1
|
Yang Z, Shi A, Zhang R, Ji Z, Li J, Lyu J, Qian J, Chen T, Wang X, You F, Xie J. When Metal Nanoclusters Meet Smart Synthesis. ACS NANO 2024; 18:27138-27166. [PMID: 39316700 DOI: 10.1021/acsnano.4c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atomically precise metal nanoclusters (MNCs) represent a fascinating class of ultrasmall nanoparticles with molecule-like properties, bridging conventional metal-ligand complexes and nanocrystals. Despite their potential for various applications, synthesis challenges such as a precise understanding of varied synthetic parameters and property-driven synthesis persist, hindering their full exploitation and wider application. Incorporating smart synthesis methodologies, including a closed-loop framework of automation, data interpretation, and feedback from AI, offers promising solutions to address these challenges. In this perspective, we summarize the closed-loop smart synthesis that has been demonstrated in various nanomaterials and explore the research frontiers of smart synthesis for MNCs. Moreover, the perspectives on the inherent challenges and opportunities of smart synthesis for MNCs are discussed, aiming to provide insights and directions for future advancements in this emerging field of AI for Science, while the integration of deep learning algorithms stands to substantially enrich research in smart synthesis by offering enhanced predictive capabilities, optimization strategies, and control mechanisms, thereby extending the potential of MNC synthesis.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anye Shi
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zuowei Ji
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Fengqi You
- Systems Engineering, College of Engineering, Cornell University, Ithaca, New York 14583, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell University AI for Science Institute (CUAISci), Cornell University, Ithaca, New York 14853, United States
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Luo L, Liu Z, Mazumder A, Jin R. Raising Near-Infrared Photoluminescence Quantum Yield of Au 42 Quantum Rod to 50% in Solutions and 75% in Films. J Am Chem Soc 2024; 146. [PMID: 39360944 PMCID: PMC11487566 DOI: 10.1021/jacs.4c11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Highly emissive gold nanoclusters (NCs) in the near-infrared (NIR) region are of wide interest, but challenges arise from the excessive nonradiative dissipation. Here, we demonstrate an effective suppression of the motions of surface motifs on the Au42(PET)32 rod (PET = 2-phenylethanethiolate) by noncoordinative interactions with amide molecules and accordingly raise the NIR emission (875/1045 nm peaks) quantum yield (QY) from 18% to 50% in deaerated solution at room temperature, which is rare in Au NCs. Cryogenic photoluminescence measurements indicate that amide molecules effectively suppress the vibrations associated with the Au-S staple motifs on Au42 and also enhance the radiative relaxation, both of which lead to stronger emission. When Au42 NCs are embedded in a polystyrene film containing amide molecules, the PLQY is further boosted to 75%. This research not only produces a highly emissive material but also provides crucial insights for the rational design of NIR emitters and advances the potential of atomically precise Au NCs for diverse applications.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Abhrojyoti Mazumder
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Wang J, Fan W, Cheng SB, Chen J. Tailoring the Superatomic Characteristics and Optical Behavior of Metal-Free Boron Clusters via Ligand Engineering. J Phys Chem A 2024; 128:7869-7878. [PMID: 39231803 DOI: 10.1021/acs.jpca.4c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
It is of great importance to understand how the number and type of ligands influence the properties of clusters through ligand engineering, as this knowledge is crucial for the rational design and optimization of functional materials. Herein, the geometrical structures, binding energies, and electronic properties of nonmetallic Bn (n = 20 and 40) clusters with CO, PEt3, F, NO2, and CN ligands are systematically explored based on density functional theory (DFT) calculations. Our findings demonstrate that the CO ligand acts as an electron donor when attached to these two boron clusters, in contrast to their role as electron acceptors in interactions with metal oxide and metal chalcogenide clusters. This emphasizes the necessity of considering the intrinsic properties of the host cluster when modifying with ligands. Moreover, it was observed that substituting PEt3 with F, NO2, or CN converted the B20 cluster from an electron acceptor to an electron donor, thereby demonstrating the versatility in tuning the redox characteristics of boron clusters by selecting appropriate ligands. Intriguingly, the attachment of the PEt3, F, NO2, and CN ligands to B20 can significantly modulate the electronic properties of B20 to realize the formation of metal-free superalkali (B20(PEt3)n, n = 3-5) and superhalogen (B20F, B20NO2, and B20CN) clusters. Furthermore, the structure, stability, and optical absorption of the charge transfer complex B20(PEt3)3+B20F were analyzed. This complex has been identified as an efficient material for harvesting visible light. Our findings provide insights into the effects of ligand variations on boron cluster functionalities, offering a new perspective for the design of advanced materials with tailored cluster properties through ligand engineering.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Weiliu Fan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
4
|
Tan Y, Li K, Xu J, Li Q, Yang S, Chai J, Pei Y, Jia D, Zhu M. A single-gold-atom addition regulates sharp redshift in the fluorescence of atomically precise nanoclusters. NANOSCALE 2024; 16:15663-15669. [PMID: 39058368 DOI: 10.1039/d4nr01963f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The manipulation of emission peaks at the atomic level and the investigation of the fluorescent origin mechanism are important issues. In this study, a phosphine-mediated modification method was employed on Au36(TBBT)24 nanocluster to produce a new gold nanocluster Au37(TBBT)21(TPP)2. The structural comparison revealed that Au37(TBBT)21(TPP)2 has a structural framework similar to that of Au36(TBBT)24 except for the reconstruction of its surface motifs, the addition of one gold atom into the kernel, and local structural distortion. Interestingly, compared with Au36(TBBT)24, the emission peak of Au37(TBBT)21(TPP)2 is red-shifted into the NIR-II windows (972 nm vs. 1152 nm in CDCl3) with a quantum yield of 1.5%. Furthermore, the origin of the NIR-II fluorescence in Au37(TBBT)21(TPP)2 and the red-shift mechanism of the emission peak were explored by combining the crystal structure and DFT calculations. The results reveal that the insertion of the 37th gold atom into the core can increase the contribution of the gold atoms to the HOMO orbitals and change the origin of their fluorescence from local excitation (LE) to inter fragment charge transfer (IFCT).
Collapse
Affiliation(s)
- Yesen Tan
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Jingjing Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
5
|
Wan XK, Han XS, Guan ZJ, Shi WQ, Li JJ, Wang QM. Interplay of kernel shape and surface structure for NIR luminescence in atomically precise gold nanorods. Nat Commun 2024; 15:7214. [PMID: 39174541 PMCID: PMC11341786 DOI: 10.1038/s41467-024-51642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
It is challenging to attain strong near-infrared (NIR) emissive gold nanoclusters. Here we show a rod-shaped cluster with the composition of [Au28(p-MBT)14(Hdppa)3](SO3CF3)2 (1 for short, Hdppa is N,N-bis(diphenylphosphino)amine, p-MBT is 4-methylbenzenethiolate) has been synthesized. Single crystal X-ray structural analysis reveals that it has a rod-like face-centered cubic (fcc) Au22 kernel built from two interpenetrating bicapped cuboctahedral Au15 units. 1 features NIR luminescence with an emission maximum at 920 nm, and the photoluminescence quantum yield (PLQY) is 12%, which is 30-fold of [Au21(m-MBT)12(Hdppa)2]SO3CF3 (2, m-MBT is 3-methylbenzenethiolate) with a similar composition and 60-fold of Au30S(S‑t‑Bu)18 with a similar structure. time-dependent DFT(TDDFT)calculations reveal that the luminescence of 1 is associated with the Au22 kernel. The small Stokes shift of 1 indicates that it has a very small excited state structural distortion, leading to high radiative decay rate (kr) probability. The emission of cluster 1 is a mixture of phosphorescence and thermally activated delayed fluorescence(TADF), and the enhancement of the NIR emission is mainly due to the promotion of kr rather than the inhibition of knr. This work demonstrates that the metal kernel and the surface structure are both very important for cluster-based NIR luminescence materials.
