLs, these molecules tend to be hydrophobic and are poorly soluble under aqueous conditions. Water-soluble macrocycles, such as cyclodextrins (CDs), that encapsulate hydrophobic guests have long been used by both the agricultural and pharmaceutical industries to overcome the solubility issues associated with hydrophobic compounds of interest. Conveniently, CDs have also demonstrated anti-AHL-mediated QS effects. Here, using fluorescence spectroscopy, NMR spectrometry, and mass spectrometry, we evaluate the affinity of SAHLAs, as well as their hydrolysis products, for β-CD inclusion. We also evaluated the ability of these complexes to inhibit wild-type P. aeruginosa virulence in a Caenorhabditis elegans host infection study, for the first time. Our efforts confirm the potential of β-CDs for the improved delivery of SAHLAs at the host/microbial interface, expanding the utility of this approach as a strategy for probing and controlling QS.
Collapse
Affiliation(s)
- Eric W Ziegler
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Alan B Brown
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Christopher D Chouinard
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| | - Anil K Mehta
- National High Magnetic Field Laboratory, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Andrew G Palmer
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA.,Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150W. University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
49
|
Cajaninstilbene acid analogues as novel quorum sensing and biofilm inhibitors of Pseudomonas aeruginosa. Microb Pathog 2020; 148:104414. [DOI: 10.1016/j.micpath.2020.104414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
|
50
|
Inhibitory effects of novel 1,4-disubstituted 1,2,3-triazole compounds on quorum-sensing of P. aeruginosa PAO1. Eur J Clin Microbiol Infect Dis 2020; 40:373-379. [PMID: 32767176 DOI: 10.1007/s10096-020-03998-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023]
Abstract
Quorum sensing (QS) inhibition is an essential strategy to combat bacterial infection. Previously, we have synthesized a series of thymidine derivatives bearing isoxazole and 1,2,3-triazole rings (TITL). Herein, the inhibitory effects of TITL on QS of Pseudomonas aeruginosa PAO1 were evaluated. In vitro results demonstrated that TITL effectively inhibited biofilm formation and reduced the virulence factors of P. aeruginosa PAO1. In combination with antibiotics, our TITL compounds significantly prolonged the lifespans of Caenorhabditis elegans N2 nematodes that were infected with P. aeruginosa PAO1 in vivo. In conclusion, TITL compounds are promising candidates for the treatment of antibiotic-resistant P. aeruginosa PAO1.
Collapse
|