1
|
Alniss HY, Saber-Ayad MM, Ramadan WS, Manasa Bhamidimarri P, Msallam YA, Al-Jubeh HM, Ravi A, Menon V, Hamoudi R, El-Awady R. Transcriptomic analysis of MCF7 breast cancer cells treated with MGBs reveals a profound inhibition of estrogen receptor genes. Bioorg Chem 2024; 151:107680. [PMID: 39084151 DOI: 10.1016/j.bioorg.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer poses a significant health risk worldwide. However, the effectiveness of current chemotherapy is limited due to increasing drug resistance and side effects, making it crucial to develop new compounds with novel mechanism of action that can surpass these limitations. As a consequence of their reversible and targeted mechanism, DNA minor groove binders (MGBs) are considered as a relatively safer and more effective alternative. In this study, transcriptomic analysis was conducted to reveal the dysregulated genes and signaling pathways in MCF7 cancer cells following treatment with novel MGB ligands to gain insights into the mechanism of action of MGBs at the molecular level. The transcriptomic results were validated using real-time PCR. The findings of this study indicate that the investigated MGBs primarily inhibit the genes associated with the estrogen receptor. Remarkably, ligand 5 showed downregulation of 34 out of the 35 genes regulated by estrogen receptor, highlighting its potential as a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadeel M Al-Jubeh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Center of Excellence for Precision Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah 27272, United Arab Emirates; Division of Surgery and Interventional Science, Faculty of Medicine, University College London, London, United Kingdom
| | - Raafat El-Awady
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Covalent DNA Binding Is Essential for Gram-Negative Antibacterial Activity of Broad Spectrum Pyrrolobenzodiazepines. Antibiotics (Basel) 2022; 11:antibiotics11121770. [PMID: 36551427 PMCID: PMC9774941 DOI: 10.3390/antibiotics11121770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
It is urgent to find new antibiotic classes against multidrug-resistant bacteria as the rate of discovery of new classes of antibiotics has been very slow in the last 50 years. Recently, pyrrolobenzodiazepines (PBDs) with a C8-linked aliphatic-heterocycle have been identified as a new broad-spectrum antibiotic class with activity against Gram-negative bacteria. The active imine moiety of the reported lead pyrrolobenzodiazepine compounds was replaced with amide to obtain the non-DNA binding and noncytotoxic dilactam analogues to understand the structure-activity relationship further and improve the safety potential of this class. The synthesised compounds were tested against panels of multidrug-resistant Gram-positive and Gram-negative bacteria, including WHO priority pathogens. Minimum inhibitory concentrations for the dilactam analogues ranged from 4 to 32 mg/L for MDR Gram-positive bacteria, compared to 0.03 to 2 mg/L for the corresponding imine analogues. At the same time, they were found to be inactive against MDR Gram-negative bacteria, with a MIC > 32 mg/L, compared to a MIC of 0.5 to 32 mg/L for imine analogues. A molecular modelling study suggests that the lack of imine functionality also affects the interaction of PBDs with DNA gyrase. This study suggests that the presence of N10-C11 imine moiety is crucial for the broad-spectrum activity of pyrrolobenzodiazepines.
Collapse
|
5
|
Koenig SG, Angelaud R, Crittenden CM, Kurita K, Russell DJ, Marcoux JF, Matt T, Gosselin F. Development of Dual Practical Manufacturing Routes to Cognate Pyrrolobenzodiazepine-Based Linker-Drugs. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan G. Koenig
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rémy Angelaud
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher M. Crittenden
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kenji Kurita
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David J. Russell
- Department of Small Molecule Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jean-Francois Marcoux
- Department of Manufacturing and Science Technology, F. Hoffmann-La Roche Ltd, Viaduktstrasse 31, 4051 Basel, Switzerland
| | - Thomas Matt
- Chemical R&D Department, Cerbios Pharma SA, Via Figino 6, 6917 Barbengo/Lugano, Switzerland
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Procopiou G, Jackson PJM, di Mascio D, Auer JL, Pepper C, Rahman KM, Fox KR, Thurston DE. DNA sequence-selective G-A cross-linking ADC payloads for use in solid tumour therapies. Commun Biol 2022; 5:741. [PMID: 35906376 PMCID: PMC9338023 DOI: 10.1038/s42003-022-03633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) are growing in importance for the treatment of both solid and haematological malignancies. There is a demand for new payloads with novel mechanisms of action that may offer enhanced therapeutic efficacy, especially in patients who develop resistance. We report here a class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads that simultaneously alkylate guanine (G) and adenine (A) bases in the DNA minor groove with a defined sequence selectivity. The lead payload, FGX8-46 (6), produces sequence-selective G-A cross-links and affords cytotoxicity in the low picomolar region across a panel of 11 human tumour cell lines. When conjugated to the antibody cetuximab at an average Drug-Antibody Ratio (DAR) of 2, an ADC is produced with significant antitumour activity at 1 mg/kg in a target-relevant human tumour xenograft mouse model with an unexpectedly high tolerability (i.e., no weight loss observed at doses as high as 45 mg/kg i.v., single dose). A class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads, used in Antibody-Drug Conjugates, alkylate guanine and adenine bases in the DNA minor groove with a defined sequence selectivity.
Collapse
Affiliation(s)
- George Procopiou
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Paul J M Jackson
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Daniella di Mascio
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Jennifer L Auer
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Khondaker Miraz Rahman
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Keith R Fox
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - David E Thurston
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK. .,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
7
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Baah S, Laws M, Rahman KM. Antibody-Drug Conjugates-A Tutorial Review. Molecules 2021; 26:2943. [PMID: 34063364 PMCID: PMC8156828 DOI: 10.3390/molecules26102943] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a family of targeted therapeutic agents for the treatment of cancer. ADC development is a rapidly expanding field of research, with over 80 ADCs currently in clinical development and eleven ADCs (nine containing small-molecule payloads and two with biological toxins) approved for use by the FDA. Compared to traditional small-molecule approaches, ADCs offer enhanced targeting of cancer cells along with reduced toxic side effects, making them an attractive prospect in the field of oncology. To this end, this tutorial review aims to serve as a reference material for ADCs and give readers a comprehensive understanding of ADCs; it explores and explains each ADC component (monoclonal antibody, linker moiety and cytotoxic payload) individually, highlights several EMA- and FDA-approved ADCs by way of case studies and offers a brief future perspective on the field of ADC research.