Collapse
Affiliation(s)
- Xian-Kai Wan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, PR China
| | - Xu-Shuang Han
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China
| | - Wan-Qi Shi
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, PR China.
| |
Collapse
|
6
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Lin H, Song X, Wu X, Cao Y, Liu Z, Zhang R, Yao Q, Xie J. Fluorescent Enhancement of [AgS 4] Microplates by Mechanical Force Induced Crystallinity Breaking. J Phys Chem Lett 2024; 15:7118-7124. [PMID: 38959028 DOI: 10.1021/acs.jpclett.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Science drive 3, Singapore 117543, Singapore
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs; Engineering Research Center of MTEES (Ministry of Education), and Key Lab of ETESPG (GHEI), School of Chemistry South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
8
|
Luo X, Kong J, Xiao H, Sang D, He K, Zhou M, Liu J. Noncovalent Interaction Guided Precise Photoluminescence Regulation of Gold Nanoclusters in Both Isolate Species and Aggregate States. Angew Chem Int Ed Engl 2024; 63:e202404129. [PMID: 38651974 DOI: 10.1002/anie.202404129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Designing luminophores bright in both isolate species and aggregate states is of great importance in many emerging cutting-edge applications. However, the conventional luminophores either emit in isolate species but quench in aggregate state or emit in aggregate state but darken in isolate species. Here we demonstrate that the precise regulation of noncovalent interactions can realize luminophores bright in both isolate species and aggregate states. It is firstly discovered that the intra-cluster interaction enhances the emission of atomically precise Au25(pMBA)18 (pMBA=4-mercaptobenzoic acid), a nanoscale luminophore, while the inter-cluster interaction quenches the emission. The emission enhancing strategies are then well-designed by both introducing exogenous substances to block inter-cluster interaction and surface manipulation of Au25(pMBA)18 at the molecular level to enhance intra-cluster interaction, opening new possibilities to controllably enhance the luminophore's photoluminescence in both isolate species and aggregate states in different phases including aqueous solution, solid state and organic solvents.
Collapse
Affiliation(s)
- Xiaoxi Luo
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hang Xiao
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmiao Sang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui He
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinbin Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
D'Antoni P, Sementa L, Bonacchi S, Reato M, Maran F, Fortunelli A, Stener M. Combined experimental and computational study of the photoabsorption of the monodoped and nondoped nanoclusters Au 24Pt(SR) 18, Ag 24Pt(SR) 18, and Ag 25(SR) 18. Phys Chem Chem Phys 2024; 26:17569-17576. [PMID: 38867581 DOI: 10.1039/d4cp00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18-, Ag24Pt(DMBT)182- and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.
Collapse
Affiliation(s)
- Pierpaolo D'Antoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Sara Bonacchi
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Mattia Reato
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Flavio Maran
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| |
Collapse
|
10
|
Lin H, Song X, Chai OJH, Yao Q, Yang H, Xie J. Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401002. [PMID: 38521974 DOI: 10.1002/adma.202401002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Metal nanoclusters (MNCs) can be synthesized with atomically precise structures and molecule formulae due to the rapid development of nanocluster science in recent decades. The ultrasmall size range (normally < 2 nm) endows MNCs with plenty of molecular-like properties, among which photoluminescent properties have aroused extensive attention. Tracing the research and development processes of luminescent nanoclusters, various photoluminescent analysis and characterization methods play a significant role in elucidating luminescent mechanism and analyzing luminescent properties. In this review, it is aimed to systematically summarize the normally used photoluminescent characterizations in MNCs including basic parameters and methods, such as excitation/emission wavelength, quantum yield, and lifetime. For each key parameter, first its definition and meaning is introduced and then the relevant characterization methods including measuring principles and the revelation of luminescent properties from the collected data are discussed. Then, it is discussed in details how to explore the luminescent mechanism of MNCs and construct NC-based applications based on the measured data. By means of these characterization strategies, the luminescent properties of MNCs and NC-based designs can be explained quantitatively and qualitatively. Hence, this review is expected to provide clear guidance for researchers to characterize luminescent MNCs and better understand the luminescent mechanism from the measured results.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Liu Z, Luo L, Kong J, Kahng E, Zhou M, Jin R. Bright near-infrared emission from the Au 39(SR) 29 nanocluster. NANOSCALE 2024; 16:7419-7426. [PMID: 38529816 DOI: 10.1039/d4nr00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The synthesis of atomically precise gold nanoclusters with high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region and understanding their photoluminescence mechanism are crucial for both fundamental science and practical applications. Herein, we report a highly luminescent, molecularly pure Au39(PET)29 (PET = 2-phenylethanethiolate) nanocluster with PLQY of 19% in the NIR range (915 nm). Steady state and time-resolved PL analyses, as well as temperature-dependent PL measurements reveal the emission nature of Au39(PET)29, which consists of prompt fluorescence (weak), thermally activated delayed fluorescence (TADF), and phosphorescence (predominant). Furthermore, strong dipole-dipole interaction in the solid-state (e.g., Au39(PET)29 nanoclusters embedded in a polystyrene thin-film) is found to narrow the energy gap between the S1 and T1 states, which results in faster intersystem crossing and reverse intersystem crossing; thus, the ratio of TADF to phosphorescence varies and the total PLQY is increased to 32%. This highly luminescent nanocluster holds promise in imaging, sensing and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Jie Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China. Hefei, Anhui 230026, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University. Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Luo L, Liu Z, Kong J, Gianopoulos CG, Coburn I, Kirschbaum K, Zhou M, Jin R. Three-atom-wide gold quantum rods with periodic elongation and strongly polarized excitons. Proc Natl Acad Sci U S A 2024; 121:e2318537121. [PMID: 38412123 PMCID: PMC10927531 DOI: 10.1073/pnas.2318537121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Atomically precise control over anisotropic nanoclusters constitutes a grand challenge in nanoscience. In this work, we report our success in achieving a periodic series of atomically precise gold quantum rods (abbrev. Au QRs) with unusual excitonic properties. These QRs possess hexagonal close-packed kernels with a constant three-atom diameter but increasing aspect ratios (ARs) from 6.3 to 18.7, all being protected by the same thiolate (SR) ligand. The kernels of the QRs are in a Au1-(Au3)n-Au1 configuration (where n is the number of Au3 layers) and follow a periodic elongation with a uniform Au18(SR)12 increment consisting of four Au3 layers. These Au QRs possess distinct HOMO-LUMO gaps (Eg = 0.6 to 1.3 eV) and exhibit strongly polarized excitonic transition along the longitudinal direction, resulting in very intense absorption in the near-infrared (800 to 1,700 nm). While excitons in gapped systems and plasmons in gapless systems are distinctly different types of excitations, the strongly polarized excitons in Au QRs surprisingly exhibit plasmon-like behaviors manifested in the shape-induced polarization, very intense absorption (~106 M-1 cm-1), and linear scaling relations with the AR, all of which resemble the behaviors of conventional metallic-state Au nanorods (i.e., gapless systems), but the QRs possess distinct gaps and very long excited-state lifetimes (10 to 2,122 ns), which hold promise in applications such as near-infrared solar energy utilization, hot carrier generation and transfer. The observation of plasmon-like behaviors from single-electron transitions in Au QRs elegantly bridges the distinct realms of single-electron and collective-electron excitations and may stimulate more research on excitonics and plasmonics.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
| | | | - Isabelle Coburn
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Kristin Kirschbaum
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH43606
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| |
Collapse
|
13
|
Cui M, Shi Y, Ma X, Li Q, Chen L, Zhang L, Wu J, Yu H, Zhu M. The Pivotal Radical Intermediate [Au 21(SR) 15] + in the Ligand-Exchange-Induced Size-Reduction of [Au 23(SR) 16] - to Au 16(SR) 12. ACS NANO 2024; 18:6591-6599. [PMID: 38305198 DOI: 10.1021/acsnano.3c12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The atomic precision of sub-nanometer-sized metal nanoclusters makes it possible to elucidate the kinetics of metal nanomaterials from the molecular level. Herein, the size reduction of an atomically precise [Au23(CHT)16]- (HCHT = cyclohexanethiol) cluster upon ligand exchange with HSAdm (1-adamantanethiol) has been reported. During the 16 h conversion of [Au23(CHT)16]- to Au16(SR)12, the neutral 6e Au21(SR)15, and its 1e-reduction state, i.e. the 5e, cationic radical, [Au21(SR)15]+, are active intermediates to account for the formation of thermodynamically stable Au16 products. The combination of spectroscopic monitoring (with UV-vis and ESI-MS) and DFT calculations indicates the preferential size-reduction on the corner Au atoms on the core surface and the terminal Au atoms on longer AunSn+1 staples. This study provides a reassessment on the electronic state of the Au21 structure and highlights the single electron transfer processes in cluster systems and thus the importance of the EPR analysis on the mechanistic issues.
