1
|
Sun W, Tian G, Ding M, Zou X, Hu J, Yin J. Chemical Synthesis of the Trisaccharide Repeating Unit of the O-Antigen of Fusobacterium nucleatum ATCC 51191. Org Lett 2024; 26:321-326. [PMID: 38147353 DOI: 10.1021/acs.orglett.3c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Herein, the trisaccharide repeating unit of Fusobacterium nucleatum ssp. animalis ATCC 51191, which is used to develop oncomicrobial vaccines, was efficiently synthesized for the first time. The synthetic approach featured the following: (i) construction of the 1,2-cis-glycosidic linkage using the large steric hindrance of a phthalimide group at C4 of fucosamine; (ii) synthesis of the trisaccharide via a linear [2 + 1] glycosylation strategy; and (iii) installation of l-alanine using hexafluorophosphate azabenzotriazole tetramethyl uronium as a promoter.
Collapse
Affiliation(s)
- Wenbin Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Ding H, Lyu J, Zhang XL, Xiao X, Liu XW. Efficient and versatile formation of glycosidic bonds via catalytic strain-release glycosylation with glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoate donors. Nat Commun 2023; 14:4010. [PMID: 37419914 PMCID: PMC10329021 DOI: 10.1038/s41467-023-39619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Catalytic glycosylation is a vital transformation in synthetic carbohydrate chemistry due to its ability to expediate the large-scale oligosaccharide synthesis for glycobiology studies with the consumption of minimal amounts of promoters. Herein we introduce a facile and efficient catalytic glycosylation employing glycosyl ortho-2,2-dimethoxycarbonylcyclopropylbenzoates (CCBz) promoted by a readily accessible and non-toxic Sc(III) catalyst system. The glycosylation reaction involves a novel activation mode of glycosyl esters driven by the ring-strain release of an intramolecularly incorporated donor-acceptor cyclopropane (DAC). The versatile glycosyl CCBz donor enables highly efficient construction of O-, S-, and N-glycosidic bonds under mild conditions, as exemplified by the convenient preparation of the synthetically challenging chitooligosaccharide derivatives. Of note, a gram-scale synthesis of tetrasaccharide corresponding to Lipid IV with modifiable handles is achieved using the catalytic strain-release glycosylation. These attractive features promise this donor to be the prototype for developing next generation of catalytic glycosylation.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jian Lyu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, P.R. China.
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
3
|
The Role of Chitooligosaccharidolytic β- N-Acetylglucosamindase in the Molting and Wing Development of the Silkworm Bombyx mori. Int J Mol Sci 2022; 23:ijms23073850. [PMID: 35409210 PMCID: PMC8998872 DOI: 10.3390/ijms23073850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 02/01/2023] Open
Abstract
The insect glycoside hydrolase family 20 β-N-acetylhexosaminidases (HEXs) are key enzymes involved in chitin degradation. In this study, nine HEX genes in Bombyx mori were identified by genome-wide analysis. Bioinformatic analysis based on the transcriptome database indicated that each gene had a distinct expression pattern. qRT-PCR was performed to detect the expression pattern of the chitooligosaccharidolytic β-N-acetylglucosaminidase (BmChiNAG). BmChiNAG was highly expressed in chitin-rich tissues, such as the epidermis. In the wing disc and epidermis, BmChiNAG has the highest expression level during the wandering stage. CRISPR/Cas9-mediated BmChiNAG deletion was used to study the function. In the BmChiNAG-knockout line, 39.2% of female heterozygotes had small and curly wings. The ultrastructure of a cross-section showed that the lack of BmChiNAG affected the stratification of the wing membrane and the formation of the correct wing vein structure. The molting process of the homozygotes was severely hindered during the larva to pupa transition. Epidermal sections showed that the endocuticle of the pupa was not degraded in the mutant. These results indicate that BmChiNAG is involved in chitin catabolism and plays an important role in the molting and wing development of the silkworm, which highlights the potential of BmChiNAG as a pest control target.