Collapse
Affiliation(s)
| | | | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; (S.B.); (M.L.)
| |
Collapse
|
9
|
Picconi P, Hind CK, Nahar KS, Jamshidi S, Di Maggio L, Saeed N, Evans B, Solomons J, Wand ME, Sutton JM, Rahman KM. New Broad-Spectrum Antibiotics Containing a Pyrrolobenzodiazepine Ring with Activity against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2020; 63:6941-6958. [PMID: 32515951 DOI: 10.1021/acs.jmedchem.0c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to find new antibiotic classes with activity against multidrug-resistant (MDR) Gram-negative pathogens as the pipeline of antibiotics is essentially empty. Modified pyrrolobenzodiazepines with a C8-linked aliphatic heterocycle provide a new class of broad-spectrum antibacterial agents with activity against MDR Gram-negative bacteria, including WHO priority pathogens. The structure-activity relationship established that the third ring was particularly important for Gram-negative activity. Minimum inhibitory concentrations for the lead compounds ranged from 0.125 to 2 mg/L for MDR Gram-negative, excluding Pseudomonas aeruginosa, and between 0.03 and 1 mg/L for MDR Gram-positive species. The lead compounds were rapidly bactericidal with >5 log reduction in viable count within 4 h for Acinetobacter baumannii and Klebsiella pneumoniae. The lead compound inhibited DNA gyrase in gel-based assays, with an IC50 of 3.16 ± 1.36 mg/L. This study provides a new chemical scaffold for developing novel broad-spectrum antibiotics which can help replenish the pipeline of antibiotics.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Charlotte K Hind
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Kazi S Nahar
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Lucia Di Maggio
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Naima Saeed
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Bonnie Evans
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Jessica Solomons
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Matthew E Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - J Mark Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | | |
Collapse
|
10
|
Gregson SJ, Tiberghien AC, Masterson LA, Howard PW. Pyrrolobenzodiazepine Dimers as Antibody–Drug Conjugate (ADC) Payloads. CYTOTOXIC PAYLOADS FOR ANTIBODY – DRUG CONJUGATES 2019. [DOI: 10.1039/9781788012898-00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pyrrolobenzodiazepine (PBD) ring system was first discovered in the 1960s and is found in several naturally occurring potent anti-tumour antibiotics. The mode of action of PBDs involves sequence-selective [purine–guanine–purine (PuGPu)] alkylation in the minor groove of DNA through covalent binding from guanine N2 to the PBD C11-position. Dimerization of the PBD ring system gives molecules that can cross-link DNA, which leads to a substantial increase in potency and DNA binding affinity and an extension of sequence-selectivity compared with monomers. PBD dimers feature as the cytotoxic component of numerous ADCs being evaluated in clinical trials. PBD-ADC clinical candidates loncastuximab tesirine, camidanlumab tesirine and rovalpituzumab tesirine employ a PBD N10 linkage while vadastuximab talirine uses a C2-linkage. The PBD dimer scaffold is versatile and offers many opportunities to diversify the ADC platform, with extensive research being performed worldwide to develop the next generation of PBD payload–linker molecules. The search for new PBD payload–linker molecules has mainly focused on changes in payload structure (e.g. PBD C2 modification and macrocyclisation), alternative conjugation strategies (e.g. haloacetamides, ‘click’ approaches and pyridyl disulphides), non-peptide triggers in the linker (e.g. disulphides) and non-cleavable derivatives (i.e. payload release through antibody degradation).
Collapse
|
11
|
Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol 2019; 235:31-64. [PMID: 31215038 DOI: 10.1002/jcp.28967] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023]
Abstract
Cytotoxic small-molecule drugs have a major influence on the fate of antibody-drug conjugates (ADCs). An ideal cytotoxic agent should be highly potent, remain stable while linked to ADCs, kill the targeted tumor cell upon internalization and release from the ADCs, and maintain its activity in multidrug-resistant tumor cells. Lessons learned from successful and failed experiences in ADC development resulted in remarkable progress in the discovery and development of novel highly potent small molecules. A better understanding of such small-molecule drugs is important for development of effective ADCs. The present review discusses requirements making a payload appropriate for antitumor ADCs and focuses on the main characteristics of commonly-used cytotoxic payloads that showed acceptable results in clinical trials. In addition, the present study represents emerging trends and recent advances of payloads used in ADCs currently under clinical trials.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Motahare Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmaeil Kavi
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Fahimeh Hosseini
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
12
|
White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, Strout P, Rosenthal K, Reed M, Muniz-Medina V, Howard P, Dixit R, Wu H, Hinrichs MJ, Gao C, Dimasi N. Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs 2019; 11:500-515. [PMID: 30835621 DOI: 10.1080/19420862.2019.1578611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Collapse
Affiliation(s)
- Jason B White
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Ben T Ruddle
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Haihong Zhong
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | | | - Patrick Strout
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Molly Reed
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | | | - Philip Howard
- b Spirogen Ltd , QMB Innovation Center , London , UK
| | - Rakesh Dixit
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Changshou Gao
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
13
|
Jackson PJM, Kay S, Pysz I, Thurston DE. Use of pyrrolobenzodiazepines and related covalent-binding DNA-interactive molecules as ADC payloads: Is mechanism related to systemic toxicity? DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:71-83. [PMID: 30553523 DOI: 10.1016/j.ddtec.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies (mAbs) or antibody fragments conjugated to biologically active molecules (usually highly cytotoxic small molecules) through chemical linkers. Although no ADCs containing covalent-binding DNA-interactive payloads have yet been approved (although two containing the DNA-cleaving payload calicheamicin have), of those in clinical trials systemic toxicities are beginning to emerge. This article discusses the observed toxicities in relation to the structures and mechanisms of action of payload type.
Collapse
Affiliation(s)
- Paul J M Jackson
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom
| | - Syafiq Kay
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom
| | - Ilona Pysz
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom
| | - David E Thurston
- Femtogenix Ltd., Biopark, Broadwater Road, Welwyn Garden City AL7 3AX, United Kingdom; Institute for Pharmaceutical Science, King's College London, Faculty of Life Sciences and Medicine, Franklin Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
14
|
Affiliation(s)
- Hasan Y. Alniss
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Hartley JA, Flynn MJ, Bingham JP, Corbett S, Reinert H, Tiberghien A, Masterson LA, Antonow D, Adams L, Chowdhury S, Williams DG, Mao S, Harper J, Havenith CEG, Zammarchi F, Chivers S, van Berkel PH, Howard PW. Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine. Sci Rep 2018; 8:10479. [PMID: 29992976 PMCID: PMC6041317 DOI: 10.1038/s41598-018-28533-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 01/12/2023] Open
Abstract
Synthetic pyrrolobenzodiazepine (PBD) dimers, where two PBD monomers are linked through their aromatic A-ring phenolic C8-positions via a flexible propyldioxy tether, are highly efficient DNA minor groove cross-linking agents with potent cytotoxicity. PBD dimer SG3199 is the released warhead component of the antibody-drug conjugate (ADC) payload tesirine (SG3249), currently being evaluated in several ADC clinical trials. SG3199 was potently cytotoxic against a panel of human solid tumour and haematological cancer cell lines with a mean GI50 of 151.5 pM. Cells defective in DNA repair protein ERCC1 or homologous recombination repair showed increased sensitivity to SG3199 and the drug was only moderately susceptible to multidrug resistance mechanisms. SG3199 was highly efficient at producing DNA interstrand cross-links in naked linear plasmid DNA and dose-dependent cross-linking was observed in cells. Cross-links formed rapidly in cells and persisted over 36 hours. Following intravenous (iv) administration to rats SG3199 showed a very rapid clearance with a half life as short as 8 minutes. These combined properties of cytotoxic potency, rapid formation and persistence of DNA interstrand cross-links and very short half-life contribute to the emerging success of SG3199 as a warhead in clinical stage ADCs.