Collapse
Affiliation(s)
- Mengting Cui
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yanan Shi
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Xiangyu Ma
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qingliang Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ling Chen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Lichao Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Junfei Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
15
|
Bose P, Kumaranchira Ramankutty K, Chakraborty P, Khatun E, Pradeep T. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. NANOSCALE 2024; 16:1446-1470. [PMID: 38032061 DOI: 10.1039/d3nr05128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Krishnadas Kumaranchira Ramankutty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Esma Khatun
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
16
|
Wang Y, Liu Z, Mazumder A, Gianopoulos CG, Kirschbaum K, Peteanu LA, Jin R. Tailoring Carbon Tails of Ligands on Au 52(SR) 32 Nanoclusters Enhances the Near-Infrared Photoluminescence Quantum Yield from 3.8 to 18.3. J Am Chem Soc 2023; 145:26328-26338. [PMID: 37982713 DOI: 10.1021/jacs.3c09846] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
One of the important factors that determine the photoluminescence (PL) properties of gold nanoclusters pertain to the surface. In this study, four Au52(SR)32 nanoclusters that feature a series of aromatic thiolate ligands (-SR) with different bulkiness at the para-position are synthesized and investigated. The near-infrared (NIR) photoluminescence (peaks at 900-940 nm) quantum yield (QY) is largely enhanced with a decrease in the ligand's para-bulkiness. Specifically, the Au52(SR)32 capped with the least bulky p-methylbenzenethiolate (p-MBT) exhibits the highest PLQY (18.3% at room temperature in non-degassed dichloromethane), while Au52 with the bulkiest tert-butylbenzenethiolate (TBBT) only gives 3.8%. The large enhancement of QY with fewer methyl groups on the ligands implies a nonradiative decay via the multiphonon process mediated by C-H bonds. Furthermore, single-crystal X-ray diffraction (SCXRD) comparison of Au52(p-MBT)32 and Au52(TBBT)32 reveals that fewer methyl groups at the para-position lead to a stronger interligand π···π stacking on the Au52 core, thus restricting ligand vibrations and rotations. The emission nature is identified to be phosphorescence and thermally activated delayed fluorescence (TADF) based on the PL lifetime, 3O2 quenching, and temperature-dependent PL and absorption studies. The 1O2 generation efficiencies for the four Au52(SR)32 NCs follow the same trend as the observed PL performance. Overall, the highly NIR-luminescent Au52(p-MBT)32 nanocluster and the revealed mechanisms are expected to find future applications.
Collapse
Affiliation(s)
- Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Abhrojyoti Mazumder
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Kristin Kirschbaum
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Linda A Peteanu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
17
|
Zhou S, Gustavsson L, Beaune G, Chandra S, Niskanen J, Ruokolainen J, Timonen JVI, Ikkala O, Peng B, Ras RHA. pH-Responsive Near-Infrared Emitting Gold Nanoclusters. Angew Chem Int Ed Engl 2023; 62:e202312679. [PMID: 37856667 DOI: 10.1002/anie.202312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Near-infrared (NIR) fluorophores with pH-responsive properties suggest merits in biological analyses. This work establishes a general and effective method to obtain pH-responsive NIR emissive gold nanoclusters by introducing aliphatic tertiary amine (TA) groups into the ligands. Computational study suggests that the pH-responsive NIR emission is associated with electronic structure change upon protonation and deprotonation of TA groups. Photo-induced electron transfer between deprotonated TA groups and the surface Au-S motifs of gold nanoclusters can disrupt the radiative transitions and thereby decrease the photoluminescence intensity in basic environments (pH=7-11). By contrast, protonated TA groups curb the electron transfer and restore the photoluminescence intensity in acidic environments (pH=4-7). The pH-responsive NIR-emitting gold nanoclusters serve as a specific and sensitive probe for the lysosomes in the cells, offering non-invasive emissions without interferences from intracellular autofluorescence.