Collapse
|
4
|
Zhang Y, Xiao G. Chemical synthesis of TMG-chitotriomycin. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Chen T, Li WQ, Liu Z, Jiang W, Liu T, Yang Q, Zhu XL, Yang GF. Discovery of Biphenyl-Sulfonamides as Novel β- N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12039-12047. [PMID: 34587743 DOI: 10.1021/acs.jafc.1c01642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel insecticidal targets are always in demand due to the development of resistance. OfHex1, a β-N-acetyl-d-hexosaminidase identified in Ostrinia furnacalis (Asian corn borer), is involved in insect chitin catabolism and has proven an ideal target for insecticide development. In this study, structure-based virtual screening, structure simplification, and biological evaluation are used to show that compounds with a biphenyl-sulfonamide skeleton have great potential as OfHex1 inhibitors. Specifically, compounds 10k, 10u, and 10v have Ki values of 4.30, 3.72, and 4.56 μM, respectively, and thus, they are more potent than some reported nonglycosyl-based inhibitors such as phlegmacin B1 (Ki = 26 μM), berberine (Ki = 12 μM), 2 (Ki = 11.2 μM), and 3 (Ki = 28.9 μM). Furthermore, inhibitory kinetic assessments reveal that the target compounds are competitive inhibitors with respect substrate, and based on toxicity predictions, most of them have potent drug properties. The obtained results indicate that the biphenyl-sulfonamide skeleton characterized by simple chemical structure, synthetic tractability, potent activity, and low toxicity has potential for further development in pest management targeting OfHex1.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Qin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
6
|
Wang Y, Yu B. Total Syntheses of Aturanosides A and B. Org Lett 2021; 23:6680-6684. [PMID: 34383489 DOI: 10.1021/acs.orglett.1c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Total syntheses of aturanosides A and B, two antiangiogenic anthraquinone glycosides, have been achieved in an expeditious manner, highlighting anthraquinone synthesis, phenol glycosylation, α-d-glucosaminoside installation, and judicious use of protecting groups.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
7
|
Yano K, Sasaki N, Itoh T, Nokami T. Synthesis of Oligosaccharides of Glucosamine by Automated Electrochemical Assembly. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University
| |
Collapse
|
8
|
He H, Xu L, Sun R, Zhang Y, Huang Y, Chen Z, Li P, Yang R, Xiao G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG-chitotriomycin, lipochitooligosaccharides and capuramycin. Chem Sci 2021; 12:5143-5151. [PMID: 34163751 PMCID: PMC8179548 DOI: 10.1039/d0sc06815b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward β-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.
Collapse
Affiliation(s)
- Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
9
|
Morimoto Y, Takahashi S, Isoda Y, Nokami T, Fukamizo T, Suginta W, Ohnuma T. Kinetic and thermodynamic insights into the inhibitory mechanism of TMG-chitotriomycin on Vibrio campbellii GH20 exo-β-N-acetylglucosaminidase. Carbohydr Res 2020; 499:108201. [PMID: 33243428 DOI: 10.1016/j.carres.2020.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
We investigated the inhibition kinetics of VhGlcNAcase, a GH20 exo-β-N-acetylglucosaminidase (GlcNAcase) from the marine bacterium Vibrio campbellii (formerly V. harveyi) ATCC BAA-1116, using TMG-chitotriomycin, a natural enzyme inhibitor specific for GH20 GlcNAcases from chitin-processing organisms, with p-nitrophenyl N-acetyl-β-d-glucosaminide (pNP-GlcNAc) as the substrate. TMG-chitotriomycin inhibited VhGlcNAcase with an IC50 of 3.0 ± 0.7 μM. Using Dixon plots, the inhibition kinetics indicated that TMG-chitotriomycin is a competitive inhibitor, with an inhibition constant Ki of 2.2 ± 0.3 μM. Isothermal titration calorimetry experiments provided the thermodynamic parameters for the binding of TMG-chitotriomycin to VhGlcNAcase and revealed that binding was driven by both favorable enthalpy and entropy changes (ΔH° = -2.5 ± 0.1 kcal/mol and -TΔS° = -5.8 ± 0.3 kcal/mol), resulting in a free energy change, ΔG°, of -8.2 ± 0.2 kcal/mol. Dissection of the entropic term showed that a favorable solvation entropy change (-TΔSsolv° = -16 ± 2 kcal/mol) is the main contributor to the entropic term.