Collapse
Affiliation(s)
- John A Hartley
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK. .,Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK.
| | - Michael J Flynn
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - John P Bingham
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Simon Corbett
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK.,Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Halla Reinert
- Cancer Research UK Drug DNA Interactions Research Group, UCL Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arnaud Tiberghien
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Luke A Masterson
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Dyeison Antonow
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Lauren Adams
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Sajidah Chowdhury
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - David G Williams
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Shenlan Mao
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jay Harper
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Carin E G Havenith
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Simon Chivers
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Patrick H van Berkel
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| | - Philip W Howard
- Spirogen Ltd, QMB Innovation Centre, 42 New Road, London, E1 2AX, UK
| |
Collapse
|
16
|
Haque T, Rahman KM, Thurston DE, Hadgraft J, Lane ME. Topical delivery of anthramycin II. Influence of binary and ternary solvent systems. Eur J Pharm Sci 2018; 121:59-64. [PMID: 29746912 DOI: 10.1016/j.ejps.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
Anthramycin (ANT) is a member of the pyrolobenzodiazepine family and is a potent cytotoxic agent. Previously, we reported the topical delivery of ANT from a range of solvents that may also act as skin penetration enhancers (SPEs). The skin penetration and uptake was monitored for simple solutions of ANT in propylene glycol (PG), dipropylene glycol (DiPG), Transcutol P (TC), isopropyl myristate (IPM), propylene glycol monocaprylate (PGMC) and propylene glycol monolaurate (PGML). The amounts of PG, DiPG and TC that were taken up by, and that penetrated the skin were also measured, with a clear dependence of ANT penetration on the rate and extent of PG and TC permeation. The present work investigates ANT skin delivery from a range of binary and ternary systems to determine any potential improvement in skin uptake compared with earlier results for the neat solvents. Following miscibility and stability studies a total of eight formulations were taken forward for evaluation in human skin in vitro. Binary systems of PG and water did not result in any skin permeation of ANT. Combining PG with either PGMC or PGML did promote skin penetration of ANT but no significant improvement was evident compared with PG alone. More complex ternary systems based on PG, DiPG, PGMC, PGML and water also did not show significant improvements on ANT permeation, compared with single solvents. Total skin penetration and retention of ANT ranged from 1 to 6% across all formulations studied. Where ANT was delivered to the receptor phase there were also high amounts of PG permeation with >50% and ~35% PG present for the binary systems and ternary vehicles, respectively. These findings along with our previous paper confirm PG as a suitable solvent / SPE for ANT either alone or in combination with PGML or PGMC. The results also underline the necessity for empirical testing to determine whether or not a vehicle is acting as a SPE for a specific active in a topical formulation.
Collapse
Affiliation(s)
- Tasnuva Haque
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - David E Thurston
- School of Cancer and Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Jonathan Hadgraft
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Majella E Lane
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
17
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
18
|
Donnell AF, Zhang Y, Stang EM, Wei DD, Tebben AJ, Perez HL, Schroeder GM, Pan C, Rao C, Borzilleri RM, Vite GD, Gangwar S. Macrocyclic pyrrolobenzodiazepine dimers as antibody-drug conjugate payloads. Bioorg Med Chem Lett 2017; 27:5267-5271. [DOI: 10.1016/j.bmcl.2017.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 01/21/2023]
|
19
|
Basher MA, Rahman KM, Jackson PJM, Thurston DE, Fox KR. Sequence-selective binding of C8-conjugated pyrrolobenzodiazepines (PBDs) to DNA. Biophys Chem 2017; 230:53-61. [PMID: 28941814 DOI: 10.1016/j.bpc.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 11/17/2022]
Abstract
DNA footprinting and melting experiments have been used to examine the sequence-specific binding of C8-conjugates of pyrrolobenzodiazepines (PBDs) and benzofused rings including benzothiophene and benzofuran, which are attached using pyrrole- or imidazole-containing linkers. The conjugates modulate the covalent attachment points of the PBDs, so that they bind best to guanines flanked by A/T-rich sequences on either the 5'- or 3'-side. The linker affects the binding, and pyrrole produces larger changes than imidazole. Melting studies with 14-mer oligonucleotide duplexes confirm covalent attachment of the conjugates, which show a different selectivity to anthramycin and reveal that more than one ligand molecule can bind to each duplex.
Collapse
Affiliation(s)
- Mohammad A Basher
- Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Paul J M Jackson
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - David E Thurston
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
| | - Keith R Fox
- Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
20
|
Hinrichs MJM, Ryan PM, Zheng B, Afif-Rider S, Yu XQ, Gunsior M, Zhong H, Harper J, Bezabeh B, Vashisht K, Rebelatto M, Reed M, Ryan PC, Breen S, Patel N, Chen C, Masterson L, Tiberghien A, Howard PW, Dimasi N, Dixit R. Fractionated Dosing Improves Preclinical Therapeutic Index of Pyrrolobenzodiazepine-Containing Antibody Drug Conjugates. Clin Cancer Res 2017. [PMID: 28630216 DOI: 10.1158/1078-0432.ccr-17-0219] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: To use preclinical models to identify a dosing schedule that improves tolerability of highly potent pyrrolobenzodiazepine dimers (PBDs) antibody drug conjugates (ADCs) without compromising antitumor activity.Experimental Design: A series of dose-fractionation studies were conducted to investigate the pharmacokinetic drivers of safety and efficacy of PBD ADCs in animal models. The exposure-activity relationship was investigated in mouse xenograft models of human prostate cancer, breast cancer, and gastric cancer by comparing antitumor activity after single and fractionated dosing with tumor-targeting ADCs conjugated to SG3249, a potent PBD dimer. The exposure-tolerability relationship was similarly investigated in rat and monkey toxicology studies by comparing tolerability, as assessed by survival, body weight, and organ-specific toxicities, after single and fractionated dosing with ADCs conjugated to SG3249 (rats) or SG3400, a structurally related PBD (monkeys).Results: Observations of similar antitumor activity in mice treated with single or fractionated dosing suggests that antitumor activity of PBD ADCs is more closely related to total exposure (AUC) than peak drug concentrations (Cmax). In contrast, improved survival and reduced toxicity in rats and monkeys treated with a fractionated dosing schedule suggests that tolerability of PBD ADCs is more closely associated with Cmax than AUC.Conclusions: We provide the first evidence that fractionated dosing can improve preclinical tolerability of at least some PBD ADCs without compromising efficacy. These findings suggest that preclinical exploration of dosing schedule could be an important clinical strategy to improve the therapeutic window of highly potent ADCs and should be investigated further. Clin Cancer Res; 23(19); 5858-68. ©2017 AACR.