Collapse
Affiliation(s)
- Shaochen Zhou
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Lotta Gustavsson
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Grégory Beaune
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Sourov Chandra
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Jukka Niskanen
- Department of Chemical Engineering and Metallurgy, School of Chemical Engineering, Aalto University, 00076, Espoo, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Olli Ikkala
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Bo Peng
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| | - Robin H A Ras
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials LIBER, Aalto University, 00076, Espoo, Finland
| |
Collapse
|
18
|
Havenridge S, Aikens CM. Understanding the Ligand-Dependent Photoluminescent Mechanism in Small Alkynyl-Protected Gold Nanoclusters. J Phys Chem A 2023; 127:9932-9943. [PMID: 37966050 DOI: 10.1021/acs.jpca.3c04644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Alkynyl-protected gold clusters have recently gained attention because they are more structurally versatile than their thiolate-protected counterparts. Despite their flexibility, however, a higher photoluminescent quantum yield (PLQY) has been observed experimentally compared to that of organically soluble thiolate-protected clusters. Previous experiments have shown that changing the organic ligand, or R group, in these clusters does not affect the geometric or electronic properties of the core, leading to a similar absorption profile. This article serves as a follow-up to those experiments in which the geometric, optical, and photoluminescent (PL) properties of Au22(ETP)18 are pieced together to find the photoluminescence mechanism. These properties are then compared between Au22(C≡CR)18 clusters where the ligand is changed from R = ETP to PA and ET (ETP = 3-ethynylthiophene, PA = phenylacetylene, and ET = 3-ethynyltoluene). As the theoretical results do not reproduce the same absorption profile among the different ligands as in the experiment, this article also presents a supplementary benchmark of the geometric and optical properties among the three ligands for different levels of theory. The calculations show that the photoluminescence mechanism with the ETP ligand results in ligand-to-metal-to-metal charge transfer (LMMCT), while PA and ET are likely a result of core-dominated fluorescence. The changes are the result of the Au(I) ring atoms as well as how the aromatic groups are connected to the cluster. Additionally, dispersion, solvent, and polarization functions are all important to creating an accurate chemical environment, but the most useful tool in these calculations is the use of a long-range-corrected exchange-correlation functional.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, United States
| |
Collapse
|
19
|
Xie XY, Cheng KQ, Chen WK, Li W, Li Q, Han J, Fang WH, Cui G. Near-Infrared Dual-Emission of a Thiolate-Protected Au 42 Nanocluster: Excited States, Nonradiative Rates, and Mechanism. J Phys Chem Lett 2023; 14:10025-10031. [PMID: 37906639 DOI: 10.1021/acs.jpclett.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Both DFT and TD-DFT methods are used to elaborate on the excited-state properties and dual-emission mechanism of a thiolate-protected Au42 nanocluster. A three-state model (S0, S1, and T1) is proposed with respect to the results. The intersystem crossing (ISC) process from S1 to T1 benefits from a small reorganization energy due to the similar geometric structures of S1 and T1. However, the ISC process is suppressed by relatively small spin-orbit coupling resulting from the similarity of the electronic structures of S1 and T1. As a result of the counterbalance, the ISC rate is comparable with the fluorescence emission rate. In the T1 state, the phosphorescence emission prevails the reverse ISC process back to the S1 state. Taken together, fluorescence and phosphorescence are achieved simultaneously. The present work provides deep mechanistic insights to aid the rational design of NIR dual-emissive metal nanoclusters.
Collapse
Affiliation(s)
- Xiao-Ying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ke-Qin Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Juan Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
20
|
Sevilla RC, Soebroto RJ, Kurniawan IS, Chen PW, Chang SH, Shen JL, Chou WC, Yeh JM, Huang HY, Yuan CT. Self-Trapped, Thermally Equilibrated Delayed Fluorescence Enables Low-Reabsorption Luminescent Solar Concentrators Based on Gold-Doped Silver Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922121 DOI: 10.1021/acsami.3c13710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Reabsorption-free luminescent solar concentrators (LSCs) are crucial ingredients for photovoltaic windows. Atomically precise metal nanoclusters (NCs) with large Stokes-shifted photoluminescence (PL) hold great promise for applications in LSCs. However, a fundamental understanding of the PL mechanism, particularly on the excited-state interaction and exciton kinetics, is still lacking. Herein, we studied the exciton-phonon coupling and singlet/triplet exciton dynamics for gold-doped silver NCs in a solid matrix. Following photoexcitation, the excitons can be self-trapped via strong exciton-phonon coupling. Subsequently, rapid thermal equilibration between the singlet and triplet states occurs due to the coexistence of small energy splitting and spin-orbit coupling. Finally, broadband delayed fluorescence with a large Stokes shift can be generated, namely, self-trapped, thermally equilibrated delayed fluorescence (ST-TEDF). Benefiting from superior ST-TEDF, we demonstrated efficient LSCs with minimized reabsorption.
Collapse
Affiliation(s)
- Russel Cruz Sevilla
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ruth Jeane Soebroto
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Irwan Saleh Kurniawan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Po-Wen Chen
- Physics Division, National Atomic Research Institute, Taoyuan 325207, Taiwan
| | - Sheng Hsiung Chang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Wu-Ching Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
21
|
Santhoshkumar S, Madhu M, Tseng WB, Tseng WL. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys 2023; 25:21787-21801. [PMID: 37577965 DOI: 10.1039/d3cp02714g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gold nanoclusters (AuNCs) are promising nanomaterials for ratiometric fluorescent probes due to their tunable fluorescence wavelengths dependent on size and structure, as well as their biocompatibility and resistance to photobleaching. By incorporating an additional fluorescence spectral peak, dual-emission AuNC-based fluorescent probes have been developed to enhance the signal output reproducibility. These probes can be fabricated by integrating various luminescent nanomaterials with AuNCs. This review focuses on the preparation methods and applications of ratiometric fluorescent probes derived from AuNCs and other fluorescent nanomaterials or fluorescent dyes for both in vitro and in vivo bioimaging of target analytes. Additionally, the review delves into the sensing mechanisms of AuNC-based ratiometric probes, their synthetic strategies, and the challenges encountered when using AuNCs for ratiometric bioimaging. Moreover, we explore the application of protein-stabilized AuNCs and thiolate-capped AuNC-based ratiometric fluorescent probes for biosensing and bioimaging. Two primary methods for assembling AuNCs and fluorophores into ratiometric fluorescent probes are discussed: triggered assembly and self-assembly. Finally, we address the challenges and issues associated with ratiometric bioimaging using AuNCs and propose future directions for further advancing AuNCs as ratiometric imaging agents.
Collapse
Affiliation(s)
- S Santhoshkumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
| | - Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| |
Collapse
|
22
|
Lei Z, Zhao P, Pei XL, Ube H, Ehara M, Shionoya M. Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes. Chem Sci 2023; 14:6207-6215. [PMID: 37325149 PMCID: PMC10266449 DOI: 10.1039/d3sc01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
23
|
Havenridge S, Rüger R, Aikens CM. Analytical excited state gradients for time-dependent density functional theory plus tight binding (TDDFT + TB). J Chem Phys 2023; 158:2895226. [PMID: 37290069 DOI: 10.1063/5.0142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Understanding photoluminescent mechanisms has become essential for photocatalytic, biological, and electronic applications. Unfortunately, analyzing excited state potential energy surfaces (PESs) in large systems is computationally expensive, and hence limited with electronic structure methods such as time-dependent density functional theory (TDDFT). Inspired by the sTDDFT and sTDA methods, time-dependent density functional theory plus tight binding (TDDFT + TB) has been shown to reproduce linear response TDDFT results much faster than TDDFT, particularly in large nanoparticles. For photochemical processes, however, methods must go beyond the calculation of excitation energies. Herein, this work outlines an analytical approach to obtain the derivative of the vertical excitation energy in TDDFT + TB for more efficient excited state PES exploration. The gradient derivation is based on the Z vector method, which utilizes an auxiliary Lagrangian to characterize the excitation energy. The gradient is obtained when the derivatives of the Fock matrix, the coupling matrix, and the overlap matrix are all plugged into the auxiliary Lagrangian, and the Lagrange multipliers are solved. This article outlines the derivation of the analytical gradient, discusses the implementation in Amsterdam Modeling Suite, and provides proof of concept by analyzing the emission energy and optimized excited state geometry calculated by TDDFT and TDDFT + TB for small organic molecules and noble metal nanoclusters.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, USA
| | - Robert Rüger
- Software for Chemistry & Materials BV, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66502, USA
| |
Collapse
|
24
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
25
|
Knoppe S, Muñoz-Castro A. Intermediate Silver Doping of Au 25(SR) 18: Variation of Electronic, Optical, and Chiroptical Properties along Au 25-xAg x(SH) 18- ( x = 0-12) Stoichiometry from DFT Calculations. Inorg Chem 2023; 62:7079-7086. [PMID: 37104868 DOI: 10.1021/acs.inorgchem.3c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The silver analogue of the prominent Au25(SR)18 nanocluster reveals the possibility of finding "gold"-like behavior despite their different nature, in addition to the common features among molecular AgNP. Herein, we explore the effect of successive additions of silver atoms reaching an intermediate Ag/Au doping ratio where the parent gold cluster exhibits properties from both elements. Our results show a more favorable situation as the Ag/Au ratio increases along the Au25-xAgx(SH)18- (x = 0-12) clusters, with structural distortions mainly centered at the ligand-protected shell. The calculated optical spectrum shows that from the Au19Ag6 species, a plasmon-like peak appears along species with a doping ratio above 25%, where all the silver atoms are located within the M12 icosahedron. In addition, the chiral properties were explored, showing mild optical activity from the calculated circular dichroism spectra due to the distorted ligand-shell avoiding a centrosymmetric structure. Thus, an intermediate doping ratio ascribed to a specific structural layer can recover inherent properties to both elements in the binary Au25-xAgx(SH)18- series, suggesting the possibility of having clusters with dual properties at a certain degree of element exchange. This can be useful for further exploration theoretically and synthetically toward different and larger-nuclearity clusters.