Collapse
Affiliation(s)
- Yusuke Morimoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Shuji Takahashi
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Yuta Isoda
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Tumbol Payupnai, Wangchan Valley, Rayong, 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Tumbol Payupnai, Wangchan Valley, Rayong, 21210, Thailand
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.
| |
Collapse
|
10
|
Zeng ZY, Liao JX, Hu ZN, Liu DY, Zhang QJ, Sun JS. Synthetic Investigation toward QS-21 Analogues. Org Lett 2020; 22:8613-8617. [PMID: 33074676 DOI: 10.1021/acs.orglett.0c03185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With glycosyl o-alkynylbenzotes as donors, a highly efficient protocol to construct the challenging glycosidic linkages at C3-OH of C23-oxo oleanane triterpenoids is disclosed, on the basis of which different strategies for the highly efficient synthesis of QS-21 analogues with the west-wing trisaccharide of QS-21 have been established.
Collapse
Affiliation(s)
- Zhi-Yong Zeng
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhen-Ni Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - De-Yong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qing-Ju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
11
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Yano K, Itoh T, Nokami T. Total synthesis of Myc-IV(C16:0, S) via automated electrochemical assembly. Carbohydr Res 2020; 492:108018. [PMID: 32339812 DOI: 10.1016/j.carres.2020.108018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Total synthesis of Myc-IV(C16:0, S) via automated electrochemical assembly has been accomplished. This tetrasaccharide has been studied as a symbiotic signal molecule of Arbuscular Mycorrhiza fungi. We have achieved stereoselective synthesis of a disaccharide building block using the mixed-electrolyte system for electrochemical glycosylation; 2 + 1+1 strategy enables us to access the tetrasaccharide precursor and complete the synthesis Myc-IV(C16:0, S) efficiently.
Collapse
Affiliation(s)
- Kumpei Yano
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552, Tottori, Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552, Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552, Tottori, Japan.
| |
Collapse
|
13
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona-Decasaccharide Motif from Psidium guajava Polysaccharides: Orthogonal One-Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020; 59:7576-7584. [PMID: 32086860 DOI: 10.1002/anie.202000992] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/10/2022]
Abstract
The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one-pot synthesis of a nona-decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α-glucosidase inhibitory activity. The synthetic strategy features: 1) several one-pot glycosylation reactions on the basis of N-phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3', second O5', final O2') toward the challenging 2,3,5-branched Araf motif, 3) the stereoselective 1,2-cis-glucosylation by reagent control, and 4) the convergent [6+6+7] one-pot coupling reaction for the final assembly of the target nona-decasaccharide. This orthogonal one-pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
14
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona‐Decasaccharide Motif from
Psidium guajava
Polysaccharides: Orthogonal One‐Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xiufang Wang
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
15
|
Gold(I)-promoted synthesis of a β-(1,3)-glucan hexadecasaccharide via the highly convergent strategy. Carbohydr Res 2019; 482:107735. [DOI: 10.1016/j.carres.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 11/20/2022]
|
16
|
Naphthalimide and quinoline derivatives as inhibitors for insect N-acetyl-β-d-hexosaminidase. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Zhuang L, Chen Y, Lou Q, Yang Y. Synthesis of the β-linked GalNAc-Kdo disaccharide antigen of the capsular polysaccharide of Kingella kingae KK01. Org Biomol Chem 2019; 17:1694-1697. [PMID: 30346002 DOI: 10.1039/c8ob02340a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first construction of the challenging β-(1 → 5)-linked GalNAc-Kdo skeleton is described for the synthesis of the disaccharide antigen of the capsular polysaccharide of Kingella kingae KK01. TfOH-catalyzed glycosylation of N-Troc-protected d-galactosaminyl N-phenyl trifluoroacetimidate with a sterically hindered 5-hydroxyl group of the β-Kdo building block in toluene proceeded smoothly to provide the desired disaccharide in excellent yield with satisfactory β-selectivity. An optimal sequence for the deprotection of the disaccharide skeleton was found to access the disaccharide antigen of Kingella kingae KK01 for further immunological studies.