Collapse
Affiliation(s)
| | - Pauline M Ryan
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| | - Bo Zheng
- Clinical Pharmacology and DMPK, MedImmune, Gaithersburg, Maryland
| | | | - Xiang Qing Yu
- Clinical Pharmacology and DMPK, MedImmune, Gaithersburg, Maryland
| | - Michele Gunsior
- Clinical Pharmacology and DMPK, MedImmune, Gaithersburg, Maryland
| | - Haihong Zhong
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Jay Harper
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland
| | - Kapil Vashisht
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| | | | - Molly Reed
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| | - Patricia C Ryan
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| | - Shannon Breen
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Neki Patel
- Spirogen Ltd., QMB Innovation Centre, London, United Kingdom
| | - Cui Chen
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Luke Masterson
- Spirogen Ltd., QMB Innovation Centre, London, United Kingdom
| | | | | | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland
| | - Rakesh Dixit
- Biologics Safety Assessment, MedImmune, Gaithersburg, Maryland
| |
Collapse
|
21
|
Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From Anthramycin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angew Chem Int Ed Engl 2017; 56:462-488. [PMID: 27862776 PMCID: PMC5215561 DOI: 10.1002/anie.201510610] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Indexed: 12/15/2022]
Abstract
The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of sequence-selective DNA minor-groove binding agents that form a covalent aminal bond between their C11-position and the C2-NH2 groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG-136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor-targeting antibodies to create antibody-drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre-clinical development. This Review maps the development from anthramycin to the first PBD dimers, and then to PBD-containing ADCs, and explores both structure-activity relationships (SARs) and the biology of PBDs, and the strategies for their use as payloads for ADCs.
Collapse
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Paul J. M. Jackson
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - Khondaker M. Rahman
- Institute of Pharmaceutical ScienceKing's College LondonBritannia House, 7 Trinity Street, London SE1 1DB, and Femtogenix Ltd, Britannia House, 7 Trinity StreetLondonSE1 1DBUK
| | - David E. Thurston
- Professor of Drug Discovery, King's College London, Faculty of Life Sciences & MedicineInstitute of Pharmaceutical ScienceBritannia House, 7 Trinity StreetLondonSE1 1DBUK
- Femtogenix LtdBritannia House, 7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
22
|
Jackson PJ, Rahman KM, Thurston DE. The use of molecular dynamics simulations to evaluate the DNA sequence-selectivity of G–A cross-linking PBD–duocarmycin dimers. Bioorg Med Chem Lett 2017; 27:102-108. [DOI: 10.1016/j.bmcl.2016.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
23
|
Mantaj J, Jackson PJM, Rahman KM, Thurston DE. Entwicklung Pyrrolobenzodiazepin(PBD)-haltiger Antikörper-Wirkstoff-Konjugate (ADCs) ausgehend von Anthramycin. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - Paul J. M. Jackson
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science; King's College London
- Femtogenix Ltd; London Großbritannien
| | - David E. Thurston
- Institute of Pharmaceutical Science; Faculty of Life Sciences & Medicine; King's College London; Britannia House, 7 Trinity Street London SE1 1DB Großbritannien
- Femtogenix Ltd; Britannia House; London 7 Trinity Street SE1 1DB Großbritannien
| |
Collapse
|
24
|
Zhang D, Pillow TH, Ma Y, Cruz-Chuh JD, Kozak KR, Sadowsky JD, Lewis Phillips GD, Guo J, Darwish M, Fan P, Chen J, He C, Wang T, Yao H, Xu Z, Chen J, Wai J, Pei Z, Hop CECA, Khojasteh SC, Dragovich PS. Linker Immolation Determines Cell Killing Activity of Disulfide-Linked Pyrrolobenzodiazepine Antibody-Drug Conjugates. ACS Med Chem Lett 2016; 7:988-993. [PMID: 27882196 DOI: 10.1021/acsmedchemlett.6b00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022] Open
Abstract
Disulfide bonds could be valuable linkers for a variety of therapeutic applications requiring tunable cleavage between two parts of a molecule (e.g., antibody-drug conjugates). The in vitro linker immolation of β-mercaptoethyl-carbamate disulfides and DNA alkylation properties of associated payloads were investigated to understand the determinant of cell killing potency of anti-CD22 linked pyrrolobenzodiazepine (PBD-dimer) conjugates. Efficient immolation and release of a PBD-dimer with strong DNA alkylation properties were observed following disulfide cleavage of methyl- and cyclobutyl-substituted disulfide linkers. However, the analogous cyclopropyl-containing linker did not immolate, and the associated thiol-containing product was a poor DNA alkylator. As predicted from these in vitro assessments, the related anti-CD22 ADCs showed different target-dependent cell killing activities in WSU-DLCL2 and BJAB cell lines. These results demonstrate how the in vitro immolation models can be used to help design efficacious ADCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingtian Chen
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Changrong He
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Tao Wang
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hui Yao
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zijin Xu
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jinhua Chen
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - John Wai
- Wuxi Apptec, 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | | | | | | |
Collapse
|
25
|
Zhang D, Yu SF, Ma Y, Xu K, Dragovich PS, Pillow TH, Liu L, Del Rosario G, He J, Pei Z, Sadowsky JD, Erickson HK, Hop CECA, Khojasteh SC. Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates. Drug Metab Dispos 2016; 44:1517-23. [PMID: 27417182 PMCID: PMC4998580 DOI: 10.1124/dmd.116.070631] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022] Open
Abstract
Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.
Collapse
Affiliation(s)
- Donglu Zhang
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Shang-Fan Yu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Yong Ma
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Keyang Xu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Peter S Dragovich
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Thomas H Pillow
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Luna Liu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Geoffrey Del Rosario
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Jintang He
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Zhonghua Pei
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Jack D Sadowsky
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Hans K Erickson
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Cornelis E C A Hop
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - S Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| |
Collapse
|
26
|
Mantaj J, Jackson PJM, Karu K, Rahman KM, Thurston DE. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments. PLoS One 2016; 11:e0152303. [PMID: 27055050 PMCID: PMC4824457 DOI: 10.1371/journal.pone.0152303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/11/2016] [Indexed: 01/02/2023] Open
Abstract
Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks.