Collapse
Affiliation(s)
- Stefan Knoppe
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart, Baden-Wurttemberg 70569, Germany
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| |
Collapse
|
26
|
Ishii W, Okayasu Y, Kobayashi Y, Tanaka R, Katao S, Nishikawa Y, Kawai T, Nakashima T. Excited State Engineering in Ag 29 Nanocluster through Peripheral Modification with Silver(I) Complexes for Bright Near-Infrared Photoluminescence. J Am Chem Soc 2023; 145:11236-11244. [PMID: 37126432 DOI: 10.1021/jacs.3c01259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The optical property of an ionic metal nanocluster (NC) is affected by the ionic interaction with counter ions. Here, we report that the modification of trianionic [Ag29(BDT)12(TPP)4]3- NC (BDT: 1.3-benzenedithiol; TPP: triphenylphosphine) with silver(I) complexes led to the intense photoluminescence (PL) in the near-infrared (NIR) region. The binding of silver(I) complexes to the peripheral region of Ag29 NC is confirmed by the single-crystal X-ray diffraction (SCXRD) measurement, which is further supported by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. The change of excited-state dynamics by the binding of silver(I) complexes is discussed based on the results of a transient absorption study as well as temperature-dependent PL spectra and PL lifetime measurements. The modification of Ag29 NCs with cationic silver(I) complexes is considered to give rise to a triplet excited state responsible for the intense NIR PL. These findings also afford important insights into the origin of the PL mechanism as well as the possible light-driven motion in Ag29-based NCs.
Collapse
Affiliation(s)
- Wataru Ishii
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Rika Tanaka
- X-ray Crystal Analysis Laboratory, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Shohei Katao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoshiko Nishikawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Takuya Nakashima
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
27
|
Wei J, MacLeod Carey D, Halet JF, Kahlal S, Saillard JY, Muñoz-Castro A. From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au 12(dppm) 6 Cluster Displaying Distinctive Electronic and Optical Properties. Inorg Chem 2023; 62:3047-3055. [PMID: 36734972 DOI: 10.1021/acs.inorgchem.2c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The iconic W@Au12 icosahedral bare cluster reaches the favorable closed-shell superatomic electron configuration 1S2 1P6 1D10, making it an 18-cluster electron (18-ce) superatom. Here, we pursue the evaluation of a ligand-protected counterpart based on the construction of a fully phosphine-protected [W@Au12(dppm)6] cluster strongly related to the characterized [Au13(dppm)6]5+ homometallic counterpart. The later cluster has the same total number of valence electrons as the former but is considered an 8-ce superatom with 1S2 1P6 configuration. The fundamental differences between 8- and 18-ce species are investigated. The character of the frontier orbitals varies from 1P/1D in the 8-ce case to a 1D/ligand for 18-ce species, enabling an efficient charge transfer toward the ligands upon irradiation, being interesting for electron injection in optoelectronic devices and black absorbers applications. Excited-state properties are also revisited, showing different geometrical and electronic structure variations between 8- and 18-ce species. Moreover, the continuum between the 8- and 18-ce limits has been explored by varying the nature of the encapsulated dopant between group 6 and group 11. The transition between the 8- and 18-ce counts can be formally situated between Pt (8-ce) and Ir (18-ce). Thus, 18-ce derivatives obtained as doped counterparts of homometallic gold clusters can introduce useful alternatives to achieve different properties in related structural motifs, which can be further explored owing to their extension of the well-established versatility of current gold nanoclusters.
Collapse
Affiliation(s)
- Jianyu Wei
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Desmond MacLeod Carey
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingenieria, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago7500912, Chile
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba305-0044, Japan
| | - Samia Kahlal
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Jean-Yves Saillard
- Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, Univ Rennes, CNRS, F-35000Rennes, France
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago8420524, Chile
| |
Collapse
|
28
|
Zhong Y, Zhang J, Li T, Xu W, Yao Q, Lu M, Bai X, Wu Z, Xie J, Zhang Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat Commun 2023; 14:658. [PMID: 36746958 PMCID: PMC9902523 DOI: 10.1038/s41467-023-36387-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The restriction of structural vibration has assumed great importance in attaining bright emission of luminescent metal nanoclusters (NCs), where tremendous efforts are devoted to manipulating the surface landscape yet remain challenges for modulation of the structural vibration of the metal kernel. Here, we report efficient suppression of kernel vibration achieving enhancement in emission intensity, by rigidifying the surface of metal NCs and propagating as-developed strains into the metal core. Specifically, a layer-by-layer triple-ligands surface engineering is deployed to allow the solution-phase Au NCs with strong metal core-dictated fluorescence, up to the high absolute quantum yields of 90.3 ± 3.5%. The as-rigidified surface imposed by synergistic supramolecular interactions greatly influences the low-frequency acoustic vibration of the metal kernel, resulting in a subtle change in vibration frequency but a reduction in amplitude of oscillation. This scenario therewith impedes the non-radiative relaxation of electron dynamics, rendering the Au NCs with strong emission. The presented study exemplifies the linkage between surface chemistry and core-state emission of metal NCs, and proposes a strategy for brighter emitting metal NCs by regulating their interior metal core-involved motion.
Collapse
Affiliation(s)
- Yuan Zhong
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Jiangwei Zhang
- grid.411643.50000 0004 1761 0411Innovation Center of Energy Material and Chemistry; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021 P. R. China
| | - Tingting Li
- grid.443314.50000 0001 0225 0773College of Materials Science and Engineering, Jilin Jianzhu University, Changchun, 130012 P. R. China
| | - Wenwu Xu
- grid.203507.30000 0000 8950 5267Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211 P. R. China
| | - Qiaofeng Yao
- grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 P. R. China
| | - Min Lu
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Xue Bai
- grid.64924.3d0000 0004 1760 5735State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012 P. R. China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
29
|
Havenridge S, Weerawardene KLDM, Aikens CM. Characterization of Pt-doping effects on nanoparticle emission: a theoretical look at Au 24Pt(SH) 18 and Au 24Pt(SC 3H 7) 18. Faraday Discuss 2023; 242:464-477. [PMID: 36222075 DOI: 10.1039/d2fd00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure-property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au24Pt(SR)18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au24Pt(SR)18 in comparison with those of [Au25(SR)18]1-. Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
30
|
Zanetti-Polzi L, Charchar P, Yarovsky I, Corni S. Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS NANO 2022; 16:20129-20140. [PMID: 36300936 DOI: 10.1021/acsnano.2c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
| | | | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria3001, Australia
| | - Stefano Corni
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131Padova, Italy
| |
Collapse
|
31
|
Stabilization of {Ag20(StBu)10} and {Ag19(StBu)10} Toroidal Complexes in DMSO: HPLC-ICP-AES, PL, and Structural Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The presence of DMSO provides a unique ability to stabilize silver toroidal complexes in the direct reaction between AgStBu and AgNO3 at 80 °C. Slow cooling results in large crystals of [NO3@Ag19.2(StBu)10(DMSO)5.2(NO3)8.2]·3DMSO (1), which were isolated and characterized by single crystal X-ray diffraction (SCXRD) analysis. The crystal structure contains both {Ag20(StBu)10} and {Ag19(StBu)10} clusters. The solution of these material in DMSO was studied with HPLC techniques, which demonstrated the presence of both complexes in solution. The use of [SiW12O40]4– as counter anion gives crystals of a double complex salt [Ag17.8(NO3)3.8(StBu)10][SiW12O40]·30DMSO (2) under the same conditions. Temperature-dependent photoluminescence (PL) was studied.