Collapse
Affiliation(s)
- Liqin Zhuang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China, University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | |
Collapse
|
18
|
Wang X, Chen Y, Wang J, Yang Y. Total Synthesis of the Trisaccharide Antigen of the Campylobacter jejuni RM1221 Capsular Polysaccharide via de Novo Synthesis of the 6-Deoxy-d- manno-heptose Building Blocks. J Org Chem 2019; 84:2393-2403. [PMID: 30691266 DOI: 10.1021/acs.joc.8b02394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A de novo approach utilizing the d-proline-catalyzed and LDA-promoted aldol reactions as key steps for the preparation of differentiated-protected 6-deoxy-d- manno-heptose building blocks was developed. PPh3AuBAr4F-catalyzed glycosylation with the 6-deoxy-d- manno-heptosyl o-hexynylbenzoate as donor was demonstrated as a direct and practical method for the stereoselective synthesis of the β-linked 6-deoxy-d- manno-heptoside as the major product. Coupling of the 6-deoxy-α-d- manno-heptosyl H-phosphonate with the 3-hydroxyl disaccharide acceptor based on H-phosphonate chemistry was described for the construction of the trisaccharide skeleton with the acid-labile phosphodiester linkage. Finally, first total synthesis of the unique trisaccharide antigen of the capsular polysaccharide of Campylobacter jejuni RM1221 that belongs to HS:53 serotype complex was accomplished for further evaluation as vaccine candidate against C. jejuni RM1221 infection.
Collapse
Affiliation(s)
- Xiaoman Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Yan Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Junchang Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
19
|
Wang J, Lou Q, Rong J, Yang Y. Gold(i)-promoted α-selective sialylation of glycosylortho-hexynylbenzoates for the latent-active synthesis of oligosialic acids. Org Biomol Chem 2019; 17:6580-6584. [DOI: 10.1039/c9ob00954j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A gold(i)-promoted α-selective glycosylation approach with sialylortho-hexynylbenzoates as donors is developed for the latent-active synthesis of α-(2 → 9)-linked oligosialic acids.
Collapse
Affiliation(s)
- Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jingjing Rong
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
20
|
He H, Chen D, Li X, Li C, Zhao JH, Qin HB. Synthesis of trisaccharide repeating unit of fucosylated chondroitin sulfate. Org Biomol Chem 2019; 17:2877-2882. [PMID: 30789160 DOI: 10.1039/c9ob00057g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthesis of repeating unit of trisaccharide, complete stereoselectivity of glycosylation and flexible synthetic strategy.
Collapse
Affiliation(s)
- Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Dong Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Xiaomei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Chengji Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Jin-Hua Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| | - Hong-Bo Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- and Yunnan Key Laboratory of Natural Medicinal Chemistry
- Kunming 650201
| |
Collapse
|
21
|
Liang H, Ma L, Li C, Peng Q, Wang Z, Zhang ZX, Yu L, Liu H, An F, Xue W. Efficient glycosylation with glycosyl ortho-allylbenzoates as donors. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Yang H, Liu T, Qi H, Huang Z, Hao Z, Ying J, Yang Q, Qian X. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase. Bioorg Med Chem 2018; 26:5420-5426. [DOI: 10.1016/j.bmc.2018.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/31/2023]
|
23
|
Nicolaou KC, Li R, Lu Z, Pitsinos EN, Alemany LB, Aujay M, Lee C, Sandoval J, Gavrilyuk J. Streamlined Total Synthesis of Shishijimicin A and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues thereof and Practical Syntheses of PhthNSSMe and Related Sulfenylating Reagents. J Am Chem Soc 2018; 140:12120-12136. [PMID: 30216054 DOI: 10.1021/jacs.8b06955] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Shishijimicin A is a scarce marine natural product with highly potent cytotoxicities, making it a potential payload or a lead compound for designed antibody-drug conjugates. Herein, we describe an improved total synthesis of shishijimicin A and the design, synthesis, and biological evaluation of a series of analogues. Equipped with appropriate functionalities for linker attachment, a number of these analogues exhibited extremely potent cytotoxicities for the intended purposes. The synthetic strategies and tactics developed and employed in these studies included improved preparation of previously known and new sulfenylating reagents such as PhthNSSMe and related compounds.