Collapse
Affiliation(s)
- Julia Mantaj
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Paul J. M. Jackson
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, Christopher Ingold Building, Chemistry Department, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
- * E-mail: (DET); (KMR)
| | - David E. Thurston
- Institute of Pharmaceutical Science, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
- Femtogenix Limited, Britannia House, 7 Trinity Street, London, SE1 1DB, United Kingdom
- * E-mail: (DET); (KMR)
| |
Collapse
|
27
|
Mellinas-Gomez M, Spanswick VJ, Paredes-Moscosso SR, Robson M, Pedley RB, Thurston DE, Baines SJ, Stell A, Hartley JA. Activity of the DNA minor groove cross-linking agent SG2000 (SJG-136) against canine tumours. BMC Vet Res 2015; 11:215. [PMID: 26282406 PMCID: PMC4539724 DOI: 10.1186/s12917-015-0534-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of death in older dogs and its prevalence is increasing. There is clearly a need to develop more effective anti-cancer drugs in dogs. SG2000 (SJG-136) is a sequence selective DNA minor groove cross-linking agent. Based on its in vitro potency, the spectrum of in vivo and clinical activity against human tumours, and its tolerability in human patients, SG2000 has potential as a novel therapeutic against spontaneously occurring canine malignancies. RESULTS In vitro cytotoxicity was assessed using SRB and MTT assays, and in vivo activity was assessed using canine tumour xenografts. DNA interstrand cross-linking (ICL) was determined using a modification of the single cell gel electrophoresis (comet) assay. Effects on cell cycle distribution were assessed by flow cytometry and measurement of γ-H2AX by immunofluorescence and immunohistochemistry. SG2000 had a multi-log differential cytotoxic profile against a panel of 12 canine tumour cell lines representing a range of common tumour types in dogs. In the CMeC-1 melanoma cell line, DNA ICLs increased linearly with dose following a 1 h treatment. Peak ICL was achieved within 1 h and no removal was observed over 48 h. A relationship between DNA ICL formation and cytotoxicity was observed across cell lines. The formation of γ-H2AX foci was slow, becoming evident after 4 h and reaching a peak at 24 h. SG2000 exhibited significant anti-tumour activity against two canine melanoma tumour models in vivo. Anti-tumour activity was observed at 0.15 and 0.3 mg/kg given i.v. either once, or weekly x 3. Dose-dependent DNA ICL was observed in tumours (and to a lower level in peripheral blood mononuclear cells) at 2 h and persisted at 24 h. ICL increased following the second and third doses in a repeated dose schedule. At 24 h, dose dependent γ-H2AX foci were more numerous than at 2 h, and greater in tumours than in peripheral blood mononuclear cells. SG2000-induced H2AX phosphorylation measured by immunohistochemistry showed good correspondence, but less sensitivity, than measurement of foci. CONCLUSIONS SG2000 displayed potent activity in vitro against canine cancer cell lines as a result of the formation and persistence of DNA ICLs. SG2000 also had significant in vivo antitumour activity against canine melanoma xenografts, and the comet and γ-H2AX foci methods were relevant pharmacodynamic assays. The clinical testing of SG2000 against spontaneous canine cancer is warranted.
Collapse
Affiliation(s)
- Maria Mellinas-Gomez
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Victoria J Spanswick
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Solange R Paredes-Moscosso
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Matthew Robson
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - R Barbara Pedley
- UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - David E Thurston
- The School of Pharmacy, University College London, Brunswick Square, London, WC1E 6BT, UK.
- Present address: Institute of Pharmaceutical Science, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| | - Stephen J Baines
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
- Present address: Willows Referral Service, Highlands Road, Shirley, Solihull, West Midlands, B90 4NH, UK.
| | - Anneliese Stell
- Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - John A Hartley
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
28
|
Kolakowski RV, Young TD, Howard PW, Jeffrey SC, Senter PD. Synthesis of a C2-aryl-pyrrolo[2,1-c][1,4]benzodiazepine monomer enabling the convergent construction of symmetrical and non-symmetrical dimeric analogs. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 2015; 35:e00225. [PMID: 26182432 PMCID: PMC4613712 DOI: 10.1042/bsr20150089] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Over the past couple of decades, antibody-drug conjugates (ADCs) have revolutionized the field of cancer chemotherapy. Unlike conventional treatments that damage healthy tissues upon dose escalation, ADCs utilize monoclonal antibodies (mAbs) to specifically bind tumour-associated target antigens and deliver a highly potent cytotoxic agent. The synergistic combination of mAbs conjugated to small-molecule chemotherapeutics, via a stable linker, has given rise to an extremely efficacious class of anti-cancer drugs with an already large and rapidly growing clinical pipeline. The primary objective of this paper is to review current knowledge and latest developments in the field of ADCs. Upon intravenous administration, ADCs bind to their target antigens and are internalized through receptor-mediated endocytosis. This facilitates the subsequent release of the cytotoxin, which eventually leads to apoptotic cell death of the cancer cell. The three components of ADCs (mAb, linker and cytotoxin) affect the efficacy and toxicity of the conjugate. Optimizing each one, while enhancing the functionality of the ADC as a whole, has been one of the major considerations of ADC design and development. In addition to these, the choice of clinically relevant targets and the position and number of linkages have also been the key determinants of ADC efficacy. The only marketed ADCs, brentuximab vedotin and trastuzumab emtansine (T-DM1), have demonstrated their use against both haematological and solid malignancies respectively. The success of future ADCs relies on improving target selection, increasing cytotoxin potency, developing innovative linkers and overcoming drug resistance. As more research is conducted to tackle these issues, ADCs are likely to become part of the future of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Christina Peters
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K
| | - Stuart Brown
- School of Life Sciences, Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.
| |
Collapse
|
30
|
Thurston DE, Vassoler H, Jackson PJM, James CH, Rahman KM. Effect of hairpin loop structure on reactivity, sequence preference and adduct orientation of a DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepine (PBD) antitumour agent. Org Biomol Chem 2015; 13:4031-40. [DOI: 10.1039/c4ob02405b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pyrrolobenzodiazepine (PBD) monomer GWL-78 reacts faster with DNA hairpins containing a hexaethylene glycol (HEG) loop compared to hairpins containing a TTT loop due to the greater structural flexibility of the HEG.