Collapse
|
32
|
Liu Z, Li Y, Kahng E, Xue S, Du X, Li S, Jin R. Tailoring the Electron-Phonon Interaction in Au 25(SR) 18 Nanoclusters via Ligand Engineering and Insight into Luminescence. ACS NANO 2022; 16:18448-18458. [PMID: 36252530 DOI: 10.1021/acsnano.2c06586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the electron-phonon interaction in Au nanoclusters (NCs) is essential for enhancing and tuning their photoluminescence (PL) properties. Among all the methods, ligand engineering is the most straightforward and facile one to design Au NCs with the desired PL properties. However, a systematic understanding of the ligand effects toward electron-phonon interactions in Au NCs is still missing. Herein, we synthesized four Au25(SR)18- NCs protected by different -SR ligands and carefully examined their temperature-dependent band-gap renormalization behavior. Data analysis by a Bose-Einstein two-oscillator model revealed a suppression of high-frequency optical phonons in aromatic-ligand-protected Au25 NCs. Meanwhile, a low-frequency breathing mode and a quadrupolar mode are attributed as the main contributors to the phonon-assisted nonradiative relaxation pathway in aromatic-ligand-protected Au25 NCs, which is in contrast with non-aromatic-ligand-protected Au25 NCs, in which tangential and radial modes play the key roles. The PL measurements of the four Au25 NCs showed that the suppression of optical phonons led to higher quantum yields in aromatic-ligand-protected Au25 NCs. Cryogenic PL measurements provide insights into the nonradiative energy relaxation, which should be further investigated for a full understanding of the PL mechanism in Au25 NCs.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Site Li
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, PittsburghPennsylvania15213, United States
| |
Collapse
|
33
|
Wang S, Li Q, Yang S, Yu H, Chai J, Zhu M. H-bond-induced luminescence enhancement in a Pt 1Ag 30 nanocluster and its application in methanol detection. NANOSCALE 2022; 14:16647-16654. [PMID: 36321756 DOI: 10.1039/d2nr03387a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen bonding is an important type of interaction for constructing nanocluster assemblies. In this study, the role of hydrogen bonding interactions in regulating the fluorescence properties of nanoclusters is investigated. A [Pt1Ag30(SAdm)14(Bdpm)4Cl5]3+ (Pt1Ag30 for short) nanocluster containing hydrogen-accepting ligands is synthesized and its structure is determined. By introducing N-containing ligands into nanoclusters, hydrogen bonding interactions between nanoclusters and polar solvents can be established, which can result in a 35-fold enhancement in the fluorescence intensity (in MeOH vs. in DCM). A series of experiments are designed to demonstrate hydrogen bonding interactions between N atoms in the Pt1Ag30 cluster and H in the polar solvent and the results show that fluorescence enhancement is derived from the proton-coupled/uncoupled electron transfer between hydrogen bonds. Furthermore, this Pt1Ag30 is used for the naked-eye detection of MeOH on indicator paper.
Collapse
Affiliation(s)
- Silan Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key, Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, 230601, China.
| |
Collapse
|
34
|
Luo L, Liu Z, Du X, Jin R. Near-Infrared Dual Emission from the Au 42(SR) 32 Nanocluster and Tailoring of Intersystem Crossing. J Am Chem Soc 2022; 144:19243-19247. [PMID: 36239690 DOI: 10.1021/jacs.2c09107] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the synthesis and intriguing photoluminescence of the Au42(PET)32 (PET = 2-phenylethanethiolate) nanocluster (NC). The Au42(PET)32 NC exhibits dual emission at 875 and 1040 nm, which are revealed to be fluorescence and phosphorescence, respectively. The emission quantum yield (QY) of Au42(PET)32 in dichloromethane is 11.9% at room temperature in air, which is quite rare for thiolate-protected Au NCs. When Au42(PET)32 NCs are embedded in polystyrene films (solid state), the fluorescence was dramatically suppressed while the phosphorescence was significantly enhanced. This divergent behavior is explained by dipolar interaction-induced enhancement of intersystem crossing from singlet to triplet excited state.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
35
|
Pniakowska A, Kumaranchira Ramankutty K, Obstarczyk P, Perić Bakulić M, Sanader Maršić Ž, Bonačić‐Koutecký V, Bürgi T, Olesiak‐Bańska J. Gold‐Doping Effect on Two‐Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angew Chem Int Ed Engl 2022; 61:e202209645. [DOI: 10.1002/anie.202209645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Pniakowska
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | | | - Patryk Obstarczyk
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
- Faculty of Science University of Split Ruđera Boškovića 33 21000 Split Croatia
| | - Vlasta Bonačić‐Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) University of Split Poljička cesta 35 21000 Split Croatia
| | - Thomas Bürgi
- Département de Chimie Physique Université de Genève 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Joanna Olesiak‐Bańska
- Institute of Advanced Materials Wroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
36
|
Pniakowska A, Ramankutty KK, Obstarczyk P, Bakulić MP, Maršić ŽS, Bonačić-Koutecký V, Bürgi T, Olesiak-Banska J. Gold‐doping effect on two‐photon absorption and luminescence of atomically precise silver ligated nanoclusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna Pniakowska
- Wroclaw University of Science and Technology: Politechnika Wroclawska Institute of Advanced Materials POLAND
| | | | - Patryk Obstarczyk
- Wroclaw University of Science and Technology: Politechnika Wroclawska Institute of Advanced Materials POLAND
| | - Martina Perić Bakulić
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Željka Sanader Maršić
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Vlasta Bonačić-Koutecký
- University of Split: Sveuciliste u Splitu Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST) CROATIA
| | - Thomas Bürgi
- Universite de Geneve Département de Chimie Physique SWITZERLAND
| | - Joanna Olesiak-Banska
- Wroclaw University of Science and Technology: Politechnika Wroclawska Faculty of Chemistry Wybrzeze Wyspianskiego 27 50-370 Wroclaw POLAND
| |
Collapse
|
37
|
Lei Z, Endo M, Ube H, Shiraogawa T, Zhao P, Nagata K, Pei XL, Eguchi T, Kamachi T, Ehara M, Ozawa T, Shionoya M. N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells. Nat Commun 2022; 13:4288. [PMID: 35948553 PMCID: PMC9365809 DOI: 10.1038/s41467-022-31891-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/08/2022] [Indexed: 11/14/2022] Open
Abstract
Photoluminescent gold clusters are functionally variable chemical modules by ligand design. Chemical modification of protective ligands and introduction of different metals into the gold clusters lead to discover unique chemical and physical properties based on their significantly perturbed electronic structures. Here we report the synthesis of carbon-centered Au(I)-Ag(I) clusters with high phosphorescence quantum yields using N-heterocyclic carbene ligands. Specifically, a heterometallic cluster [(C)(AuI-L)6AgI2]4+, where L denotes benzimidazolylidene-based carbene ligands featuring N-pyridyl substituents, shows a significantly high phosphorescence quantum yield (Φ = 0.88). Theoretical calculations suggest that the carbene ligands accelerate the radiative decay by affecting the spin-orbit coupling, and the benzimidazolylidene ligands further suppress the non-radiative pathway. Furthermore, these clusters with carbene ligands are taken up into cells, emit phosphorescence and translocate to a particular organelle. Such well-defined, highly phosphorescent C-centered Au(I)-Ag(I) clusters will enable ligand-specific, organelle-selective phosphorescence imaging and dynamic analysis of molecular distribution and translocation pathways in cells. Photoluminescent gold clusters have unique chemical and physical properties based on their perturbed electronic structures. Here, the authors report the synthesis of carbon-centered Au(I)-Ag(I) clusters with high phosphorescence quantum yields using N-heterocyclic carbene ligands.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mizuki Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takafumi Shiraogawa