Collapse
Affiliation(s)
| | | | | | - Emmanuel N Pitsinos
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology , National Centre for Scientific Research "Demokritos" , 153 10 Agia Paraskevi , Greece
| | | | - Monette Aujay
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Christina Lee
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Joseph Sandoval
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC , 450 East Jamie Court , South San Francisco , California 94080 , United States
| |
Collapse
|
24
|
Dong X, Chen L, Zheng Z, Ma X, Luo Z, Zhang L. Silver-catalyzed stereoselective formation of glycosides using glycosyl ynenoates as donors. Chem Commun (Camb) 2018; 54:8626-8629. [PMID: 30019713 DOI: 10.1039/c8cc02494d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A silver-catalyzed glycosylation reaction employing readily accessible and stable glycosyl ynenoates is developed. This reaction is mostly high yielding and exhibits varying levels of stereoinversion at the anomeric position. Compared to established and versatile Yu's gold catalysis, this chemistry features the use of substantially cheaper AgNTf2.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China. and Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Zaigang Luo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
25
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
26
|
Abstract
Naturally occurring glycans and glycoconjugates have extremely diverse structures and biological functions. Syntheses of these molecules and their artificial mimics, which have attracted the interest of those developing new therapeutic agents, rely on glycosylation methodologies to construct the various glycosidic linkages. In this regard, a wide array of glycosylation methods have been developed, and they mainly involve the substitution of a leaving group on the anomeric carbon of a glycosyl donor with an acceptor (a nucleophile) under the action of a particular promoter (usually a stoichiometric electrophile). However, glycosylations involving inherently unstable or unreactive donors/acceptors are still problematic. In those systems, reactions involving nucleophilic, electrophilic, or acidic species present on the leaving group and the promoter could become competitive and detrimental to the glycosylation. To address this problem, we applied the recently developed chemistry of alkynophilic gold(I) catalysts to the development of new glycosylation reactions that would avoid the use of the conventional leaving groups and promoters. Gratifyingly, glycosyl o-alkynylbenzoates (namely, glycosyl o-hexynyl- and o-cyclopropylethynylbenzoates) turned out to be privileged donors under gold(I) catalysis with Ph3PAuNTf2 and Ph3PAuOTf. The merits of this new glycosylation protocol include the following: (1) the donors are easily prepared and are generally shelf-stable; (2) the promotion is catalytic; (3) the substrate scope is extremely wide; (4) relatively few side reactions are observed; (5) the glycosylation conditions are orthogonal to those of conventional methods; and (6) the method is operationally simple. Indeed, this method has been successfully applied in the synthesis of a wide variety of complex glycans and glycoconjugates, including complex glycosides of epoxides, nucleobases, flavonoids, lignans, steroids, triterpenes, and peptides. The direct glycosylation of some sensitive aglycones, such as dammarane C20-ol and sugar oximes, and the glycosylation-initiated polymerization of tetrahydrofuran were achieved for the first time. The gold(I) catalytic cycle of the present glycosylation protocol has been fully elucidated. In particular, key intermediates, such as the 1-glycosyloxyisochromenylium-4-gold(I) and isochromen-4-ylgold(I) complexes, have been unambiguously characterized. Exploiting the former glycosyloxypyrylium intermediate, SN2-type glycosylations were realized in specific cases, such as β-mannosylation/rhamnosylation. The protodeauration of the latter vinylgold(I) intermediate has been reported to be critically important for the gold(I) catalytic cycle. Thus, the addition of a strong acid as a cocatalyst can dramatically reduce the required loading of the gold(I) catalyst (down to 0.001 equiv). C-Glycosylation with silyl nucleophiles can proceed catalytically when moisture, which is sequestered by molecular sieves, can serve as the H+ donor for the required protodeauration step. Indeed, the unique mechanism explains the merits and broad applicability of the present glycosylation method and provides a foundation for future developments in glycosylation methodologies that mainly involve improving the diastereoselectivity and catalytic efficiency of glycosylations.