Collapse
Affiliation(s)
| | - Higia Vassoler
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | | - Colin H. James
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | |
Collapse
|
31
|
Hemming K, Chambers CS, Hamasharif MS, João H, Khan MN, Patel N, Airley R, Day S. Azide based routes to tetrazolo and oxadiazolo derivatives of pyrrolobenzodiazepines and pyrrolobenzothiadiazepines. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Rahman KM, Corcoran DB, Bui TTT, Jackson PJM, Thurston DE. Pyrrolobenzodiazepines (PBDs) do not bind to DNA G-quadruplexes. PLoS One 2014; 9:e105021. [PMID: 25133504 PMCID: PMC4136862 DOI: 10.1371/journal.pone.0105021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs) are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920) reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS), Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers) were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Khondaker M. Rahman
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| | - David B. Corcoran
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Tam T. T. Bui
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paul J. M. Jackson
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - David E. Thurston
- Department of Pharmacy, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
- * E-mail: (KMR); (DET)
| |
Collapse
|
33
|
Abstract
Antibody-drug conjugates (ADCs) represent a promising therapeutic modality for the clinical management of cancer. The recent approvals of brentuximab vedotin and ado-trastuzumab emtansine plus emerging data for many molecules in clinical trials highlight the potential for ADCs to offer new therapeutic options for patients. Currently, more than 30 ADCs are being evaluated in early- or late-stage clinical trials. Accordingly, much has been done to refine and transform the early-generation ADCs to the highly effective products that we now have in clinical development. These changes include a better understanding of optimal target selection, advances in antibody engineering, improvements in linker/payload conjugation strategies, and the generation of highly potent ADC payloads. In this review, we detail the current status of ADCs in both preclinical and clinical development, highlight technological advancements in ADC development, and speculate towards the future of this targeted therapeutic platform.
Collapse
Affiliation(s)
- Fiona Mack
- Oncology Research Unit, World Wide Research and Development, Pfizer Inc, Pearl River, NY
| | - Michael Ritchie
- Oncology Research Unit, World Wide Research and Development, Pfizer Inc, Pearl River, NY
| | - Puja Sapra
- Oncology Research Unit, World Wide Research and Development, Pfizer Inc, Pearl River, NY.
| |
Collapse
|
34
|
Pal R, Sarkar S, Chatterjee N, Sen AK. A green-chemistry approach for the efficient synthesis of triazolo benzoxazepines or triazolo benzodiazepines in aqueous micellar system. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Butler MS, Robertson AAB, Cooper MA. Natural product and natural product derived drugs in clinical trials. Nat Prod Rep 2014; 31:1612-61. [DOI: 10.1039/c4np00064a] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 25 Natural Product (NP)-derived drugs launched since 2008 and the 100 NP-derived compounds and 33 Antibody Drug Conjugates (ADCs) in clinical trials or in registration at the end of 2013 are reviewed.
Collapse
Affiliation(s)
- Mark S. Butler
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Avril A. B. Robertson
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| | - Matthew A. Cooper
- Division of Chemistry and Structural Biology
- Institute for Molecular Bioscience
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
36
|
Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 2013; 24:1256-63. [PMID: 23808985 DOI: 10.1021/bc400217g] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly cytotoxic DNA cross-linking pyrrolobenzodiazepine (PBD) dimer with a valine-alanine dipeptide linker was conjugated to the anti-CD70 h1F6 mAb either through endogenous interchain cysteines or, site-specifically, through engineered cysteines at position 239 of the heavy chains. The h1F6239C-PBD conjugation strategy proved to be superior to interchain cysteine conjugation, affording an antibody-drug conjugate (ADC) with high uniformity in drug-loading and low levels of aggregation. In vitro cytotoxicity experiments demonstrated that the h1F6239C-PBD was potent and immunologically specific on CD70-positive renal cell carcinoma (RCC) and non-Hodgkin lymphoma (NHL) cell lines. The conjugate was resistant to drug loss in plasma and in circulation, and had a pharmacokinetic profile closely matching that of the parental h1F6239C antibody capped with N-ethylmaleimide (NEM). Evaluation in CD70-positive RCC and NHL mouse xenograft models showed pronounced antitumor activities at single or weekly doses as low as 0.1 mg/kg of ADC. The ADC was tolerated at 2.5 mg/kg. These results demonstrate that PBDs can be effectively used for antibody-targeted therapy.
Collapse
Affiliation(s)
- Scott C Jeffrey
- Department of Research & Translational Medicine, Seattle Genetics, Inc., Bothell, WA 98021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rahman KM, Jackson PJM, James CH, Basu BP, Hartley JA, de la Fuente M, Schatzlein A, Robson M, Pedley RB, Pepper C, Fox KR, Howard PW, Thurston DE. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J Med Chem 2013; 56:2911-35. [PMID: 23514599 DOI: 10.1021/jm301882a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Department of Pharmacy, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barrett MP, Gemmell CG, Suckling CJ. Minor groove binders as anti-infective agents. Pharmacol Ther 2013; 139:12-23. [PMID: 23507040 DOI: 10.1016/j.pharmthera.2013.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/29/2022]
Abstract
Minor groove binders are small molecules that form strong complexes with the minor groove of DNA. There are several structural types of which distamycin and netropsin analogues, oligoamides built from heterocyclic and aromatic amino acids, and bis-amidines separated by aromatic and heterocyclic rings are of particular pharmaceutical interest. These molecules have helical topology that approximately matches the curvature of DNA in the minor groove. Depending upon the precise structure of the minor groove binder, selectivity can be obtained with respect to the DNA base sequence to which the compound binds. Minor groove binders have found substantial applications in anti-cancer therapy but their significance in anti-infective therapy has also been significant and is growing. For example, compounds of the bis-amidine class have been notable contributors to antiparasitic therapy for many years with examples such as berenil and pentamidine being well-known. A recent growth area has been inreased sophistication in the oligoamide class. High sequence selectivity is now possible and compounds with distinct antibacterial, antifungal, antiviral, and antiparasitic activity have all been identified. Importantly, the structures of the most active compounds attacking the various infective organisms differ significantly but not necessarily predictively. This poses interesting questions of mechanism of action with many different targets involved in DNA processing being candidates. Access of compounds to specific cell types also plays a role and in some cases, can be decisive. Prospects for a range of selective therapeutic agents from this class of compounds are higher now than for some considerable time.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| | | | | |
Collapse
|
39
|
Wu J, Clingen PH, Spanswick VJ, Mellinas-Gomez M, Meyer T, Puzanov I, Jodrell D, Hochhauser D, Hartley JA. γ-H2AX foci formation as a pharmacodynamic marker of DNA damage produced by DNA cross-linking agents: results from 2 phase I clinical trials of SJG-136 (SG2000). Clin Cancer Res 2013; 19:721-30. [PMID: 23251007 PMCID: PMC6485439 DOI: 10.1158/1078-0432.ccr-12-2529] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate γ-H2AX foci as a pharmacodynamic marker for DNA damage induced by DNA interstrand cross-linking drugs. EXPERIMENTAL DESIGN γ-H2AX foci formation was validated preclinically in comparison with the Comet assay, and evaluated pharmacodynamically in two phase I studies of different dosing schedules of the novel cross-linking agent SJG-136 (SG2000). RESULTS The measurement of γ-H2AX foci in human fibroblasts and lymphocytes in vitro was more than 10-fold more sensitive than Comet assay measurement of cross-linking, with peak γ-H2AX response 24 hours after the peak of cross-linking. In lymphocytes from a phase I study (every three week schedule), γ-H2AX foci were detectable 1 hour following the end of administration, and in all patients, maximum response was observed at 24 hours. Significant levels of foci were still evident at days 8 and 15 consistent with the known persistence of the DNA damage produced by this agent. In two tumor biopsy samples, foci were detected 4 hours postinfusion with levels higher than in lymphocytes. Extensive foci formation was also observed before the third dose in cycle 1 in lymphocytes from a second phase I study (daily × 3 schedule). These foci also persisted with a significant level evident before the second cycle (day 21). An increased γ-H2AX response was observed during the second cycle consistent with a cumulative pharmacodynamic effect. No clear relationship between foci formation and administered drug dose was observed. CONCLUSION This is the first use of γ-H2AX as a pharmacodynamic response to a DNA cross-linking agent in a clinical trial setting.