- Research Center for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Koichi Nagata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Eguchi
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-7 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Toshiaki Kamachi
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-7 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
38
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022; 61:e202205947. [PMID: 35596616 DOI: 10.1002/anie.202205947] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/20/2022]
Abstract
It remains challenging to manipulate the nature of photoluminescence as either fluorescence or phosphorescence for a correlated cluster series. In this work, two correlated nanoclusters, Au5 Ag11 (SR)8 (DPPOE)2 and Pt1 Ag16 (SR)8 (DPPOE)2 with comparable structure features, were synthesized and structurally determined. These two alloy nanoclusters displayed distinct photoluminescent nature-the Au5 Ag11 nanocluster is fluorescent, whereas the Pt1 Ag16 nanocluster is phosphorescent. The decay processes of the excited electrons in these two nanoclusters have been explicitly mapped out by both experimental and theoretical approaches, disclosing the mechanisms of their fluorescence and phosphorescence. Specifically, the metallic compositions of the nanocluster kernels mattered in determining their photoluminescent nature. The results herein provide an intriguing nanomodel that enables us to grasp the origin of photoluminescence at the atomic level, which further paves the way for fabricating novel nanoclusters or cluster-based nanomaterials with customized photophysical properties.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Junsheng Xin
- Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
39
|
Cheng D, Liu R, Hu K. Gold nanoclusters: Photophysical properties and photocatalytic applications. Front Chem 2022; 10:958626. [PMID: 35928211 PMCID: PMC9343704 DOI: 10.3389/fchem.2022.958626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Atomically precise gold nanoclusters (Au NCs) have high specific surface area and abundant unsaturated active sites. Traditionally, Au NCs are employed as thermocatalysts for multielectron transfer redox catalysis. Meanwhile, Au NCs also exhibit discrete energy levels, tunable photophysical and electrochemical properties, including visible to near infrared absorption, microsecond long-lived excited-state lifetime, and redox chemistry. In recent years, Au NCs are increasingly employed as visible to near infrared photocatalysts for their high photocatalytic activity and unique selectivity. This review focuses on the photophysical properties of a variety of Au NCs and their employment as photocatalysts in photocatalytic reactions and related applications including solar energy conversion and photodynamic therapies.
Collapse
|
40
|
Bertorelle F, Wegner KD, Perić Bakulić M, Fakhouri H, Comby-Zerbino C, Sagar A, Bernadó P, Resch-Genger U, Bonačić-Koutecký V, Le Guével X, Antoine R. Tailoring the NIR-II Photoluminescence of Single Thiolated Au 25 Nanoclusters by Selective Binding to Proteins. Chemistry 2022; 28:e202200570. [PMID: 35703399 DOI: 10.1002/chem.202200570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/28/2022]
Abstract
Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging.
Collapse
Affiliation(s)
- Franck Bertorelle
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.,Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
| | - K David Wegner
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Martina Perić Bakulić
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia
| | - Hussein Fakhouri
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.,Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia
| | - Clothilde Comby-Zerbino
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, 29 rue de Navacelles, 34090, Montpellier, France
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology, Integration of Mediterranean Region (STIM) at, Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000, Split, Croatia.,Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Xavier Le Guével
- Institute for Advanced Biosciences, Université Grenoble Alpes/ INSERM1209/CNRS-UMR5309, 38700, La Tronche, France
| | - Rodolphe Antoine
- Institut Lumière Matière, UMR5306, Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| |
Collapse
|
41
|
Suzuki W, Takahata R, Chiga Y, Kikkawa S, Yamazoe S, Mizuhata Y, Tokitoh N, Teranishi T. Control over Ligand-Exchange Positions of Thiolate-Protected Gold Nanoclusters Using Steric Repulsion of Protecting Ligands. J Am Chem Soc 2022; 144:12310-12320. [PMID: 35776692 DOI: 10.1021/jacs.2c03670] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organic ligands on gold nanoclusters play important roles in regulating the structures of gold cores. However, the impact of the number and positions of the protecting ligands on gold-core structures remains unclear. We isolated thiolate-protected Au25 cluster anions, [Au25(SC2Ph)17(Por)1]- and [Au25(SC2Ph)16(Por)2]- (SC2Ph = 2-phenylethanethiolate), obtained by ligand exchange of [Au25(SC2Ph)18]- with one or two porphyrinthiolate (Por) ligands as mixtures of regioisomers. The ratio of two regioisomers in [Au25(SC2Ph)17(Por)1]- as measured by 1H NMR spectroscopy revealed that the selectivity could be controlled by the steric hindrance of the incoming thiols. Extended X-ray absorption fine structure studies of a series of porphyrin-coordinated gold nanoclusters clarified that the Au13 icosahedral core in the Au25 cluster was distorted through steric repulsion between porphyrin thiolates and phenylethanethiolates. This paper reveals interesting insights into the importance of the steric structures of protecting ligands for control over core structures in gold nanoclusters.
Collapse
Affiliation(s)
- Wataru Suzuki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryo Takahata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Chiga
- Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
42
|
Chen T, Lin H, Cao Y, Yao Q, Xie J. Interactions of Metal Nanoclusters with Light: Fundamentals and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103918. [PMID: 34617332 DOI: 10.1002/adma.202103918] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The interactions of materials with light determine their applications in various fields. In the past decade, ultrasmall metal nanoclusters (NCs) have emerged as a promising class of optical materials due to their unique molecular-like properties. Herein, the basic principles of optical absorption and photoluminescence of metal NCs, their interactions with polarized light, and light-induced chemical reactions, are discussed, highlighting the roles of the core and protecting ligands/motifs of metal NCs in their interactions with light. The metal core and protecting ligands/motifs determine the electronic structures of metal NCs, which are closely related to their optical properties. In addition, the protecting ligands/motifs of metal NCs contribute to their photoluminescence and chiral origin, further promoting the interactions of metal NCs with light through various pathways. The fundamentals of light-NC interactions provide guidance for the design of metal NCs in optical applications, which are discussed in the second part. In the last section, some strategies are proposed to further understand light-NC interactions, highlighting the challenges and opportunities. It is hoped that this work will stimulate more research on the optical properties of metal NCs and their applications in various fields.