Collapse
Affiliation(s)
- Biao Yu
- State Key Laboratory of Bioorganic
and Natural Products Chemistry, Center for Excellence in Molecular
Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Li W, Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem Soc Rev 2018; 47:7954-7984. [DOI: 10.1039/c8cs00209f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold(i)- and gold(iii)-catalyzed glycosylation reactions and their application in the synthesis of natural glycoconjugates are reviewed.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
28
|
Wang HY, Simmons CJ, Blaszczyk SA, Balzer PG, Luo R, Duan X, Tang W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angew Chem Int Ed Engl 2017; 56:15698-15702. [DOI: 10.1002/anie.201708920] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/15/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Hao-Yuan Wang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Christopher J. Simmons
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Paul G. Balzer
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Renshi Luo
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Xiyan Duan
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Weiping Tang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
29
|
Wang HY, Simmons CJ, Blaszczyk SA, Balzer PG, Luo R, Duan X, Tang W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hao-Yuan Wang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Christopher J. Simmons
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephanie A. Blaszczyk
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Paul G. Balzer
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Renshi Luo
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Xiyan Duan
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
| | - Weiping Tang
- Pharmaceutical Sciences Division; School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
30
|
Nicolaou KC, Chen P, Zhu S, Cai Q, Erande RD, Li R, Sun H, Pulukuri KK, Rigol S, Aujay M, Sandoval J, Gavrilyuk J. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues. J Am Chem Soc 2017; 139:15467-15478. [DOI: 10.1021/jacs.7b08820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- K. C. Nicolaou
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Pengxi Chen
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Shugao Zhu
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Quan Cai
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Rohan D. Erande
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Ruofan Li
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Hongbao Sun
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Kiran Kumar Pulukuri
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Stephan Rigol
- Department
of Chemistry, BioScience Research Collaborative, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Monette Aujay
- AbbVie Stemcentrx, LLC, 450
East Jamie Court, South San Francisco, California 94080, United States
| | - Joseph Sandoval
- AbbVie Stemcentrx, LLC, 450
East Jamie Court, South San Francisco, California 94080, United States
| | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, 450
East Jamie Court, South San Francisco, California 94080, United States
| |
Collapse
|
31
|
Mi X, Lou Q, Fan W, Zhuang L, Yang Y. Gold(I)-catalyzed synthesis of β-Kdo glycosides using Kdo ortho-hexynylbenzoate as donor. Carbohydr Res 2017; 448:161-165. [DOI: 10.1016/j.carres.2017.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
|
32
|
Iodosobenzene diacetate-Iodine and IBX-Iodine: Reagent systems for the synthesis of diastereomerically enriched 2-deoxy-2-iodoglycosyl acetates and 2-deoxy-2-iodoglycosyl ortho-iodobenzoates from protected glycals. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Isoda Y, Sasaki N, Kitamura K, Takahashi S, Manmode S, Takeda-Okuda N, Tamura JI, Nokami T, Itoh T. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block. Beilstein J Org Chem 2017; 13:919-924. [PMID: 28684973 PMCID: PMC5480352 DOI: 10.3762/bjoc.13.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022] Open
Abstract
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.