Collapse
Affiliation(s)
- Jenny Wu
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - Peter H Clingen
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - Victoria J Spanswick
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - Maria Mellinas-Gomez
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - Tim Meyer
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - Igor Puzanov
- Vanderbilt-Ingram Cancer Centre, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Duncan Jodrell
- Department of Oncology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Daniel Hochhauser
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| | - John A Hartley
- CR-UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
40
|
From multiply active natural product to candidate drug? Antibacterial (and other) minor groove binders for DNA. Future Med Chem 2012; 4:971-89. [DOI: 10.4155/fmc.12.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural products that bind to DNA in the minor groove are valuable templates for drug design. Examples include distamycin, netropsin, duocarmycin and anthramycin. Anticancer and anti-infective drugs feature strongly amongst their derivatives. The structures and activities of chemotypes with various therapeutic actions are discussed in the context of the broader field of therapeutically active minor groove binders. The evolution of a series of exceptionally potent and nontoxic antibacterial compounds is discussed using the general design principle of introducing additional hydrophobicity into the distamycin template to increase the strength of binding to DNA. As well as potent antibacterial compounds, antifungal and antiparasitic compounds with exceptional cellular activity against trypanosomes have been identified. Possible mechanisms of action including gene regulation and topoisomerase inhibition are discussed with the need in mind to understand selective toxicity in the series to support future drug discovery.
Collapse
|
41
|
Rahman KM, Rosado H, Moreira JB, Feuerbaum EA, Fox KR, Stecher E, Howard PW, Gregson SJ, James CH, de la Fuente M, Waldron DE, Thurston DE, Taylor PW. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates. J Antimicrob Chemother 2012; 67:1683-96. [PMID: 22547662 PMCID: PMC3370821 DOI: 10.1093/jac/dks127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives Pyrrolobenzodiazepine (PBD) dimers, tethered through inert propyldioxy or pentyldioxy linkers, possess potent bactericidal activity against a range of Gram-positive bacteria by virtue of their capacity to cross-link duplex DNA in sequence-selective fashion. Here we attempt to improve the antibacterial activity and cytotoxicity profile of PBD-containing conjugates by extension of dimer linkers and replacement of one PBD unit with phenyl-substituted or benzo-fused heterocycles that facilitate non-covalent interactions with duplex DNA. Methods DNase I footprinting was used to identify high-affinity DNA binding sites. A staphylococcal gene microarray was used to assess epidemic methicillin-resistant Staphylococcus aureus 16 phenotypes induced by PBD conjugates. Molecular dynamics simulations were employed to investigate the accommodation of compounds within the DNA helix. Results Increasing the length of the linker in PBD dimers led to a progressive reduction in antibacterial activity, but not in their cytotoxic capacity. Complex patterns of DNA binding were noted for extended PBD dimers. Modelling of DNA strand cross-linking by PBD dimers indicated distortion of the helix. A majority (26 of 43) of PBD-biaryl conjugates possessed potent antibacterial activity with little or no helical distortion and a more favourable cytotoxicity profile. Bactericidal activity of PBD-biaryl conjugates was determined by inability to excise covalently bound drug molecules from bacterial duplex DNA. Conclusions PBD-biaryl conjugates have a superior antibacterial profile compared with PBD dimers such as ELB-21. We have identified six PBD-biaryl conjugates as potential drug development candidates.
Collapse
|
42
|
Abstract
Pyrrolobenzodiazepines (PBDs) are sequence selective DNA alkylating agents with remarkable antineoplastic activity. They are either naturally produced by actinomycetes or synthetically produced. The remarkable broad spectrum of activities of the naturally produced PBDs encouraged the synthesis of several PBDs, including dimeric and hybrid PBDs yielding to an improvement in the DNA-binding sequence specificity and in the potency of this class of compounds. However, limitation in the chemical synthesis prevented the testing of one of the most potent PBDs, sibiromycin, a naturally produced glycosylated PBDs. Only recently, the biosynthetic gene clusters for PBDs have been identified opening the doors to the production of glycosylated PBDs by mutasynthesis and biosynthetic engineering. This review describes the recent studies on the biosynthesis of naturally produced pyrrolobenzodiazepines. In addition, it provides an overview on the isolation and characterization of naturally produced PBDs, chemical synthesis of PBDs, mechanism of DNA alkylation, and DNA-binding affinity and cytotoxic properties of both naturally produced and synthetic pyrrolobenzodiazepines.