Collapse
Affiliation(s)
- Tiankai Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hongbin Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
43
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Zhu
- Anhui University Department of Chemistry CHINA
| | | | - Jing Li
- Xiangtan University Department of Chemistry CHINA
| | - Hao Li
- Anhui University Department of Chemistry CHINA
| | - Xi Kang
- Anhui University Department of Chemistry CHINA
| | - Yong Pei
- Xiangtan University Department of Chemistry CHINA
| | - Manzhou Zhu
- Anhui University Department of Chemistry and Chemical Engineering 111 Jiulong Rd 230601 Hefei CHINA
| |
Collapse
|
44
|
Li J, Wang P, Pei Y. Ligand Shell Isomerization Induces Different Fluorescence Origins of Two Au 28 Nanoclusters. J Phys Chem Lett 2022; 13:3718-3725. [PMID: 35442683 DOI: 10.1021/acs.jpclett.2c00539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the origin of the photoluminescence (PL) phenomenon in ligand-protected metal nanoclusters is of paramount importance in both fundamental science and practical applications. In this study, we have studied the origin of fluorescence emission of two thiolate-ligand-protected Au28 clusters (Au28(CHT)20 and Au28(TBBT)20) by means of density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. Theoretical calculation results show that the ligand shell isomerization induces different ligand motif-to-metal core charge transfers (LMCT) of Au28(TBBT)20 and Au28(CHT)20. Moreover, in Au28(CHT)20, the emission process of S2 → S0 can compete favorably with the internal conversion of S2 → S1. Furthermore, the high quantum yield of Au28(CHT)20 is attributed to its high symmetric structure, which leads to less energy dissipation during the structural relaxation process.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China
| |
Collapse
|
45
|
Luo XM, Gong CH, Pan F, Si Y, Yuan JW, Asad M, Dong XY, Zang SQ, Mak TCW. Small symmetry-breaking triggering large chiroptical responses of Ag 70 nanoclusters. Nat Commun 2022; 13:1177. [PMID: 35246541 PMCID: PMC8897454 DOI: 10.1038/s41467-022-28893-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
The origins of the chiroptical activities of inorganic nanostructures have perplexed scientists, and deracemization of high-nuclearity metal nanoclusters (NCs) remains challenging. Here, we report a single-crystal structure of Rac-Ag70 that contains enantiomeric pairs of 70-nuclearity silver clusters with 20 free valence electrons (Ag70), and each of these clusters is a doubly truncated tetrahedron with pseudo-T symmetry. A deracemization method using a chiral metal precursor not only stabilizes Ag70 in solution but also enables monitoring of the gradual enlargement of the electronic circular dichroism (CD) responses and anisotropy factor gabs. The chiral crystals of R/S-Ag70 in space group P21 containing a pseudo-T-symmetric enantiomeric NC show significant kernel-based and shell-based CD responses. The small symmetry breaking of Td symmetry arising from local distortion of Ag−S motifs and rotation of the apical Ag3 trigons results in large chiroptical responses. This work opens an avenue to construct chiral medium/large-sized NCs and nanoparticles, which are promising for asymmetric catalysis, nonlinear optics, chiral sensing, and biomedicine. Having control over the chirality of metal nanoclusters is challenging. Here, the authors report the deracemization of silver nanoclusters and monitor the chiroptical responses.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Chun-Hua Gong
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Fangfang Pan
- College of Chemistry Central China Normal University, Luoyu Road 152, 430079, Wuhan, China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Jia-Wang Yuan
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.,College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454003, Jiaozuo, China
| | - Muhammad Asad
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, 454003, Jiaozuo, China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
46
|
Zhou P, Goswami N, Chen T, Liu X, Huang X. Engineering Au Nanoclusters for Relay Luminescence Enhancement with Aggregation-Induced Emission. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:777. [PMID: 35269264 PMCID: PMC8912310 DOI: 10.3390/nano12050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022]
Abstract
The research of aggregation-induced emission (AIE) has been growing rapidly for the design of highly luminescent materials, as exemplified by the library of AIE-active materials (or AIEgens) fabricated and explored for diverse applications in different fields. Herein, we reported a relay luminescence enhancement of luminescent Au nanoclusters (Au NCs) through AIE. In addition, we demonstrated the emergence of reduced aggregation-caused luminescence by adjusting the temperature of the Au NC solution. The key to induce this effect is to attach a thermosensitive polymer poly(N-isopropylacrylamide) (PNIPAAm) on the surface of Au NCs, which will shrink at high temperature. More interestingly, the as-synthesized Au NCs-PNIPAAm can self-assemble into vesicles, resulting in an obvious decrease in the luminescence intensity in aqueous solution. The combination of relay luminescence enhancement (by AIE) and luminescence decrease (induced by thermosensitive polymers) will be beneficial to the understanding and manipulation of the optical properties of Au NCs, paving the way for their practical applications.
Collapse
Affiliation(s)
- Pei Zhou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Collaborative Innovation Center for Efficient Utilization of Water Resources, Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751013, India;
| | - Tiankai Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore;
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China;
| |
Collapse
|
47
|
Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:544. [PMID: 35159891 PMCID: PMC8838213 DOI: 10.3390/nano12030544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.
Collapse
Affiliation(s)
- Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Dipankar Bain
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Aarti Devi
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
48
|
Muñoz-Castro A. Ligand-Core Interaction in Ligand-Protected Ag25(XR)18 (X= S, Se, Te) Superatoms. Evaluation of Anchor Atom Role via Relativistic DFT Calculations. Phys Chem Chem Phys 2022; 24:17233-17241. [DOI: 10.1039/d2cp01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isostructural and isoelectronic silver [Ag25(SR)18]- (R=Ligand) cluster to [Au25(SR)18]- gold clusters allows to further understand the fundamental similarities between Au and Ag, at the ultrasmall nanoscale (< 2 nm)...
Collapse
|
49
|
Ma H, Wang J, Zhang XD. Near-infrared II emissive metal clusters: From atom physics to biomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Hesari M, Ding Z. Identifying Highly Photoelectrochemical Active Sites of Two Au 21 Nanocluster Isomers toward Bright Near-Infrared Electrochemiluminescence. J Am Chem Soc 2021; 143:19474-19485. [PMID: 34775763 DOI: 10.1021/jacs.1c08877] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thus far, no correlation between nanocluster structures and their electrochemiluminescence (ECL) has been identified. Herein, we report how face-centered-cubic and hexagonal close-packed structures of two Au21(SR)15 nanocluster isomers determine their chemical reactivity. The relationships were explored by means of ECL and photoluminescence spectroscopy. Both isomers reveal unprecedented ECL efficiencies in the near-infrared region, which are >10- and 270-fold higher than that of standard Ru(bpy)32+, respectively. Photoelectrochemical reactivity as well as ECL mechanisms were elucidated based on electrochemistry, spooling photoluminescence, and ECL spectroscopy, unfolding the three emission enhancement origins: (i) effectively exposed reactive facets available to undergo electron transfer reactions; (ii) individual excited-state regeneration loops; (iii) cascade generations of various exited states. Indeed, these discoveries will have immediate impacts on various applications including but not limited to single molecular detection as well as photochemistry and electrocatalysis toward clean photon-electron conversion processes such as light-harvesting and light-emitting technologies.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|