Collapse
Affiliation(s)
- Yuta Isoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Kei Kitamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Shuji Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Sujit Manmode
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Naoko Takeda-Okuda
- Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan
| | - Jun-Ichi Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
34
|
Sasaki N, Nokami T, Itoh T. Synthesis of a TMG-chitotriomycin Precursor Based on Electrolyte-free Electrochemical Glycosylation Using an Ionic Liquid Tag. CHEM LETT 2017. [DOI: 10.1246/cl.170126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Norihiko Sasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552
| |
Collapse
|
35
|
Liu T, Liao JX, Hu Y, Tu YH, Sun JS. Synthetic Access Toward Cycloastragenol Glycosides. J Org Chem 2017; 82:4170-4178. [DOI: 10.1021/acs.joc.7b00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ting Liu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Yang Hu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Yuan-Hong Tu
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre
for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang
Avenue, Nanchang 330022, China
| |
Collapse
|
36
|
Carvalho LCR, Queda F, Santos CVA, Marques MMB. Selective Modification of Chitin and Chitosan: En Route to Tailored Oligosaccharides. Chem Asian J 2016; 11:3468-3481. [DOI: 10.1002/asia.201601041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Luísa C. R. Carvalho
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Fausto Queda
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Cátia V. Almeida Santos
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - M. Manuel B. Marques
- LAQV@REQUIMTE, Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| |
Collapse
|
37
|
Li X, Zhu J. Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600484] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Li
- Department of Natural Sciences; University of Michigan-Dearborn; 4901 Evergreen Road 48128 Dearborn Michigan USA
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering; The University of Toledo; 2801 West Bancroft Street 43606 Toledo Ohio USA
| |
Collapse
|
38
|
Bai Y, Shen X, Li Y, Dai M. Total Synthesis of (-)-Spinosyn A via Carbonylative Macrolactonization. J Am Chem Soc 2016; 138:10838-41. [PMID: 27510806 DOI: 10.1021/jacs.6b07585] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spinosyn A (1), a complex natural product featuring a unique 5,6,5,12-fused tetracyclic core structure, is the major component of spinosad, an organic insecticide and an FDA-approved agent used worldwide. Herein, we report an efficient total synthesis of (-)-spinosyn A with 15 steps in the longest linear sequence and 23 steps total from readily available compounds 14 and 23. The synthetic approach features several important catalytic transformations including a chiral amine-catalyzed intramolecular Diels-Alder reaction to afford 22 in excellent diastereoselectivity, a one-step gold-catalyzed propargylic acetate rearrangement to convert 28 to α-iodoenone 31, an unprecedented palladium-catalyzed carbonylative Heck macrolactonization to form the 5,12-fused macrolactone in one step, and a gold-catalyzed Yu glycosylation to install the challenging β-forosamine. This total synthesis is highly convergent and modular, thus offering opportunities to synthesize spinosyn analogues in order to address the emerging cross-resistance problems.
Collapse
Affiliation(s)
- Yu Bai
- Department of Chemistry and Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Xingyu Shen
- Department of Chemistry and Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Yong Li
- Department of Chemistry and Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Nokami T, Sasaki N, Isoda Y, Itoh T. Ionic-Liquid Tag with Multiple Functions in Electrochemical Glycosylation. ChemElectroChem 2016. [DOI: 10.1002/celc.201600311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Toshiki Nokami
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry; Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Yuta Isoda
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry; Faculty of Engineering; Tottori University; 4-101 Koyamacho-minami, Tottori city 680-8552 Tottori Japan
| |
Collapse
|
40
|
Vibhute AM, Dhaka A, Athiyarath V, Sureshan KM. A versatile glycosylation strategy via Au(iii) catalyzed activation of thioglycoside donors. Chem Sci 2016; 7:4259-4263. [PMID: 30090287 PMCID: PMC6054025 DOI: 10.1039/c6sc00633g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Among various methods of chemical glycosylations, glycosylation by activation of thioglycoside donors using a thiophilic promoter is an important strategy. Many promoters have been developed for the activation of thioglycosides. However, incompatibility with substrates having alkenes and the requirement of a stoichiometric amount of promoters, co-promoters and extreme temperatures are some of the limitations. We have developed an efficient methodology for glycosylation via the activation of thioglycoside donors using a catalytic amount of AuCl3 and without any co-promoter. The reaction is very fast, high-yielding and very facile at room temperature. The versatility of this method is evident from the facile glycosylation with both armed and disarmed donors and sterically demanding substrates (acceptors/donors) at ambient conditions, from the stability of the common protecting groups, and from the compatibility of alkene-containing substrates during the reaction.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Arun Dhaka