Collapse
Affiliation(s)
- Barbara Gerratana
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
43
|
Seifert J, Pezeshki S, Kamal A, Weisz K. Inter- and intrastrand DNA crosslinks by 2-fluoro-substituted pyrrolobenzodiazepine dimers: stability, stereochemistry and drug orientation. Org Biomol Chem 2012; 10:6850-60. [DOI: 10.1039/c2ob25654a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Sengerová B, Wang AT, McHugh PJ. Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle 2011; 10:3999-4008. [PMID: 22101340 DOI: 10.4161/cc.10.23.18385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA interstrand cross-links (ICLs) pose a significant threat to genomic and cellular integrity by blocking essential cellular processes, including replication and transcription. In mammalian cells, much ICL repair occurs in association with DNA replication during S phase, following the stalling of a replication fork at the block caused by an ICL lesion. Here, we review recent work showing that the XPF-ERCC1 endonuclease and the hSNM1A exonuclease act in the same pathway, together with SLX4, to initiate ICL repair, with the MUS81-EME1 fork incision activity becoming important in the absence of the XPF-SNM1A-SLX4-dependent pathway. Another nuclease, the Fanconi anemia-associated nuclease (FAN1), has recently been implicated in the repair of ICLs, and we discuss the possible ways in which the activities of different nucleases at the ICL-stalled replication fork may be coordinated. In relation to this, we briefly speculate on the possible role of SLX4, which contains XPF and MUS81- interacting domains, in the coordination of ICL repair nucleases.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine,University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
45
|
Rahman KM, James CH, Bui TTT, Drake AF, Thurston DE. Observation of a Single-Stranded DNA/Pyrrolobenzodiazepine Adduct. J Am Chem Soc 2011; 133:19376-85. [DOI: 10.1021/ja205395r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Khondaker M. Rahman
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Colin H. James
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
| | - Tam T. T. Bui
- Biomolecular Spectroscopy Centre, Kings College London, Guy’s Campus, London SE1 1UL, U.K
| | - Alex F. Drake
- Biomolecular Spectroscopy Centre, Kings College London, Guy’s Campus, London SE1 1UL, U.K
| | - David E. Thurston
- Gene Targeted Drug Design Research Group, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, U.K
- Spirogen Ltd., The School of Pharmacy, University of London, London WC1N 1AX, U.K
| |
Collapse
|
46
|
Wang AT, Sengerová B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 2011; 25:1859-70. [PMID: 21896658 PMCID: PMC3175721 DOI: 10.1101/gad.15699211] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
One of the major DNA interstrand cross-link (ICL) repair pathways in mammalian cells is coupled to replication, but the mechanistic roles of the critical factors involved remain largely elusive. Here, we show that purified human SNM1A (hSNM1A), which exhibits a 5'-3' exonuclease activity, can load from a single DNA nick and digest past an ICL on its substrate strand. hSNM1A-depleted cells are ICL-sensitive and accumulate replication-associated DNA double-strand breaks (DSBs), akin to ERCC1-depleted cells. These DSBs are Mus81-induced, indicating that replication fork cleavage by Mus81 results from the failure of the hSNM1A- and XPF-ERCC1-dependent ICL repair pathway. Our results reveal how collaboration between hSNM1A and XPF-ERCC1 is necessary to initiate ICL repair in replicating human cells.
Collapse
Affiliation(s)
- Anderson T. Wang
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Blanka Sengerová
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Takabumi Inagawa
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Janet M. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Kiakos
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | - Lonnie P. Swift
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jacqueline H. Enzlin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - John A. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Peter J. McHugh
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
47
|
Hopton SR, Thompson AS. Nuclear Magnetic Resonance Solution Structures of Inter- and Intrastrand Adducts of DNA Cross-Linker SJG-136. Biochemistry 2011; 50:4720-32. [DOI: 10.1021/bi102017e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suzanne R. Hopton
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, England BA2 7AY
| | - Andrew S. Thompson
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, England BA2 7AY
| |
Collapse
|
48
|
Abstract
INTRODUCTION DNA interacting agents play a major role in cancer chemotherapy, either as single agents, in combination drug regimens, or as components of novel targeted therapies. The search for more selective and efficacious drugs that can deliver critical DNA damage with minimal side effects continues. AREAS COVERED The development of the pyrrolobenzodiazepines (PBDs) from their discovery as natural products in the 1960s, through synthetic PBD monomers, PBD hybrids and conjugates, and PBD dimers is described. The latter molecules are capable of forming sequence selective, non-distorting and potently cytotoxic DNA interstrand cross-links in the minor groove of DNA. In particular, the development of PBD dimer SJG-136 (SG2000), currently in Phase II clinical trials, is presented. Potential future cancer therapeutic applications of PBDs, including their use as components of targeting strategies, are also discussed. EXPERT OPINION The culmination of over four decades of study on structure-activity relationships of PBDs has led to a detailed understanding of how to introduce structural modification to enhance biological activity and potency. The challenge for the next phase in the development of the PBDs is to harness this activity and potency in a new generation of cancer therapeutics.
Collapse
Affiliation(s)
- John A Hartley
- UCL Cancer Institute, 72 Huntley St, London, WC1E 6BT, UK.
| |
Collapse
|
49
|
Rahman KM, James CH, Thurston DE. Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers. Nucleic Acids Res 2011; 39:5800-12. [PMID: 21427082 PMCID: PMC3141243 DOI: 10.1093/nar/gkr122] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH(2) functionalities. The PBD dimer SJG-136, which has a C8-O-(CH(2))(3)-O-C8'' central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8-O-(CH(2))(5)-O-C8'), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8'-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA-interaction behaviour of a PBD dimer of particular C8-C8' linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Gene Targeting Drug Design Research Group and Spirogen Ltd, The School of Pharmacy, University of London, 29/39 Brunswick Square, WC1N 1AX, UK
| | | | | |
Collapse
|
50
|
Hartley JA, Hamaguchi A, Suggitt M, Gregson SJ, Thurston DE, Howard PW. DNA interstrand cross-linking and in vivo antitumor activity of the extended pyrrolo[2,1-c][1,4]benzodiazepine dimer SG2057. Invest New Drugs 2011; 30:950-8. [PMID: 21384134 DOI: 10.1007/s10637-011-9647-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
The pyrrolobenzodiazepines (PBDs) are naturally occurring antitumor antibiotics and a PBD dimer (SJG-136, SG2000) is in Phase II trials. SG2000 is a propyldioxy linked PBD dimer which binds sequence selectively in the minor groove of DNA forming DNA interstrand and intrastrand cross-linked adducts, and also mono-adducts depending on sequence. SG2057 is the corresponding dimer containing a pentyldioxy linkage. SG2057 has multilog differential in vitro cytotoxicity against a panel of human tumour cell lines with a mean GI(50) of 212 pM. The agent is highly efficient at producing DNA interstrand cross-links in cells which form rapidly and persist over a 48 h period. Significant antitumor activity was demonstrated in several human tumor xenograft models. Cures were obtained in a LOX-IMVI melanoma model following a single administration and dose-dependent activity, including regression responses, observed in SKOV-3 ovarian and HL-60 promyelocytic leukemia models following repeat dose schedules. In the advanced stage LS174T model, SG2057 administered either as a single dose, or in two repeat dose schedules, was superior to irinotecan. SG2057 is therefore a highly active antitumor agent, with more potent in vitro activity and superior in vivo activity to SG2000, warranting further development.
Collapse
Affiliation(s)
- John A Hartley
- Spirogen Ltd, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|