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Vignesh Athiyarath
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research , Thiruvananthapuram , KERALA-695016 , India . ; http://kms514.wix.com/kmsgroup
| |
Collapse
|
41
|
Sanaboina C, Chidara S, Jana S, Eppakayala L. Total synthesis of (3R,5R) and (3R,5S)-sonnerlactones. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Liu H, Liao JX, Hu Y, Tu YH, Sun JS. A Highly Efficient Approach To Construct (epi)-Podophyllotoxin-4-O-glycosidic Linkages as well as Its Application in Concise Syntheses of Etoposide and Teniposide. Org Lett 2016; 18:1294-7. [DOI: 10.1021/acs.orglett.6b00216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Liu
- The National
Engineering
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jin-Xi Liao
- The National
Engineering
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yang Hu
- The National
Engineering
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yuan-Hong Tu
- The National
Engineering
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jian-Song Sun
- The National
Engineering
Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
43
|
Nicolaou KC, Cai Q, Sun H, Qin B, Zhu S. Total Synthesis of Trioxacarcins DC-45-A1, A, D, C, and C7″-epi-C and Full Structural Assignment of Trioxacarcin C. J Am Chem Soc 2016; 138:3118-24. [DOI: 10.1021/jacs.5b12687] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry,
BioScience Research Collaborative, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Quan Cai
- Department of Chemistry,
BioScience Research Collaborative, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Hongbao Sun
- Department of Chemistry,
BioScience Research Collaborative, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Bo Qin
- Department of Chemistry,
BioScience Research Collaborative, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
| | - Shugao Zhu
- Department of Chemistry,
BioScience Research Collaborative, Rice University, 6100 Main
Street, Houston, Texas 77005, United States
| |
Collapse
|
44
|
Gillard L, Tran AT, Boyer FD, Beau JM. Chitooligosaccharide Synthesis Using an Ionic Tag. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Hu Y, Tu YH, Liu DY, Liao JX, Sun JS. Synthetic investigation toward apigenin 5-O-glycoside camellianin B as well as the chemical structure revision. Org Biomol Chem 2016; 14:4842-7. [DOI: 10.1039/c6ob00655h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first total synthesis of the proposed and authentic structures of camellianin B were achieved, based on which the chemical structures of camellianins A and B were revised.
Collapse
Affiliation(s)
- Yang Hu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yuan-Hong Tu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - De-Yong Liu
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jin-Xi Liao
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jian-Song Sun
- The National Engineering Research Centre for Carbohydrate Synthesis
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
46
|
Matthies S, McQuade DT, Seeberger PH. Homogeneous Gold-Catalyzed Glycosylations in Continuous Flow. Org Lett 2015; 17:3670-3. [DOI: 10.1021/acs.orglett.5b01584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Matthies
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - D. Tyler McQuade
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
47
|
Li J, Dai Y, Li W, Laval S, Xu P, Yu B. Effective Synthesis of α-d-GlcN-(1→4)-d-GlcA/l-IdoA Glycosidic Linkage under Gold(I) Catalysis. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiakun Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road, Hefei Anhui 230026 China
| | - Yuanwei Dai
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Stéphane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
48
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
49
|
Zhu Y, Yu B. Highly Stereoselective β-Mannopyranosylation via the 1-α-Glycosyloxy-isochromenylium-4-gold(I) Intermediates. Chemistry 2015; 21:8771-80. [DOI: 10.1002/chem.201500648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 01/02/2023]
|
50
|
Qiao Y, Gu G, Guo Z. A Facile Synthesis of the Tetrasaccharide Repeating Unit of the O-Antigen fromCronobacter turicensis. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1027825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|